DE-2013

Dr. M. Sakalli

DE 255 Fall 2013

Ch 3.1: Second Order Linear Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the general form

$$y'' = f(t, y, y')$$

where f is some given function.

 \blacksquare This equation is said to be **linear** if f is linear on y and y':

$$y'' = g(t) - p(t)y' - q(t)y$$
 $P(t)y'' + Q(t)y' + R(t)y = G(t)$
Give emphasis on superposition of linear parts.

If G(t) = 0 for all t, then the equation is called **homogeneous**. Otherwise the equation is **nonhomogeneous**.

** IVP
$$ay'' + by' + cy = 0$$
 $y(t_0) = y_0, y'(t_0) = y_0'$

Example: Infinitely Many Solutions

Linear DE, two solutions, and combinations of these two in any numbers, and

$$y'' - y = 0$$
 $y_1(t) = e^t$, $y_2(t) = e^{-t}$
 $y_3(t) = 3e^t$, $y_4(t) = 5e^{-t}$, $y_5(t) = 3e^t + 5e^{-t}$

Characteristic Eq. three possible cases.

$$y(t) = c_1 e^t + c_2 e^{-t}$$

$$y'' - y = 0$$
, $y(0) = 3$, $y'(0) = 1$ $\begin{cases} y(0) = c_1 + c_2 = 3 \\ y'(0) = c_1 - c_2 = 1 \end{cases} \Rightarrow c_1 = 2$, $c_2 = 1$

$$ay'' + by' + cy = 0$$
, $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$

$$ar^{2} + br + c = 0,$$
 $r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations

- # p, q are continuous funtns on an interval $I = (\alpha, \beta)$, can be $[\infty]$.
- ** For a function y twice differentiable on I, differential operator L by

$$L[y](t) = y''(t) + p(t)y'(t) + q(t)y(t)$$

- # ie in pieces, $p(t) = t^2$, $q(t) = e^{2t}$, $y(t) = \sin(t)$, $I = (0, 2\pi)$ $L[y](t) = -\sin(t) + t^2 \cos(t) + 2e^{2t} \sin(t)$
- L[y](t) = 0, Linear homogeneous equation, along with TWO initial conditions, and if so, are they unique. $y(t_0) = y_0, \ y'(t_0) = y_1$

DE 255 Fall 2013

Theorem 3.2.1 Work out the example below yourself.

Consider the initial value problem

$$y'' + p(t) y' + q(t) y = g(t)$$

- $y(t_0) = y_0, \ y'(t_0) = y_0'$
- where p, q, and g are continuous on an open interval I that contains t_0 . Then there exists a unique solution $y = \phi(t)$ on I.
- Note: While this theorem says that a solution to the ivp above exists, it is often not possible to write down a useful expression for the solution which is a major difference between first and second order linear equations.
- Determine the longest interval on which the given initial value problem is certain to have a unique twice differentiable solution. Do not attempt to find the solution.

$$(t+1)y'' - (\cos t)y' + 3y = 1$$
, $y(0) = 1$, $y'(0) = 0$

* First put differential equation into standard form:

$$y'' - \frac{\cos t}{t+1}y' + \frac{3}{t+1}y = \frac{1}{t+1}, y(0) = 1, y'(0) = 0$$

- The longest interval containing the point t = 0 on which the coefficient functions are continuous is $(-1, \infty)$!!!!!.
- It follows from Theorem 3.2.1 that the longest interval on which this initial value problem is certain to have a twice differentiable solution is also $(-1, \infty)$.

Theorem 3.2.2 (Principle of Superposition)

- If $y_1=f$ and $y_2=g$ are solutions to the 2^{nd} order LDE, then the linear combination $c_1y_1 + c_2y_2$ is also a solution, for all constants c_1 and c_2 . To prove, substitute $c_1y_1 + y_2c_2$ and check...!!!! Please remember the notes given before (Proving linearity if always an exam question, in terms of additivity and scalability).
- Wronskian determinant: Can all solutions can be written this way, or do some solutions have a different form altogether?
- Suppose y_1 and y_2 are solutions to L[y] = y'' + p(t)y' = g(t), with initial values of $y(t_0) = y_0$ and $y'(t_0) = y_0'$,
- ** from Thr 3.2.2, $y = c_1y_1 + c_2y_2$ is a solution to this equation such that $y = c_1y_1 + c_2y_2$ satisfies the given initial conditions ****

$$c_1 y_1(t_0) + c_2 y_2(t_0) = y_0$$

$$c_1 = \frac{y_0 y_2'(t_0) - y_0' y_2(t_0)}{y_1(t_0) y_2'(t_0) - y_1'(t_0) y_2(t_0)}$$

$$c_1 y_1'(t_0) + c_2 y_2'(t_0) = y_0'$$

$$c_2 = \frac{-y_0 y_1'(t_0) + y_0' y_1(t_0)}{y_1(t_0) y_2'(t_0) - y_1'(t_0) y_2(t_0)}$$

