ENVE 424 Anaerobic Treatment

Review Lecture

2012-2013 Fall Assist. Prof. A. Evren Tugtas

Basics of Microbiology

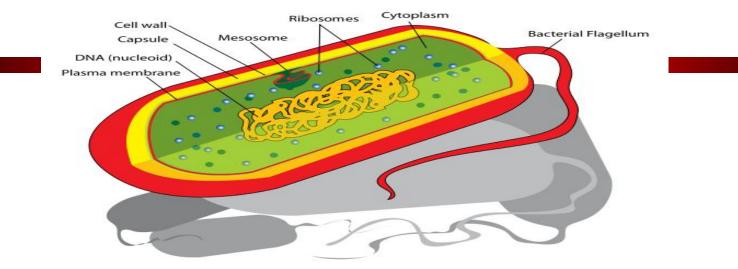
Principles of microbiology is applied to the solution of environmental problems

- Treatment of municipal and industrial ww
- Enhancement of the quality of drinking water
- Restoration of sites contaminated with hazardous materials
- Protection or restoration of rivers, lakes etc.
- Prevention of spread of pathogens
- Production of environmentally benign chemicals

The Cell

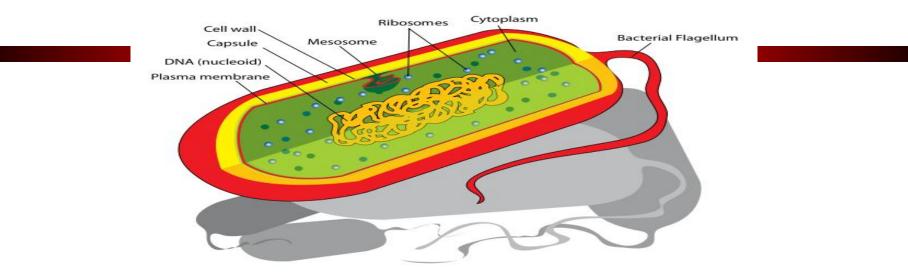
- The cell is the fundamental building block of life
- Cells are capable of growth and reproduction
- Cells are highly organized and selectively restrict what crosses their boundaries
- Cells are composed of C, N, O, S in particular and are chemically reduced
- Cells are self feeding

The Cell


- *Cell Membrane:* a barrier between the cell and its environment. It restricts what crosses its boundaries.
- *Cell Wall*: gives rigidity to the cell and protects the membrane
- *Cytoplasm*: Comprises most of the inside of the cell. It contains water and the macromolecules
- *Chromosome*: Store's the genetic code
- *Ribosomes*: Convert the genetic code into working catalysyst
- *Enzymes*: catalysts that carry out the desired biochemical reaction

