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1. INTRODUCTION

Ordinary differential equations tend to arise whenever you need to model changing quantities that depend on the
amount of other quantities around it. For example, in chemistry, the time rate of change of concentration (%) of
a chemical solution often depends on the concetrations of other chemicals that surround it. In biology, differential
equations are often used in population dynamics, to model the evolution and/or extinction of a particular species (like
people, animals, bacteria, or even viruses like HIV) (eg., Volterra Equations). In finance, the stock market is often
modeled via sets of coupled differential equations (e.g., Black-Scholes equation). In physics, dfq’s are everywhere —
we’ve seen them in Cosmology (e.g., Friedmann’s Equations, non-linear structure growth and perturbation theory),
Classical Dynamics (e.g., the orbits of planets, stars, and galaxies as specialized N-body problems, hydrodynamics),
and Radiative Transfer. Most differential equations are too complicated to write down a solution by hand (an

”analytical solution”), so one has to revert to numerics to find any kind of solution at all!

Here, I focus on Ordinary Differential Equations (where the functions we solve for depend on just one variable, like
time), and how a few simple commands in Matlab allows us to get numerical solutions to even the most complicated
looking equations.

2. 1ST ORDER DFQS

A 1% order differential equation is an equation where the highest derivative of your function is one. A simple
example would be (for some function y(t))

dy

dt

From calculus, we all know that the solution to this equation is y(t) = Ce™5¢, where C is some arbitrary constant.
If we specified an initial condition (say, y(0) = 1.43), then our analytical solution would be y(t) = 1.43e~5".

—by (1)

t

In Matlab, we can use numerical integration techniques to solve differential equations like this one. For the example
above, you would make two .m files (one will be a function file, and the other will be a script that calls the function
file). Use your favorite text editor to create and save a file called ’ilovecats.m’ and copy the following into it:

function dy = ilovecats(t,y)
dy = zeros(1,1);
dy = =5 * y;

Now create another file called "happyscript.m’ and cut and paste the following into it:
[t,y] = ode45(’ilovecats’, [0 10], 1.43);
plOt(t:Y) ,_,) 5
xlabel(’time’);

ylabel(Py(t)’);
title(’This plot dedicated to kitties everywhere’);
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Here in happyscript.m, we are using the built-in Matlab function called ode45. There are a few different built-in
ode integrators that Matlab has (all of which you can find on the mathworks.com website, or simply typing in ’help
oded5’ at your prompt), but as a general rule of thumb, ode45 is the best function to apply as a first try for most
problems. (For those who like detail, ode45 is an explicit (4,5) Runge-Kutta integrating technique). When using
ode45, the first argument ’ilovecats’ is the name of the function you defined in the file ilovecats.m (the name of the
function must be delimited by a single quote!). The 2nd argument [010] specifies the time interval of integration
(i.e., t = 0 until ¢t = 10). The 3rd argument, 1.43, is the initial condition (i.e., y(0) = 1.43). [t,y] is the set of data
returned by ode45 — t is a vector that contains the time datapoints, and y is a vector that contains the y datapoints.

At your Matlab prompt, type happyscript. You should get the same image as Figure 1. That’s the numerical
solution! If you want to see the actual numbers that Matlab used to plot this picture, just type t (to see the time

values it integrated at) or y (to see the y values at the corresponding t values).
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FIG. 1: This plot proves that kitties everywhere are just adorable

Now, if you’re not convinced that this is the correct solution, you can compare your numerical solution to the
exact one (y(t) = 1.43e°") by looking at the error between both functions. Just append the following at the bottom
of your happyscript.m file:

realsolution = 1.43 *exp(-5% t);
error = abs(y - realsolution);

figure;

subplot (221)

plot(t,y,’-?);

xlabel (’time’);

ylabel(’y(t) computed numerically’);
title(’Numerical Solution’);

subplot (222)
plot(t,realsolution,’-’);
xlabel(’time’);

ylabel(’y(t) computed analytically’);
title(’Analytical Solution’);

subplot (223)

plot(t,error,’-’);

xlabel(’time’);

ylabel(’Error’);

title(’Relative error between numerical and analytical solutions’);
subplot (224)

plot(0,0,’.7);

xlabel(’time’)



ylabel(’Kitties!!!!’);
title(’Kitties are SO CUTE!’);