DE 255 Fall 2013

The Wronskian Determinant

- * Arbitrary coefficients, in terms of determinants Wronskian determinant,
- **X** If solution exists then, the determinant W cannot be zero.

$$c_{1} = \frac{y_{0}y_{2}'(t_{0}) - y_{0}'y_{2}(t_{0})}{y_{1}(t_{0})y_{2}'(t_{0}) - y_{1}'(t_{0})y_{2}(t_{0})}$$

$$c_{2} = \frac{-y_{0}y_{1}'(t_{0}) + y_{0}'y_{1}(t_{0})}{y_{1}(t_{0})y_{2}'(t_{0}) - y_{1}'(t_{0})y_{2}(t_{0})}$$

$$c_{1} = \frac{\begin{vmatrix} y_{0} & y_{2}(t_{0}) \\ y_{0}' & y_{2}'(t_{0}) \end{vmatrix}}{\begin{vmatrix} y_{1}(t_{0}) & y_{2}(t_{0}) \\ y_{1}'(t_{0}) & y_{2}'(t_{0}) \end{vmatrix}}, c_{2} = \frac{\begin{vmatrix} y_{1}(t_{0}) & y_{0} \\ y_{1}'(t_{0}) & y_{0}' \end{vmatrix}}{\begin{vmatrix} y_{1}(t_{0}) & y_{2}(t_{0}) \\ y_{1}'(t_{0}) & y_{2}'(t_{0}) \end{vmatrix}}$$

$$\begin{vmatrix} y_{0} & y_{2}(t_{0}) \\ y_{0}' & y_{2}'(t_{0}) \end{vmatrix}$$

$$\begin{vmatrix} y_{0} & y_{2}(t_{0}) \\ y_{0}' & y_{2}'(t_{0}) \end{vmatrix}$$

$$\begin{vmatrix} y_{1}(t_{0}) & y_{0} \\ y_{1}'(t_{0}) & y_{0}' \end{vmatrix}$$

$$W = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix} = y_1(t_0)y_2'(t_0) - y_1'(t_0)y_2(t_0)$$

$$W(y_1, y_2)(t_0)$$

Theorem 3.2.3

- * The opposite of theorems given before, suppose y_1 and y_2 are solutions to the equation at a given t_0 , if the Wronskian
 - W= $y_1y_2' + y_1'y_2 \neq 0$, then there is a choice of constants c_1 , c_2 for any of which $y = c_1y_1 + c_2y_2$ is a solution to the DE for given initial conditions $y(t_0)=y_0$ and $y'(t_0)=y_0'$.
- Recall the following initial value problem and its solution:

$$y'' - y = 0$$
, $y(0) = 3$, $y'(0) = 1 \implies y(t) = 2e^{t} + e^{-t}$

- ** The two functions that are are solutions: $y_1 = e^t$, $y_2 = e^{-t}$
- # The Wronskian of y_1 and y_2 is

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 = -e^t e^{-t} - e^t e^{-t} = -2e^0 = -2$$

- # Since $W \neq 0$ for all t, linear combinations of y_1 and y_2 can be used to construct solutions of the IVP for any initial value t_0 .

DE 255 Fall 2013

Theorem 3.2.4 (Fundamental Solutions)

- **Suppose** y_1 and y_2 are solutions to the equation L[y]=0,
- **X** If there is a point t_0 such that $W(y_1, y_2)(t_0) \neq 0$, then the family of solutions $y = c_1y_1 + c_2y_2$ with arbitrary coefficients c_1 , c_2 includes every solution to the differential equation.
- ** The expression $y = c_1y_1 + c_2y_2$ is called the **general solution** of the differential equation above, and in this case y_1 and y_2 are said to form a fundamental set of solutions to the differential equation.
- **※** In previous example... $y_1 = e^{r_1 t}$, $y_2 = e^{r_2 t}$, $r_1 \neq r_2$

