

CHEMISTRY

The Central Science 8th Edition

Chapter 14 Chemical Kinetics

Kozet YAPSAKLI

Chemical Kinetics

- Chemical kinetics is the study of how rapidly *chemical reactions* occur.
- rate at which a chemical process occurs.
- Reaction rates depends on
 - ≻The *concentrations* of the reactants
 - ➤ Temperature
 - ≻The presence of a *catalyst*
 - ► Surface area

Factors Affecting Reaction Rate: Nature of the Reactants

- Nature of the reactants means what kind of reactant molecules and what physical condition they are in
 - \succ small molecules tend to react faster than large molecules
 - gases tend to react faster than liquids, which react faster than solids
 - ➢ powdered solids are more reactive than "blocks"
 - more surface area for contact with other reactants
 - > certain types of chemicals are more reactive than others
 - e.g. potassium metal is more reactive than sodium
 - ≻ions react faster than molecules
 - no bonds need to be broken

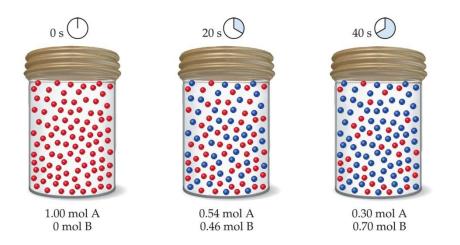
Tro: Chemistry: A Molecular Approach, 2/e

Factors Affecting Reaction Rate:

Temperature

- Increasing temperature increases reaction rate
 Chemist's rule of thumb—for each 10° C rise in temperature, the speed of the reaction doubles
 - for many reactions
- There is a mathematical relationship between the absolute temperature and the speed of a reaction discovered by Svante Arrhenius, which will be examined later

Factors Affecting Reaction Rate: Catalysts


- Catalysts are substances that affect the speed of a reaction **without being consumed**
- Most catalysts are used to speed up a reaction; these are called positive catalysts
 - ➤ catalysts used to slow a reaction are called negative catalysts.
- Homogeneous = present in same phase
- Heterogeneous = present in different phase

Factors Affecting Reaction Rate: Reactant Concentration

- Generally, the larger the concentration of reactant molecules, the faster the reaction
 - ➢ increases the frequency of reactant molecule contact
 - ➤ concentration of gases depends on the partial pressure of the gas
 - higher pressure = higher concentration
- Concentrations of solutions depend on the solute-to-solution ratio (molarity)

Rates of reactions can be determined by *monitoring* the change in *concentration* of either *reactants* or *products* as a function of time.

Average rate = $\frac{\text{change in number of moles}}{\text{change in time}}$ = $\frac{\Delta(\text{moles})}{\Delta t}$

$Br_2(aq) + HCOOH(aq) \longrightarrow 2Br^{-}(aq) + 2H^{+}(aq) + CO_2(g)$

average rate =
$$-\frac{\Delta[Br_2]}{\Delta t}$$

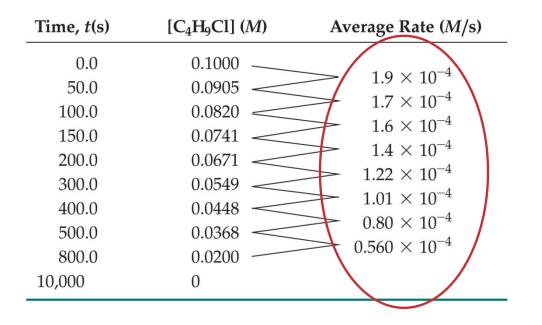
= $-\frac{[Br_2]_{final} - [Br_2]_{initial}}{t_{final} - t_{initial}}$

 $C_4H_9CI(aq) + H_2O(l) \longrightarrow C_4H_9OH(aq) + HCI(aq)$

Time, <i>t</i> (s)	[C ₄ H ₉ Cl] (<i>M</i>)	
0.0	0.1000	
50.0	0.0905	
100.0	0.0820	
150.0	0.0741	
200.0	0.0671	
300.0	0.0549	
400.0	0.0448	
500.0	0.0368	
800.0	0.0200	
10,000	0	

