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Ch 3.1: Second Order Linear
Homogeneous Equations with Constant
Coefficients

A second order ordinary differential equation has the
general form

y'=f(ty.y)
where f is some given function.
# This equation is said to be linear if f is linear ony and y":
y'=g(t)-p®)y -a)y P(t)y"+Q(t)y + R(t)y = G(t)
Give emphasis on superposition of linear parts.

If G(t) = 0 for all t, then the equation is called homogeneous.
Otherwise the equation is nonhomogeneous.
< IVP ay"+by' +cy=0 ylt)=Vory o )=y

%
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Example: Infinitely Many Solutions
= Linear DE, two solutions, and combinations of these two in
any numbers, and
y”— y=0 Y1(t) :eta YZ(t) =l
Ya(t) = 3e', Y, ()= 5esh ys(t) = et e
= Characteristic Eq. three possible cases.
y(t) =ce' +c.e™
_1 YO0)=c,+c,=3
y'(0)=c,-¢c, =1

y'=y=0, y(0)=3, y'(0) }:>c1=2, e

ay"+by'+cy =0, ar%"+bre" +ce" =0

ar? +br+c=0, r_—biVb2—4ac

2a
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Check these examples for the case where roots are differgnt.

y'+y'-12y=0, y(0)=0, y'(0) =1

5]

yt)=e" = r’+r-12=0 < (r+4)r-B)=0

1w f1l &
t)=—=¢e —e
yH)=— -

Y =32 explat2 ) 2
349

er 093704 0% 08 g 12714 16 18 2

2.59

y(t) = 3—2e2 2y"+3y' =0, y(0)=1, y’(0)=3
yt)=e" = 2r’+3r=0 < r(2r+3)=0

¥t =9 exp(-2t) - Fexp(-3t)

2
¥
1.5

1

0.54 25

0 E 3 3 g [ 2

y(t)=9e* —7¢™
y’+5y' +6y=0, y(0)=2, y(0)=3

¥

yt)=e" = r?+5r+6=0 < (r+2)
set
y(t) 5 _:I-8e_2t S Zle_gt =0=> Ge‘zt 35 7e—3t 05

3 this questioh asks t when y(t) reachin
e' =7/6==>t~.1542;y ~2.204 o
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Ch 3.2: Fundamental Solutions of Linear
Homogeneous Equations

p, q are continuous funtns on an interval | = («, f), can be [«].
For a function y twice differentiable on I, differential operator L by

LIy)t) = y"(®) + p(t) y'(®) + a(t) y(t)

ie in pieces,  P(t) =t?, q(t) =e*, y(t) =sin(t), 1 =(0,27)
L[y]t) = —sin(t) + t? cos(t) + 2e* sin(t)

L[y](t) = 0, Linear homogeneous equation, along with TWO initial conditions, and if so,

are they unique. Y(t) = Yo, Y'(t) =Y,
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Theorem 3.2.1 Work out the example below yourself.
y'+pM)y'+a)y=g(t)
y(to) = Yo» y’(to) o y(’)

where p, g, and g are continuous on an open interval | that contains t,. Then there
exists a unique solution y = #(t) on .

Consider the initial value problem

Note: While this theorem says that a solution to the ivp above exists, it is often not
possible to write down a useful expression for the solution which is a major difference
between first and second order linear equations.

Determine the longest interval on which the given initial value problem is certain to have
a unique twice differentiable solution. Do not attempt to find the solution.

(t+1)y"—(cost)y’+3y =1, y(0)=1, y'(0)=0

First put differential equation into standard form:

cost 3 1
s : = ,yl0)=1, y'(0)=0
t+1y+t+1y t+1 y() y()

The longest interval containing the point t = 0 on which the coefficient functions are

It follows from Theorem 3.2.1 that the longest interval on which this initial value
problem is certain to have a twice differentiable solution is also (-1, ).
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Theorem 3.2.2 (Principle of Superposition)

= If y,=f and y,=g are solutions to the 2" order LDE, then the linear
combination c,y, + ¢y, is also a solution, for all constants c, and
C,. To prove, substitute c,y; + y,C, and check...!!!! Please
remember the notes given before (Proving linearity if always an
exam question, in terms of additivity and scalability).

Wronskian determinant: Can all solutions can be written this way,
or do some solutions have a different form altogether?

