Alkalinity

Definition

- Measure of of water's capacity to neutralize acids=Acid neutralizing capacity
- Without this acid-neutralizing capacity, any acid added to a stream would cause an immediate change in the pH.

* Alkalinity in natural water is due to:

- Salts of weak acids
 - * Carbonate, bicarbonate
 - * Borate, silicate, phosphate
 - * A few organic acids resistant to biological oxidation (humic subs.)
 - * In polluted or anaerobic waters \rightarrow Acetic, propionic acid, H2S
- Weak or strong bases
 - * Ammonia
 - * Hydroxides

Types of alkalinity in natural waters :

- 1. Hydroxide
- 2. Carbonate
- 3. Bicarbonate
- For most practical conditions, alkalinity due to other materials in natrual waters is insignificant and can be ignored

Public Health Significance

- * The alkalinity of water has little public health significance.
- * High alkaline waters are usually unpalatable

Alkalinity Measurement

- * Titration with N/50 H₂SO₄
- * Reported in terms of mg/L CaCO₃
 - specifies that the sample has an alkalinity equal to that of a solution with a certain amount of calcium carbonate (CaCO₃) dissolved in water.
- * If sample pH >8.3 \rightarrow titration is done in two steps
 - * 1. Titration until pH=8.3 (till phenolphtalein end pointpink to colorless-)
 - * 2. Titration until pH=4.5 (till bromcresol end point)

At pH=8.3 $CO_3^{2-} + H^+ \rightarrow HCO_3^-$ (18.1)

At pH=4.5 $HCO_3^- + H^+ \rightarrow H_2CO_3$ (18.2)

Alkalinity
$$\frac{eq}{L} \times \frac{1 \mod CaCO_3}{2 eq} \times \frac{100.09 g CaCO_3}{1 \mod CaCO_3} \times \frac{1000 mg}{1 g} = Alkalinity (mg/L as CaCO_3)$$

0.01 M [HCO $_{3}^{-}$]

10 meq/L * 50 mg/meq = 500 mg/L

$$Alk_{T} = \frac{mL_{acid} \times N_{acid} \times eq. wt. CaCO_{3}}{mL_{sample}}$$

Figure 18.1 Titration curve for a hydroxide-carbonate mixture.

Methods of expressing alkalinity

Figure 4.7 Titration curves for strong bases and acids.

Titration curves for weak bases and for salts of weak acids.

Phenolphtalein and Total Alkalinity

@ pH 10 all the hydroxide ions are neutralized @ pH 8.3 carbonate converted to bicarbonate Titration till phenolphthalein end point \rightarrow Phenolphthalein alkalinity Total alkalinity \rightarrow titration till pH 4.5 Conversion till carbonic acid H₂CO₃ 1000 Phenol. alk. = $(mL 0.020 \text{ N H}_2\text{SO}_4 \text{ to pH 8.3})$ (18.4)mL sample 5.0 4.8 4.6 Total alk. = total mL 0.020 N H_2SO_4 to pH \cdot (18.5) Hydroxide, Carbonate and Bicarbonate Alaklinity

 Calculation from alkalinity measurements
Calculation from alkalinity and pH measurement
Calculation from equilibrium equations (carbonic acid)

1. Calculation from alkalinity measurements

- Based on assumptions and total/phenolphtalein alkalinity measurements
- Assumption: Hydroxide and bicarbonate alkalinities cannot be present at the same time (incorrect but rough estimate)

Five possible situations :

- 1. Hydroxide only
- 2. Carbonate only
- 3. Hydroxide and Carbonate
- 4. $CO_3^{=}$ and HCO_3^{-}
- 5. HCO_{3}^{-}

@pH 8.3 neutralization of hydroxides are completed.

Figure 18.2

Hydroxide alkalinity

Figure 18.2

Carbonate only

Figure 18.2

Hydroxide-carbonate

Figure 18.2

Carbonate-bicarbonate

Figure 18.2

Bicarbonate

Figure 18.2

2. Calculation from alkalinity + pH measurements

* Should measure

- * pH
- Total alkalinity
- * Phenolphtalein alkalinity
- * Calculate hydroxide, carbonate, bicarbonate alkalinity

2. Calculation from alkalinity + pH measurements

* First calculate OH alkalinity from pH measurement $[OH^{-}] = \frac{K_{W}}{[H^{+}]}$ (18.6)

Hydroxide alk. = $50,000 \times 10^{(pH-pK_w)}$ (18.7)

At 25°C, $pK_W = 14.00$. However, it varies from 14.94 at 0°C to 13.53 at 40°C.