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{r_1 t} & e^{r_2 t} \\ r_1 e^{r_1 t} & r_2 e^{r_2 t} \end{vmatrix} = (r_2 - r_1)e^{(r_1 + r_2)t} \neq 0 \text{ for all } t.$$

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Example: $2t^2y'' + 3ty' - y = 0, t > 0$

- **Show** that the functions below are fundamental solutions: $y_1 = t^{1/2}$, $y_2 = t^{-1}$
- $x = x_1$ To show this, first substitute y_1 into the equation, similar for y_2 :

$$2t^{2}\left(\frac{-t^{-3/2}}{4}\right)+3t\left(\frac{t^{-1/2}}{2}\right)-t^{1/2}=\left(-\frac{1}{2}+\frac{3}{2}-1\right)t^{1/2}=0 \qquad 2t^{2}\left(2t^{-3}\right)+3t\left(-t^{-2}\right)-t^{-1}=\left(4-3-1\right)t^{-1}=0$$

To show both solutions form fundamental set of solutions.

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{1/2} & t^{-1} \\ \frac{1}{2}t^{-1/2} & -t^{-2} \end{vmatrix} = -t^{-3/2} - \frac{1}{2}t^{-3/2} = -\frac{3}{2}t^{-3/2} = -\frac{3}{2}\sqrt{t^3}$$

Since $W \neq 0$ for t > 0, y_1 , y_2 form a fundamental set of solutions for the differential equation

$$2t^2y'' + 3ty' - y = 0, t > 0$$

DE 255 Fall 2013

Summary

* To find a general solution of the differential equation

$$y'' + p(t) y' + q(t) y = 0, \ \alpha < t < \beta$$

we first find two solutions y_1 and y_2 .

- Then make sure there is a point t_0 in the interval such that $W(y_1, y_2)(t_0) \neq 0$.
- ** It follows that y_1 and y_2 form a fundamental set of solutions to the equation, with general solution $y = c_1y_1 + c_2y_2$.
- If initial conditions are prescribed at a point t_0 in the interval where $W \neq 0$, then c_1 and c_2 can be chosen to satisfy those conditions.
- ★ Exact and adjoint and self adjoint functions? Page 126, questions 26 and 32

Ch 3.3: Linear Independence and the Wronskian

- Two functions f and g are **linearly dependent** if they are multiples of each other. $c_1 f(t) + c_2 g(t) = 0$ If the only solution to this equation is $c_1 = c_2 = 0$, then f and g are **linearly independent**. For example, $f(x) = \sin 2x$ and $g(x) = \sin x \cos x$, and their linear combination $c_1 \sin 2x + c_2 \sin x \cos x = 0$ This is satisfied if we choose $c_1 = 1$, $c_2 = -2$, and hence f and g are linearly dependent.
- Note that if a = b = 0, then the only solution to this system of equations is $c_1 = c_2 = 0$, provided $D \neq 0$.

$$c_{1}x_{1} + c_{2}x_{2} = a \quad c_{1} = \frac{ay_{2} - bx_{2}}{x_{1}y_{2} - y_{1}x_{2}} = \frac{ay_{2} - bx_{2}}{D},$$

$$c_{1}y_{1} + c_{2}y_{2} = b \quad c_{2} = \frac{-ay_{1} + bx_{1}}{x_{1}y_{2} - y_{1}x_{2}} = \frac{-ay_{1} + bx_{1}}{D}, \text{ where } D = \begin{vmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \end{vmatrix}$$

Example 1: Linear Independence

- Show that the following two functions are linearly independent on any interval: $f(t) = e^t$, $g(t) = e^{-t}$
- **Suppose** for all t in an arbitrary interval (α, β) .

$$c_1 f(t) + c_2 g(t) = 0$$

* We want to show the equation holds only for $c_1 = c_2 = 0$ for all t in (α, β) , where $t_0 \neq t_1$, except $t_0 = t_1$. Then

$$D = \begin{vmatrix} e^{t_0} & e^{-t_0} \\ e^{t_1} & e^{-t_1} \end{vmatrix} = e^{t_0} e^{-t_1} - e^{-t_0} e^{t_1} = e^{t_0 - t_1} - e^{t_1 - t_0}$$

$$c_1 e^{t_0} + c_2 e^{-t_0} = 0$$

$$c_1 e^{t_1} + c_2 e^{-t_1} = 0$$

$$D = 0 \iff e^{t_0 - t_1} = e^{t_1 - t_0} \iff t_0 = t_1$$

$D \neq 0$, and therefore f and g are linearly independent.