Suppose y, and y, are solutions to L[y] = y" + p(t)y'=g(t), with
initial values of y(t,)=y, and y'(t))= Yo'
= from Thr 3.2.2, y =c,y; + C,Y, is a solution to this equation such
thaty = c,y, + c, Y, satisfies the given initial conditions ****
C = YOy;(to)'y(I)Y2(to)
CYi(t) + €Y, (t) = Yo Tyt Ya () — Vi) Y (to)
GYi(t)+CYa(t) =Y ¢ - = Yo¥i()*Voyilly)
Y1 (to) y; (to) = y1, (to) Yo (to)

*

b

DE 255 Fall 2013

The Wronskian Determinant
5 Arbitrary coefficients, in terms of determinants Wronskian
determinant,
3 |If solution exists then, the determinant W cannot be zero.

o o Yo¥a(to) =YY, (t)
- Y1 (to)y; (to) o y1' (to)yz (to)
BE O A B TP AY A
3 Y1 (to)yé (to) oy y:{ (to)yz (to)

Yito) Yo
Yi(t) Yo
yl (to ) y2 (to)
yi(t)  Ya(ty)

yO y2 (to)
Yo Ya(k)

yl (to) y2 (to )
yilt) Vi ()

y Lo =

Yo Ya(to) nt) Yo
_ Yo ¥(t) _ %) Yo
W (i W

Yi(te) Y, (to)
yi(ty) Y5 (t,)

W(y,, v, Xto)

= Y1(to)yg (to) £ yi(to)yz (to)
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Theorem 3.2.3

The opposite of theorems given before, suppose y, and y, are
solutions to the equation at a given t,, if the Wronskian

W=y,y', +Vy'; Y, # 0, then there is a choice of constants c,, ¢,
for any of which y = c,y, + ¢, Y, is a solution to the DE for given
initial conditions y(t,)=Yy, and y'(t))= Y,

Recall the following initial value problem and its solution:
y'=y=0,v0)=3 y(0)=1 = y)=2¢"+e"

The two functions that are are solutions:

The Wronskian of y, and y, is

YRy
Vi Y
Since W = 0 for all t, linear combinations of y; and y, can be used
to construct solutions of the IVP for any initial value t,.

y=Cy1 + G,
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y1:et’Y2 =a

W = =y,Y,—Yiy, =—e'e" —e'e =—2e° =2

Theorem 3.2.4 (Fundamental Solutions)

bl

Suppose y, and y, are solutions to the equation L[y]=0,

If there is a point t, such that W(y,,y,)(t,) # 0, then the family
of solutions y = c,y; + ¢, Y, with arbitrary coefficients c,, ¢,
includes every solution to the differential equation.

The expression y = c,y; + C,Y, is called the general solution
of the differential equation above, and in this case y, and y,
are said to form a fundamental set of solutions to the
differential equation.

b1

bl

rt

: Al 2
% In previous example... y,=e",y,=¢e?,

y1 y2 nt
Vi Y5

n#r,

e e It

W T nt rt
re™ re

= (r,—r "% + 0 forallt.

y =ce™ +c,e?
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Example: 2t°y"+3ty'—y=0, t>0
* Show that the functions below are fundamental solutions:
y1 :tl/2’ yz :t—l
* To show this, first substitute y, into the equation, similar for y,:

2t2[~t:’2]+3t[t’“2 j_tuz :(Aggkl}m _o  2(2)+3t(-t?)-tt=(4-3-1)t* =0

2 202

% To show both solutions form fundamental set of solutions.

t1/2 t—l

Yi Y,

R 732 _ 1t—3/2 :_§t—3/z S 3
Yisoyz

W = o= o
2 2t

e R

2

# Since W =0 fort >0, y,, y, form a fundamental set of solutions
for the differential equation

2t%y"+3ty'—y=0, t>0

DE 255 Fall 2013

Summary

= To find a general solution of the differential equation
y'+pM®)y+at)y=0, a<t<p
we first find two solutions y, and y,.

* Then make sure there is a point t; in the interval such that
W(Y1, Y2)(to) # 0.

% It follows that y, and y, form a fundamental set of solutions
to the equation, with general solutiony = c,y, + ¢, Y,.

= |f initial conditions are prescribed at a point t, in the interval
where W = 0, then ¢, and ¢, can be chosen to satisfy those
conditions.

