

CHEMISTRY

The Central Science 8th Edition

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Dr. Kozet YAPSAKLI

- Learn how to use chemical formulas to write chemical equations.
- Learn different type of reactions.
- Learn the relationships between masses of substances with number of moles, atoms and molecules.
- Use mole concept to determine chemical formulas.

Chemical Equations

• The chemical equation for the formation of water can be visualized as two hydrogen molecules reacting with one oxygen molecule to form two water molecules:

 $2\mathrm{H}_2 + \mathrm{O}_2 \rightarrow 2\mathrm{H}_2\mathrm{O}$

Chemical Equations

• matter cannot be lost in any chemical reactions.

Anatomy of a Chemical Equation

Reactants appear on the left side of the equation.

Anatomy of a Chemical Equation

Products appear on the right side of the equation.

Reaction Types

Combination and Decomposition Reactions

TABLE 3.1 Combination and Decomposition Reactions

Combination Reactions

$$\begin{array}{l} A + B \longrightarrow C \\ C(s) + O_2(g) \longrightarrow CO_2(g) \\ N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g) \\ CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(s) \end{array}$$

Two reactants combine to form a single product. Many elements react with one another in this fashion to form compounds.

Decomposition Reactions

$$C \longrightarrow A + B$$

$$2KClO_{3}(s) \longrightarrow 2KCl(s) + 3O_{2}(g)$$

$$PbCO_{3}(s) \longrightarrow PbO(s) + CO_{2}(g)$$

$$Cu(OH)_{2}(s) \longrightarrow CuO(s) + H_{2}O(l)$$

A single reactant breaks apart to form two or more substances. Many compounds react this way when heated.

Combustion is the burning of a substance in oxygen from air:

 $C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(g)$ $CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g)$

Formula Weights

Molecular Weights

• Molecular weight (MW) is the weight of the molecular formula.

 $MW(C_{6}H_{12}O_{6}) = 6(12.0 \text{ amu}) + 12(1.0 \text{ amu}) + 6(16.0 \text{ amu})$

Percentage Composition

Percentage Composition

 Percent composition is the atomic weight for each element divided by the formula weight of the compound multiplied by 100:

% element = (number of atoms)(atomic weight) (MW of the compound) x 100

be

Percentage Composition

Percentage Composition

• For the molecule ethane, C_2H_6 the formula weight would

C: 2(12.0 amu) + H: 6(1.0 amu) 30.0 amu

So the percentage of carbon in ethane is...

%C = $\frac{(2)(12.0 \text{ amu})}{(30.0 \text{ amu})} \times 100 = 80.0\%$

Example: What is the percent composition of N and H in ammonia (NH₃)?

Mass Percent N in NH₃ =
$$\frac{\text{Mass of N in 1 mol of NH}_3}{\text{Mass of 1 mol of NH}_3} = \frac{14.01 \text{ g N}}{17.03 \text{ g NH}_3} \times 100 = 82.27\%$$

Mass Percent H in NH₃ = $\frac{\text{Mass of H in 1 mol of NH}_3}{\text{Mass of 1 mol of NH}_3} = \frac{3(1.008) \text{ g H}}{17.03 \text{ g NH}_3} \times 100 = 17.76\%$

Mole: convenient measure chemical quantities.

- 1 mole of something = 6.0221367×10^{23} of that thing.
- Experimentally, 1 mole of ¹²C has a mass of 12 g.

Molar Mass

- Molar mass: mass in grams of 1 mole of substance (units g/mol, g.mol⁻¹).
- Mass of 1 mole of ${}^{12}C = 12$ g.

