
The advent of ultra-high-throughput sequencing tech-
nology has captured the imagination of the biological 
sciences, and with good reason. Ten years ago, on 23 
November 1999, the publicly funded human genome 
project held a massive, worldwide celebration to mark 
the completion of 1 billion base pairs (bp), one-third 
of the way to the full sequence of the human genome 
(http://www.genome.gov/10002105/). The amount 
of sequence was so incredible at the time that the cel-
ebration featured senators and US cabinet officials. 
Commemorative T-shirts marking the occasion were 
distributed. Today, sequencing 1 billion bp is the work 
of hours in any lab equipped with an Illumina GAII or 
ABI SOLiD ‘second generation’ sequencing machine and 
the work of minutes in large-scale sequencing centers. 
These large centers may have 40 or more such machines 
sitting in the middle of a massive production pipeline 
that requires a substantial wet-lab work flow to feed the 
sequencing machines and almost unimaginable compu-
tational support to make any sense of the data coming 
from the sequencers. All indications suggest we have 
only scratched the surface of the potential for ubiquitous 
DNA sequencing technology to change the way experi-
ments are conducted and biology is understood.

One thing that has not changed in the last 10 years is 
that the individual outputs of the sequence machines 
are essentially worthless by themselves. The individual 
‘reads’ (named so from the days when the sequence of a 
given DNA molecule was determined by a pair of human 
eyes looking down an autoradiograph of a gel that had 

a separate lane for each base) range from approximately 
800 bp, using the older technology used by the human 
genome project, to approximately 30 bp for the intro-
ductory versions of the second-generation sequencing 
machines so popular today. Current output ranges from 
50 to 400 bp, depending on the technology and the spe-
cific biological application. Although uninformative by 
themselves, once analyzed collectively DNA sequencing 
reads have tremendous versatility, and the existing appli-
cations of next-generation sequencing are extensive. 
Fundamental to creating biological understanding from 
the increasing piles of sequence data is the development 
of analysis algorithms able to assess the success of the 
experiments and synthesize the data into manageable 
and understandable pieces.

We will focus on two of the most fundamental com-
putational analyses in the context of sequence analysis: 
alignment and assembly. When a reference genome 
assembly exists (for example, for human or mouse), 
alignment remains the first and most fundamental 
analysis once the DNA sequence has been produced. 
The results of the alignment have the ability to quickly 
determine whether the sequencing experiment has suc-
ceeded, whether the correct sample was sequenced, and 
whether the biological experiment and DNA prepara-
tion succeeded. For organisms without a sequenced 
reference genome, assembly is almost always essential 
for analysis. However, in order to develop algorithms 
to accurately assemble new genomes, the existence of 
already assembled reference genomes in other species is 
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all represented by the same color). Hence, some sequence errors are 
correctable, assuming that the analysis tools explicitly consider this 
aspect of the data5. The Illumina technology uses other techniques to 
remove likely errors earlier in the processing pipeline (that is, before 
the alignment or assembly process), including ‘purity filtering’ reads 
appearing to come from more than one DNA molecule6.

Alignment
Alignment itself is the process of determining the most likely source 
within the genome sequence for the observed DNA sequencing read, 
given the knowledge of which species the sequence has come from. 
Sequencing reads may also be aligned to other genomes, assum-
ing the evolutionary distance between the genomes is appropriate. 
The most widely used alignment programs for second-generation 
sequence data have been explicitly designed (or modified) for the 
purpose of aligning this data. Unlike earlier-generation sequence 
alignment programs such as BLAST, which were designed in an 
environment that required alignments of protein sequences and 
searching though large databases to find homologous sequences, 
today’s short-read alignment programs are generally used for the 
alignment of DNA sequence from the species of interest to the ref-
erence genome assembly of that species. This difference, although 
it initially seems subtle, has several consequences to the final algo-
rithm design and implementation, which include letting assump-
tions about the number of expected mismatches be driven by the 
species polymorphism rate and the technology error rate rather than 
by considerations of evolutionary substitutions.

In general, these assumptions allow for much faster processing, 
as few low-quality alignments are either expected or scored. Given 
the massive data volumes produced by the present sequencing 
machines, this has also allowed alignments to be calculated without 
a correspondingly massive increase in computer hardware require-
ments. As sequence capacity grows, algorithmic speed may become 
a more important bottleneck.