= Exact and adjoint and self adjoint functions?
Page 126, questions 26 and32
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Ch 3.3: Linear Independence and the Wronskian

= Two functions f and g are linearly dependent if they are
multiples of each other. ¢, f(t)+c,g(t)=0

If the only solution to this equation is ¢, = ¢, =0, then f and g
are linearly independent. For example, f(x) = sin2x and g(x) =
sinxcosx, and their linear combination ¢, sin2x+c,sinxcosx =0
This is satisfied if we choose ¢, = 1, ¢, = -2, and hence f and g
are linearly dependent.

# Note that if a = b = 0, then the only solution to this system of
equations is ¢, = ¢, = 0, provided D # 0.

ay, —bx, _ ay,—bx,

CX +CX, =a ¢, =

CY1+CY, =b Y2 = V%, D
i A X X
6o ay, +bx, _—ay, +bx S here D [
XY, = 1%, D D)

DE 255 Fall 2013

Example 1: Linear Independence
= Show that the following two functions are linearly independent on

any interval: f(t) = et, g(t) = ot
= Suppose for all t in an arbitrary interval («, f).
c,f(t)+c,g(t)=0

# We want to show the equation holds only for ¢, =c, =0 for all tin
(a, p), where t, #t,, except ty=t;. Then

to —1y
D = € € = etOe_tl _e_tO etl i etO_tl _etl_tO
t —t
gt e\t
ce+ce =0
: : B R S IR VR

ce+c,e =0
s D =0, and therefore f and g are linearly independent.
DE 255 Fall 2013




Theorem 3.3.1 from Wronskian p o view

= If fand g are a) differentiable functions on an open interval | and b)
if W(f, g)(t,) = 0 for some point t, in I, then f and g are linearly
independent on |. Moreover, if f and g are linearly dependent on I,
then W(f, g)(t) =0 forall tin I.

= Proof (outline): Let c, and c, be scalars, and suppose c,f(t)+c,g(t)=0
forall tinI. In particular, when t = t;, we have

i

¢, f(ty)+¢,9(t) =0
le,(to) +ng,(to) =0

Since W(f, 9)(t,) = 0, it follows that c,f(t)+c,f(t)=0 onlyatc, =c, =
0, and hence f and g are linearly independent.

i
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Theorem 3.3.2 (Abel’s Theorem)

= Suppose y, and y, are solutions to the equation

LIyI=y"+p(t)y'+a(t)y=0
where p and g are continuous on some open interval I. Then

W(y,,y,)(®) is given by
W (y,, y,)(t) =ce

where c is a constant that depends on y; and y, but not on t.

—jp(t)dt

= Note that W(y,,y,)(t) is either zero for all tin | only if c =0 or
else is never zero in | (if ¢ # 0).

DE 255 Fall 2013




Example 2: Wronskian and Abel’s Theorem

= Recall the following equation and two of its solutions:
y"—y=0, yl :et' y2 :e—t
# The Wronskian of y,and y, is
Yi Y2
Vi Y
* Thusy, and y, are linearly independent on any interval I, by
Theorem 3.3.1. Now compare W with Abel’s Theorem:

W = =—¢'e'—e'et =—2e°=-2=20 forallt.

Wy )0 =ce 17 =ce 1" =
# Choosing ¢ = -2, we get the same W as above.

DE 255 Fall 2013

Theorem 3.3.3

= Suppose y, and y, are solutions to equation below, whose
coefficients p and g are continuous on some open interval I:

LIyl=y"+p(t)y'+at)y=0
Theny, and y, are linearly dependent on | iff W(y,, y,)(t) =0

foralltinl. Also, y, andy, are linearly independent on | iff
W(y,, y,)(t) = 0 forall tin I.
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Summary

# Lety, and y, be solutions of ;
y'+p®y+at)y=0
where p and g are continuous on an open interval I.
* Then the following statements are equivalent:

+The functions y, and y, form a fundamental set of
solutions on |.

+The functions y, and y, are linearly independent on I.
*W(y;,Y,)(ty) =0 for some t,in I.
*W(y,,y,)(t) =0 forall tin|.

DE 255 Fall 2013

Linear Algebra Note
% Let V be the set

V={y:y'+p)y+qt)y=0 te(a )}

Then V is a vector space of dimension two, whose bases are
given by any fundamental set of solutions y, and y,.

