ENVE 424 Anaerobic Treatment

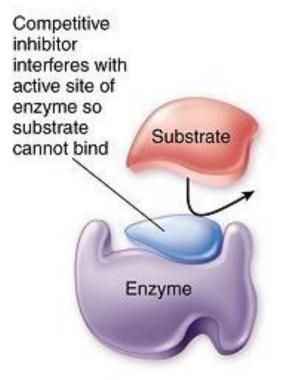
Lecture 6 Toxic substances in anaerobic treatment

2012 – 2013 Fall 01 Nov 2012 Assist. Prof. A. Evren Tugtas

Inhibition

- Competitive Inhibition
- Uncompetitive Inhibition
- Noncompetitive Inhibition

Toxicity

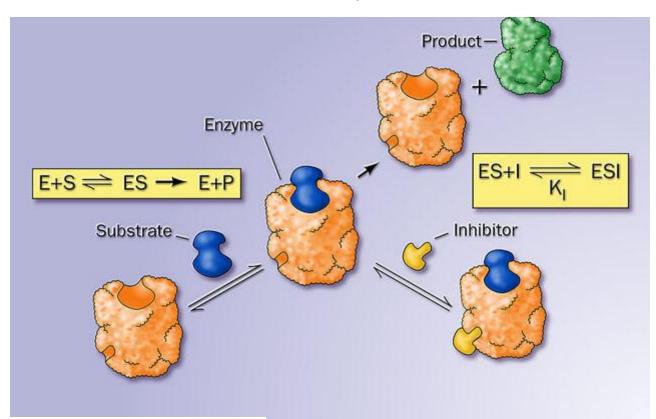


Inhibition – Competitive Inhibition

- The inhibitor binds to the active site and prevents binding of the substrate
- Inhibitor and the substrate are chemically similar

$$[E] + [S] \longleftrightarrow^{K_s} \longrightarrow [E \cdot S] \xrightarrow{k_2} [E] + [P]$$

 $[E] + [I] \longleftrightarrow^{\kappa_t} [E \cdot I]$



Ref:http://karimedalla.wordpress.com/2012/10/17/7-6b-enzymes/

(a) Competitive inhibition

Inhibition – Uncompetitive Inhibition

- The inhibitor can only bind to Enzyme/Substrate complex
- Inhibitor and the substrate <u>are not</u> chemically similar

Ref:http://www.chemistrypictures.org/index.php/enzy mes/4Uncompetitive_inhibition

Inhibition – Noncompetitive Inhibition

- The inhibitor binds alters the active site of the enzyme
- Inhibitor can bind to either free enzyme or Enzyme/Substrate complex and prevents product formation
- Inhibitor and the substrate <u>are not</u> chemically similar

Ref:http://karimedalla.wordpress.com/2012/10/17/7-6b-enzymes/ Noncompetitive inhibitor changes shape of enzyme so it cannot bind to substrate

(b) Noncompetitive inhibition

Substrate

Enzyme

Toxicity vs. Inhibition

Inhibition

- Binding of an enzyme is reversible
- Once bound inhibitor is released from the enzyme, enzyme will function again
- Toxicity
 - Irreversible
 - If the enzyme has been rendered by the binding of the inhibitor or if the bound inhibitor does not release

- For any material to be inhibitory or toxic, it must be in solution (soluble as opposed to particulate form)
 - If the substance is not in solution, it cannot pass through the cell wall
- 2) Toxicity is a relative term
 - Many inorganic or organic soluble materials can be either stimulatory or inhibitory or toxic

3) Acclimation

- When the concentration of potential inhibitory/toxic materials are slowly increased, some organisms can rearrange their metabolic resources
- Under shock load conditions sufficient time is not enough to achieve acclimation

4) Antagonism and Synergism

- Antagonism: Reduction of the toxic effect of one substance by the presence of another substance
- Synergism: Increase of the toxic effect of one substance by the presence of another substance