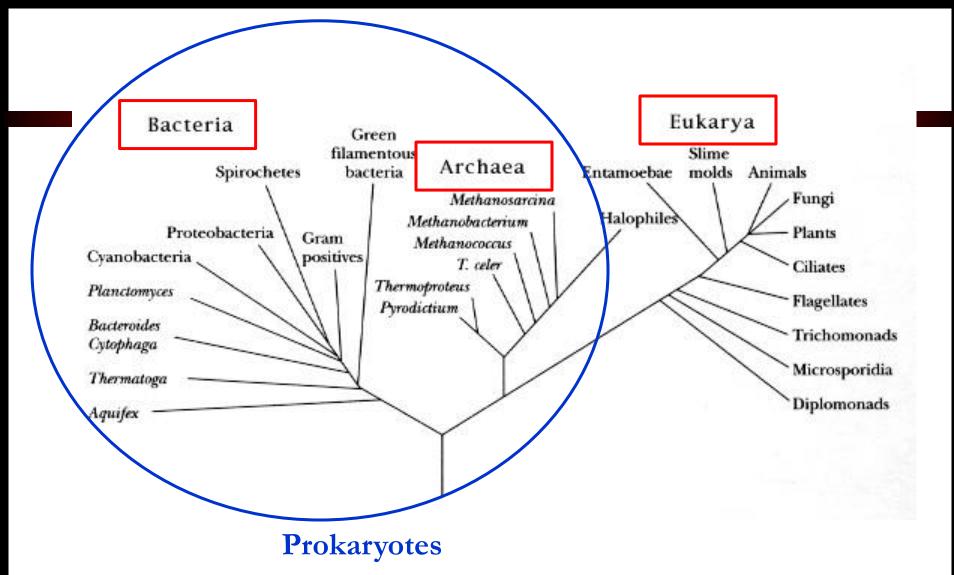
Cell Membrane

- Cell membrane is simple in most bacteris
- more complex in *autotrophic bacteria*, which synthesize essentially all cellular components from inorganic materials
- even more complex in the *phototrophic bacteria*, which obtain energy from sunlight



FLAGELLA

- Protein hairlike structures that extend from the cytoplasm
- Provide mobility by rotating at high speeds



FIMBRIAE and PILI

- Short protein hairlike structures
- Enable bacteria to stick to surfaces
- Pili enable bacteria to attach to each other

Basic Microbiology

• *Prokaryotes* are single cellular

• *Eukarya* is the other major domain, can be either single (algae, protozoa) or multicellular \rightarrow higher plants and animals

Ref: http://blogs.scientificamerican.com/a-blogaround-the-clock/2012/03/13/biological-clocksin-protista/

Bacterial Flagellum Nucleoid (circular DNA)

Capsule Cell wal

Plasma membran

Cytoplasr

Riboson

Bacteria

- Principal microorganism used in biological wastewater treatment
- single cell, prokaryotic organism
- their usual mode of reproduction binary fission
- are composed of
 - 80 % water

20 % dry material (90% organic, 10 % inorganic)

• approximated emprical formula for the organic fraction (may vary with time and species)

 $C_5H_7O_2N$

 $C_{60}H_{87}O_{23}N_{12}P$

Typical Composition of Bacteria

Emprical formula for bacteria		
1	Constituent	Percentage
$C_5H_7O_2N$	Water	75
	Dry Matter	25
Emprical molecular weight is	Organics	90
117	С	45 - 55
113 g	0	22 - 28
10 10	Η	5 - 7
12.4 % N (w)	Ν	8 – 13
F_{20}/C_{1}	Inorganic	10
53% C (w)	P_2O_5	50
	K ₂ O	6.5
	Na ₂ O	10
$C_{60}H_{87}O_{23}N_{12}P$	MgO	8.5
	CaO	10
NID	SO ₃	15

To continue to reproduce and function properly bacteria must have sources of :

• Carbon

• Energy

• Inorganic elements (nutrients)

Classification of Bacteria Based on Nutrition

Group	Energy Source	Carbon Source
Autotrophic - chemolithotrophic	inorganic redox	CO ₂
- photolithotrophic	radiant energy	CO ₂
Heterotrophic		
 chemoorganotrophic 	organic redox	organics
- photoorganotrophic	radiant energy	organics
Mixotrophic	Inorganic redox	organics

- Heterotrophs derive cell carbon from organic carbon sources
- Autotrophs derive cell carbon from CO₂
- Autotrophs spend more energy for synthesis compared to that of heterotrophs

ersitesi

The energy producing reactions by chemotrophs; oxidation-reduction reactions electron transfer from electron to electron donor acceptor electron donor \rightarrow is oxidized electron acceptor \rightarrow is reduced

•in respiratory metabolism→ external electron acceptor is used
•in fermantative metabolism→ internal electron acceptor is used

•less sufficient energy yielding process than respiration

Growth rate and cell yield of strictly fermentative heterotrophic organisms Growth rate and cell yield of respiratory heterotrophs

