

CHEMISTRY

The Central Science 8th Edition

Chapter 16 Acid-Base Equilibria

Kozet YAPSAKLI

Why study acids and bases?

- Acids and bases are common in the everyday world as well as in the *lab*.
 - Some common acidic products
 - vinegar (dilute acetic acid), soft drinks (carbonic acid), aspirin (acetylsalicylic acid), vitamin C (ascorbic acid)
 - Some common basic products
 - Antacids such as milk of magnesia (magnesium hydroxide) and calcium carbonate, household ammonia, oven and drain cleaners (sodium hydroxide), some bleaches (sodium hydroxide)

Acids and Bases: Definitions

Arrhenius Definition of Acids and Bases

Acids are substances which increase the concentration of H^+ ions when dissolved in water.

• An acid is a substance that produces H⁺ when dissolved in water.

Bases are substances which **increase** the concentration of **OH**⁻ **ions** when dissolved in water.

• A base is a substance that produces OH- when dissolved in water

But the **Arrhenius definition of acids and bases** is the limited to water solutions

> Problems

- Some basic substances do not have OH⁻
- Confined to H₂O solutions

Some Definitions

- Brønsted–Lowry
 - > Acid: Proton donor
 - Base: Proton acceptor

- Bronsted-Lowry Concept (1923)
 - Acid-base reaction involves proton transfer
 - $HA + B \rightarrow HB^+ + A^-$
 - Base: proton acceptor
 - does not have to have OH⁻ in formula

$HCl + H_2O \Longrightarrow H_3O^+ + Cl^$ acid base $NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$

base acid

Acids & bases can be molecules or ions

Back reaction is also a proton transfer.

- Conjugate Acid-Base Pair (HA/A⁻, HB⁺/B)
 - Two chemical species whose formulas differ by only one proton

acid \rightarrow conj. base + H⁺ base + H⁺ \rightarrow conj. acid

Acid and Base Strength

- Strong acids are completely dissociated in water.
 - Their conjugate bases are quite weak.
- Weak acids only dissociate partially in water.
 - Their conjugate bases are weak bases.
- Substances with negligible acidity do not dissociate in water.
 - Their conjugate bases are exceedingly strong.

The Ion Product of Water

Because the autoionization of H_2O is an equilibrium process, it can be written as an equilibrium constant expression:

$${\sf K}_w = [{\sf H}_3{\sf O}^+][{\sf O}{\sf H}^-] =$$
 1.0 x 10 $^{-14}$ at 25 $^\circ{\sf C}$

The following equilibrium for the dissociation of $\mbox{H}_2\mbox{O}$ is used very frequently:

$$H_2O(I) \leftrightarrows H^+(aq) + OH^-(aq)$$

The following equilibrium expression can be written for the ion product of water:

$$K_w = [H^+][OH^-] = 1.0 \text{ x } 10^{-14} \text{ at } 25^{\circ}C$$

The above equation is valid for any dilute aqueous solution.

pН

• pH is defined as the negative base-10 logarithm of the hydronium ion concentration.

 $pH = -log [H_3O^+]$

• In neutral water,

 $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ $[H_3O^+] = (1.0 \times 10^{-14})^{1/2} = 1.0 \times 10^{-7}$

pН

• Therefore, in *neutral water*,

$$pH = -log[H_3O^+] = -log[H^+]$$
 $pOH = -log[OH^-]$
 $pH = -log(1.0 \times 10^{-7}) = 7.00$

- An acid has a higher $[H_3O^+]$ than neutral water, so its pH is <7
- A base has a lower $[H_3O^+]$ than neutral water, so its pH is >7.

Solution Type	[H ⁺] (<i>M</i>)	[OH ⁻] (<i>M</i>)	pH Value
Acidic	$>1.0 \times 10^{-7}$	$<1.0 \times 10^{-7}$	<7.00
Neutral	=1.0 × 10 ⁻⁷	=1.0 × 10 ⁻⁷	=7.00
Basic	<1.0 × 10 ⁻⁷	>1.0 × 10 ⁻⁷	>7.00

Base

These are the pH values for several common substances.