DE 255 Fall 2013

Theorem 3.3.1 from Wronskian p o view

- ** If f and g are a) **differentiable** functions on an open interval I and g are if $W(f,g)(t_0) \neq 0$ for some point t_0 in I, then f and g are linearly independent on I. Moreover, if f and g are linearly dependent on I, then W(f,g)(t) = 0 for all t in I.
- ** Proof (outline): Let c_1 and c_2 be scalars, and suppose $c_1f(t)+c_2g(t)=0$
- # for all t in I. In particular, when $t = t_0$ we have

$$c_1 f(t_0) + c_2 g(t_0) = 0$$

$$c_1 f'(t_0) + c_2 g'(t_0) = 0$$

Since $W(f, g)(t_0) \neq 0$, it follows that $c_1 f(t) + c_2 f(t) = 0$ only at $c_1 = c_2 = 0$, and hence f and g are linearly independent.

DE 255 Fall 2013

Theorem 3.3.2 (Abel's Theorem)

 \aleph Suppose y_1 and y_2 are solutions to the equation

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

where p and q are continuous on some open interval I. Then $W(y_1,y_2)(t)$ is given by

$$W(y_1, y_2)(t) = ce^{-\int p(t)dt}$$

where c is a constant that depends on y_1 and y_2 but not on t.

Note that $W(y_1,y_2)(t)$ is either zero for all t in I only if c=0 or else is never zero in I (if $c\neq 0$).

Example 2: Wronskian and Abel's Theorem

Recall the following equation and two of its solutions:

$$y'' - y = 0$$
, $y_1 = e^t$, $y_2 = e^{-t}$

* The Wronskian of y_1 and y_2 is

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = -e^t e^{-t} - e^t e^{-t} = -2e^0 = -2 \neq 0 \text{ for all } t.$$

Thus y_1 and y_2 are linearly independent on any interval I, by Theorem 3.3.1. Now compare W with Abel's Theorem:

$$W(y_1, y_2)(t) = ce^{-\int p(t)dt} = ce^{-\int 0dt} = c$$

Choosing c = -2, we get the same W as above.

DE 255 Fall 2013

Theorem 3.3.3

Suppose y_1 and y_2 are solutions to equation below, whose coefficients p and q are continuous on some open interval I:

$$L[y] = y'' + p(t) y' + q(t) y = 0$$

Then y_1 and y_2 are linearly dependent on I iff $W(y_1, y_2)(t) = 0$ for all t in I. Also, y_1 and y_2 are linearly independent on I iff $W(y_1, y_2)(t) \neq 0$ for all t in I.

Summary

Let y_1 and y_2 be solutions of

$$y'' + p(t) y' + q(t) y = 0$$

where p and q are continuous on an open interval I.

- * Then the following statements are equivalent:
 - The functions y_1 and y_2 form a fundamental set of solutions on I.
 - The functions y_1 and y_2 are linearly independent on I.
 - $W(y_1, y_2)(t_0) \neq 0$ for some t_0 in I.
 - $W(y_1, y_2)(t) \neq 0$ for all t in I.

DE 255 Fall 2013

Linear Algebra Note

* Let V be the set

$$V = \{ y : y'' + p(t) \ y' + q(t) \ y = 0, \ t \in (\alpha, \beta) \}$$

Then V is a vector space of dimension two, whose bases are given by any fundamental set of solutions y_1 and y_2 .

** For example, the solution space V to the differential equation

$$y'' - y = 0$$

has bases

$$S_1 = \{e^t, e^{-t}\}, S_2 = \{\cosh t, \sinh t\}$$

with

$$V = \operatorname{Span} S_1 = \operatorname{Span} S_2$$

Unit Circle, Taylor and Mc Laurin series.

- \approx z=x+iy, [x, y]=rcos(Θ), r(sin(Θ));
- $(r, \Theta) = \{ \operatorname{sqrt}(x^2 + y^2), \operatorname{arctang}(x/y) \}$
- \approx z=x+iy=|z|cos(Θ)+isin(Θ)=|z| $e^{i\Theta}$
- # f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+f'''(a)(x-a)³/2!+....
- $* {1/(1-x)}=1+x+x^2+x^3+...$
- * Wikipedia...

