MEMBRANE BIOREACTORS (MBR)

COMPARISON OF MEMBRANE FILTRATION PROCESSES CONTAMINANTS REJECTED

Membrane Spectrum

Filtration in the 0.1 micron range is the most widely used membrane type in wastewater treatment applications.

How Membranes Work

- Membrane fibers have billions of microscopic pores on the surface
- The pores form a barrier to impurities, while allowing pure water molecules to pass
- Water is drawn through the pores using a gentle suction

ZeeWeed[®] Membrane Fibers

GENERAL PROCESS CHARACTERISTICS

• MF and UF

- Low Pressure
- Size Exclusion
- Pathogenic bacteria and some viruses
- MBR Systems, polishing and post treatment

• NF and RO

- Higher Pressure
- Size Exclusion plus diffusion charge
- Pathogenic bacteria, viruses, dissolved solids and ions
- Secondary polishing and post treatment

TYPICAL TYPES OF MEMBRANES

FLAT PLATE

Nozele Membrane Panel Spacer Membrane Sheet Vicrostructure

Reinforced Structure Biomass Effluent Hollow

Fiber

HOLLOW FIBRE

Laminated Membrane

Membrane

Backing/ Substrate

Membrane is applied to a substrate or backing for support

Mechanical bond is critical

MEMBRANE BIOREACTOR

Stable Biological Treatment Process

Absolute Solids Separation

Low-Pressure Polymeric Membrane

Effluent Water Quality

Membrane provides an absolute barrier and effluent quality is no longer a concern.

	ASP Effluent	MBR Effluent
TSS, mg/L	<30	ND (<2)
Turbidity, NTU	2 to >10	<0.2
Total Coliform, #/100 mL	10,000 to 100,000	ND to 100
BOD ₅ , mg/L	<2 to 30	ND (<2)

PROCESS BASICS

TWO CONFIGURATIONS:

• External • Submerged

• Vacuum driven

Submerged MBR (SMBR)

External MBR (EMBR)

COMMON TERMS AND DEFINITIONS

o Gross Flux

- The volume of water that passes through a membrane per unit time and per unit surface area of the membrane. Flux is often normalized based on temperature.
- Gross Flux=Instantaneous Permeate Flow /Surface
 Area

- Net Flux
 - The total Permeated Flow over 24 hours divided by the total surface area expressed in gallons per minute per square foot.
 - Net Flux=Total Permeate Flow/ Surface Area

• Total Surface Area

• The total surface area represents the total membrane surface area available for treatment in a membrane system..

• Transmembrane Pressure

- The difference between average/concentrate pressure and the permeate pressure is the driving force.
- The TMP is a means to assess fouling
- TMP = feed pressure permeate pressure
- Fouling

- The build up of impurities on the membranes such as colloidal materials. Fouling reduces flux through the membrane and increase the TMP.
- Micro fouling is the build up of impurities in the membrane pores.

• Permeability

- The permeability of a membrane is the flux rate divided by the transmembrane pressure..
- P = Flux / TMP
- Recovery
 - Recovery is the concept of restoring the hydraulic characteristics of the membrane.
 - Recovery is achieved by membrane cleaning.

PROCESS VARIABLES

- Temperature
 - Viscosity of water increases, as water temperature decreases. →Permeability and flux rate decreases
- Pore size
- Membrane flux rate (L/m2.hr)
 - MLSS increases \rightarrow flux rate decreases
 - Qpeak→design flux rate
- Membrane life

Figure 2.14 TMP transients for sub-critical flux operation (Brookes et al., 2004)

- Constant TMP operation
- Constant flux operation → preferred mode, because it ensures a steady throughput.

Figure 2: Constant TMP operation and constant flux operation (a & b, respectively).