		$[\mathrm{H}^{+}](M)$	pН	рОН	$\left[\mathrm{OH}^{-} \right] (M)$
		- 1 (1×10 ⁻⁰)	0.0	14.0	1×10^{-14}
	Gastric juice	-1×10^{-1}	1.0	13.0	1×10^{-13}
	Lemon juice	-1×10^{-2}	2.0	12.0	1×10^{-12}
	Cola, vinegar	-1×10^{-3}	3.0	11.0	1×10^{-11}
	Wine Tomatoes	$- 1 \times 10^{-4}$	4.0	10.0	1×10^{-10}
	Banana – – – – – – – – – – – – – – – – –	$- 1 \times 10^{-5}$	5.0	9.0	1×10^{-9}
	Rain Saliva	$- 1 \times 10^{-6}$	6.0	8.0	1×10^{-8}
	Milk – – – – – – – – – – – – – – – – – – –	$- 1 \times 10^{-7}$	7.0	7.0	1×10^{-7}
	Egg white, seawater Baking soda	$- 1 \times 10^{-8}$	8.0	6.0	1×10^{-6}
	Borax	-1×10^{-9}	9.0	5.0	1×10^{-5}
	Milk of magnesia – – –	$- 1 \times 10^{-10}$	10.0	4.0	1×10^{-4}
	Lime water	$- 1 \times 10^{-11}$	11.0	3.0	1×10^{-3}
	Household ammonia Household bleach	-1×10^{-12}	12.0	2.0	1×10^{-2}
7	NaOH, 0.1 <i>M</i>	-1×10^{-13}	13.0	1.0	1×10^{-1}
		$- 1 \times 10^{-14}$	14.0	0.0	$1 (1 \times 10^{-0})$

More basic

More acidic

Other "p" Scales

- The "p" in pH tells us to take the *negative log* of the *quantity* (in this case, hydrogen ions).
- Some similar examples are

≻ pOH -log [OH⁻]

 $> pK_w - \log K_w$

$$pH + pOH = pK_w = 14.00$$

How Do We Measure pH?

- For *less accurate* measurements, one can use
 - Litmus paper
 - "Red" paper turns
 blue above ~pH = 8
 - "Blue" paper turns
 red below ~pH = 5
 - An indicator
- For more accurate
 - ➢ pH meter

Strong Acids

- Seven strong acids are HCI, HBr, HI, HNO₃, H₂SO₄, HCIO₃, and HCIO₄.
- These are, by definition, strong electrolytes and exist totally as ions in aqueous solution.

 $HNO_{3}(aq) + H_{2}O(I) \rightarrow H_{3}O^{+}(aq) + NO_{3}^{-}(aq)$

• For the monoprotic strong acids,

 $[H_3O^+] = [acid].$

Strong Bases

- Most ionic hydroxides are strong bases (e.g. NaOH, KOH, and Ca(OH)₂).
- Strong bases are the soluble hydroxides, which are the alkali metal and heavier alkaline earth metal hydroxides (Ca²⁺, Sr²⁺, and Ba²⁺).
- Again, these substances dissociate completely in aqueous solution.

Weak Acids

- Weak acids are only partially ionized in solution.
- There is a *mixture* of ions and unionized acid in solution.
- Therefore, weak acids are in equilibrium: $HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$

 $K_a = \frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]}$

• This equilibrium constant is called the aciddissociation constant, K_a.

Dissociation Constants

- The greater the value of K_a , the stronger the acid. •
- If Ka >> 1, then the acid is completely ionized and • the acid is a strong acid.

Acid	Structural Formula	Conjugate Base	Equilibrium Reaction	K _a
Hydrofluoric (HF)	HF	F^{-}	$HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$	$6.8 imes10^{-4}$
Nitrous	H0N===-0	NO_2^-	$HNO_2(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + NO_2^-(aq)$	$4.5 imes 10^{-4}$
(HNO ₂) Benzoic (HC ₇ H ₅ O ₂)	н-оСО	$C_{7}H_{5}O_{2}^{-}$	$\mathrm{HC}_{7}\mathrm{H}_{5}\mathrm{O}_{2}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{2}^{-}(aq)$	6.3×10^{-5}
Acetic (HC ₂ H ₃ O ₂)	н-о-с-н	$C_{2}H_{3}O_{2}^{-}$	$\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}^{-}(aq)$	$1.8 imes 10^{-5}$
Hypochlorous (HClO)	В О Н	ClO	$\mathrm{HClO}(aq) + \mathrm{H_2O}(l) \Longrightarrow \mathrm{H_3O^+}(aq) + \mathrm{ClO^-}(aq)$	$3.0 imes 10^{-8}$
Hydrocyanic (HCN)	H—C≡≡N	CN^{-}	$HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$	4.9×10^{-10}
Phenol (HC ₆ H ₅ O)	н	$C_6H_5O^-$	$\mathrm{HC}_{6}\mathrm{H}_{5}\mathrm{O}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Longrightarrow \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}^{-}(aq)$	$1.3 \times 10^{-10} \qquad \text{an} \\ Base$