DE 255 Fall 2013

Ch 3.4: Complex Roots of Characteristic Equation

Recall our discussion of the equation

$$ay'' + by' + cy = 0$$

where a, b and c are constants.

* Assuming an exponential soln leads to characteristic equation:

$$y(t) = e^{rt} \implies ar^2 + br + c = 0$$

Quadratic formula (or factoring) yields two solutions, $r_1 \& r_2$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- # If $b^2 4ac < 0$, then complex roots: $r_1 = \lambda + i\mu$, $r_2 = \lambda i\mu$
- ***** Thus

$$y_1(t) = e^{(\lambda + i\mu)t}, \ y_2(t) = e^{(\lambda - i\mu)t}$$

Euler's Formula; Complex Valued Solutions

 \aleph Substituting it into Taylor series for e^t , we obtain **Euler's**

$$e^{it} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} + i \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2n-1}}{(2n-1)!} = \cos t + i \sin t$$

★ Generalizing Euler's formula, we obtain

$$e^{i\mu t} = \cos \mu t + i \sin \mu t$$

* Then

$$e^{(\lambda+i\mu)t} = e^{\lambda t}e^{i\mu t} = e^{\lambda t}[\cos\mu t + i\sin\mu t] = e^{\lambda t}\cos\mu t + ie^{\lambda t}\sin\mu t$$

$$y_1(t) = e^{(\lambda + i\mu)t} = e^{\lambda t} (\cos \mu t + i \sin \mu t)$$

$$y_2(t) = e^{(\lambda - i\mu)t} = e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

DE 255 Fall 2013

Real Valued Solutions, The Wronskian

To achieve this, recall that linear combinations of solutions are

themselves solutions: Ignoring constants
$$y_1(t) + y_2(t) = 2e^{\lambda t} \cos \mu t$$
 $y_3(t) = e^{\lambda t} \cos \mu t$,

$$y_1(t) - y_2(t) = 2ie^{\lambda t} \sin \mu t$$
 $y_4(t) = e^{\lambda t} \sin \mu t$

Checking the Wronskian

The ching the wronskian
$$W = \begin{vmatrix} e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\ e^{\lambda t} (\lambda \cos \mu t - \mu \sin \mu t) & e^{\lambda t} (\lambda \sin \mu t + \mu \cos \mu t) \end{vmatrix}$$

$$= \mu e^{2\lambda t} \neq 0$$

Thus y_3 and y_4 form a fundamental solution set, and the general solution

- * All Exam Quest:
- **Example** 1: y'' + y' + y = 0

$$y(t) = e^{rt} \implies r^2 + r + 1 = 0$$

$$r = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{3}i}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

- * Therefore and thus $\lambda = -1/2$, $\mu = \sqrt{3}/2$
- # the general solution is $y(t) = e^{-t/2} (c_1 \cos(\sqrt{3}t/2) + c_2 \sin(\sqrt{3}t/2))$
- **Example** 2: y'' + 4y = 0

$$y(t) = e^{rt} \implies r^2 + 4 = 0 \iff r = \pm 2i \qquad \lambda = 0, \ \mu = 2$$

$$\lambda = 0, \ \mu = 2$$

$$y(t) = c_1 \cos(2t) + c_2 \sin(2t)$$

DE 255 Fall 2013

Example 3: y'' - 2y' + y = 0

$$y(t) = e^{rt} \Rightarrow 3r^2 - 2r + 1 = 0 \Leftrightarrow r = \frac{2 \pm \sqrt{4 - 12}}{6} = \frac{1}{3} \pm \frac{\sqrt{2}}{3}i$$

 $y(t) = e^{t/3} (c_1 \cos(\sqrt{2}t/3) + c_2 \sin(\sqrt{2}t/3))$

Cnt.ed fr Example 1: For the initial values y(0)=1, y'(0)=1, find (a) the solution u(t) and (b) the smallest time T for which $|u(t)| \le 0.1$

$$u(t) = c_1 e^{-t/2} \cos(\sqrt{3}t/2) + c_2 e^{-t/2} \sin(\sqrt{3}t/2)$$

- Find the smallest time T for which $|u(t)| \le 0.1$
- # graphing calculator or computer algebra system, we find that $T \cong 2.79$.