Figure 2.11 Pressure transient for constant flux operation of a dead-end filter

System Advantages

• Small footprint

- Complete retention of suspended solids and most soluble compounds
- Independant control of hydraulic and solid retention times
- Ability for slow-growing species to flourish (nitrifying bacteria, etc.)
- High loading rate capability
- Combined COD, solids and nutrients removal
- Low/zero sludge production \rightarrow high SRT
- Rapid start-up
- Eliminates problems due to settling
 - High biomass concentrations
 - Bulking or rising sludge not problem
- Effluent disinfection

System disadvantages

- Membrane costs
- High capital costs
- Membrane complexity
- Membrane fouling
 - Pretreatment of feed or bach flushing with water/air or chemical cleaning is used.
- Operation and maintenance
- Energy costs
- Aeration limitations

LEADING MANUFACTURERS

• Zenon Environmental Inc. (CANADA)

Hollow Fiber

- General Electric
- Mitsubishi Rayon Cooperation (JAPAN)
- Kubota Cooperation (JAPAN)→Flat Plate
- US Filter (USA)

	Zenon	Kubota Mitsubishi		US Filter	
Membrane					
Туре	Hollow fiber	Plate	Hollow fiber	Hollow fiber	
Configuration	Vertical	Vertical	Horizontal	Vertical	
Pore size	0.04 µm	0.4 µm	0.04 µm	0.04 µm	
Module size	31.6 m^2	0.8 m^2	105 m^2	9.3 m^2	
Location	Cell compartment	Throughout basin	Throughout basin	Cell compartment	
Screening size	$\leq 2 \text{ mm}$	$\leq 3 \text{ mm}$	$\leq 2 \text{ mm}$	$\leq 2 \text{ mm}$	
Flux					
management	0.0 7	0.50	a 5 2	0.10	
m^2/m^3h	0.37	0.53	0.73	0.18	
Aeration cycle	10 sec on 10 sec off	Constant	Constant	Constant	
Flux rate					
Average,	17-25	17-25	8.5-12	17-25	
$1/m^{2}$, h					
Peak hour (≤ 6 hrs) l/m²h	<42	<59	equalize	<51	
Maintenance					
Clean					
Туре	Backpulse and	Backpulse	Relax	Backpulse or relax	
	relax	1 min/1 Emin	2 min/12 min	1 min/15min	
Frequency	hourly	1 min/15min	2 min/12 min		
Recovery clean					
Туре	Chem. Soak	Chlorine	Chlorine	Chem. Soak	
		Backwash	Backwash		
Location	Drained cell	In situ	In situ	Drained cell	
Frequency	\geq 3 months	\geq 6 months	\geq 3 months	months \geq 3 months	
Biological					
Parameters			2.0	10.15	
SRT, days	10-15	15	20	10-15	
MLSS, mg/l	\leq 10 000	\leq 10 000	≤ 10 000	\leq 10 000	

Operating Conditions (Integrated System)

Table 1

Operating conditions for submerged MBR [2-6]

Parameter	Value
Flux	
instantaneous, L/(m ² h)	25-35
sustainable in long term operation,	15-30
L/(m ² h)	
Transmembrane pressure, kPa	20
Biomass concentration, gMLSS/L	5-25*
Solids retention time (SRT), d	>20
Sludge production, kgSS/(kgCOD d)	< 0.25
Hydraulic retention time (HRT), h	1–9
Food/micro organisms ratio (F/M),	< 0.2
kgCOD/(kgMLSS d)	
Volumetric load, kgCOD/(m³ d)	up to 20
Air flow rate, Nm³/h per module	8-12
Operational temperature, °C	10-35
Operating pH	~7-7.5
Backwash frequency, min	5-16
Backwash duration, s	15-30
Energy consumption for filtration, kWh/m3	0.20-0.40
for membrane aeration, %	80–90
pumping for permeate extraction, %	10-20

*12–15 g/L is advised, higher concentrations can cause operational problems like clogging of the membrane and decreased oxygen transfer efficiency

IMPORTANT POINTS

• Pretreatment as screening and grit removal is important

- 3mm screening→hair and fiber can pass, wrap around the membrane
- Many manufacturers now use 2mm screen
- Best is to use 2mm, then 1mm screen
- Recommended MLSS: 8000-12000 mg/L to optimize aeration, flux and cleaning frequency
- R=4, to prevent solids buildup in the membrane area
- High peaking factors \rightarrow equalization req'd

AIR SUPPLY

• Air suply:

- For biological process
- For cleaning the membrane to prevent fouling
- Air for cleaning can exceed the air requirement for biological processes
- High MLSS concentration reduces aeration efficiency→higher energy input requried

Figure 7-20

Effect of MLSS on alpha values for fine pore aeration in MBRs.