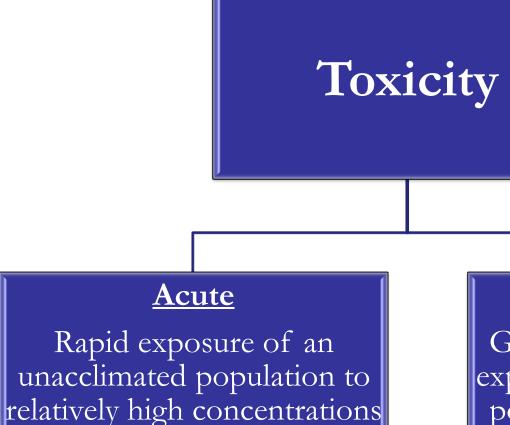
Toxicity in AD

- A variety of inorganic and organic wastes can cause toxicity in anaerobic digesters.
- Many toxic wastes are removed in primary clarifiers and transferred directly to the anaerobic digester.
- Heavy metals may be precipitated as hydroxides in primary sludge.
- Organic compounds such as oils and chloroform are removed in primary scum & sludge.
- Industrial wastewaters often contain wastes that are toxic to anaerobic digesters.

Toxicity in AD

- Toxic substances causing inibition on AD may be;
 - Components of the influent waste stream or
 - By-products of the anaerobic microorganims
- Although ranges of values exist at which toxicity occurs for specific
 organic and inorganic compounds, anaerobic bacteria and methanogens
 often can tolerate higher values by acclimating to toxic substances.

Toxicity threshold


Toxicity threshold of a substance is determined by several factors including;

 The ability of the bacteria to adapt to a constant concentration of the toxic substance,

- Absence or presence of other toxic wastes, and
- Changes in operational conditions.

Acute and chronic toxicity

of a toxic waste

<u>Chronic</u>

Gradual and relatively long exposure of an unacclimated population of bacteria to a toxic waste.

Chronic toxicity

- Anaerobic bacteria & methanogens may acclimate to chronic toxicity by two means;
 - They may repair damaged enzyme systems in order to adjust to the toxic wastes or degrade the toxic organic compound.
 - They may grow a relatively large population that is capable of developing the enzyme systems necessary to degrade the toxic organic compounds.

Chronic toxicity

- Time of chronic toxicity in an anaerobic digester is determined by;
 - 1. The time of contact between the toxic waste and the bacteria
 - 2. The ratio of toxic waste to the bacterial population

Toxic substances in AD

- Volatile Fatty Acids
- Sulfides
- Ammonia
- Heavy metals
- Alkaline metals (Ca^{2+} , Mg^{2+} , K^+ and Na^+)
- Cyanide
- Anthropogenic & recalcitrant compounds

Toxic substances in AD

TABLE 17.1 Inorganic and Organic Toxic Wastes to Anaerobic Digesters

Alcohols (isopropanol) Alkaline cations (Ca²⁺, Mg²⁺, K⁺, and Na⁺) Alternate electron acceptors, nitrate (NO₃) and sulfate (SO_4^{2-}) Ammonia. Benzene ring compounds Cell bursting agent (lauryl sulfate) Chemical inhibitors used as food preservatives Chlorinated hydrocarbons Cyanide Detergents and disinfectants Feedback inhibition Food preservatives Formaldehyde Heavy metals Hydrogen sulfide Organic-nitrogen compounds (acrylonitrile) Oxygen Pharmaceuticals (monensin) Solvents Volatile acids and long-chain fatty acids

Ref: Gerardi M.H. The microbiology of anaerobic digesters. Wiley Interscience. 2003

17

Toxic substances in AD

Waste	Concentration (mg/l) in Influent to Digester
Ammonia	1500
Arsenic	1.6
Boron	2
Cadmium	0.02
Chromium (Cr ⁶⁺)	5-50
Chromium (Cr ³⁺)	50-500
Copper	1-10
Cyanide	4
Iron	5
Magnesium	1000
Sodium	3500
Sulfide	50
Zinc	5-20

TABLE 17.3 Toxic Values for Selected Organic Wastes		
Waste	Concentration (mg/l) in influent to digester	
Alcohol, allyl	100	
Alcohol, octyl	200	
Acrylonitrile	5	
Benzidine	5	
Chloroform	10-16	
Carbon tetrachloride	10-20	
Methylene chloride	100-500	
1,1,1-Trichloroethane	1	
Trichlorofluoromethane	20	
Trichlorotrifluoroethane	5	

Ref: Gerardi M.H. The microbiology of anaerobic digesters. Wiley Interscience. 2003

Indicators of toxicity

- Disappearence of H₂
- Disappearence of CH₄
- Decreases in alkalinity and pH
- Increase in volatile fatty acid concentration

Toxicity control measures

- Removal of toxic substances from the feed
- Dilution of the feed with another waste to bring toxic substance levels below toxic threshold value
- Addition of chemicals to form a non-toxic

complex or insoluble precipitate

- Addition of an antagonistic substance.