Ch 3.5: Repeated Roots; Reduction of Order

Recall our 2nd order linear homogeneous ODE

$$ay'' + by' + cy = 0$$

- # where a, b and c are constants.
- ** Assuming an exponential soln leads to characteristic equation:

$$y(t) = e^{rt} \implies ar^2 + br + c = 0$$

 \mathbb{R} Quadratic formula (or factoring) yields two solutions, $r_1 \& r_2$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

When $b^2 - 4ac = 0$, $r_1 = r_2 = -b/2a$, since method only gives one solution:

$$y_1(t) = ce^{-bt/2a}$$

DE 255 Fall 2013

Exam Question

Second Solution: Multiplying Factor v(t)

* We know that

$$y_1(t)$$
 a solution $\Rightarrow y_2(t) = cy_1(t)$ a solution

- * Since y_1 and y_2 are linearly dependent, we generalize this approach and multiply by a function v, and determine conditions for which y_2 is a solution:
- **Then** **** $y_1(t) = e^{-bt/2a}$ a solution \Rightarrow try $y_2(t) = v(t)e^{-bt/2a}$

$$v_2(t) = v(t)e^{-bt/2a}$$

$$y_2'(t) = v'(t)e^{-bt/2a} - \frac{b}{2a}v(t)e^{-bt/2a}$$

$$y_2''(t) = v''(t)e^{-bt/2a} - \frac{b}{2a}v'(t)e^{-bt/2a} - \frac{b}{2a}v'(t)e^{-bt/2a} + \frac{b^2}{4a^2}v(t)e^{-bt/2a}$$

Finding Multiplying Factor v(t)

 \Rightarrow Substituting derivatives into ODE, seek a formula for v: b²-4ac=0

$$e^{-bt/2a} \left\{ a \left[v''(t) - \frac{b}{a} v'(t) + \frac{b^2}{4a^2} v(t) \right] + b \left[v'(t) - \frac{b}{2a} v(t) \right] + cv(t) \right\} = 0$$

$$av''(t) - bv'(t) + \frac{b^2}{4a} v(t) + bv'(t) - \frac{b^2}{2a} v(t) + cv(t) = 0$$

$$av''(t) + \left(\frac{b^2}{4a} - \frac{b^2}{2a} + c \right) v(t) = 0$$

$$av''(t) + \left(\frac{b^2}{4a} - \frac{2b^2}{4a} + \frac{4ac}{4a} \right) v(t) = 0 \iff av''(t) + \left(\frac{-b^2}{4a} + \frac{4ac}{4a} \right) v(t) = 0$$

$$av''(t) - \left(\frac{b^2 - 4ac}{4a} \right) v(t) = 0$$

$$v''(t) = 0 \implies v'(t) = k \implies v(t) = k_3 t + k_4$$

DE 255 Fall 2013

* The General Solution

$$y(t) = k_1 e^{-bt/2a} + k_2 v(t) e^{-bt/2a}$$

$$= k_1 e^{-bt/2a} + (k_3 t + k_4) e^{-bt/2a}$$

$$= c_1 e^{-bt/2a} + c_2 t e^{-bt/2a}$$

$$y(t) = c_1 e^{-bt/2a} + c_2 t e^{-bt/2a}$$

* Thus every solution is a linear combination of

Wrnskian

$$y_1(t) = e^{-bt/2a}, \ y_2(t) = te^{-bt/2a}$$

$$W(y_1, y_2)(t) = \begin{vmatrix} e^{-bt/2a} & te^{-bt/2a} \\ -\frac{b}{2a}e^{-bt/2a} & \left(1 - \frac{bt}{2a}\right)e^{-bt/2a} \end{vmatrix} = e^{-bt/a} \left(1 - \frac{bt}{2a}\right) + e^{-bt/a} \left(\frac{bt}{2a}\right)$$
$$= e^{-bt/a} \neq 0 \quad \text{for all } t$$

** Thus y_1 and y_2 form a fundamental solution set for equation

Example 1:
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 1$, $y'(0) = 1$, $y(t) = e^{rt} \Rightarrow r^2 + 2r + 1 = 0 \Leftrightarrow (r+1)^2 = 0 \Leftrightarrow r = -1$

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} \qquad c_1 \qquad = 1 \\ -c_1 + c_2 = 1 \end{cases} \Rightarrow c_1 = 1, c_2 = 2$$

