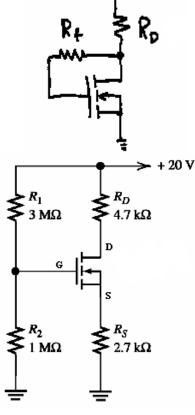
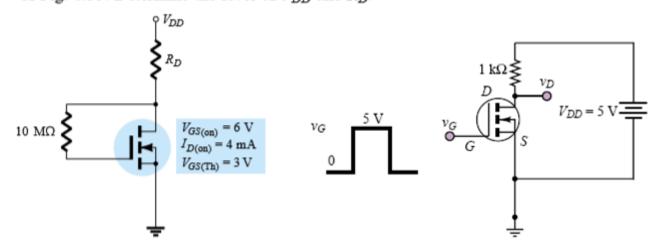
1. The n-channel MOSFET in the circuit has the following parameters:

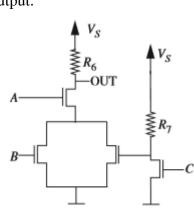
$$\begin{split} K &= 1 \text{ mA/V}^2, \\ V_{GS(Th)} &= 2 \text{ V}. \end{split}$$

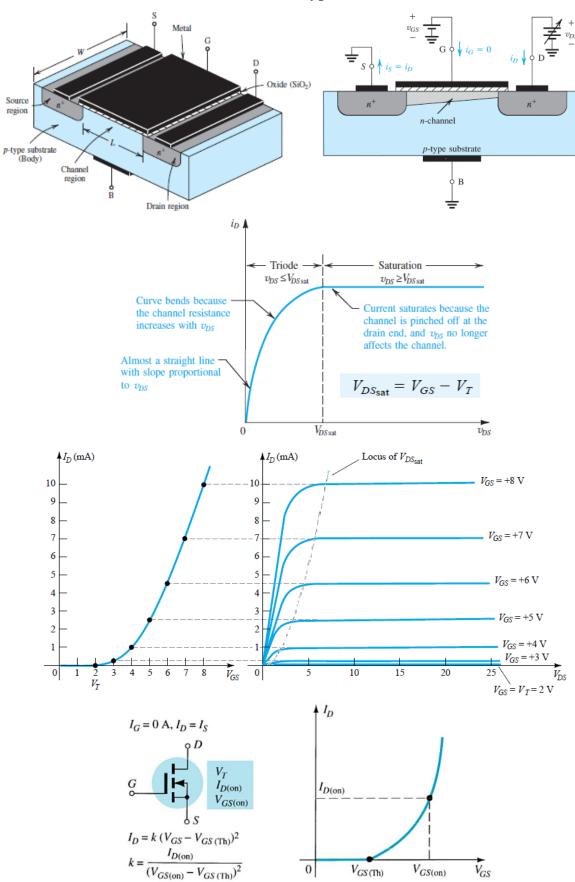

$$V_{DD}=10V$$
 and $R_f=1M\Omega$.

- a) Draw the MOSFET characteristics and the load lines for $R_D = 100\Omega$ and $1K\Omega$ on the same graph of I_D – V_{GS} .
- b) For these cases, calculate the exact I_D and V_{GS} values.
- 2. The n-channel MOSFET in the circuit has the following parameters:


$$K = 1 \text{ mA/V}^2,$$

$$V_{GS(Th)} = 2 \text{ V}.$$


Find I_D and V_{DS} .


3) Example 6.17 p.287, Boylestad 7th The levels of V_{DS} and I_D are specified as $V_{DS} = \frac{1}{2}V_{DD}$ and $I_D = I_{D(on)}$ for the network of Fig. 6.53. Determine the level of V_{DD} and R_D .

- 4) The NMOS transistor shown in the figure has $V_T = 1.5 \text{ V}$, $k = 0.4 \text{ mA/V}^2$. If v_G is a pulse with 0 V to 5 V, find the voltage levels of the pulse signal at the drain output. (That is; find v_D for $v_G = 0$ and for $v_G = 5 \text{ V}$)
- 5) Using the MOSFET in Question 4, and resistors, design two input NOR and NAND gates.
- 6) What is the logic function implemented by the circuit given.
- 7) How can we make a (1-bit) memory cell using MOSFETs?

Enhancement-Type MOSFETs

- If $V_{GS} < V_{GS(Th)}$, the NMOS is in cut-off, $I_D = 0$. Otherwise:
- If $V_{DS} < V_{GS} V_{GS(Th)}$, the NMOS is in Triode (Ohmic) region, in this case:

$$I_D = k [2(V_{GS} - V_{GS(Th)})V_{DS} - V_{DS}^2]$$

 $I_D = k \left[2 \left(V_{GS} - V_{GS(Th)} \right) V_{DS} - V_{DS}^2 \right]$ If V_{DS}>=V_{GS}-V_{GS(Th)}, the NMOS is in Saturation region, in this case:

$$I_D = k \big(V_{GS} - V_{GS(Th)} \big)^2$$