GAS ANALYSIS

GAS ANALYSIS

Anaerobic sludge digestion &
Anaerobic treatment of high BOD containing wastes (~1500mg/L)

(1) hydrolysis
 (2) fermentation
 (3) acetogenesis
 (4) methanogenesis
 (2) volatile fatty acids
 (3) acetic acid
 (4) Wolatile fatty acids
 (5) H₂, CO₂
 (4) CH₄ + CO₂

complex organic matter

Biogas Formation

Typical composition of biogas		
Compound	Formula	%
Methane	CH ₄	50-75
Carbon dioxide	CO2	25–50
Nitrogen	N ₂	0–10
Hydrogen	H ₂	0–1
Hydrogen sulphide	H ₂ S	0–3
Oxygen	02	0–0

Table 6.4 : Calorific Values of Different Fuels

Fuel	Calorific Value	
	(kJ/kg)	
Cow dung cake	6000-8000	
Wood	17000-22000	
Coal	25000-33000	
Petrol	45000	
Kerosene	45000	
Diesel	45000	
Methane	50000	
CNG	50000	
LPG	55000	
Biogas	35000-40000	
Hydrogen	150000	

Heating value: around 22,000 kj/m³ (5330 kcal/m³)

• Anaerobic digester can be heated with this energy.

- * Heating value depends on the waste strength.
- * Composition of the gas is related with conditions in the reactor.

CO_2 / CH_4 ratio \rightarrow Character of the substrate

Analyze the gases produced *Determine fuel value * Monitor treatment

- * CO₂ content increases → indicates trouble in anaerobic treatment
- * H concentration should be low,
 high H→Digester upset

 Methods of Analysis

 Volumetric Procedure : (Simple Method)

Orsat Apparatus is used

 $O_{2}, CH_4, H_2, CO_2, N_2$

Gas Chromatography:

Advantage : speed

 CH_4 , CO_{2} , air ($N_{2+}O_2$)

Gas Chromatography

* Previously calibrated for each gas

* Suitable for routine work, frequent analysis

* TCD (Thermo Conductivity Detector) is used in GC for gas analysis

Volumetric Analysis

- * In the past:
 - 1. Separate measurement of CO_2 and O_2
 - 2. Combustion of hydrogen and methane \rightarrow measure amount of CO₂ produced during combustion
 - 3. Employing a knowledge of Guy-Lussac's Law of combining volumes to determine CH_4 and H_2
- * If hydrogen and methane burned together → Possibility of explosion

$$\begin{array}{c} CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \\ \square & \square & \square & \square \\ 1 \text{ vol} & 2 \text{ vol} & 1 \text{ vol} & 0 \text{ vol} \end{array}$$

Volumetric Analysis

Separate oxidation of H₂ and CH₄

- * Hydrogen oxidized by passing the gas through a heated unit charged with cupric oxide
- * Methane is oxidized by bringing it and O_2 with a catalyst at a lower temperature.

Carbondioxide Measurement Take 100 mL sample, contact with a solution of KOH $CO_2 + 2KOH \longrightarrow K_2CO_3 + H_2O$ Potassium Carbonate

 CO_2 disappears from the gaseous phase Volume reduction = V _{CO2}

$$CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O$$

1 vol. 0 vol.

$H_2S + 2KOH \longrightarrow K_2S + 2H_2O$

Volume of H₂S is too small, can be ignored

* Very little possibility of O_2 existence in anaerobic digester gas.

Can enter during sampling.

* If more than 0.1-0.2 % \rightarrow Poor sampling

* Measured by using alkaline pyrogallol

Under alkaline condition pyrogallol
(1,2,3-trihydroxy-benzene) is oxidized by oxygen
End products: CO2 and organic acids → held as potassium salts in the absorbing solution

* Measure CO_2 . Volume reduction = V_{O2} (CO₂ present should be removed previously)

Hydrogen

* Pass the gas mixture over cupric oxide @ 290-300 ° C

* H_2 is oxidized to water (methane is not) Water vapor formed condenses at lower temperature Cool the sample to room temperature

Measure volume loss after contact with heated cupric oxide

Methane

* After removal of hydrogen

oxidize methane by slow combustion or catalytic oxidation

* Stoichiometry is important to calculate required amount of O_2 for combustion

$$\begin{array}{rcl} \mathrm{CH}_4 \ + \ 2\mathrm{O}_2 \ \rightarrow \mathrm{CO}_2 \ + \ 2\mathrm{H}_2\mathrm{O}_2 \\ \mathrm{i \ vol.} & 2 \ \mathrm{vol.} & 1 \ \mathrm{vol.} & 0 \ \mathrm{vol.} \end{array}$$

Inert gas

$V_{N2} = V_T - (V_{CO2} + V_{O2} + V_{H2} + V_{CH4})$

Collection - Storage

*Glass / metal tubes

*Gum – rubber balloons (Pervious to H₂ and CH₄ !!)

Use displacing fluid to transfer the gas sample the apparatus

Collection - Storage

Temperature changes affect the analysis.

If combustion is applied, measure gas volume after the temperature returns to original value.

Collection- Storage

Confining liquid:

• Hg (ideal, but have health hazards, used in precise inst)

Water ——— Solvent power

Aqueous solution 20% Sodium sulfate, 5% H₂SO₄ decreases solvent power of water

Biogas Storage

A	Outer Membrane	
В	Inner Membrane	
С	Air Flow System	
D	Non Return Valve	
Ε	Radial Ventilator	
F	Anchor Ring	
G	Safety Valve	
н	Inspection Window	
I.	Ultrasonic Sensor	

Hydrogen Sulfide

 $H_2S \longrightarrow corrosive$

• If gas will be used as a fuel, should contain < 1.14 mg/L

$H_2S + I_2 \longrightarrow 2HI + S$

• Excess iodine is indicated with starch indicator.