
EE2032 Electronics Quiz#7

2. The n-channel MOSFET in the circuit has the following parameters:

$$K = 1 \text{ mA/V}^2,$$

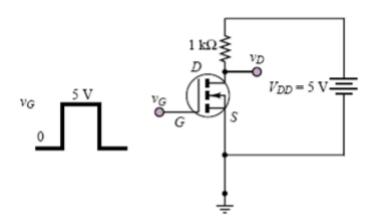
$$V_{GS(Th)} = 2 \text{ V}.$$

Find I_D and V_{DS}.

Answer:

$$V_G=1/(1+3)*20 = 5 \text{ Volts}$$

Assuming saturation:


 $I_D=1*(VGS-2)^2$

 $V_{GS}+2.7*I_{D}=5$

Here we find: V_{GS} =2.88 V, and, I_D =0.78 mA. And for these values we find V_{DS} =20-(4.7+2.7)* I_D = 14.2 V.

Since V_{GS} - V_T = 0.88, and V_{DS} >0.88, the assumption was correct.

4) The NMOS transistor shown in the figure has $V_T = 1.5 \text{ V}$, $k = 0.4 \text{ mA/V}^2$. If v_G is a pulse with 0 V to 5 V, find the voltage levels of the pulse signal at the drain output. (That is; find v_D for $v_G = 0$ and for $v_G = 5 \text{ V}$)

Answer:

When VGS=0:

ID=0, and therefore **VD=5** V

When VGS=5V:

Assuming saturation:

 $ID=0.4*(5-1.5)^2 = 4.9 \text{ mA} \rightarrow VDS=0.1$

But VDS must have been greater than 5-1.5=3.5 V for the saturation.

Therefore we need to check Triode region:

VDS=5-1*ID ID=0.4*[2*(5-1.5)*VDS-VDS^2]

We find:

VDS=1.58 V

ID= 3.42 mA

Therefore, **VD= 1.58** V for 5V input.