
120060027

SAMET TONYALI

What is an HMM?
 An HMM is a statistical Markov Model in which the

system being modeled is assumed to be a Markov

process with unobserved(hidden) states.

 We know only outputs of process sequence, but not

the states.

What is difference from regular MM?

 In a regular Markov Model, the state is directly visible

to the observer, and therefore the state transition

probabilities are the only parameters.

 In an HMM, the state is not directly visible, but output

which is dependent on the state, is visible.

An Illustrative Figure

X: state a: transition probability y: output b: output probabilities

Hidden States

Outputs

Parameters of an HMM

 The parameters of an HMM are of two types:

 Transition Probabilities

 Emission Probabilities(Output Probabilities)

A Simple Example

 Alice and Bob live apart from each other and talk together

daily over telephone about what did they do that day.

 Bob is only interested in three activities:

 Walking in the park

 Shopping

 Cleaning his apartment

 His activities are dependent on the weather on a given day.

 Alice has no knowledge about how the weather is in

where Bob lives. She tries to guess what the weather

must have been like.

 There are two states: “Rainy” or “Sunny”, but Alice

cannot observe them directly, that is, they are hidden

from her.

 Since Bob tells Alice about his activities, those are the

observations. The entire system is that of an HMM.

 Alice knows the general weather trends in the area,

and what Bob likes to do on average. In other words,

the parameters of the HMM are known.

 They can be written down in the Python

programming language:

 states = ('Rainy', 'Sunny')

 observations = ('walk', 'shop', 'clean')

 start_probability = {'Rainy': 0.6, 'Sunny': 0.4}

 transition_probability= {

 'Rainy' : {'Rainy': 0.7,'Sunny‘:0.3},

 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},

 }

 emission_probability = {

 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},

 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},

 }

 start_probability: Alice’s belief about which state the

HMM is in when Bob first calls her.

 transition_probability: The change of the weather in

the underlying Markov chain.

 emission_probability: How likely Bob to perform a

certain activity on each day.

Probability Distribution

Three Basic Problems of HMMs
 Given a model, we would like to evaluate the probability of any

given observation sequence, O = {O1O2 … OT}

 Given a model and an observation sequence O, we would like to

find out state sequence Q = {q1 q2 …qT}, which has the highest

probability of generating O, namely, we want to find Q* (Optimal

result).

 Given a training set of observation sequences, X = {Ok}k , we would

like to learn the model that maximizes the probability of generating

X.

Viterbi Algorithm

 The Viterbi algorithm is a dynamic programming

algorithm for finding the most likely sequence of

hidden states – called the Viterbi path – that results in

a sequence of observed events, generally in HMMs.

 The algorithm makes a number of assumptions:

 Both the observed events and hidden states must be in a

sequence. This sequence often corresponds to time.

 These two sequences need to be aligned, and an instance of

an observed event needs to correspond to exactly one

instance of a hidden state.

 Computing the most likely hidden sequence up to a certain

point t, and the most likely sequence at point t-1

These assumptions are all satisfied in a first-order hidden

Markov model.

Algorithm
 Suppose we are given a Hidden Markov Model (HMM)

with states Y, initial probabilities πi of being in

state i and transition probabilities ai,j of transitioning

from state i to state j.

 Say we observe outputs x0,…, xT.

 The state sequence y0,…,yT most likely to have

produced the observations is given by the recurrence

relations:

 Here Vt,k is the probability of the most probable state

sequence responsible for the first t + 1 observations

(we add one because indexing started at 0) that

has k as its final state.

 The Viterbi path can be retrieved by saving back

pointers which remember which state y was used in

the second equation.

 Let Ptr(k,t) be the function that returns the value

of y used to compute Vt,k if t > 0, or k if t = 0. Then:

Complexity
 The complexity of this algorithm is O(T x |Y|2).

References
 http://en.wikipedia.org/wiki/Viterbi_algorithm

 http://en.wikipedia.org/wiki/Hidden_Markov_model

 Alpaydin, Ethem, Chapter 13 – Hidden Markov Models

p.305-326

http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Hidden_Markov_model

Questions?