Ammonia toxicity

- Ammonium (NH₄⁺), a reduced form of nitrogen may enter to an AD <u>via influent</u> or may be produced during <u>hydrolysis of</u> <u>amino acids and proteins</u>.
- Ammonia (base) combines with carbondioxide and water to form ammonium bicarbonate
- If the protein concentration is too high (slaughter house urine) ammonia may reach to toxic levels.

Ammonia toxicity

- Reduced nitogen exits in two forms, the ammonium ion (NH₄⁺) and free or unionized ammonia (NH₃).
- NH₄⁺ are used by anaerobic bacteria as a nutrient source for nitrogen & also provide a buffering capacity.
- NH₃ is the toxic form causing inhibition in anaerobic systems
- Ammonia (NH₃) concentration of about <u>100 mg/L</u> causes inhibition in acetate-fed anaerobic systems
- \mathbf{NH}_4^+ nitrogen concentration found to cause inhibition aroung

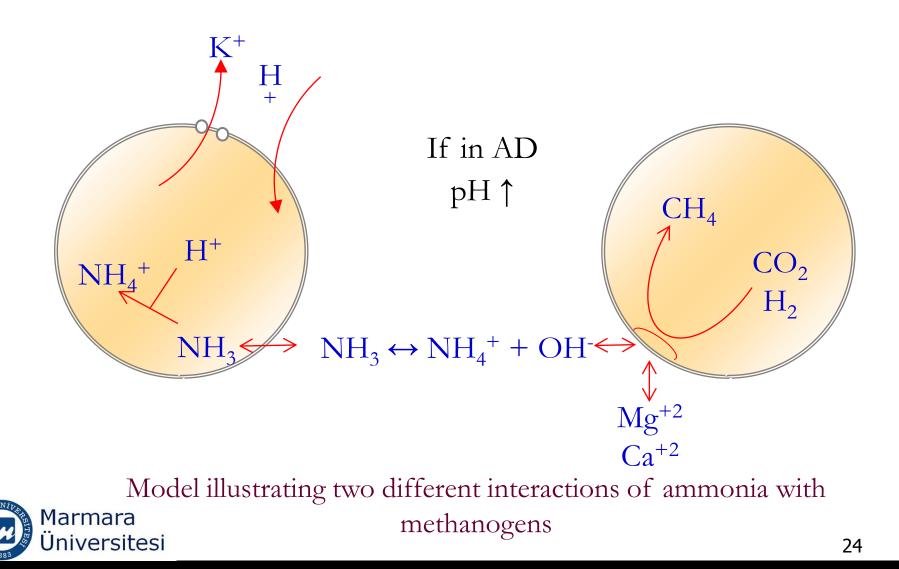
Ammonia toxicity

$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$

Free (unionized) ammonia

Marmara

niversitesi


Ammonium ion

 $FA = \frac{TN}{1 + 10^{(pK_a - pH)}}$ $pK_a = 0.09018 + \frac{2729.92}{T + 273.15}$

- TN : Total NH₃₋N, mg/l
- FA : Free NH_3 -N, mg/l
- pKa : Dissociation constant for NH₄⁺ (8.95 at 35°C)
- T : Temperature, °C

Ammonia inhibition mechanism

Effect of Ammonia on AD

TABLE 17.4 Effects of Ammonical-nitrogen/Ammonia in an Anaerobic Digester

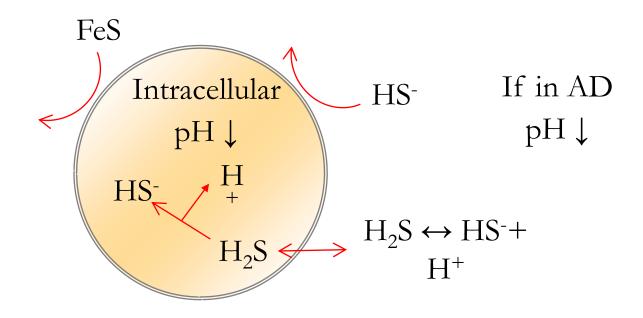
Ammonical-nitrogen (NH [*])/Dissolved Ammonia (NH ₃), N	Effect
50–200 mg/l 200–1000 mg/l	Beneficial No adverse effect
1500–3000 mg/l	Inhibitory at pH > 7

Ref: Gerardi M.H. The microbiology of anaerobic digesters. Wiley Interscience. 2003

- Ammonia toxicity is "self-correcting".
 - Methanogens are inhibited by free ammonia
 - VFA concentration increases
 - Then pH of the digester drops.
 - The drop in pH converts FA to ammonium ions.