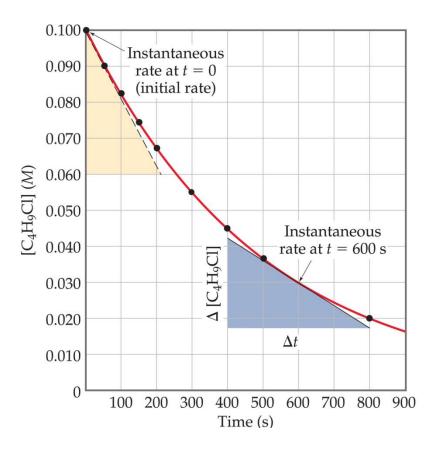
In this reaction, the concentration of *butyl chloride*, C_4H_9Cl , was *measured* at various *times*.

 $C_4H_9CI(aq) + H_2O(l) \longrightarrow C_4H_9OH(aq) + HCI(aq)$


Time, <i>t</i> (s)	$[C_4H_9C1](M)$	Average Rate (<i>M</i> /s)
0.0	0.1000	1.0
50.0	0.0905	$> 1.9 \times 10^{-4}$
100.0	0.0820	$> 1.7 \times 10^{-4}$
150.0	0.0741	$> 1.6 \times 10^{-4}$
200.0	0.0671	$> 1.4 \times 10^{-4}$
300.0	0.0549	$> 1.22 \times 10^{-4}$
400.0	0.0448	$> 1.01 \times 10^{-4}$
500.0	0.0368 <	$> 0.80 \times 10^{-4}$
800.0	0.0200	$>> 0.560 \times 10^{-4}$
10,000	0	

The *average rate* of the reaction over each interval is the change in *concentration* divided by the change in *time*:

Average rate =
$$\frac{\Delta [C_4 H_9 CI]}{\Delta t}$$

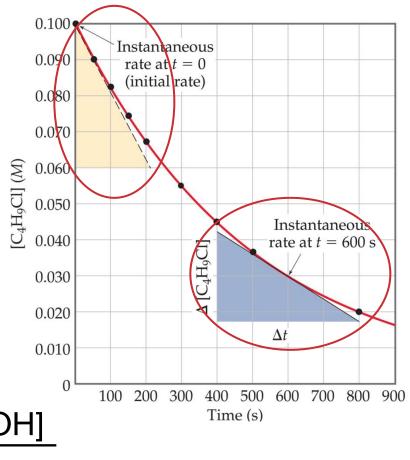


 $C_4H_9CI(aq) + H_2O(l) \longrightarrow C_4H_9OH(aq) + HCI(aq)$

- A plot of *concentration* vs.
 time for this reaction yields a curve like this.
- The slope of a line *tangent* to the *curve* at any point is the *instantaneous rate* at that time.

- All reactions *slow down* over time.
- The best indicator of the rate of a reaction is the beginning.

Reaction Rate Changes Over Time


- As time goes on, the rate of a reaction generally slows down
 - because the concentration of the reactants decreases
- At some time the reaction stops, either because the reactants run out or because the system has reached equilibrium

Stoichiometry

 $C_4H_9CI(aq) + H_2O(l) \longrightarrow C_4H_9OH(aq) + HCI(aq)$

- In this reaction, the *ratio* of C_4H_9Cl to C_4H_9OH is 1:1
- Thus, the rate of *disappearance* of C_4H_9Cl is the *same* as the rate of *appearance* of C_4H_9OH .

Rate =
$$\frac{-\Delta [C_4 H_9 CI]}{\Delta t} = \frac{\Delta [C_4 H_9 OH]}{\Delta t}$$

Reaction Rates and Stoichiometry

- What if the ratio is *not* 1:1?
- To generalize, then, for the reaction

 $a\mathbf{A} + b\mathbf{B} \rightarrow c\mathbf{C} + d\mathbf{D}$

Rate = $-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$

Concentration and Rate

In general rates increase as concentrations increase

 $\mathrm{NH}_4^+(aq) + \mathrm{NO}_2^-(aq) \rightarrow \mathrm{N}_2(g) + 2\mathrm{H}_2\mathrm{O}(l)$