[Sources:

 α 1—Bratby et al. (2002) for coarse bubble aeration, α 2—ibid. for fine bubble aeration, α 3—Wagner et al. (2002), and α 4—Thompson (2004).]

MLSS, kg/m³

	Fine bubble	Coarse bubble		
Bubble size	2–5 mm ^a	6–10 m ^a		
OTE (percentage of O ₂ transfer per m depth)	3–10% ^b	1-3% ^b		
Mechanical component	Air blower	Air blower		
Diffuser type	Ceramic or membrane diffuser disk, dome or tube	Steel or plastic disk or tube		
Shear rate ^c	Bubble velocity $\propto d^2$			
	(from Stokes Law). The small	Bubble velocity, and so shear, is		
	bubble sizes provide lower velocity and hence smaller shear forces.	higher than fine bubble aeration since the larger bubbles rise faster than small bubbles.		
Diffuser cost ^d	Approximately £40 per diffuser	Approximately £15 per diffuser		

Table 3.1 Main features of aeration systems (Judd. 2006)

^aEPA, 1989.

^bData from survey of manufacturers and from literature study. The large variation in the efficiency data for fine bubble aeration is attributed to changes in the distribution of the diffuser nozzles over the tank floor and diffuser age. Fine bubble diffusers are susceptible to fouling and oxygen transfer efficiency can decrease up to 19% over 2 years of operation.

^cShear rate is a measure of propensity to ameliorate membrane fouling (Section 2.3.7.1).

^dData obtained from manufacturer quotes for use as a guideline only.

CHEMICAL CLEANING OF MEMBRANE

Туре		Chemical	Conc. (%)	Protocols	
Mitsubishi	CIL	NaOCI	0.3	Backflow through membrane	
		Citric acid	0.2	(2 hr) + soaking (2 hr)	
Zenon	CIP	NaOCI	0.2	Backpulse and recirculate	
		Citric acid	0.2-0.3		
Memcor	CIP	NaOCI	0.01	Recirculate through lumens,	
		Citric acid	0.2	mixed liquors and in-tank air manifolds	
Kubota	CIL	NaOCI	0.5	Backflow and soaking (2 hr)	
CIL: Clean	1			utions are generally backflow e membrane.	
	ning in j e is rins	place where	membrane eing soaked	tank is isolated and drained; I in the cleaning solution and	

Technology	Capacity MLD	Flux LMH	K LMH/bar	SAD _m ², Nm/h	SAD _p ²	MLSS g/L
FS						
Kubota	1.9	20	350	0.75	32	12 - 18
	13	33	330	1.06	32	8-12
	4.3	25	680	0.56	23	na
Brightwater	1.2	27	150	1.28	47	12 - 15
Toray	0.53	25	208	0.54	22	6-18
	1.1,i	21.6	1500	0.4	19	22
Huber	0.11	24	250	0.35	22	ns
Colloide	0.29	25	62.5	0.5	20	ns
HF						
Zenon	2	18	95	1	56	15
	48^{*}	18	144	0.29	16	8-10
	0.15*,i	12	71	0.65	54	10 - 15
	50*	25	175	0.4	17	12
Mitsubishi Rayon	0.38	10	30	0.65	65	12
Memcor	0.61	16	150	0.18	11	12
Asahi-kasei	0.9, i	16	80	0.24	15	8
KMS Puron	0.63	25	160	0.25	10	ns

Table 3.21 Summary of full-scale plant specific aeration demand data

*Intermittent aeration.

i-Industrial effluent feedwater.

na – Not applicable.

ns-Not specified.