Classification of Bacteria Based on Oxygen

Group

O₂ Effect

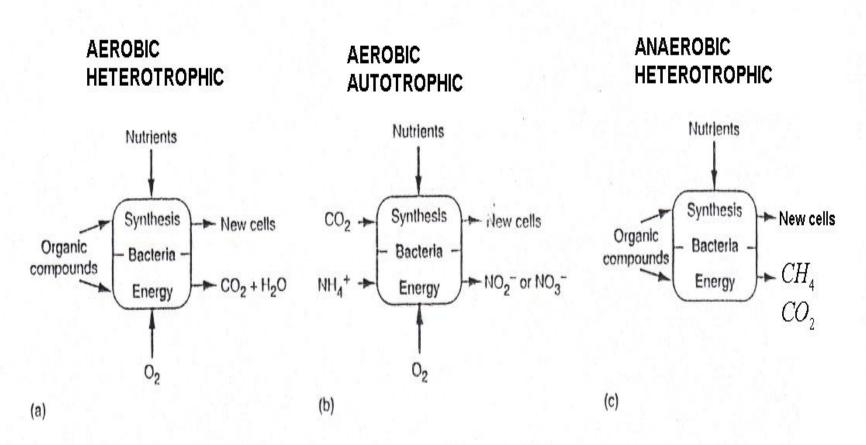
Aerobes

- Obligate
- Facultative
- Microaerophilic

Anaerobes

- Aerotolerant
- Obligate (strict)

Required Not required but grow better with O₂ Required, but at levels lower than atmospheric


Not required; grow no better when O₂ present Harmful or lethal

Energy- Producing Chemical Reactions

- Aerobic:
 - Electron acceptor \rightarrow O₂
- Anoxic
 - Possible electron acceptors; NO_3 -, NO_2 etc.
- Anaerobic
 - Electron acceptors \rightarrow Organics, Fe(III)

Figure 7-9

Examples of bacteria metabolism: (a) aerobic, heterotrophic, (b) aerobic, autotrophic, (c) anaerobic, heterorophic

Ref: Metcalf & Eddy, Inc. (2003). *Wastewater Engineering-Treatment and Reuse*, 4th ed., McGraw-Hill, New York, NY.

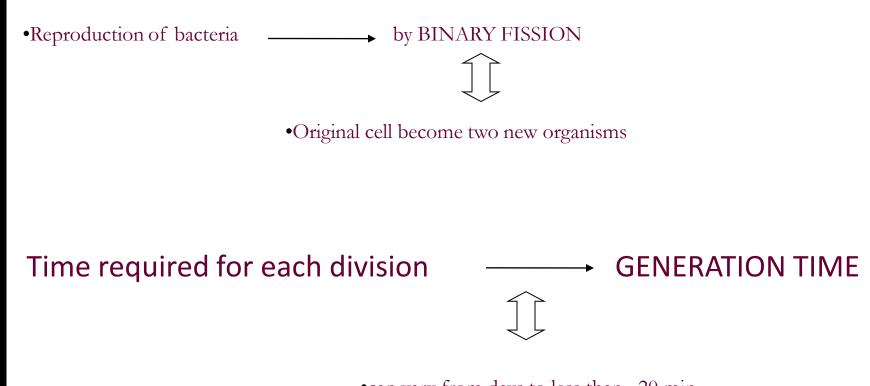
Classification of microorganisms by electron, electron

acceptor, sources of cell carbon and end products

	Common reaction name	Carbon Source	Electron Donor	Electron acceptor	End Products
Aerobic Heterotrophic	Aerobic oxidation	Organic compounds	Organic compounds	O2	CO2, H2O
Aerobic Autotrophic	Nitrification	CO ₂	$NH_3^ NO_2^-$	O2	$NO_2^ NO_3^-$
	Iron oxidation	CO ₂	Fe(II)	O2	Ferric Iron, Fe(III)
	Sulfur oxidation	CO ₂	H ₂ S, S, $S_2O_3^{2-}$	O2	<i>SO</i> ₄ ²⁻
Facultative Heterotrophic	Denitrification anixic reaction	Organic compounds	Organic compounds	$NO_2^ NO_3^-$	N2, CO2, H2O
Anaerobic Heterotrophic	Acid fermentation	Organic compounds	Organic compounds	Organic compounds	Volatile fatty acids (VFAs) (acetate,propiona te)
•Metcalf & Eddy, Inc. (2003). <i>Wastewater</i>	Iron reduction	Organic compounds	Organic compounds	Fe(III)	Fe(II), CO ₂ , H ₂ O
Engineering- Treatment and	Sulfate reduction	Organic compounds	Organic compounds	SO4	H2S, CO2, H2O
Reuse, 4 th ed., McGraw-Hill, New York, NY.	Methanogenesis	Organic compounds	Volatile fatty acids (VFAs)	CO ₂	Methane