= For example, the solution space V to the differential equation
sl
has bases
s,={e',e}, S,={cosht,sinht}
with
V =Span S, =Spans,

DE 255 Fall 2013
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Unit Circle, Taylor and Mc Laurin series.

® 2=X+HY, [X, Y]=rcos(®), r(sin(®));

= (r, ®@)={sqrt(x?>+y?), arctang(x/y)}

= z=x+iy=|z|cos(®)+isin(®)=|z| e'®

= f(a)+f'(a)(x-a)/1!+f"(a) (x-a)2/21+f"(a)(X-
a)3/2!+....

# {1/(1-X)}=1+x+x24x3+..

= Wikipedia..

DE 255 Fall 2013

Ch 3.4: Complex Roots of Characteristic Equation

= Recall our discussion of the equation

ay"+by'+cy=0
where a, b and ¢ are constants.

= Assuming an exponential soln leads to characteristic equation:

y(t)=e" = ar’+br+c=0
% Quadratic formula (or factoring) yields two solutions, r; & r,:
1 2

r_—bir_\/bz—4ac
2a
= |f b2 - 4ac <0, then complex roots: r;=A+iy r,=A1-iu

= Thus 3 :
Y1 (t) T e(MW)t’ Y, (t) = e(/l_w)t

DE 255 Fall 2013
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Euler’s Formula; Complex Valued Solutions

» Substituting it into Taylor series for et, we obtain Euler’s
formula:

:i('t) Z( 1) tzn z( ? —_112n—1 cost+isint

# Generalizing Euler’s formula, we obtain

Y . -
. e =cos ut +isin st

e+l — gtalit — aM[oog it +isin ut]=e™ cos ut +ie™ sin st

# Therefore y,(t) =e (A+ip)t e*'(cos ut +isin ut)

y, (t) = e )t — e (cos ut —isin )

DE 255 Fall 2013

Real VValued Solutions, The Wronskian

To achieve this, recall that linear combinations of solutions are
themselves solutlons Ignorlng constants

Y, (t) + y,(t) = 2e* cos ut y,(t) =e* cos ut,
y, () =y, (t) =2ie*sinut  Ya(t)=e"sinut

Checking the Wronskian
e’ cos ut e’ sin ut
e (Acos st — usin ut) e™(Asin ut + 1cos st

= ue’™ £0

Thus y, and y, form a fundamental solution set, and the general solution

DE 255 Fall 2013
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= All Exam Quest:

% Example 1: y" +y' +y =0
yt)=e" = r’+r+1=0
LR S PR R

Pl ey
2 2 2w

« Therefore and thug? = —1/2. #=+3/2
= the general solution is

y(t) =e"*(c, cos(\/§t / 2)+ ot sin(\/§t / 2))
= Example 2: y" +4y =0

yi)=e" = r’rd4=0c r=42f ., i=0'g=2

y(t) = c, cos(2t)+c, sin(2t) ) A /\ /

DE 255 Fall 2013

» Example 3:y" -2 y' +y =0
+./4— /
y(t)=e” =3r2-2r+1=0 < r=2__._4_£=Ei__2_i

6 JAE3

# Cnt.ed fr Example 1: For the initial values y(0)=1, y' (0) =1, find (a) the
solution u(t) and (b) the smallest time T for which Ju(t)] < 0.1

u(t) = Cleftlz COS(’\/§t / 2)+ Cze’tlz s|n(\/§t / 2) (1) = exp(1/2) cos(sanID) + sqi(E) exp(ti2) sin(EI)

145
C =1 124
3 1
\/§ :>01:1'C2:__:\/§yua
Salrh i R : V3 o
0.4
0.2

0 N = )

0.2 S

# Find the smallest time T for which |u(t)] < 0.1
# graphing calculator or computer algebra system, we find that T = 2.79.
DE 255 Fall 2013

13



Ch 3.5: Repeated Roots; Reduction of Order

= Recall our 2" order linear homogeneous ODE
ay"+by’+cy=0
* where a, b and c are constants.
»* Assuming an exponential soln leads to characteristic equation:
y(Oi=e% = aritbrrc=0
Quadratic formula (or factoring) yields two solutions, r; & r,:
Y —b++/b*—4ac
2a

When b? - 4ac = 0, r, = r, = -b/2a, since method only gives
one solution:

e

4

X

X

y]_ (t) I CefthZa

DE 255 Fall 2013

Exam Question
Second Solution: Multiplying Factor v(t)