Although there is a large and ever growing number of implemen-
tations for short-read sequence alignment, the number of funda-
mental technologies used is much smaller. We will focus on two 
such techniques, give a general overview of the methods describing 
some of the advantages and disadvantages, and provide examples 
from some of the most commonly used implementations of the 
method. The methods covered are (i) hash table–based implemen-
tations, in which the hash may be created using either the reference 
genome or the set of sequencing reads, and (ii) Burrows Wheeler 
transform (BWT)-based methods, which first create an efficient 
index of the reference genome assembly in a way that facilitates 
rapid searching in a low-memory footprint. Both of the above 
methods can be applied to color-space (SOLiD) reads or base-space 
(Illumina, 454) reads, although this capacity must be designed into 
the alignment program.

Alignment programs normally follow a multistep procedure to 
accurately map sequence. Using heuristic techniques in the first step, 
efforts are made to quickly identify a small set of places in the refer-
ence sequence where the location of the best mapping is most likely 
to be found. Once the smaller subset of possible mapping locations 
has been identified, slower and more accurate alignment algorithms 
such as Smith-Waterman are run on the limited subset (see ref. 7 
for review). Running these accurate alignment algorithms as a full 
search of all possible places where the sequence may map is com-
putationally infeasible. This section of the review will concentrate 

critical because they allow newly developed algorithms to be bench-
marked against the known solutions, which then gives confidence to 
the assembly results for species without a reference genome.

The choice of alignment or assembly algorithm is strongly influ-
enced by both the experiment in question and the details of the 
sequencing technology used. The performance characteristics of 
the sequencing machines are changing rapidly, and any delinea-
tion of performance characteristics such as machine capacity, run 
time or read length and its relationship to error profile will quickly 
be outdated. In this review, thus, we will instead describe the types 
of data that are likely to be generated for specific experimental 
applications, with some confidence that (i) both sequence capacity 
and quality will continue to increase for all platforms and that it 
will be possible to generate high-quality sequence of various read 
lengths and (ii) an optimal quality versus cost tradeoff will appear 
for given experimental applications. For example, de novo sequenc-
ing for large genomes will benefit from longer reads than are now 
available, high coverage, and paired-end reads with multiple, well-
chosen insert sizes. Similarly, a resequencing application done in 
the presence of a reference genome assembly requires reads that 
can be accurately mapped in such a way that both nucleotide and 
structural variation can be reliably assessed; it may be possible to 
do this with paired reads on the order of 100 bp in length, although 
longer reads may be beneficial1. At the same time, a chromatin 
immunoprecipitation (ChIP)-sequencing experiment, for mapping 
transcription factor binding sites or the location of modified his-
tones, isolates relatively short fragments of DNA sequence and has 
little need for reads longer than 50–75 bp and apparently limited 
benefit from paired-end reads2. Other applications, such as DNase-
seq, are limited to only 20 bp of informative sequence and so are 
unaffected by both longer read lengths and paired-end sequences3. 
Transcriptomics (for example, RNA-seq) experiments will also have 
optimal experimental designs2.

There are two fundamental considerations when designing align-
ment and assembly algorithms for all second-generation sequencing 
data, beyond the obvious consideration that the reads are shorter 
than with gel-capillary technology. First, the amount of data pro-
duced is orders of magnitude greater than that generated by ear-
lier techniques, so any algorithm must be optimized for speed and 
memory usage. Second, the techniques produce data with different 
error profiles than the previous-generation technology, which must 
be addressed at the algorithmic level to obtain the maximum infor-
mation from the sequencing data. Gel capillary reads normally had 
low quality base calls at the start and the end of the read, with high-
quality data in the central region. Base-calling algorithms provided 
information about where a given read should be ‘quality clipped’ 
for users who wanted only the best part of the read. The different 
error characteristics with second-generation technology include, 
for example, the tendency of Roche 454 reads to have insertion or 
deletion errors during homopolymer runs4 and the increasing likeli-
hood of sequence errors toward the end of the read for ABI SOLiD 
and Illumina/Solexa technology. As a further consideration, SOLiD 
data are produced in ‘color space’ rather than the ‘base space’ used 
by the other sequencing technologies, meaning that the output of 
the SOLiD machine is a series of colors representing two nucleotides 
(represented by the numbers 0–3) rather than a series of bases (rep-
resented by A, C, G and T). The SOLiD color-space code is degener-
ate, such that only four colors are used to represent the 16 possible 
transitions (for example, the dinucleotides AA, CC, GG and TT are 
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match if a region is to be considered a possible alignment location10. 
In its recommended use, MOSAIK hashes all positions in the refer-
ence genome and uses a ‘jump database’ to efficiently locate infor-
mation in the hash table and thus reduces memory requirements by 
approximately two-thirds over a naive implementation.