- as $[NH_4^+]$ doubles with $[NO_2^-]$ constant the rate doubles,

- as $[NO_2^-]$ doubles with $[NH_4^+]$ constant, the rate doubles,
- We conclude rate $\propto [NH_4^+][NO_2^-]$. Rate = $k[NH_4^+][NO_2^-]$

Experiment Number	Initial NH ₄ ⁺ Concentration (<i>M</i>)	Initial NO_2^- Concentration (<i>M</i>)	Observed Initial Rate (<i>M</i> /s)
1	0.0100	0.200	$5.4 imes10^{-7}$
2	0.0200	0.200	$10.8 imes 10^{-7}$
3	0.0400	0.200	$21.5 imes 10^{-7}$
4	0.0600	0.200	32.3×10^{-7}
5	0.200	0.0202	$10.8 imes10^{-7}$
6	0.200	0.0404	$21.6 imes 10^{-7}$
7	0.200	0.0606	$32.4 imes 10^{-7}$
8	0.200	0.0808	43.3×10^{-7}

Rate Laws

- A rate law shows the relationship between the *reaction rate* and the *concentrations* of reactants.
- For a general reaction with rate law

Rate = k[reactant 1]^m[reactant 2]ⁿ

reaction is *m*th order in *reactant 1* and *n*th order in *react. 2*

- The overall *order* of reaction is m + n +
- A reaction can be *zeroth* order if m, n, ... are *zero*.
- Values of the orders have to be determined experimentally.

Using Initial Rates to Determines Rate Laws

- A reaction is *zero order* in a reactant if the change in *concentration* of that reactant *produces no effect*.
- A reaction is *first order* if *doubling* the *concentration* causes the *rate to double*.
- A reaction is *nth order* if doubling the concentration causes an 2ⁿ increase in rate.
- Note that the *rate constant* (k) does *not depend* on *concentration*.

Integrated Rate Laws

Using calculus to integrate the rate law for a *first-order* process gives us

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

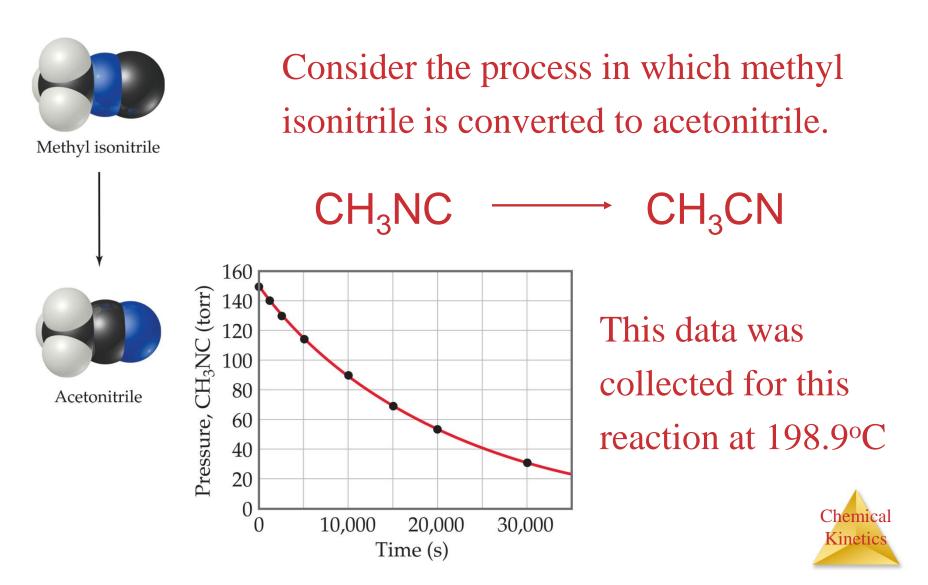
Where

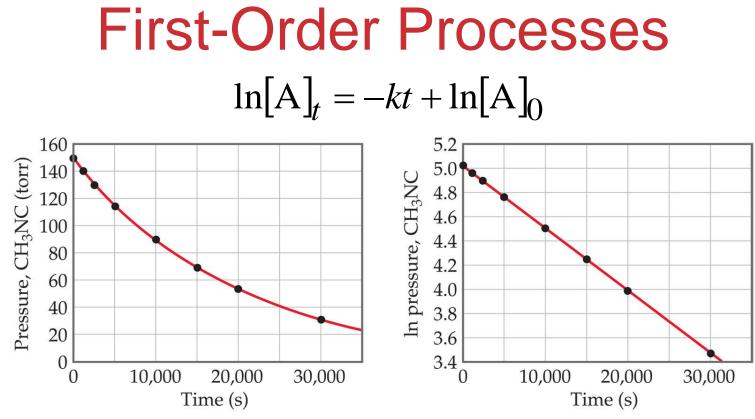
 $[A]_0$ is the initial concentration of A.