Universitesi Lecture notes of Assist. Prof. Dr. Bilge Alpaslan Kocamemi 18

Classification of Bacteria Based on Temperature

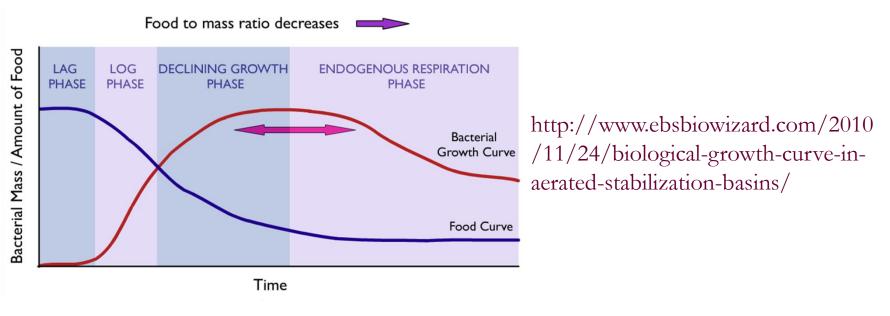

Temperature Class	Normal Temperature	
	Range for Growth	
	(°C)	
Psycrophile	-5 - 20	
Mesophile	8 - 45	
Thermophile	40 - 70	
Hyperthermophile	65 - 110	

Growth rate double with approximately every 10°C increase in temperature until the optimum temperature is reached

Most bacteria can not tolerate pH levels above 9.5 or below 4.

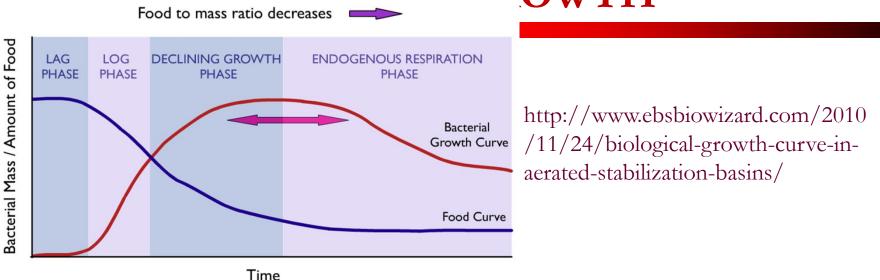
BACTERIAL GROWTH

can vary from days to less than 20 mindepending on species and environmental condition



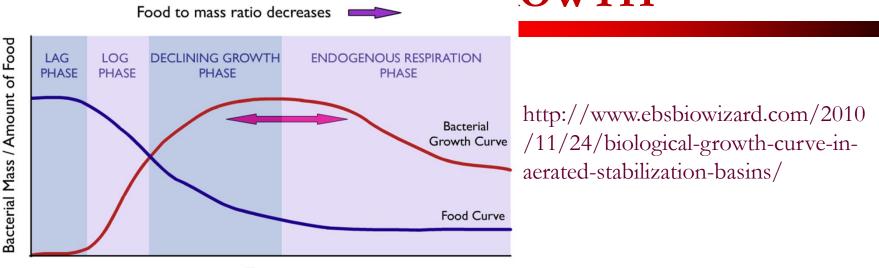
BACTERIAL GROWTH

- •BACTERIAL GROWTH PATTERNS IN A BATCH REACTOR
- •Consider the case of a single species of bacteria inoculated in (that is,


added to) a medium containig substrate and all nutrients required for

growth.