After the alignment seeds have been used in the hash table creation 
and the reads have been associated with the region of the genome 
where they are most likely to align, a specialized and accurate align-
ment algorithm is used to determine the exact placement of the 
sequence reads on the reference genome. Such algorithms include 
both gapped and ungapped versions of Smith-Waterman that take 
advantage of the quality values of the sequenced bases.

Burrows-Wheeler transform methods. Over the past year, a 
new generation of short-read alignment programs including 
BOWTIE14, BWA15 and SOAP2 (ref. 16) have been developed that 
are based on the Burrows-Wheeler transform (BWT)17. These 
methods typically use the FM index data structure, proposed by 
Ferragina and Manzini, who introduced the concept that a suf-
fix array is much more efficient if it is created from the BWT 
sequence, rather than from the original sequence18. The FM index 
retains the suffix array’s ability for rapid subsequence search and, 
for mammalian genomes, is often the same size or smaller than the 
input genome size19. For example, the final index for the human 
genome used by both BWA and BOWTIE is approximately 2.3 GB 
in size14,15, whereas SOAP2 uses a different routine resulting in a 
final index that requires 5.4 GB (ref. 16).

Creating the underlying data structure requires two steps. In the 
first step, the sequence order of the reference genome is modified 
using the BWT, a reversible process (that is, the original genome 
sequence can easily be reconstructed) that reorders the genome 
such that sequences that exist multiple times appear together in 
the data structure (Fig. 2). Next, the final index is created; it is then 
used for rapid read placement on the genome. The creation of the 
final index may be a memory-intensive step, although methods 
exist to create the index in relatively little memory at the cost of 
more processing time20. The BWT has been commonly used in 

on algorithms for the first step that are particularly appropriate for 
short-read data and only briefly mention the algorithms used in 
the second step (although these can be important for the fine-scale 
results). Additionally, all of the programs implement a ‘mapping 
policy’ that governs key performance aspects of the specific imple-
mentation. Regardless of the underlying algorithmic approach, a 
general rule is that there is tradeoff between speed and sensitivity. 
That is, a procedure that can map reads with guaranteed high accu-
racy, especially in the presence of errors and sequence polymor-
phism, will take longer than a procedure that applies heuristics to 
limit the problem in one way or another.

Hash-based alignment methods. The first wave of alignment pro-
grams specifically designed for short-read alignment from next-
generation sequencing machines was based on a hash-table data 
structure to index and scan the sequence data. ‘Hash table’ refers 
to a common data structure that is able to index complex and 
nonsequential data in a way that facilitates rapid searching (Fig. 
1). This is especially appropriate for DNA sequencing reads, which 
are extremely unlikely to contain every possible combination of 
nucleotides and very likely to contain duplicates. Examples of tools 
using this approach include MAQ8, SOAP9 and Illumina’s own 
unpublished ELAND algorithm. These have recently been joined by 
several other tools, including SHRiMP10, ZOOM11, BFAST (http://
genome.ucla.edu/bfast/) and MOSAIK (http://bioinformatics.
bc.edu/marthlab/Mosaik/).

Hash-based algorithms build their hash table either on the set of 
input reads or on the reference genome. They then use the refer-
ence genome to scan the hash table of input reads (in the first case) 
or use the set of input reads to scan the hash table of the reference 
genome (in the second). There are advantages and disadvantages to 
each method. For example, hash tables of the reference genome have 
a constant memory requirement for a given parameter set regardless 
of the size of the input set of reads, which may be large, depending 
on the size and complexity of the reference genome. Hash tables 
based on the set of input reads typically have smaller and variable 
memory requirements based on the number and diversity of the 
input read set but may use more processing time to scan the entire 
reference genome when there are relatively few reads in the input 
set. Of the algorithms mentioned above, MAQ, ELAND, ZOOM and 
SHRiMP build a hash table of the input read sequences, whereas 
SOAP, BFAST and MOSAIK hash the reference genome assembly.