 $[A]_t$ is the concentration of A at some time, t, during the course of the reaction.

Integrated Rate Laws

this equation produces...

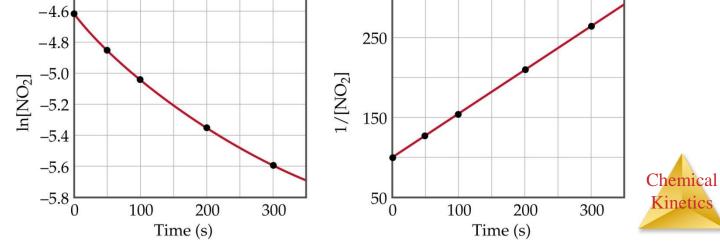

$$\ln \frac{[A]_t}{[A]_0} = -kt \qquad \ln [A]_t = -kt + \ln [A]_0$$


...which is in the form y = mx + b

In [A] vs. *t* will yield a *straight line*, and the *slope* of the line will be *-k*.

First-Order Processes

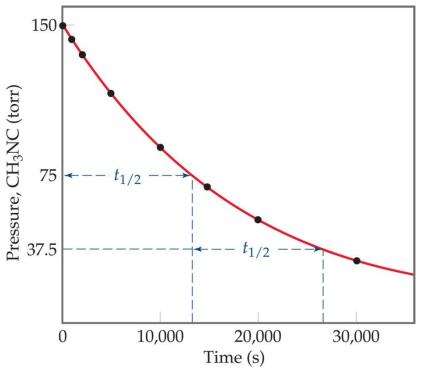
- When ln *P* is plotted as a function of time, a straight line results.
- Therefore,
 - \succ The process is first-order.
 - $\geq k$ is the negative slope: 5.1×10^{-5} s⁻¹.



Second-Order Processes

• For a second order reaction with just one reactant

$$\frac{1}{\left[\mathbf{A}\right]_{t}} = kt + \frac{1}{\left[\mathbf{A}\right]_{0}}$$

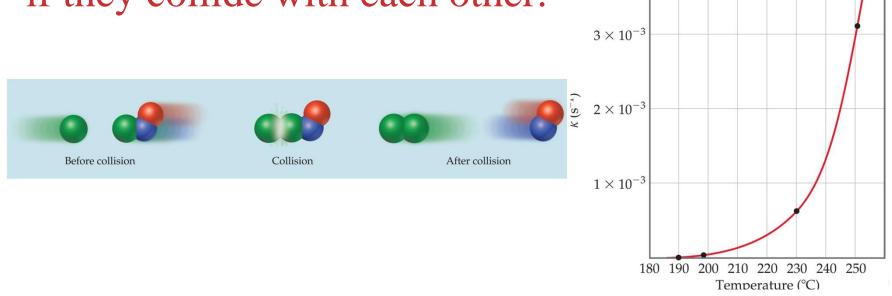

if a process is second-order in A, a plot of 1/[A]
vs. *t* will yield a straight line, and the slope of that
line is *k*.