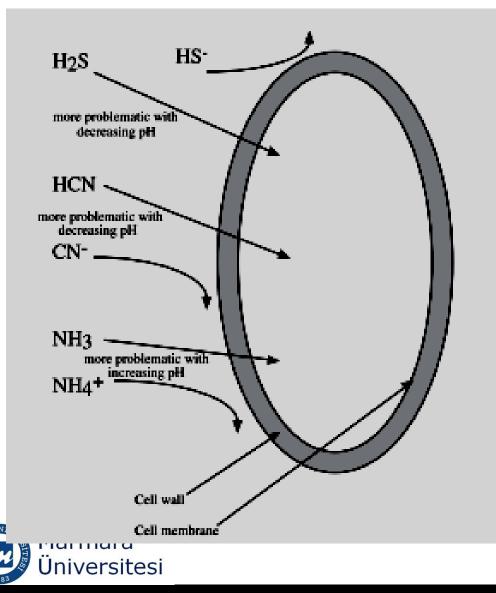
Sulfide toxicity

- Bacterial cells need soluble sulfur as a growth nutrient and satisfy this need by using soluble sulfide (HS⁻).
- However, excessive concentrations of sulfides or dissolved hydrogen sulfide (H₂S) gas cause toxicity.
- Methanogens are the microorganisms that are most susceptible to H₂S toxicity in ADs.
- Hydrogenotrophic methanogens are more resistant to H_2S than acetoclastic methanogens.



Sulfide toxicity

- Soluble H₂S toxicity occurs because sulfide inhibits the metabolic activity of anaerobic bacteria.
- Although the H_2S inhibition mechanism is not completely understood, toxicity can occur at 200 mg/l at neutral pH.
- Because diffusion through a cell membrane is required to exert toxicity and non-ionized H_2S diffuses more rapidly across a cell membrane than sulfide, H_2S toxicity is pH dependent.



Sulfide toxicity

pH dependent toxicity

Ref: Gerardi M.H. The microbiology of anaerobic digesters. Wiley Interscience. 2003

H_2S formation in ADs

- H₂S is formed in ADs from the reduction of sulfate and the degradation of organic compounds such as sulfur-containing amino acids and proteins.
- The sulfur in some of the amino acids is released during the hydrolysis.
- Sulfate is relatively non-inhibitory to methanogens.
- Sulfate is reduced to H_2S by SRB.
- For each gr of COD degraded by SRB 1.5 gr of sulfate are reduced to H₂S.

Control of H₂S inhibition

- Free H_2S gas can be stripped from digester sludge by the rapid production of CO_2 , H_2 and CH_4 .
- Treatment measures include;
 - Diluting the sulfides
 - Increasing the pH to convert H_2S to less toxic HS⁻
 - Separating and treating the sulfate/sulfide waste stream
 - Precipitating the sulfide as a metal salt (FeS), and
 - Scrubbing and recirculating digester biogas.

VFA toxicity

- High concentrations of VFA are often associated with the effects of toxicity and inhibition.
- It is generally believed that VFA inhibition is due to their accumulation and a consequent reduction in pH value.
- However, several experiments have shown that the VFA are
 - themselves toxic.

VFA toxicity

- Depending on pH, VFA concentrations can be tolerated with a minimal degree of toxicity.
- However, at low pH values much more of the VFAs exists in the undissociated form which is much more toxic than ion form, due to its greater membrane permeability.
- In a well-operating digester running with lightly loaded feed,
 VFA concentration is typically less than 100 mg/l.