With either hashing methodology, the algorithms typically imple-
ment the hash table in the form of ‘spaced seeds’, which are regions 
of the sequence required to have a specific pattern of matches and 
mismatches. Spaced seeds were popularized for sequence align-
ment by the PatternHunter program12. A seed is of the form 110011, 
where 1 represents a position of the sequence that is required to 
match and the number of 1s is designated the ‘weight’ of the seed. 
For example, from the first 28 bp of the read, the published MAQ 
program builds six hash tables corresponding to seeds of length 8 
and weight 4 and then scans the reference genome against these hash 
tables8. This technique ensures that all hits with two mismatches 
can be found, and more than half of those with three mismatches. 
Twenty hash tables would be required for MAQ to guarantee that all 
reads with three mismatches could be found. ZOOM uses manually 
constructed spaced seeds of weight 14 to enable the detection of up 
to four mismatches in 50-bp reads12 and SHRiMP uses a q-gram 
approach13, which requires that multiple spaced seeds per read 
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Figure 1 | Schematic of a hash table–based alignment strategy. Sequence 
reads with associated read identifiers are shown, with the regions that will 
be used for seed selection in capital letters and matched seeds of 0011 
and 1100. Given read identifiers are associated with the seeds using a 
hash function (for example, a unique integer representation of each seed). 
Once such a hash table has been built for either the input read set or the 
reference genome, the corresponding data can be scanned with the same 
hash function, resulting in a much smaller subset of reads to more exactly 
align at each location in the genome.
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Assembly
A fundamental goal of DNA sequencing has been to generate large, 
continuous regions of DNA sequence. The desired DNA sequences 
are nearly always far longer than the individual sequencing read 
lengths, so some sort of sampling approach is required. The domi-
nant approach has been to randomly fragment a DNA sequence, 
sequence these fragments—described as ‘shotgun sequencing’—
and then reconstruct the original DNA sequence computationally, 
described as ‘assembly’. This was originally designed for cosmid or 
other clone resources22,23 but also became feasible for genomes, first 
of bacteria and then of large, complex eukaryotes.

With the old-technology read lengths (around 800 bp), all assem-
bly algorithms worked as some variant of using overlaps between 
reads and then a resolution of these overlaps into a colinear solu-
tion. With the far shorter reads and far higher coverages generated 
by these new technologies, not only was this ‘read-centric’ method 
computationally unfeasible, but it was seemingly impossible to 
find heuristics to resolve the large number of overlaps. However, 
pioneering work by Pevzner and colleagues24 in the late 1980s and 
Idury and Waterman25 in the mid-1990s had already introduced a 
different framework for handling assemblies, even with the older, 
long-read technology. The new framework was based on a graph of 
very small, fixed-length subsequences (abbreviated as k-mers, where 
k is 19 or higher) in a de Bruijn graph data structure, which was 
originally developed for combinatorial mathematics. For applica-
tions in DNA sequence assembly, the de Bruijn graph has a node 
for every k-mer observed in the sequence set and an edge between 
nodes if these two k-mers are observed adjacently in a read. Such 
edges are therefore associated with the single-step base difference 
of moving the fixed k-mer window along by one position. Although 
seemingly similar to the read-overlap graph used by traditional 
assembly programs, which often use k-mer content to calculate the 

overlaps, the de Bruijn graph formulation 
has properties that differ in important ways. 
The first is that a read will be split across its 
component nodes. The second is how this 
structure handles repeats: a repeat will be a 
series of adjacent k-mers which many reads 
pass through. On the edges of the repeat, the 
graph will diverge into the unique regions 
of the genome. A final aspect of this graph 
is that it can be constructed in an amount 
of computational time that scales linearly 
with the number of reads (rather than in 
quadratic time, as is needed for the naive, 
all-against-all implementation of the over-
lap graph).

Pevzner and Tang used this data structure 
to find solutions based on a graph traversal 
method—namely, an eulerian tour of the 
graph26, which visits each node of the graph 
exactly once. This graph traversal method 
was not particularly successful for mak-
ing practical assemblies, but the de Bruijn 
graph framework is ideal for handling high- 
coverage, short sequencing reads and has sev-
eral useful properties—for example, being 
able to easily compute the theoretical maxi-
mum continuity for a particular sequence 

data compression; thus, the FM index structure has been referred 
to as a compressed suffix array18.

BWT implementations are much faster than their hash-based 
counterparts at the same sensitivity level and can be several times 
faster still at slightly reduced sensitivity levels and for single-ended 
reads. This last case is likely to be most appropriate for mapping tag 
sequences from ChIP-seq or similar applications. Another advantage 
to the BWT-based methods is the ability to store the complete refer-
ence genome index on disk and load it completely into memory on 
almost all standard bioinformatics computing clusters21.