Half-Life

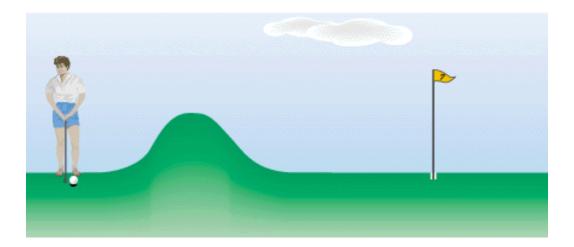
- *Half-life* is the *time* taken for the *concentration* of a reactant to drop to *half* its *original value*.
- For a *first order process*, half life, $t_{\frac{1}{2}}$ is the time taken for $[A]_0$ to reach $\frac{1}{2}[A]_0$.
- Mathematically,

$$t_{1/2} = -\frac{\ln\left(\frac{1}{2}\right)}{k} = \frac{0.693}{k}$$

Half-Life


• For a second order reaction, half-life depends in the initial concentration:

 $\frac{1}{0.5 [A]_0} = kt_{1/2} + \frac{1}{[A]_0}$ $\frac{2}{[A]_0} = kt_{1/2} + \frac{1}{[A]_0}$ $t_{\frac{1}{2}} = \frac{1}{k[A]_{0}}$


The Collision Model

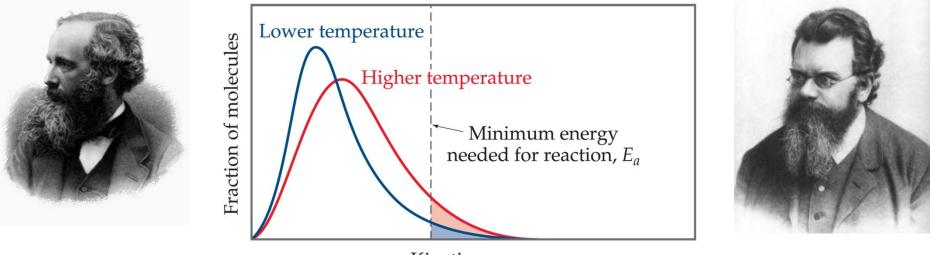
- Generally, as *temperature increases*, so does the *reaction rate*.
- This is because k is temperature dependent.
- Molecules can only react if they collide with each other.

Activation Energy

- minimum energy required to initiate a chemical reaction *activation energy*, E_a .
- Just as a ball *cannot get over* a hill with *enough energy*, a reaction cannot occur unless the molecules possess *sufficient energy* to get over the *activation energy barrier*.

Reaction Coordinate Diagrams

- It shows the energy of the reactants and products (and, therefore, ΔE).
- The high point on the diagram is the transition state.



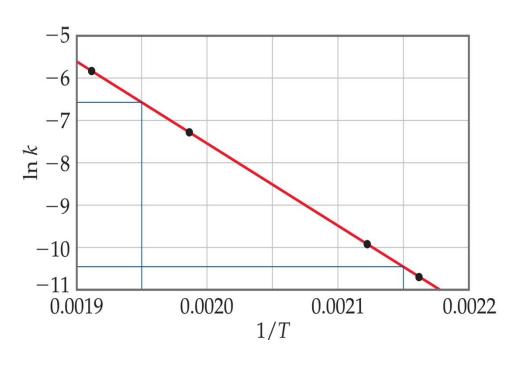
Reaction pathway

- The species present at the transition state is called the activated complex.
- The energy gap between the reactants and the activated complex is the *activation energy barrier*.

Maxwell–Boltzmann Distributions

Kinetic energy

- At any temperature there is a wide distribution of kinetic energies.
- As the temperature increases, curve flattens and broadens
- Thus at *higher temperatures*, a larger population of molecules has *higher energy*.


Arrhenius Equation

Svante Arrhenius developed a mathematical relationship between k and E_a : $-E_a/RT$

where *A* is the frequency factor, a number that represents the *probability* that collisions would occur with the proper orientation for reaction.

Arrhenius Equation

Taking the natural logarithm of both sides, the equation becomes

$$\ln k = -\frac{E_a}{RT} + \ln A$$

y = mx + b

Therefore, if k is determined *experimentally* at several *temperatures*, E_a can be *calculated* from the *slope* of a plot of *ln* k vs. 1/T.