#= We know that
y, (t) a solution = y, (t) = cy, (t) a solution

# Since y,; and y, are linearly dependent, we generalize this
approach and multiply by a function v, and determine
conditions for which y, is a solution:

% Then **** y (t)=e "/?* asolution = try y,(t) = v(t)e ">

Y, (t) = V(t)e—thZa
y, (t) = V'(t)e > —Ev(t)e'b“za
2a

2
yg(t) il Vn(t)e—bIIZa _Lvl(t)e~btl2a _ivr(t)e-bt/Za +b_zv(t)e~bt/2a
2a 2a 4a

DE 255 Fall 2013

14



Finding Multiplying Factor v(t)

= Substituting derivatives into ODE, seek a formula for v: b2-4ac=0

e‘"’Za{a{v"(t)—gv'(t)+£;zv(t)}+b[V'(t)——%V(t)}+CV(t)} =0

av'(t)—bv'(t) + —b——v(t) +bv'(t) - B~v(t) +cv(t)=0
4a 2a

boahs
av'(t)+ | ———-+c v(t) =0
(t) B J (t)
2 2 L2
av'(t) + ISR v(t)=0 < av'(t)+ TR v(t) =0
4da 4da 4da da 4da
2_.
av'(t) | 2 4ac]v(t):o
4a
V't)=0 =V(t)=k = v(t)=kt+Kk,
DE 255 Fall 2013
s The General Solution y(t) = klefbt/Za +k,v(t)e ™%
S kle—thZa +(k3t+k4)e—bt/2a
X Cle~bt/2a +C2te‘bt/2a
y(t) A Cle—bt/Za s Czte—thZa

A

Thus every solution is a linear combination of

yl(t) Y e—bt/2a’ y2 (t) ) te—bt/2a

# Wrnskian
e-bt/Za te~bt/2a
bt bt
W(y11 yz)(t) 7 _Le—thZa 1_E e_bt/Za = e—bt/a(l__j+e—bt/a(_
2a 2a 2a 2a

=e ™20 forall t

*= Thus y, and y, form a fundamental solution set for equation

DE 255 Fall 2013
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#* Example 1: y" + 2y' +y =0, y(0)=1, y' (0) =1,

y(r=el = rAE2r+l1=0 e (r+D)2=0 Sr=~%

C

y(t)=ce™" +c,te”
g e

1
1 = =1c,=2

Ft) + 21 expit)

= Example 2: y" - 2y* +0.25y =0,

y(0)=2, y' (0) =1/2,

y(t)=e" = ‘ri-r+025=0 T T T T

& (r=1/2%=0 or=1/2 %
y(t) =ce"? +c,te

y(t)=e"+2te”"

t/2 l

Cl e 2 1 2 ' 3 5
1 i = N o S
_Cl + C2 = = 1
2 2 y(t) — 2et/2 __tetlz
2

DE 255 Fall 2013

Reduction of Order aiso works for equations with nonconstant coefficients
y'+pM)y' +a(t)y=0

» That is, given that y, is solution, and y, = v(t)y;:

Y, (t) <5 V(t) Y1 (t)
Yo (1) =V ([©)y, (1) +v(t) y; (1)
Yo (€) =V (1) y, (t) + 2v' (1) y; (1) + v(t) y/(t)

Yv" +(2y; + py, '+ (yi + py; +ay, v =0
# this last equation reduces to a first order equation in

Vi y"+(2y) + py, V' =0

DE 255 Fall 2013
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Example of Reduction of Order similar Exam questions

= Given the variable coefficient equation and solution y;, use reduction of order
method to find a second solution:

t?y"+3ty'+y=0, t>0; y,({t)=t",
# Substituting these into ODE and collecting terms,

y,®) =v()t? tz(v”t‘1 —Vt 2vt‘3)+ 3t(v’t‘1 —vt‘2)+ vt =0
Vi) = V() —v(t) t2 SVt—2v +2vt Tt +3v -3t +vt T =0
: < tv'+v' =0

" ST -1 ! -2 -3
y:(O)=v' (Ot -2Vt +2v(D)t & tu'+u =0, where u(t) =V'(t)

t%tl+u:0 < Inju[=-In|t[+C a2

V== X
= §u|=|t[_le° < u=ct?, sincet>0. t v(t) =cint+k

y,®)=(cInt+k)tt =ctInt+kt* y, () =t*Int.