Example 2: $y'' - 2y' + 0.25y = 0$, $y(0) = 2$, $y'(0) = 1/2$, $y(t) = e^{rt} \Rightarrow r^2 - r + 0.25 = 0$ $\Leftrightarrow (r - 1/2)^2 = 0 \Leftrightarrow r = 1/2$

$$y(t) = c_1 e^{t/2} + c_2 t e^{t/2}$$

$$c_1 \qquad = 2 \\ \frac{1}{2}c_1 + c_2 = \frac{1}{2} \Rightarrow c_1 = 2, c_2 = -\frac{1}{2}$$

DE 255 Fall 2013

$$y'(0) = 1$$
, $y'(0) = 1$, $y'($

Reduction of Order also works for equations with nonconstant coefficients y'' + p(t)y' + q(t)y = 0

****** That is, given that y_1 is solution, and $y_2 = v(t)y_1$:

$$y_{2}(t) = v(t)y_{1}(t)$$

$$y'_{2}(t) = v'(t)y_{1}(t) + v(t)y'_{1}(t)$$

$$y''_{2}(t) = v''(t)y_{1}(t) + 2v'(t)y'_{1}(t) + v(t)y''_{1}(t)$$

$$y_{1}v'' + (2y'_{1} + py_{1})v' + (y''_{1} + py'_{1} + qy_{1})v = 0$$

this last equation reduces to a first order equation in v': $y_1v'' + (2y_1' + py_1)v' = 0$

Example of Reduction of Order Similar Exam questions

 \star Given the variable coefficient equation and solution y_1 , use reduction of order method to find a second solution:

$$t^2y'' + 3ty' + y = 0$$
, $t > 0$; $y_1(t) = t^{-1}$,

Substituting these into ODE and collecting terms,

$$y_{2}(t) = v(t) t^{-1} \qquad t^{2} \left(v''t^{-1} - 2v't^{-2} + 2vt^{-3} \right) + 3t \left(v't^{-1} - vt^{-2} \right) + vt^{-1} = 0$$

$$y'_{2}(t) = v'(t) t^{-1} - v(t) t^{-2} \qquad \Leftrightarrow v''t - 2v' + 2vt^{-1} + 3v' - 3vt^{-1} + vt^{-1} = 0$$

$$y''_{2}(t) = v''(t) t^{-1} - 2v'(t) t^{-2} + 2v(t) t^{-3} \qquad \Leftrightarrow tv'' + v' = 0$$

$$\Leftrightarrow tu' + u = 0, \text{ where } u(t) = v'(t)$$

$$y_2'(t) = v'(t) t^{-1} - v(t) t^{-2}$$
 $\Leftrightarrow v''(t) - 2v(t) + 2v(t)^{-1} + 3v(t)^{-1} + v(t)^{-1} = v(t) + v$

$$y_2''(t) = v''(t) t^{-1} - 2v'(t) t^{-2} + 2v(t) t^{-3}$$
 $\Leftrightarrow tu' + u = 0$, where $u(t) = v'(t)$

$$t\frac{du}{dt} + u = 0 \quad \Leftrightarrow \ln|u| = -\ln|t| + C$$

$$\Leftrightarrow |u| = |t|^{-1}e^{C} \quad \Leftrightarrow u = ct^{-1}, \text{ since } t > 0.$$

$$v' = \frac{c}{t} \qquad v(t) = c \ln t + k$$

$$y_2(t) = \left(c \ln t + k\right)t^{-1} = ct^{-1} \ln t + kt^{-1} \qquad y_2(t) = t^{-1} \ln t.$$

$$y_2(t) = (c \ln t + k)t^{-1} = ct^{-1} \ln t + kt^{-1}$$
 $y_2(t) = t^{-1} \ln t$.

$$y(t) = c_1 t^{-1} + c_2 t^{-1} \ln t$$

DE 255 Fall 2013

Ch 3.6: Nonhomogeneous Equations

- Recall the nonhomogeneous equation p, q, g are continuous functions on an open interval *I*. y'' + p(t)y' + q(t)y = g(t)
- ** Theorem 3.6.1 (Exam question very potential)
- # If Y_1, Y_2 are solutions of nonhomogeneous equation then Y_1 - Y_2 is a solution of the homogeneous equation
- \mathbb{R} If y_1, y_2 form a fundamental solution set of homogeneous equation, then there exists constants c_1 , c_2 such that

$$L(y1) - L(y2) = L(y1 - y2) = g(t) - g(t) = 0 = c_1 y_1(t) + c_2 y_2(t)$$

** The general solution of nonhomogeneous equation, where Y is a specific solution to the nonhomogeneous equation.

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

Method of Undetermined Coefficients: g(t)