Arrhenius Equation

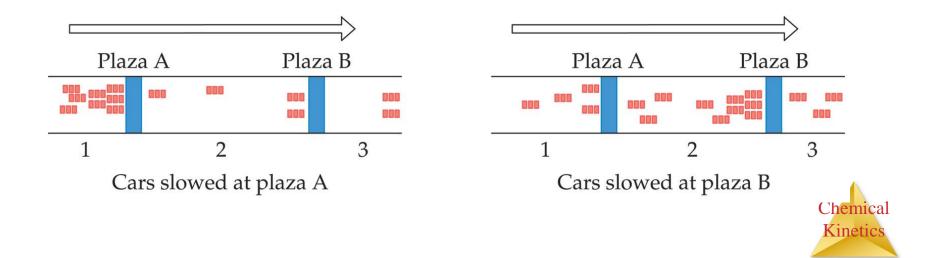
If we do not have a lot of data, then we recognize

$$\ln k_{1} = -\frac{E_{a}}{RT_{1}} + \ln A \quad \text{and} \quad \ln k_{2} = -\frac{E_{a}}{RT_{2}} + \ln A$$
$$\ln k_{1} - \ln k_{2} = \left(-\frac{E_{a}}{RT_{1}} + \ln A\right) - \left(-\frac{E_{a}}{RT_{2}} + \ln A\right)$$
$$\ln \frac{k_{1}}{k_{2}} = \frac{E_{a}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

Reaction Mechanisms

- The balanced *chemical equation* provides information about the *beginning* and *end* of reaction.
- The reaction mechanism gives the *path* of the reaction.
- Reactions may occur all at *once* or through *several* discrete *steps*.
- Elementary step: *any* process that occurs in a *single step*.

Reaction Mechanisms


Molecularity	Elementary Reaction	Rate Law
<i>Uni</i> molecular	$A \longrightarrow \text{products}$	Rate = $k[A]$
<i>Bi</i> molecular	$A + A \longrightarrow \text{products}$	Rate = $k[A]^2$
<i>Bi</i> molecular	$A + B \longrightarrow \text{products}$	Rate = $k[A][B]$
<i>Ter</i> molecular	$A + A + A \longrightarrow \text{products}$	Rate = $k[A]^3$
<i>Ter</i> molecular	$A + A + B \longrightarrow \text{products}$	Rate = $k[A]^2[B]$
<i>Ter</i> molecular	$A + B + C \longrightarrow \text{products}$	Rate = $k[A][B][C]$

- The molecularity of a process tells how many molecules are involved in the process.
 - > Unimolecular: one molecule in the elementary step,
 - Bimolecular: two molecules in the elementary step, and
 - > Termolecular: three molecules in the elementary step.

Multistep Mechanisms

- Some reactions proceed through *more* than one *step*
- In a multistep process, one of the steps will be *slower* than all *others*.
- The overall reaction cannot occur faster than this slowest, *rate-determining step*.

Multistep Mechanisms

- Some reaction proceed through more than one step: $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$ (slow) $NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$ (fast)
- Notice that if we add the above steps, we get the overall reaction:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

• The rate law for this reaction is found experimentally

Rate = $k [NO_2]^2$

Fast Initial Step

 $2NO(g) + Br_2(g) \rightarrow 2NOBr(g)$

- The experimentally determined rate law is Rate = $k[NO]^2[Br_2]$
- Consider the following mechanism

Step 1:
$$NO(g) + Br_2(g) \xrightarrow{k_1} NOBr_2(g)$$
 (fast)

Step 2: $NOBr_2(g) + NO(g) \xrightarrow{k_2} 2NOBr(g)$ (slow)

Fast Initial Step

• The rate law is (based on Step 2):

Rate = k_2 [NOBr₂][NO]

- The rate law should not depend on the concentration of an intermediate (*intermediates are usually unstable*).
- Assume NOBr₂ is unstable, so we express the concentration of NOBr₂ in terms of NOBr and Br₂ assuming there is an equilibrium in step 1 we have

$$[NOBr_2] = \frac{k_1}{k_{-1}}[NO][Br_2]$$

Fast Initial Step

• By definition of equilibrium:

 $k_1[NO][Br_2] = k_{-1}[NOBr_2]$

• Therefore, the overall rate law becomes

Rate =
$$k_2 \frac{k_1}{k_{-1}}$$
[NO][Br₂][NO] = $k_2 \frac{k_1}{k_{-1}}$ [NO]²[Br₂]

• Note the final rate law is consistent with the experimentally observed rate law.

Rate =
$$\frac{k_2 k_1}{k_{-1}}$$
 [NO] [Br₂] [NO] = k [NO]² [Br₂]