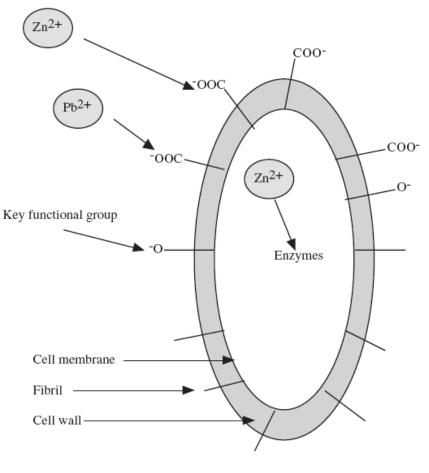
VFAs in AD

VFAs generally present in AD process

Formic acid	НСООН
Acetic acid	CH ₃ COOH
Propionic acid	CH ₃ CH ₂ COOH
Butyric acid	CH ₃ CH ₂ CH ₂ COOH
Valeric acid	CH ₃ CH ₂ CH ₂ CH ₂ COOH
Hexanoic acid	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COOH
Heptanoic acid	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COOH
Octanoic acid	$CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 COOH$

Metal toxicity

- A trace level of many metal ions is required for the function of certain enzymes and coenzymes.
- However, excessive amounts may result in toxicity or inhibition.
- Heavy metal toxicity is believed to occur through the structural disruption of enzymes and protein molecules within the cell.



Metal toxicity

- Numerous heavy metals such as cobalt (Co), copper (Cu), iron
 (Fe), nickel (Ni), and zinc (Zn) are found in wastewaters and sludges and are transferred to ADs.
- Copper, nickel, zinc, cadmium and mercury can be toxic to AD microflora at concentrations of <u>less than 1 mg/L</u>
- High concentrations of metals in sludges affect sludge disposal options and costs.

Heavy Metals Toxicity

- Metals are adsorbed to the surface
 of negatively charged, bacterial
 fibrils that extend into bulk
 solution from cell membrane
 through cell wall.
- Fibrils are negatively charged by the ionization from key functional groups such as -COOH and hydroxyl -OH.
- Once adsorbed, metals are absorbed by bacterial cells.
- Inside the cells metals attack enzyme systems.

Heavy Metals Toxicity

Heavy metal concentrations (mg/l) that cause a 50% reduction in biogas production rate

Zinc Cadmium Copper Nickel	163.0 180.0 170.0
Nickel	0.6
Lead	2.0

Salt Toxicity

- Alkali and alkaline earth metals (sodium, potassium, magnesium, and calcium) are stimulatory to anaerobic bacteria unless present at excessive concentrations.
- The toxicity of salts of these metals is associated with the <u>cation</u> rather than anion.
- Aacclimatization of digester with cations can often increase the toxicity threshold.

Salt Toxicity

•Inhibitory concentrations of alkali and alkaline–earth cations

Cation	Concentrations in mg/l		
	Moderately inhibitory	Strongly inhibitory	
Sodium Potassium Calcium Magnesium	3500-5500 2500-4500 2500-4500 1000-1500	8000 12 000 8000 3000	

Cyanide toxicity

- Cyanide (-CN) and cyanide-containing compounds are commonly found in wastewaters from metal cleaning and electroplating industries.
- In metal finishing industry they are used in plating baths.
- Cyanide & cyano-compounds are toxic to methanogens.
- Toxicity occurs at cyanide concentrations >100 mg/l.

Cyanide toxicity

- Cyanide prevents methane production from acetate, but it may not prevent methane production from $H_2 + CO_2$.
- Cyanide toxicity is reversible.
- The reversibility of toxicity is dependent on;
 - Concentration of cyanide and its time in the digester
 - Amounts of solids (bacteria) in digester
 - Solids retention time (SRT), and
 - Temperature.

Toxicity of Anthropogenic & Recalcitrant Compounds

- Chlorinated Hydrocarbons
- Benzene Ring Compounds:
 - Benzene
 - Pentachlorophenol
 - Phenol and phenolic compounds (chlorophenols, nitrophenols and tannins)
 - Toluene.
- Formaldehyde (H_2CO)

Recalcitrant Compounds

- Difficult to degrade or recalcitrant compounds in anaerobic digesters may cause toxicity to methanogens.
- Examples of these compounds include aliphatic hydrocarbons and some chlorinated compounds such as lignin, humic substances, and chlorinated biphenyls.
- The recalcitrant compounds become even more difficult to degrade when they contain alkyl groups, halogens, nitro groups, and sulfo groups.

