Oxygen Profile in Streams

Assoc. Prof. Kozet YAPSAKLI

Oxygen depletion in streams

Copyright @ The McGraw-Hill Companies, Inc. Fermission required for reproduction or display. Clean Zone Decomposition Zone Septic Zone Recovery Zone Clean Zone Carp; blackfly and Trout, perch, bass; Trout, perch, bass; Carp; blackfly and Fish absent; sludge mayfly, stonefly, and mayfly, stonefly, and midge larvae worms; midge and midge larvae caddisfly larvae mosquito larvae caddisfly larvae Dissolved oxygen 8 ppei Biochemical oxygen demand 2 ppm

Oxygen level in surface waters

- * Two mechanisms are known to contribute oxygen to surface waters:
 - dissolution of oxygen from the atmosphere (reaearation)
 - * production of oxygen by algal photosynthesis

Oxygen Deficit

Oxygen deficit is represented mathematically by

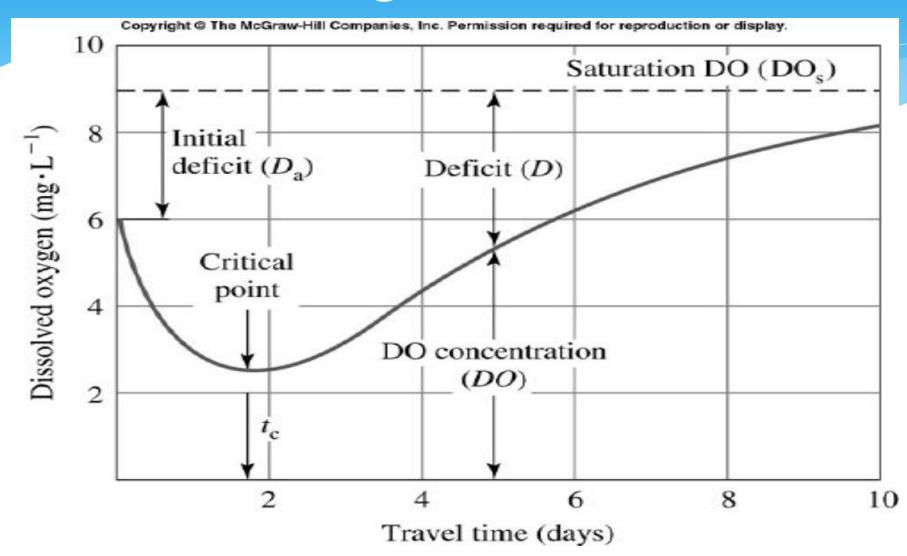
$$D = c_s - c$$

* For constant equilibrium conditions, i.e. C_s does not change, the rate of change in the deficit: $\frac{dD}{dt} = -\frac{dc}{dt}$

The deficit increases at the same rate that oxygen is used

* *The dissolved oxygen deficit is the main driving force for reaeration*

DO sag definitions



Streeter-Phelps Model*

Mass Balance for the Model

Not a Steady-state situation

rate O_2 accum. = rate O_2 in – rate O_2 out + produced – consumed

rate O_2 accum. = rate O_2 in -0 + 0 - rate O_2 consumed

Kinetics

Both reoxygenation and deoxygenation are 1st order

* Streeter, H.W. and Phelps, *E.B. Bulletin* #146, USPHS (1925)

* The oxygen deficit in a stream is a function of

- Oxygen utilization
- * Reaeration

$$\frac{dD}{dt} = r_D + r_R$$

- * rD=Rate of BOD exertion
- * rR=Rate of reaeration

Kinetics for Streeter-Phelps Model

Deoxygenation

- = BOD remaining at any time
- dL/dt = Rate of deoxygenation equivalent to rate of BOD removal
- $dL/dt = -k_1L$ for a first order reaction
 - k_1 = deoxygenation constant, f'n of waste type and temp.

$$-\frac{d[L]}{dt} = kL \qquad \int_{C_0}^C \frac{dL}{L} = -k \int_0^t dt$$
$$\ln \frac{L}{L_0} = -kt \quad or \quad \frac{L}{L_0} = e^{-kt} \quad -> L = L_0 e^{-kt}$$

Developing the Streeter-Phelps

- Rate of reoxygenation = k_2 D
- D = deficit in D.O.
- k_2 = reoxygenation constant*

$$k_{2} = \frac{3.9v^{\frac{1}{2}} ([1.025]^{(T-20)})^{\frac{1}{2}}}{H^{\frac{3}{2}}}$$

There are many correlations for this. The simplest one, used here, is from O'Connor and Dobbins, 1958 Where

- − T = temperature of water, ^oC
- H = average depth of flow, m
- v = mean stream velocity, m/s

D.O. deficit

= saturation D.O. – D.O. in the water

* or

Table 3-2 Reaeration constants	
Water body	Ranges of k _R at 20°C, base e
Small ponds and backwaters	0.1-0:23
Sluggish streams and large lakes	0.23-0.35
Large streams of low velocity	0.35-0.46
Large streams of normal velocity	0.46-0.69
Swift streams	0.69-1.15
Rapids and waterfalls	Greater than 1.15
Source: Peavy, Rowe and Tchobanoglous, 1985	

Combining the kinetics

Net rate of change of oxygen deficiency, dD/dt dD/dt = k₁L - k₂D

where L = $L_0 e^{-k_1 t}$

OR dD/dt = $k_1 L_0 e^{-k_1 t} - k_2 D$

Integration and substitution

The last differential equation can be integrated to:

$$D = \frac{k_1 L_o}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t}) + D_o e^{-k_2 t}$$

It can be observed that the minimum value, D_c is achieved when dD/dt = 0:

$$\frac{dD}{dt} = k_1 L_o e^{-k_1 t} - k_2 D = 0$$

$$D_c = rac{k_1}{k_2} L_o e^{-k_1 t}$$
 , since D is then D_c

Substituting this last equation in the first, when $D = D_c$ and solving for $t = t_c$:

$$t_{c} = \frac{1}{k_{2} - k_{1}} \ln \left\{ \frac{k_{2}}{k_{1}} \left[1 - \frac{D_{o}(k_{2} - k_{1})}{k_{1}L_{o}} \right] \right\}$$