*The proton that ionizes is shown in blue.

Polyprotic Acids

- Have more than one acidic proton.
- If the difference between the K_a for the first dissociation and subsequent K_a values is 10³ or more, the pH generally depends only on the first dissociation.

Name	Formula	K _{a1}	K _{a2}	K _{a3}
Ascorbic Carbonic Citric Oxalic Phosphoric Sulfurous	$\begin{array}{c} H_{2}C_{6}H_{6}O_{6} \\ H_{2}CO_{3} \\ H_{3}C_{6}H_{5}O_{7} \\ H_{2}C_{2}O_{4} \\ H_{3}PO_{4} \\ H_{2}SO_{3} \\ H_{2}SO_{4} \end{array}$	$ \begin{array}{r} \mathbf{K}_{a1} \\ 8.0 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 7.4 \times 10^{-4} \\ 5.9 \times 10^{-2} \\ 7.5 \times 10^{-3} \\ 1.7 \times 10^{-2} \\ Large \end{array} $	$ \begin{array}{r} 1.6 \times 10^{-12} \\ 5.6 \times 10^{-11} \\ 1.7 \times 10^{-5} \\ 6.4 \times 10^{-5} \\ 6.2 \times 10^{-8} \\ 6.4 \times 10^{-8} \\ 1.2 \times 10^{-2} \end{array} $	K_{a3} 4.0×10^{-7} 4.2×10^{-13}
Tartaric	H_2OO_4 $H_2C_4H_4O_6$	1.0×10^{-3}	4.6×10^{-5}	

Acids and Bases

Polyprotic Acids

• The protons are removed in steps not all at once:

 $H_2SO_3(aq) \implies H^+(aq) + HSO_3^-(aq) \quad K_{a1} = 1.7 \times 10^{-2}$ $HSO_3^-(aq) \implies H^+(aq) + SO_3^{-2-}(aq) \quad K_{a2} = 6.4 \times 10^{-8}$

- It is always easier to remove the first proton in a polyprotic acid than the second.
- Therefore, $K_{a1} > K_{a2} > K_{a3}$ etc.

Weak Bases

Bases react with water to produce hydroxide ion.

The base dissociation constant, Kb, is defined as

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

K_a and K_b

Acid	K _a	Base	K _b
HNO ₃	(Strong acid)	NO ₃ ⁻	(Negligible basicity)
HF	6.8×10^{-4}	F^{-}	1.5×10^{-11}
$HC_2H_3O_2$	$1.8 imes10^{-5}$	$C_{2}H_{3}O_{2}^{-}$	$5.6 imes 10^{-10}$
H ₂ CO ₃	$4.3 imes 10^{-7}$	HCO_3^-	2.3×10^{-8}
$\mathrm{NH_4}^+$	$5.6 imes 10^{-10}$	NH ₃	$1.8 imes 10^{-5}$
HCO_3^-	$5.6 imes 10^{-11}$	CO_3^{2-}	$1.8 imes 10^{-4}$
OH-	(Negligible acidity)	O ²⁻	(Strong base)

• K_a and K_b are related in this way:

 $K_a \times K_b = K_w$

- Therefore, if you know one of them, you can calculate the other.
- Taking negative logarithms:

$$pK_{W} = pK_{a} + pK_{b}$$

Read: Reactions of Anions and Cations with Water

Read: Effect of Cations and Anions

Not responsible

for the Part 16.10 and 16.11

16.10 - Acid-Base Behavior and Chemical Structure

16.11 - Lewis Acids and Bases