yt)=ct™+c,t " Int

DE 255 Fall 2013

Ch 3.6: Nonhomogeneous Equations

= Recall the nonhomogeneous equation p, ¢, g are continuous
functions on an open interval I. > s
§ Y+ )y +a)y =g

* Theorem 3.6.1 (Exam question very potential)
# 1f Y,, Y, are solutions of nonhomogeneous equation
then Y, - Y, is a solution of the homogeneous equation

= Ify,, y, form a fundamental solution set of homogeneous
equation, then there exists constants c,, ¢, such that

L(yD - L(y2) = L(y1-y2) = g(t) - 9(t) = 0 =c,y, () + C, Y, (})

# The general solution of nonhomogeneous equation, where Y
is a specific solution to the nonhomogeneous equation.

y(O) =cy (D) +6,y, () +Y (1)

DE 255 Fall 2013
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Method of Undetermined Coefficients: g(t)

% g(t) is exp y"—3y' -4y =3e*
Since exponentials replicate through differentiation, a good guess

for Y is:
MR V) A S Y= DAY V() = 4AcY

gh)=sine  y"_3y'—4y =2sint
Y (t) = Asint = Y'(t) = Acost, Y"(t) = —Asint

v

#

#

—Asint—3Acost—-4Asint = 2sint
< (2+5A)sint+3Acost=0
< ¢ sint+c,cost=0

= Since sin(x) and cos(x) are linearly independent (they are not
multiples of each other), we must have c,= ¢, = 0, and hence 2 +
5A =3A = 0, which is impossible Our next attempt at finding a Y is
Y (t) = Asint + Bcost
DE 255 Fall 2013 =Y'(t)= Acost—Bsint, Y"(t) =—Asint — Bcost

# Polynomial g(t):  y_3y'_4y—at2_1

Y. (1) = A +BtEC =Y () = 2ALE B Y ()= 2A

Y (t)=-t? P
“IEAN

# Product g(t)
y" -3y’ —4y =-8e' cos 2t

Y (t) = Ae' cos 2t + Be' sin 2t
Y'(t) = Ae' cos 2t — 2 Ae' sin 2t + Be' sin 2t + 2 Be' cos 2t
=(A+2B)e' cos2t +(-2A+B)e'sin 2t
Y"(t)=(A+2B)e' cos2t—2(A+2B)e'sin 2t + (-~ 2A+ B)e' sin 2t
+2(-2A+B)e' cos2t
=(-3A+4B)'cos2t+(—4A-3B)e'sin 2t

DE 255 Fall 2013
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Sum g(t) is sum of functions  g(t)= g,(t) + g, ()
If Y,, Y, are solutions of Y+ p)Y +q(t)y = g, (t)
y'+p@®)y +at)y =g,(t)

respectively, then Y; +, is a solution of the
nonhomogeneous equation above.

y" -3y’ —4y =3e* +2sint —8e' cos 2t dse os oslus 1 2

y" -3y’ —4y =3e* i

y"—3y'—4y = 2sint :

y"—3y'—4y =-8e' cos 2t o]
Y(t):—lez‘+%cost—£sint+%etc052t+%etsin2t

DE 255 Fall 2013

Pay Attension y"+4y =3cos 2t

Y (t) = Asin 2t + B cos 2t
= Y'(t) =2Acos2t — 2Bsin 2t, Y"(t) = —4 Asin 2t — 4B cos 2t

# Failure: Substituting these derivatives into ODE:
(~4Asin 2t — 4B cos 2t )+ 4( Asin 2t + B cos 2t ) = 3cos 2t
(—4A+4A)sin 2t + (— 4B + 4B)cos 2t = 3cos 2t
0=3cos2t

% Thus no particular solution exists of the form Y (t) = Asin 2t + Bcos 2t
Y (t) = Atsin 2t + Bt cos 2t
Y'(t) = Asin 2t + 2 At cos 2t + B cos 2t — 2Bt sin 2t
Y"(t) =4Acos2t—4Bsin 2t — 4 Atsin 2t — 4Bt cos 2t

ylEcosrsm2 A end)

4Acos2t—4Bsin2t =3cos2t = A=3/4, B=0

Aty =~Zitsin 2t
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