$$y'' - 3y' - 4y = 3e^{2t}$$

** Since **exponentials replicate** through differentiation, a good guess for *Y* is: $Y(t) = Ae^{2t} \Rightarrow Y'(t) = 2Ae^{2t}, Y''(t) = 4Ae^{2t}$

$$Y(t) = A \sin t \Rightarrow Y'(t) = A \cos t, Y''(t) = -A \sin t$$

$$-A\sin t - 3A\cos t - 4A\sin t = 2\sin t$$

$$\Leftrightarrow (2+5A)\sin t + 3A\cos t = 0$$

$$\Leftrightarrow c_1 \sin t + c_2 \cos t = 0$$

** Since $\sin(x)$ and $\cos(x)$ are linearly independent (they are not multiples of each other), we must have $c_1 = c_2 = 0$, and hence 2 + 5A = 3A = 0, which is impossible Our next attempt at finding a Y is

$$Y(t) = A \sin t + B \cos t$$

DE 255 Fall 2013 $\Rightarrow Y'(t) = A\cos t - B\sin t, \ Y''(t) = -A\sin t - B\cos t$

Polynomial
$$g(t)$$
: $y'' - 3y' - 4y = 4t^2 - 1$

$$Y(t) = At^{2} + Bt + C \Rightarrow Y'(t) = 2At + B, Y''(t) = 2A$$

$$Y(t) = -t^2 + \frac{3}{2}t - \frac{11}{8}$$

Rightarrow Product g(t)

$$y'' - 3y' - 4y = -8e^t \cos 2t$$

$$Y(t) = Ae^t \cos 2t + Be^t \sin 2t$$

$$Y'(t) = Ae^{t} \cos 2t - 2Ae^{t} \sin 2t + Be^{t} \sin 2t + 2Be^{t} \cos 2t$$

$$= (A+2B)e^t \cos 2t + (-2A+B)e^t \sin 2t$$

$$Y''(t) = (A+2B)e^{t} \cos 2t - 2(A+2B)e^{t} \sin 2t + (-2A+B)e^{t} \sin 2t + 2(-2A+B)e^{t} \cos 2t$$

$$=(-3A+4B)e^{t}\cos 2t+(-4A-3B)e^{t}\sin 2t$$

Sum g(t) is sum of functions

$$g(t) = g_1(t) + g_2(t)$$

If Y_1 , Y_2 are solutions of

$$y'' + p(t)y' + q(t)y = g_1(t)$$

$$y'' + p(t)y' + q(t)y = g_2(t)$$

respectively, then $Y_1 + Y_2$ is a solution of the nonhomogeneous equation above.

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin t - 8e^{t}\cos 2t$$

$$y'' - 3y' - 4y = 3e^{2t}$$

$$y'' - 3y' - 4y = 2\sin t$$

$$y'' - 3y' - 4y = -8e^t \cos 2t$$

$$Y(t) = -\frac{1}{2}e^{2t} + \frac{3}{17}\cos t - \frac{5}{17}\sin t + \frac{10}{13}e^{t}\cos 2t + \frac{2}{13}e^{t}\sin 2t$$

DE 255 Fall 2013

Pay Attension

$$y'' + 4y = 3\cos 2t$$

$$Y(t) = A\sin 2t + B\cos 2t$$

$$\Rightarrow Y'(t) = 2A\cos 2t - 2B\sin 2t, Y''(t) = -4A\sin 2t - 4B\cos 2t$$

Failure: Substituting these derivatives into ODE:

$$(-4A\sin 2t - 4B\cos 2t) + 4(A\sin 2t + B\cos 2t) = 3\cos 2t$$
$$(-4A + 4A)\sin 2t + (-4B + 4B)\cos 2t = 3\cos 2t$$

$$0 = 3\cos 2t$$

Thus no particular solution exists of the form $Y(t) = A \sin 2t + B \cos 2t$

$$Y(t) = At\sin 2t + Bt\cos 2t$$

$$Y'(t) = A\sin 2t + 2At\cos 2t + B\cos 2t - 2Bt\sin 2t$$

$$Y''(t) = 4A\cos 2t - 4B\sin 2t - 4At\sin 2t - 4Bt\cos 2t$$

$$4A\cos 2t - 4B\sin 2t = 3\cos 2t \Rightarrow A = 3/4, B = 0$$

$$\Rightarrow Y(t) = \frac{3}{4}t\sin 2t$$
DE 255 Fall 207