BOWTIE’s reported 30-fold speed increase over hash-based MAQ 
is an example of the speed increases for single-ended reads, although 
this increase is at the cost of a small loss of alignment sensitivity13. 
With the ability to exploit paired-end reads and for sensitivity simi-
lar to the earlier, hash-based methods, the speed increase for any of 
the current BWT-based programs will generally be tenfold14–16.

The limitations of BWT-based methods are another example of 
tradeoff between speed and sensitivity. For example, BWA is only 
able to find alignments within a certain ‘edit distance’ of the sequence 
in reference genome, which is a function of the read length15. Edit 
distance is, formally, the number of operations required to trans-
form one sequence into another, which in the case of sequence align-
ment is most commonly gaps or mismatches. This effectively limits 
the combined number of mismatches or gaps in the read that can be 
aligned (for 100-bp reads, BWA allows 5 ‘edits’; less for shorter reads 
and more for longer reads). As sequencing becomes increasingly 
accurate, this limitation is likely to become less important for spe-
cies with relatively low polymorphism rates, such as human where 
nearly all reads will align within the edit distance.

As in the hash-based methods, once the reads have been associated 
with the region of the genome where they are most likely to align, 
more sensitive algorithms can be used for the final alignment result.

1. All possible rotations

2. Sort 3. Select final
    column

Genomic sequence

Transform

Figure 2 | The Burrows-Wheeler transform for genomic sequence data. To create a BWT of a 14-mer 
genomic sequence, one first notes the start and end points of the sequence and then constructs all 
rotations of the given sequence by taking the first character of the sequence and placing it at the 
end of the sequence (step 1).The characters ^ and $ mark the beginning and end of the sequence, 
respectively. Once these sequences are created, they are sorted (step 2). From this sorted matrix, the 
final column is selected as the transformed sequence (step 3). The transformed sequences is exactly the 
same length and has exactly the same characters as the original sequence, but in a different ordering. 
The sequence at the bottom is a longer sequence starting with the same 14-mer that demonstrates the 
effect on the transformed sequence of using a longer input sequence.
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a handful of near-identical repeats longer than 200 bp (Fig. 3), 
whereas complex genomes, such as the human, usually have their 
repeat length determined by whether there has been an active 
LINE or SINE transposable element (usually around 4 kb in 
length for the former and between 500 bp and 1 kb for the latter). 
As the ability to produce longer read pairs (also referred to as 
‘mate pairs’ to distinguish them from the shorter read pairs) has 
only recently been optimized for next-generation technologies, 
assemblies of complex genomes have been rare.

The other main barrier for large, complex genome assem-
blies is the memory overhead for these methods. Although the 
de Bruijn data structure is compressed, all the methods use 
some sort of adjunct data structures in addition to the core 
de Bruijn graph to map the reads to the graph. These adjunct 
structures are critical for leveraging additional information  
required for accurate assemblies, such as read pair information. 

length from a reference assembly. The read lengths need only be over 
the k-mer length to generate a reasonable assembly (in theory, k must 
be over 15 bp, though in practice 19 is the lowest sensible k-mer, and 
larger k-mers are always better, although at the expense of having to 
generate more coverage to support these large k-mer sizes).

The first assembler to exploit this technology was Roche’s 454 
assembler, Newbler, which adapted the scheme specifically to handle 
the main source of error in 454 sequencing—namely, ambiguity in 
the length of homopolymer runs. In late 2007 and early 2008, sev-
eral second-generation de Bruijn graph assemblers were released for 
very short reads, compatible with the Solexa technology, including 
SHARCGS27, VCAKE28, VELVET29, EULER-SR30, EDENA31, ABySS32 
and ALLPATHS33. Some of these methods, such as VELVET, EULER-
SR and ABySS, explicitly use de Bruijn graphs, whereas other meth-
ods implicitly explore a de Bruijn graph—for example, constrained 
by read-pair behavior, as in ALLPATHS. The methods differ in how 
they treat errors and to what extent they use read-pair information. 
Read pairs are defined as two short DNA sequence reads generated 
from different ends of a longer DNA molecule—for example, 35-bp 
reads generated from both ends of a 500 bp fragment. One does not 
know the identity of the sequence between the read pairs, but one 
usually has an estimate of the length of the intervening sequence. 
As it is only marginally more expensive to generate short reads in 
read-pair format than as single reads, extremely high coverage of 
read pairs is routinely available. The more advanced de Bruijn graph 
assemblers29,30,32,33 can use read pairs to provide long assemblies. 
A particular challenge has been the two-base-encoding ‘color space’ 
of ABI SOLiD technology. In this two-base encoding, a single error 
produces a systematic translation error on all subsequent decoding of 
the bases for the rest of the read. In the context of an alignment, such 
an encoding scheme can be integrated into the alignment routine, 
and there is an argument that the double base encoding provides 
better discrimination between errors and observed differences. In de 
novo assembly, however, there is no reference. The solution has been 
to perform the assembly directly in color space and then ‘key’ the 
resulting color space assembly to one of the four feasible base-pair 
assemblies using either a small amount of traditional sequence or the 
presence of a known base at the start of each SOLiD read.

