**Student Name:** 

## EE372 Midterm

Apr. 07, 2014

(25 pts) 1) Find the transfer function for the circuit shown below, and, obtain the state space representation in the controllable canonical form.







(25 pts) 2) Consider the system given by the transfer function

$$
G(s) = \frac{25}{s^2 + as + 25}
$$

a) Find the value of a to obtain 10% overshoot in the step response.  $(\pm 1\%$  accuracy is needed.) *Hint:* Second order transfer function:  $\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ , and  $\%OS = e^{-\zeta \pi / \sqrt{1 - \zeta^2}} \times 100$ 

$$
\omega_n^2 = 25 \implies \omega_n = 5
$$
  
960s =  $e^{5\pi\sqrt{1-5^2} \times 100} = 10$ 

$$
\frac{\zeta}{\sqrt{1-\zeta^2}} = 0.733 \implies \frac{\zeta = 0.571}{}
$$

$$
\Rightarrow a = 25w_0 = \frac{5.91}{}
$$

b) If *a* is chosen as 5, what will be the <u>%OS</u> and <u>settling time</u> for this system? <u>Hint:</u>  $T_s = \frac{4}{\zeta \omega_n}$ 

$$
a=5
$$
  $\Rightarrow$   $\zeta=\frac{a}{2\omega_{n}}=0.5$ 

$$
\Rightarrow
$$
 %0S = 16.3

$$
\Rightarrow T_S = 1.6 \text{ s}
$$

(25 pts) 3) The system shown below is to have the following specifications:  $K_v=10$ ;  $\zeta=0.5$ .<br>Find the values of  $K_l$  and  $K_f$  required for the specifications of the system to be met.

 $\frac{1}{2}$ í.



*Hint:* The velocity constant:  $K_v = \lim_{s\to 0} sG(s)$ . Second order transfer function:  $\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ .

$$
G(s) = K_1 \cdot \frac{\frac{10}{S(s+1)}}{1 + \frac{\ln K_1}{S(s+1)}} = \frac{10 K_1}{S^2 + S(10Kf+1)}
$$

$$
K_v = 10 = lim_{s \to 0} s \frac{10 K_1}{s^2 + s(10K_{f+1})} = \frac{10 K_1}{10K_{f+1}} \implies \frac{K_1 = 10K_{f+1}}{\sqrt{10K_{f+1}}} = \frac{10K_1}{s}
$$

$$
\Rightarrow T(s) = \frac{G(s)}{1+G(s)} = \frac{10 \text{ K}_{1}}{s^{2}+s(10K_{1}+1)+10K_{1}}
$$

$$
\Rightarrow W_{n} = \sqrt{10K_1}
$$
\n
$$
2\zeta w_{n} = 10Kf + 1
$$
\n
$$
\Rightarrow K_{1}^{2} = 10K_1 \Rightarrow K_{1} = 10
$$

$$
\Rightarrow Kf = \frac{10-1}{10} = 0.9
$$

(25 pts) 4) Consider the system transfer function:

$$
T(s) = \frac{C(s)}{R(s)} = \frac{K_1}{s^3 + 3s^2 + (2 + K_2)s + K_1}
$$

a) Find the necessary conditions so that the system is stable. Show the stability region on the  $(K_1, K_2)$  plane.

