## Sulfur and Sulfate

Dr. Kozet YAPSAKLI

### WHAT is sulfur?

- Atomic number: 16.
- Symbol: S
- Native form: is a yellow crystalline (crystal like) solid.
- In nature: it can be found as the pure element, and as sulfide and sulfate minerals.
- commercial uses: fertilizers, gunpowder, matches, insecticides, fungicides, vitamins, proteins and hormones.
- It is critical in the environment, climate and the health of ecosystems.
- It's the tenth most abundant element in the universe



#### Importance

- Drinking water
  - \* cathartic effect when present in excessive amounts
  - \* EPA secondary standard: should be < 250 mg/L
- \* Public and industrial water supplies:
  - Have the tendency to form scaling in boilers and heat exchangers
- \* Sewer systems
  - \* odor
  - crown corrosion





#### SULFATE (continue)

\* If pH > 8 HS<sup>-</sup> and S<sup>-2</sup> [(H<sub>2</sub>S) is small]  $\rightarrow$  no odor problem

\* If pH < 8 equilibrium shift right  $\rightarrow$ @pH 7 80% H<sub>2</sub>S

\* If concentration > 20 ppm toxic

#### **Concentration Levels & Effects**

## The following table below lists the health effects of exposure to $H_{s}S$ .

| Concentration  | Health Effects                                                                                                                                                                                                                                                                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 ppm         | Beginning eye irritation                                                                                                                                                                                                                                                                                                 |
| 50-100 ppm     | Slight respiratory tract irritation after 1 hour exposure.                                                                                                                                                                                                                                                               |
| 100 ppm        | Coughing, eye irritation, loss of sense of smell after 2-15 minutes. Altered respiration, pain in the eyes, and drowsiness after 15-30 minutes followed by throat irritation after 1 hour. Several hours exposure results in gradual increase in severity of these symptoms and death may occur within the next 48 hours |
| 200-300 ppm    | Severe respiratory tract irritation after 1 hour of exposure. Possible pulmonary edema (fluid in the lungs).                                                                                                                                                                                                             |
| 500-700 ppm    | Loss of consciousness and possibly death in 30 minutes to 1 hour.                                                                                                                                                                                                                                                        |
| 700-1,000 ppm  | Rapid unconsciousness, loss of respiration, and death after 1-3 minutes.                                                                                                                                                                                                                                                 |
| 1,000-2,000ppm | Unconsciousness at once, loss of respiration and death in a few minutes.<br>Death may occur even if individual is removed to fresh air at once.                                                                                                                                                                          |

## Sulfur Cycle

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.







Effect of acid rain on a forest, Jizera Mountains, Czech Republic

#### **Sewer Corrosion**

- ∗ High temperature, long detention times→sulfate cause crown corrosion in concrete sewers
- \* H<sub>2</sub>S responsible (indirectly) for crown corrosion
- ∗ H<sub>2</sub>S is weaker than carbonic acid → little effect on good concrete



**FIGURE 15.3** Cross section showing microbial involvement in the corrosion of a concrete sewer pipe. (Adapted from Sydney *et al.*, 1996.)

$$SO_4^{2-}$$
 + organic matter  $\xrightarrow{\text{anaerobic}}_{\text{bacteria}} S^{2-}$  + H<sub>2</sub>O + CO<sub>2</sub> (29.1)

 $S^{2-} + H^* \rightleftharpoons HS^- \tag{29.2}$ 

 $HS^- + H^+ \rightleftharpoons H_2S$  (29.3)

#### Summary by Example: Pipe Corrosion

- organics in sewage are used as energy source to convert SO<sub>4</sub> to S<sup>=</sup> by sulfate reducers (chemoorganoheterotrophs)
- \*  $S^{=}$  in equilibrium with dissolved  $H_2S$
- Dissolved H<sub>2</sub>S in equilibrium with gaseous H<sub>2</sub>S

#### **Example Continued**

- Gaseous H<sub>2</sub>S dissolves into condensate at crown of sewer pipe and is used as energy source by sulfide oxidizers (chemolithoautotrophs)
- \* As H<sub>2</sub>S metabolized, acid is produced which dissolves concrete crown causing pipe to collapse
- \* Well ventilation  $\rightarrow$  no problem

#### **Crown Corrosion**





# Hydrogen sulfide corrodes cast iron pipe, valves and fittings:



#### Hydrogen Sulfide corrodes cast concrete sewer mains:



#### Hydrogen sulfide corrodes manhole and wet well structures:



#### **Methods of Analysis**

#### \* Ion chromatograph

- \* Formation of insoluable BaSO<sub>4</sub>
- According to the quantity of BaSO<sub>4</sub> formation
  - \* Gravimetric  $\rightarrow$  precipitate is weighed
  - \* Turbidimetric
  - Methylthymol blue method

\* Gravimetric : > 10 mg/L \*  $Ba^{+2} + SO_4^{-2} \rightarrow BaSO_4$ \* Add  $BaCl_2$  in slight access

\* Acidify w/HCl → eliminate BaCO<sub>3</sub> ppt
\* Keep near boiling point

- \* Excess  $BaCl_2 \rightarrow common ion effect$
- ∗ Formed BaSO<sub>4</sub> → colloidal form can not be removed by filter
- \* Digestion @ temperature near boiling point → crystalline forms
- \* Filter the crystals with special filter

#### \* Turbidimetric method :

- Colloidal formation is enhanced in the presence acidic buffer solution
- \* (Magnesium chloride, potassium nitrate, sodium acetate, acetic acid)
- \* Calibration curve

#### \* Automated Methylthymol Blue

- \* Continuous flow analytical instrument
- \*  $BaCl_2$  added @low pH  $\rightarrow$   $BaSO_4$
- \* pH adjusted to 10
- \* Methylthymol blue added

∗ Combines with excess Barium → blue chelate

\* Umcomplexed methylthymol blue remaining → grey color (automatically measured)