To plot more than one figure, use the subplot command. For example, if you want three columns and two rows
of plots on your figure, and you currently want to work in the first of those regions, type subplot(321) in your
script. When you finish giving matlab commands for the first plot, then type the next command to work in the next
subsection of the figure: subplot(322). If you append the above to your happyscript.m file, then you should get Figure
2. (If instead, you’d rather generate 4 separate plots, then replace each occurance of the subplot command with the
command figure).
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FIG. 2: The correlation between cats and cuteness gets tighter with time — cats get more adorable as they age!

3. 2ND ORDER DFQS

A 2nd order differential equation is one where the highest derivative term is of order 2. A classic example is the
equation of motion for a single undamped pendulum (where w? is %, for those who derive this from Newtons Laws):
d?6

i —w? sin(#) (2)

To integrate this in Matlab, we have to re-write this single equation into a set of 2 first order differential equations.
(The reason behind this is because all Runge-Kutta solvers, including ode45, are built to only integrate over equations

of the type %’ = f(t,y)). We can easily do this by hand, by setting:

dyr
ar Y2 (3)

dyQ 2 .

— = —w”sin 4

g o ()
where y; (t) represents 6(t), and yo(t) represents %. Integrating these equations in Matlab is very similar to how

we did it for the 1st order example in the previous section. Only now, call your function file ‘pendulumcats.m’ and

copy the following:

function dy = pendulumcats(t,y)
dy = zeros(2,1);

omega = 1;

dy(1) = y(2);

dy(2) = -omegaxomega*sin(y(1));



and call your script something else, like pendulumscript.m, and copy the following;:

[t,y] = ode45(’pendulumcats’, [0 25], [1.0 1.0]);

plot(t,y(:,1),7-);
xlabel(’time’);
ylabel Cy_{1}(£)*);
title(’\theta (t)’);

figure;

plot(t,y(:,2),°-");

xlabel (’time’);

ylabel Cy_{2}(£)’);
title(’d \theta / dt (t)’);

figure;

plot(y(:,1),y(:,2),7-7);

xlabel(’\theta (t)’);

ylabel(’d \theta / dt (t)’);

title(’Phase Plane Portrait for undamped pendulum’);

The change in the function file, pendulumcats.m, is the initialization part in line two — dy = zeros(2,1); This is
because we now have two equations we are integrating over (y;1(t) and y»(¢)), so Matlab will store their data points
into a matrix with two columns. If you just type the letter y at your Matlab prompt, you will get 2 columns of data
that display. The first column is the set of y(1) (or, y1(t)), whose datapoints you can alone access by typing y(:,1)
at your prompt. The second column of y are the datapoints for yo(¢), which you can access by themselves by typing
y(:,2) at your prompt.

The change in the script file comes when you use the oded5 command — now we are integrating from ¢ = 0 until
t = 25 seconds, and we specified that the initial conditions are y1(t = 0) = 1.0 and y2(t = 0) = 1.0 (via the third
argument as [1.0 1.0]). Since we now have 2 sets of equations to integrate over, the initial conditions input must be a
2x1 vector (to match the size of the outgoing vector, y). (E.g., if y1(¢t = 0) = 33 and y2(t = 0) = 42, then [1.0 1.0]
would be replaced by [33 42]). (In the 1st example at the beginning, we only had one initial condition, which was
sufficient to represent as the scalar 1.43).

For those who are interested in phase plane portraits, you just replace the time variable, t, in your plot command,
with the datapoints for the other function, so that you are effectively making a plot of position vs. velocity of the
pendulum. Running the above commands should give you Figure 3 (sans subplots).
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FIG. 3: Kitties will one day rule the world!