Whichever sequencing technology and assembly method are 
used, the ability to provide long assemblies critically requires that 
at least a proportion of the read pairs are longer than the longest 
common near-identical repeat in the genome. This varies con-
siderably between genomes. Bacterial genomes often have only 
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Figure 3 | Constructing and visualizing a de Bruijn graph of a DNA sequence. 
(a) An example de Bruijn graph assembly for a short genomic sequence 
without polymorphism. Sequence at top represents the genome, which is 
then sampled using shotgun sequencing in base space with 7-bp reads 
(step 1). Some of the reads have errors (red). In step 2, the k-mers in the 
reads (4-mers in this example) are collected into nodes and the coverage 
at each node is recorded. There are continuous linear stretches within the 
graph, and the sequencing errors create distinctive, low-coverage features 
through out the graph. In step 3, the graph is simplified to combine nodes 
that are associated with the continuous linear stretches into single, larger 
nodes of various k-mer sizes. In step 4, error correction removes the tips 
and bubbles that result from sequencing errors and creates a final graph 
structure that accurately and completely describes in the original genome 
sequence. (b) A full de Bruijn graph of two related plasmids that have  a 
locus in common. The de Bruijn graph was created with 30-bp k-mers. The 
open loops are regions that differ between the two plasmids, whereas the 
heavier lines indicate common regions.
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may well see the reemergence of the read-based assemblers, but it 
is likely that the de Bruijn frameworks will remain a useful, if not 
optimal structure. Even with long read lengths, it is likely that high 
coverage techniques will be used, and a number of next-generation 
technologies have variable read length distributions, and can poten-
tially trade off read length with sequence quality. The de Bruijn 
framework handles high coverage in a more compact form, and all 
the read-based methods can be executed in the context of a de Bruijn 
graph—the graph provides easy access to other features of the data; 
for example, for error correction. Whatever scheme is used, it is clear 
that yet more accurate assemblies can be achieved for more complex 
genomes with increased length in mate pairs for short-read technol-
ogy or simply longer reads from new technologies.

Thus far, the development of short-read alignment programs has 
followed a predictable path. The first problem to solve was to ensure 
that the programs were sufficiently accurate and sufficiently fast. As 
more experience was gained and the properties of the sequence data 
became more clear, new algorithms emerged and existing ones were 
modified to incorporate new information about biases, sequence 
errors, regions of the genome inherently difficult to align and the 
effects of genome polymorphism both at the level of single base 
changes and of small indel and larger structural variations. At the 
same time, a community effort created common and optimized file 
formats for storage and exchange of the resulting alignment data35. 
As all this has been happening, the sales of sequencing machines 
have continued to grow quickly and the average amount of data 
produced by each machine has grown several times. These develop-
ments have led to the current push to ensure that the programs for 
creating accurate alignments that address all of the above issues are 
simply as fast as possible. New data types such as the interrupted 
read sequences from Complete Genomics will challenge the exist-
ing alignment algorithms, as will the increase in read length and 
experimental studies that focus on cancer genomes with multiple 
deletions, duplications and rearrangements. These problems are 
probably not yet solved, but the techniques described above will 
provide the first approach to these problems and the foundations 
for new approaches.
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Corrigendum: Sense from sequence reads: methods for alignment and 
assembly

Paul Flicek & Ewan Birney
Nat. Methods 6, S6–S12 (2009); published online 15 October 2009; corrected after print 6 May 2010.

In the version of this article initially published online, the caption to Figure 3b was mislabeled. It shows a de Bruijn graph of two plasmids 
partially overlapping in sequence. The error has been corrected in the HTML and PDF versions of the article.
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