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Chemical Kinetics 

• Chemical kinetics is the study of how rapidly 

chemical reactions occur. 

• rate at which a chemical process occurs. 

• Reaction rates depends on 

The concentrations of the reactants 

Temperature  

The presence of a catalyst 

Surface area 
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Factors Affecting Reaction Rate:  

Nature of the Reactants 

• Nature of the reactants means what kind of reactant 

molecules and what physical condition they are in  
 small molecules tend to react faster than large molecules  

gases tend to react faster than liquids, which react faster than 

solids  

powdered solids are more reactive than “blocks” 

• more surface area for contact with other reactants 

 certain types of chemicals are more reactive than others 

• e.g. potassium metal is more reactive than sodium 

ions react faster than molecules  

• no bonds need to be broken 3 

Tro: Chemistry: A Molecular Approach, 2/e 
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Factors Affecting Reaction 

Rate: 

Temperature 
• Increasing temperature increases reaction rate 

chemist’s rule of thumb—for each 10 °C rise in 

temperature, the speed of the reaction doubles 

• for many reactions 

• There is a mathematical relationship between the 

absolute temperature and the speed of a reaction 

discovered by Svante Arrhenius, which will be 

examined later 

4 

Tro: Chemistry: A Molecular Approach, 2/e 
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Factors Affecting Reaction Rate: 

Catalysts 
• Catalysts are substances that affect the speed of a 

reaction without being consumed   

• Most catalysts are used to speed up a reaction; 

these are called positive catalysts  

catalysts used to slow a reaction are called negative 

catalysts. 

• Homogeneous = present in same phase 

• Heterogeneous = present in different phase 

5 

Tro: Chemistry: A Molecular Approach, 2/e 
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Factors Affecting Reaction Rate: 

Reactant Concentration 

• Generally, the larger the concentration of 

reactant molecules, the faster the reaction  

increases the frequency of reactant molecule 

contact 

concentration of gases depends on the partial 

pressure of the gas  

• higher pressure = higher concentration 

• Concentrations of solutions depend on the 

solute-to-solution ratio (molarity) 

6 

Tro: Chemistry: A Molecular Approach, 2/e 
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Reaction Rates 

 Rates of reactions can be determined by 

monitoring the change in concentration of either 

reactants or products as a function of time. 
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 In this reaction, the 

concentration of butyl 

chloride, C4H9Cl, was 

measured at various 

times. 

Reaction Rates  

C4H9Cl(aq) + H2O(l)  C4H9OH(aq) + HCl(aq)  
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 The average rate of the 

reaction over each 

interval is the change in 

concentration divided 

by the change in time: 

Average rate = 
[C4H9Cl] 

t 

Reaction Rates  

C4H9Cl(aq) + H2O(l)  C4H9OH(aq) + HCl(aq)  
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Reaction Rates  

C4H9Cl(aq) + H2O(l)  C4H9OH(aq) + HCl(aq)  



• A plot of concentration vs. 

time for this reaction yields a 

curve like this. 

• The slope of a line tangent to 

the curve at any point is the 

instantaneous rate at that 

time. 

• All reactions slow down over time. 

• The best indicator of the rate of a reaction is the beginning. 
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Reaction Rate Changes Over 

Time 

• As time goes on, the rate of a reaction 

generally slows down  

because the concentration of the reactants 

decreases   

• At some time the reaction stops, either because 

the reactants run out or because the system has 

reached equilibrium 

13 

Tro: Chemistry: A Molecular Approach, 2/e 



Stoichiometry  

• In this reaction, the ratio of 

C4H9Cl to C4H9OH is 1:1 

• Thus, the rate of 

disappearance of C4H9Cl is 

the same as the rate of 

appearance of C4H9OH. 

Rate = 
-[C4H9Cl] 

t 
= 

[C4H9OH] 

t 

C4H9Cl(aq) + H2O(l)  C4H9OH(aq) + HCl(aq)  
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Reaction Rates and Stoichiometry 

• What if the ratio is not 1:1? 

• To generalize, then, for the reaction 
 

aA + bB  cC + dD 
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Concentration and Rate 

In general rates increase as concentrations increase 

NH4
+(aq) + NO2

-(aq)  N2(g) + 2H2O(l) 

– as [NH4
+] doubles with [NO2

-] constant the rate doubles,  

– as [NO2
-] doubles with [NH4

+] constant, the rate doubles, 

– We conclude rate  [NH4
+][NO2

-]. ]NO][NH[Rate 24
 k



Rate Laws 

• A rate law shows the relationship between the reaction 

rate and the concentrations of reactants. 

• For a general reaction with rate law 

reaction is mth order in reactant 1 and nth order in react. 2 

• The overall order of reaction is m + n + …. 

• A reaction can be zeroth order if m, n, … are zero. 

• Values of the orders have to be determined experimentally. 

nmk ]2reactant []1reactant [Rate 
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  Using Initial Rates to Determines Rate Laws 

• A reaction is zero order in a reactant if the change in 

concentration of that reactant produces no effect. 

• A reaction is first order if doubling the concentration 

causes the rate to double. 

• A reaction is nth order if doubling the concentration 

causes an 2n increase in rate. 

• Note that the rate constant (k) does not depend on 

concentration. 
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Integrated Rate Laws 

 Using calculus to integrate the rate law for a 

first-order process gives us 

ln 
[A]t 

[A]0 
= −kt 

Where 

[A]0 is the initial concentration of A. 