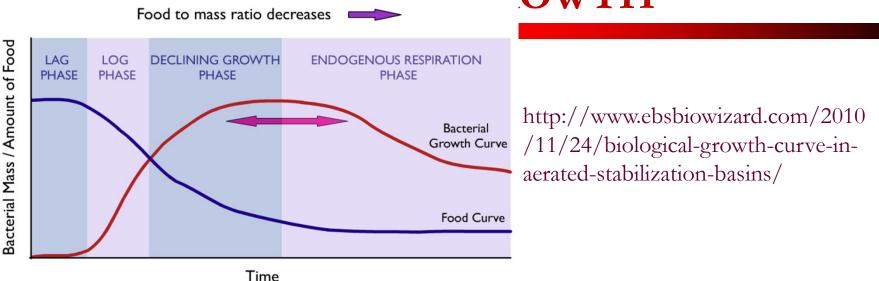
RACTERIAI CROWTH


LAG PHASE

- Time required for microorganisms to acclimate to their environment before significant cell division and biomass production occur
- No increase in the number of cells
- Duration of lag phase is greatly dependent upon the age of inoculum culture an the amount of inoculum

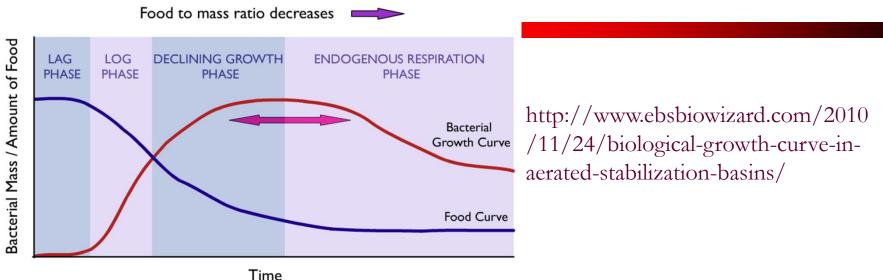
the lag phase will be extremely short

RACTERIAI CROWTH



- EXPONENTIAL GROWTH PHASE (log-growth phase)
- The rate of fission is the maximum possible as there is no limitation due to substrate or nutrients
- Towards to the end of this phase depletion of the substrate or an essential nutrient accumulation of toxic end products

RACTERIAI CROWTH



STATIONARY PHASE

- number of cells dying = number of cells being produced
- bacterial population remains relatively constant with respect to time

BACTERIAL GROWTH

DEATH PHASE

As the environment becomes more and more adverse to microbial growth (e.g depletion of substrate)

Cells reproduce more slowly

Cell die rate exceeds cell growth rate

- Microorganisms start to utilize their own stored food materials and protoplasm in addition to a part of dead cells in the environment as food
- An exponential decline in the biomass concentration Marmara Üniversitesi

g biomass produced BIOMASSYIELD, Y = substrate utilized (i.e consumed) g \longrightarrow Y = $\frac{g \text{ biomass}}{g \text{ organic substrate}}$ for aerobic heterotrohic rxns w/ organic substrates for nitrification \longrightarrow Y = $\frac{g \text{ biomass}}{g \text{ NH}_4 - \text{Noxidized}}$ Y = g biomass g VFAs used for anaerobic rxns

Growth Condition	Electron Donor	Electron Acceptor	Synthesis Yield
Aerobic	Organic Compound	Oxygen	0.40 g VSS/g COD
Aerobic	Ammonia	Oxygen	$0.12 \text{ g VSS/g NH}_4\text{-N}$
Anoxic	Organic Compound	Nitrate	0.3 g VSS/g COD
Anaerobic	Organic Compound	Organic Compound	0.06 g VSS/g COD
Anaerobic	Acetate	CO ₂	0.05 g VSS/g COD

Cell yield of anaerobic bacteria degrading organics Cell yield of nitrifiers Cell yield of heterotrophs degrading organic substrate

Anaerobic bacteria degrading organics use internal electron acceptor (fermantative metabolism)

Nitrifiers & aerobic heterotrophs use external electron acceptor (respiratory metabolism)

Marmara Üniversitesi