2. Calculation from alkalinity + pH measurements

 Second, make use of the principles of the first procedure to calculate carbonate and bicarbonate alkalinity

Carbonate alk. = 2 (phenol. alk. - hydroxide alk.) (18.8)

- Titration from pH 8.3 to 4.5 measures the remaining one half of the carbonate + bicarbonate.
- * or

Bicarbonate alk. = total alk. - (carbonate alk. + hydroxide alk.) (18.9)

Alkalinity and acidity are based on the "carbonate system". $[Alk.]=[HCO_{3}] + 2[CO_{3}] + [OH_{2}] - [H_{2}]$ (mol/L of H⁺ that can be neutralized)

(Alk.)=(HCO $_{3}^{-}$)+(CO $_{3}^{-}$)+(OH $^{-}$)-(H $^{+}$) (eq/L of H $^{+}$ that can be neutralized)

Alk. In mg/L as $CaCO_3 = (Alk.) \times EW_{CaCO_3}$

Example :

 $CO_{3}^{=} = 20 \text{ g/m}^{3}$ HCO₃⁻ = 488 g/m³ OH⁻ = 0.17 g/m³ Alk. = ?

lon	MW (g/mole)	EW (g/eq)	(eq/m ³)
CO ⁼ ₃	60	30	20/30=0.67
HCO ⁻ 3	61	61	488/61=8
OH ⁻	17	17	0.17/17=0.01

 $= 10^{-9} \text{ mol/L} = 10^{-9} \text{ eq/L} = 10^{-6} \text{ eq/m}^{3}$ $[Alk.] = [HCO_{3}] + 2[CO_{3}] + [OH^{-}] - [H^{+}]$ $(Alk.) = 8,00 + 0,67 + 0,01 - 10^{-6}$ $= 8,68 \text{ eq/m}^{3}$ $(8,68 \times 10^{-3} \text{ eq/L}) \times (50000 \text{ mg/eq}) = 434 \text{ mg/L} \text{ as } \text{CaCO}_{3}$

 $[H^{+}][OH^{-}] = Kw$ $(OH^{-})(H^{+}) = Kw$ $[H^{+}] = 10^{-14} / (0,01x 1/1000 x 1 mol/eq)$ $= 10^{-9} mol/L = 10^{-9} eq/L = 10^{-6} eq/m^{3}$

Expressing in terms of CaCO₃

Species A mg/L as $CaCO_3 = (mg/L A)(EW_{CaCO_3} / EW_A)$

Example : 10 mg/L Mg²⁺ Mg⁺² = 24,3 mg/L EW $_{Mg+2}$ = 24,3/2=12,15 Conc of Mg⁺² as CaCO₃ (10 mg/L)x((5000 mg/eq)/(12150 mg/eq Mg⁺²)) = 41,15 mg/L as CaCO₃

3. Calculation from equilibrium reactions

$$[H^{+}] + \frac{\text{alkalinity}}{50,000} = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + [OH^{-}]$$
(18.10)
$$\frac{[H^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}$$
(18.11)

 $\begin{aligned} \text{Carbonate alkalinity} &= \frac{50,000[(alkalinity/50,000) + [H^+] - (K_w/[H^+])]}{1 + ([H^+]/2K_{A2})} \end{aligned} (18.12) \\ \text{Bicarbonate alkalinity} &= \frac{50,000[(alkalinity/50,000) + [H^+] - (K_w/[H^+])]}{1 + (2K_{A2}/[H^+])} \end{aligned} (18.13) \end{aligned}$

Application of alkalinity data

- Chemical coagulation: excess alkalinity should be present
- Water softening: important in calculating lime and soda ash requirements
- Biological processes
- Industrial wastewaters: Many municipalities prohibit caustic alkalinity to sewers
 - * İSKİ requires 6<pH<12</p>

pH changes during aeration of water

- Common purpose of aeration is to strip
 - * Carbondioxide \rightarrow pH[↑]
 - * Ammonia
 - * VOCs
- * Air content 0,035 % by volume CO_2
- * Henry 's constant : 1500 mg/L.atm

Equilibrium conc.for $CO_2 = 0,00035 \times 1500 = 0,45 \text{ mg/L}$ $K_{A1} = [H^+][HCO_3^-]/[H_2CO_3^-]$

If alkalinity = 100 mg/L

Aerated until equilibrium of CO_2 in air \rightarrow pH=8,6

pH changes in the presence of algal blooms

- * Algae use CO₂ in photosynthesis.
- * Algae can reduce CO₂ conc. below its equilibrium concentrations.
- * During algal blooms pH 10 can be seen
- * Algae can continue to extract CO2 until inhibitory pH (10-11)
- * As pH increase alkalinity forms change
- Total alkalinity remains constant unless CaCO3 precipitation occurs

Boiler waters

 Carbondioxide is insoluble in boiling water and removed with steam. → pH ↑→ shift of alkalinity from bicarbonate to carbonate, and carbonate to hydroxide→ CaCO3 precipitate