4. THE LORENZ EQUATIONS AND CHAOS

Back in the day, scientists didn’t know as much, and thought they could accurately predict the weather once
computers became more powerful. This is because weather people used many sets of differential equations to model
the weather, and it took a long time to integrate those equations (keep in mind that awesome things like Matlab
weren’t around in the 50s and 60s — people still used slide rulers and tables to calculate many things, and the
computers that were available back in the day had very little computing power, so integrating some ODEs, like those
in the pendulum example, would take a crazy long time for the computer to chug through!).

Edward Lorenz was a mathematician and weather forcaster for the US Army Air Corps, and later an MIT professor.
For many years, he was interested in solving a simple set of 3 coupled differential equations just because he wanted
to ”find out what the weather would be like during the next week.” These equations are called the Lorenz Equations,
and were derived from simplified equations of convection rolls rising in the atmosphere. They are pretty simple and
can be expressed as:

dx
— =-—-P P
7 x + Py (5)
%:rxfyfa:z (6)
dz
E—xy—bz (7)

where P, r, and b are all constants (P represents the Prandtl number, and r is the ratio of Rayleigh number to the
critical Rayleigh number), and x, y and z are all functions of time. (You can read more about what these equations
represent in Lorenz’s classic paper, Deterministicnonperiodicflow.J.Atmos.Sci.20 : 130 — 141). We can use Matlab
to look at trajectories (i.e., plots of x(¢) vs. time, y(t) vs. time, and z(¢) vs. time) or phase plane portraits (i.e., x(¢)
vs. y(t), z(t) vs. z(t), and/or y(t) vs. z(t)) for this system. The function file (lorenz.m) should look like:

function dy = lorenz(t,y)
dy = zeros(3,1);

P = 10;
r = 28;
b = 8/3;
dy (1) = P*x(y(2) - y(1));

dy(2) = -y(D*y(3) + rxy(1) - y(2);
dy(3) = y(D)*y(2) - b*y(3);

(where we’ve chosen P = 10, r = 28, and b = 8/3 for our constants). And your script file should look like:

[t,y] = ode45(’lorenz’, [0 250], [1.0 1.0 1.0]);

subplot (221)

plot(y(:,1),y(:,2),’-");

xlabel (’x(t)’);

ylabel(Cy(t)?’);

title(’Phase Plane Portrait for Lorenz attractor -- y(t) vs. x(t)’);

subplot (222)

plot(y(:,1),y(:,3),7-");

xlabel (°x(t)?);

ylabel(Cz(t)’);

title(’Phase Plane Portrait for Lorenz attractor —— z(t) vs. x(t)’);

subplot (223)
plot(y(:,2),y(:,3),’-");



xlabel(Py(t)’);
ylabel(°z(t)’);
title(’Phase Plane Portrait for Lorenz attractor -- z(t) vs. y(t)’);

subplot (224)

plot(0,0,.%);

xlabel (’Edward Lorenz’)
ylabel(’Kitties’);
title(’Kitties vs. Lorenz’);

Running the above script may take a little while to run (since there are now 3 equations, and we are integrating
from ¢ = 0 until ¢ = 250), and should give you the same as Figure 3.
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FIG. 4: Edward Lorenz vs. Kitties — who will win?

To make a 3D plot that you can play with (just use your mouse to click on the image, and you can rotate it in
whichever direction you’d like), add the following to the bottom of your script:

plot3(y(:,1),y(:,2),y(:,3),’=")

xlabel (’x(t)’);

ylabel(Cy(t)’);

zlabel(’z(t)’);

title(’3D phase portrait of Lorenz Attractor’);

These plots are pretty famous, and that crazy butterfly looking picture is known as a “strange attractor”, or
the “Lorenz attractor.” Strange attractors appear in phase spaces of chaotic dynamical systems. Edward Lorenz
is the first person to report such bizarre findings, and as such, he is often considered the father (or founder) of
Chaos Theory. The “butterfly effect” was coined and described after studying the numerical solutions of these
very equations. The idea is that chaotic systems have a sensitive dependence on initial conditions — if you were
to play around with the initial conditions for z(t), y(t) and z(¢) in these equations and plot phase space portraits
for each solution set, you’d find that even the tiniest changes in initial conditions can lead to a crazy huge
difference in position in phase space at some later time (which is not what you’d expect if the equations were
considered “deterministic” — you’d expect that equations that were almost identical to give you almost identical
trajectories and phase space portraits at any time!) Because of this, chaotic systems like the weather are difficult
to predict past a certain time range since you can’t measure the starting atmospheric conditions completely accurately.