 

[A]t is the concentration of A at some time, t, 

during the course of the reaction. 
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Integrated Rate Laws 

this equation produces…  

ln 
[A]t 

[A]0 
= −kt ln [A]t = − kt + ln [A]0 

…which is in the form y    = mx +  b 

ln [A] vs. t will yield a straight line, and 

the slope of the line will be -k. 
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First-Order Processes 

 Consider the process in which methyl 

isonitrile is converted to acetonitrile. 

CH3NC CH3CN 

 This data was 

collected for this 

reaction at 198.9oC 
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First-Order Processes 

• When ln P is plotted as a function of time, a 

straight line results. 

• Therefore, 

The process is first-order. 

 k is the negative slope:  5.1  10-5 s−1. 

   0AlnAln  ktt
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Second-Order Processes 
• For a second order reaction with just one reactant 

 

 

• if a process is second-order in A, a plot of 1/[A] 

vs. t will yield a straight line, and the slope of that 

line is k. 

   0A
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Half-Life 

• Half-life is the time taken for the concentration of a 

reactant to drop to half its original value. 

• For a first order process, half life, t½ is the time taken for 

[A]0 to reach ½[A]0. 

• Mathematically, 
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Half-Life 

1 

0.5 [A]0 
= kt1/2 +  

1 

[A]0 

2 

[A]0 
= kt1/2 +  

1 

[A]0 

• For a second order reaction, half-life depends in the 

initial concentration: 

 0A

1
2

1

k
t 

first order process.mov
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The Collision Model 

• Generally, as temperature increases, so does the 

reaction rate. 

• This is because k is temperature dependent. 

• Molecules can only react             

if they collide with each other. 
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Activation Energy 

• minimum energy required to initiate a chemical reaction  

activation energy, Ea. 

• Just as a ball cannot get over a hill with enough energy, a 

reaction cannot occur unless the molecules possess 

sufficient energy to get over the activation energy barrier. 
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Reaction Coordinate Diagrams 

• It shows the energy of the 

reactants and products 

(and, therefore, E). 

• The high point on the 

diagram is the transition 

state. 

• The species present at the transition state is called the 

activated complex. 

• The energy gap between the reactants and the 

activated complex is the activation energy barrier. 



Chemical 

Kinetics 

• At any temperature there is a wide distribution of kinetic 

energies. 

• As the temperature increases, curve flattens and broadens 

• Thus at higher temperatures, a larger population of 

molecules has higher energy. 

Maxwell–Boltzmann Distributions 

http://en.wikipedia.org/wiki/Image:James_Clerk_Maxwell.png
http://en.wikipedia.org/wiki/Image:Boltzmann2.jpg
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Arrhenius Equation 

                Svante Arrhenius developed a                      

  mathematical relationship between k and 

  Ea: 

 
  

 where A is the frequency factor, a number that 

represents the probability that collisions would 

occur with the proper orientation for reaction. 

RT
Ea

Aek

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Arrhenius Equation 

 Taking the natural 

logarithm of both sides, 

the equation becomes 

y   =   mx + b 

Therefore, if k is determined experimentally at 

several temperatures, Ea can be calculated from the 

slope of a plot of ln k vs. 1/T. 

A
RT

E
k a lnln 
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Arrhenius Equation 

  If we do not have a lot of data, then we recognize 
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Reaction Mechanisms 

• The balanced chemical equation provides information 

about the beginning and end of reaction. 

• The reaction mechanism gives the path of the reaction. 

• Reactions may occur all at once or through several 

discrete steps. 

• Elementary step: any process that occurs in a single 

step. 
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Reaction Mechanisms 

• The molecularity of a process tells how many 

molecules are involved in the process. 

Unimolecular: one molecule in the elementary step, 

Bimolecular: two molecules in the elementary step, and 

Termolecular: three molecules in the elementary step. 
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Multistep Mechanisms 

• Some reactions proceed through more than one step  

• In a multistep process, one of the steps will be slower 

than all others. 

• The overall reaction cannot occur faster than this 

slowest, rate-determining step. 
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Multistep Mechanisms 

• The rate law for this reaction is found experimentally 

Rate = k [NO2]
2 

• Some reaction proceed through more than one step: 

NO2(g) + NO2(g)  NO3(g) + NO(g) (slow) 

NO3(g) + CO(g)  NO2(g) + CO2(g) (fast) 

• Notice that if we add the above steps, we get the overall 

reaction: 

NO2(g) + CO(g)  NO(g) + CO2(g) 
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Fast Initial Step 

2NO(g) + Br2(g)  2NOBr(g) 

• The experimentally determined rate law is 

Rate = k[NO]2[Br2] 

• Consider the following mechanism 

NO(g) + Br2(g)               NOBr2(g)
k1

k-1

NOBr2(g) + NO(g)               2NOBr(g)
k2

Step 1:

Step 2:

(fast)

(slow)
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• The rate law is (based on Step 2): 

Rate = k2[NOBr2][NO] 

• The rate law should not depend on the concentration of 

an intermediate (intermediates are usually unstable). 

• Assume NOBr2 is unstable, so we express the 

concentration of NOBr2 in terms of NOBr and Br2 

assuming there is an equilibrium in step 1 we have 

Fast Initial Step 

]NO][Br[]NOBr[ 2
1

1
2




k

k



• By definition of equilibrium: 

 

• Therefore, the overall rate law becomes 

 

 

• Note the final rate law is consistent with the 

experimentally observed rate law. 
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Fast Initial Step 

= k [NO]2 [Br2] 
k2k1 

k−1 
Rate = [NO] [Br2] [NO] 