Laboratory-sized sample

The Mole

TABLE 3.2Mole Relationships

Name	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	Ν	14.0	14.0	6.022×10^{23} N atoms
Molecular nitrogen	N ₂	28.0	28.0	$\int 6.022 \times 10^{23} \text{ N}_2 \text{ molecules}$
				$2(6.022 \times 10^{23})$ N atoms
Silver	Ag	107.9	107.9	6.022×10^{23} Ag atoms
Silver ions	Ag^+	107.9 ^a	107.9	$6.022 \times 10^{23} \text{ Ag}^+ \text{ ions}$
				6.022×10^{23} BaCl ₂ units
Barium chloride	BaCl ₂	208.2	208.2	$6.022 \times 10^{23} \text{ Ba}^{2+} \text{ ions}$
				$2(6.022 \times 10^{23}) \text{ Cl}^{-1} \text{ ions}$

^aRecall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

Masses and Moles

- Molar mass: sum of the molar masses of the atoms: molar mass of $N_2 = 2 \times (\text{molar mass of N})$.
- Molar masses for elements are found on the periodic table.
- Formula weights are numerically equal to the molar mass.

- Start with mass % of elements (i.e. empirical data) and calculate a formula, or
- Start with the formula and calculate the mass % elements.

These are the subscripts for the empirical formula:

$C_7H_7NO_2$

• Eugenol is the active component of oil of cloves. It has a molar mass of 164.2 g/mol and is 73.14% C and 7.37% H; the remainder is oxygen. What are empirical and molecular formulas for eugenol?

Where to start?!

- 1. What is the % of oxygen?
 - 100% (73.14% + 7.37%) = 19.49%
- 2. How many grams of C, H, and O?
 - Assume you have 100 g of the compound therefore your percentages are the number of grams of C, H, and O.
 - 73.14 g of C
 - 7.37 g of H
 - 19.49 g of O

- 3. Change the grams into moles.
 - 73.14 g of C \times 1 mole of C / 12.011g of C = 6.09 mols of C
 - 7.37 g of H \times 1 mole of H / 1.0079 g of H = 7.31 mols of H
 - 19.49 g of $O \times 1$ mole of O / 15.9994 g of O = 1.22 mols of O
- 4. Find the mole ratios (divide the large amount(s) of moles by the smallest amount of moles).
 - 6.09 mols of C / 1.22 mols of O = 5 mols of C to 1 mol of O
 - 7.37 mols of H / 1.22 mols of O = 6 mols of H to 1 mol of O
- 5. So what does this mean?
 - C_5H_6O is the empirical formula
- 6. How to get the molecular formula?
 - Molecular weight of the empirical formula.
 - 82 g/mol
 - Divide the molecular weight of eugenol by the molecular weight empirical formula.
 - 164.2 g/mol / 82 g/mol = 2
 - So there are 2 units of the empirical formula.
 - $(C_5 H_6 O)_2 = C_{10} H_{12} O_2$

Combustion Analysis

• Empirical formulas are determined by combustion analysis:

C is determined from the mass of CO_2 produced H is determined from the mass of H_2O produced O is determined by difference after the C and H have been determined

From the mass of Substance A you can use the ratio of the coefficients of A and B to calculate the mass of Substance B formed

Stoichiometric Calculations

$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$

Starting with 1.00 g of $C_6H_{12}O_6...$ we calculate the moles of $C_6H_{12}O_6...$ use the coefficients to find the moles of $H_2O...$ and then turn the moles of water to grams

How Many Cakes Can I Make?

- You can make cakes until you run out of one of the ingredients
- Once this family runs out of sugar, they will stop making cakes

How Many Cakes Can I Make?

 In this example the sugar would be the limiting reactant, because it will limit the amount of cakes you can make

Limiting Reactants

- The limiting reactant is the reactant present in the smallest stoichiometric amount
 - In other words, it's the reactant you'll run out of first (in this case, the H₂)... O₂ would be the excess reagent...

Limiting Reactants

Theoretical Yields

- The quantity of product that is calculated to form when all of the limiting reactant is consumed in a reaction is called the **theoretical** yield.
- The amount of product actually obtained is called the *actual yield*.

Actual yield < Theoretical yield

% Yield =
$$\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100$$