As far as Astrophysics and Astronomy is concerned, it’s been shown (I think by MIT Prof. Jack Wisdom) that the
orbits of the planets in our solar system are actually not deterministic, but chaotic, over a very long time period. As
such, we won’t be able to predict where any of the planets will be in our solar system, a long time from now. As for
other things, it’s probably important to look for signatures of chaos whenever you have any set of non-linear coupled
differential equations that you are integrating over for a long period of time (e.g., N-body simulations?)



5. THE FRIEDMANN EQUATIONS

We can use ode45 to find solutions of the scale factor, a(t), to the Friedmann equations:

6. THE 2-BODY PROBLEM

Consider 2 point masses, with masses m; and msy, described by the two-dimensional coordinate positions

(x1(t),y1(¢)) and (x2(t),y1(t)). The gravitational force between both of these masses is given by

, Where

r12 = (21 — 22)% + (y1 — y2)2. If we apply Newton’s 2nd Law for both masses in each coordinate direction (x and y),

we get a set of 4 coupled differential equations:

dx% Gmlmz( )
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dt? 3y
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(13)

To solve these equations in Matlab, we’ll need to rewrite each of the 4 equations into two first order differential
equations (ala the undamped pendulum example), thereby giving us a system of 8 differential equations to solve:
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We can solve this system of now 8 coupled first order differential equations in the same way we did for all of the
previous examples. Your function file (twobody.m) should look something like:

function dz = twobody(t,z)
dz = zeros(8,1);

G =2;

ml = 2;

m2 2;

dz(1) = z(2);

dz(2) = ((Gxm2)/(((z(1) - z(5))."2 + (2(3) - z(7))."2).7(3/2)))*(z(5) - z(1));
dz(3) = z(4);

dz(4) = ((G*m2)/(((z(1) - z(B))."2 + (z(3) - z(7))."2).7(3/2)))*(z(7) - z(3));
dz(5) = z(6);

dz(6) = ((Gxm1)/(((z(1) - z(5))."2 + (2(3) - z(7))."2).7(3/2)))*(z(1) - z(5));
dz(7) = z(8);

dz(8) = ((G*m1)/(((z(1) - z(5))."2 + (z2(3) - z(7)).72).7(3/2)))*(z(3) - z(7));

where we define z(1), z(2), ... through z(8) to represent the functions z1(¢), u1(t), y1(t), v1(t), x2(t), ua(t), y2(t),
and va(t), respectively. (So that rf, = (2(1) — 2(5))% + (2(3) — 2(7))?).

Your script file should look something like:

[t,z] = oded45(’twobody’,[0 25], [-1 0 0 -1 10 0 11);
[t,=z] ode45(’twobody’,[0 25], [-1 0 0 -1 1 0 0 11);

plot(z(:,1),z(:,3),’-);

xlabel (Cx_{1}(t)?);

ylabel (Cy_{1}(t)’);

title(’Particle 1 orbit in xy space -- first 25 seconds’);

figure;

plot(z(:,5),z(:,7),’-);

xlabel (’x_{2}(t)’);

ylabel Cy_{2}(£)*);

title(’Particle 2 orbit in xy space -- first 25 seconds’);

for an integration time from ¢ = 0 until ¢ = 25, and some set of initial conditions. As a note of caution, it is very
easy to make a mistake while typing up these equations into your function file, so be very careful when you do!

You can make all kinds of fun plots and movies with data like these! For example, you can make a movie out of a
group of plots, where each plot shows you the location of one of the particles at a particular time; do this for multiple

time steps, string them together, and you’ve got yourself a homemade movie.

You create movies in Matlab as well, but that’s going to be a topic for another day.
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