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Equations
= Here if g(t) = 0 homogeneous, non-homogeneous otherwise
(driving by a force). You know the equations below already.

# A linear first order ODE has the general form, where p(t), g(t), can
be constants and/or variables.

i &
< T POY =9

# Constant Coefficient Case: straightforward solution is
y'=-ay+b, Iny-b/a|=-at+C, y=b/a+ke", k=+e°
dy /dt TS .[ dy
y—b/a y—b/a
Variable Coefficient Case: Method of Integrating Factors.

# Using the product rule, d(uv)=vdu + udv. Multiplying the
equation by a function £(t), so that the entire equation must be
easily integrated.
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# Variable Coefficient Case: Method of Integrating Factors. From
the product rule, multiplying the 15t order linear DE by a function
(1), so that the resulting equation must be easily integrated. This
is the General Case. Proof is an exam question.

y'+p®)y=9g(t)

uOY+u®) PO = #®)g(t) 9O _yp)
d dt
—[uty]=
dt N J d“_it) - f p(t)dt
u) 2+ y = utygt) 4!

dt ot In 4e(t) = | p(O)dt +k
J S luty]=] gl

: j p(t)dt
= boa0]-0 HH=e
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Method of Integrating Factors:
Variable Right Side, g(t)

y'+ay =g(t)

% = au(t) => u(t) = *

d

y(t)d—{+au<t>y=u(t>g(t>
d d

eat_ aeat :eat t SR SRS eat :eat t
ety =e"g() >dt[ y|=eg(t)

Vi e‘atjea‘g(t)dt +Ce™

DE 255 M. Sakalli




Example 1: y’+2y —alie

#  Observe that equilibrium solution (of slopes) is shifting due to the t dependence..

y+2y=e?5y=0->y=¢e"?/2

= With g(t) = e, we solve the original equation as follows:

yl+2y :et/Z
15

d
u(t)d—)t/+ 2u(t)y = p(t)e'” =>=> ut) =e™ 4

]
e” ﬂ+2e2‘y =e

dt

5t/2 5t/2

== %[e”y]z e

—

AYVAVNRAY
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ezty = %eswz o %et/z 4 Ce

DE 255 M. Sakalli

Example 2: General Solution of ' 4 1 Y= 5
5)

A e‘atfea‘g(t)dt LB e‘“sje”s(s —t)dt+Ce™?’

Integrating by parts, udv=d(uv)-vdu
j eS(5-t)dt = j 5e'3dt —_[te”Sdt
— 250" [ste!’s | e/t
=50e"” —5te"”

« Thus Y =6 "*(50e"s —5te"* )+ Ce"* =505t +Ce "
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TRl we
y E Xx # Equilibrium points y'=0, y= -25 (t=0), and t=5 (y=0)
2 Needs integrating by parts,

e e“"‘tjea‘g(t)dt +Cad = e”sje““(s —t)dt +Ce'”

S

J’ e (5-t)dt = ISe‘”Sdt = j te "/ dt

Tl g i T

Lo 5ERia [— Sl j 5e‘”5dt]
a St_eft/S
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Example for general case of 15t order DE, IVP probl. EXAM WARNING, linear!!?
ty =2y = 5t%, wy(1)=2,

% First put into standard form:

y’—%y=5t, fort =0

3

3

) I
S ejp(t)dt = e—J.?dt S em(F) Sk

% Integrating Factor = >
t

and hence the general and particular solution for y(1) = 2, respectively.

_Jumgwmdt+c

u(t)
%= Integral curves for the differential equation, and a particular solution (in red) for the initial point (1,2).

tz[J‘%dt+C}=5tzln\t\+Ctz y:5t2(1n|t|+2/5)
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Separable DEs: g(y)dy = f(x)dx or dy/dt =y = f(x)/g(x).

Two Examples and implicit solutions and isoclines. Linearity?

dy x*+1 2(y—1)dy=(3x2+4x+2)dx
ax yi-1 dy 3% +4x+2  2[(y-1)dy = [(3x* +4x+2)dx
(yz—l)dy:(x2+1)dx dx - 2y-1) y? =2y =x"+2x>+2x+C
I(yz —l)dy - I(xz +1)dx
1 1
—3—y3—y=§x3+x+C

*+3x+C

Yy’ -3y=x

y> =2y =x’+2x>+2x+C (implicit)

g y =1+ +2x* +2x+C (explicit)

In 2" Example, domain of the solution

e
L3

s Thus the solutions to the initial value problem
dy  3x*+4x+2

de - 2(y-1) e

are given by
y’> =2y =X’ +2x>+2x+3 (implicit)

y=1-x>+2x> +2x+4  (explicit)

i

From explicit representation of'y, it follows that
y =1=x(x+2)+2(x+2) =1-y/(x+2)x*> +2)
and hence domain of y is x=(-2, o). Smaller than -2 negates

inside sqrt, and x = -2 yields y = 1, which makes denominator of
dy/dx zero (vertical tangent).

b

Conversely, domain of y can be estimated by locating vertical
tangents on graph (useful for implicitly defined solutions).
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,  ycosX A
=22 y0)=1 =
y 1+3y? y(0) 1n|y|+y sinx+C
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Ch 2.4: Differences Between Linear and
Nonlinear Equations

Recall that a first order ODE has the form y' =f (1,y), and is linear if f
is linear in Yy, and nonlinear if f is nonlinear in y (regardless of t).

Examples: y' =ty -el, y' =ty

A

A

A

First order linear and nonlinear equations differ in a number of ways:
+ The theory describing existence and uniqueness of solutions, and
corresponding domains, are different.

+ Solutions to linear equations can be expressed in terms of a general
solution, which is not usually the case for nonlinear equations.

+ Linear equations have explicitly defined solutions while nonlinear
equations typically do not, and nonlinear equations may or may not have
implicitly defined solutions.

# For both types of equations, numerical and graphical construction of
solutions are important.
DE 255 M. Sakalli




Linearity = multiplicity (scalability)
and additivity (superposition).

% Linearity Definiton: (with respect to dependent variable, therefore the degree of
the independent variables as coefficients of the derivations is nor a concern.)

% Scalability af(x)=f(ax);

% Superposition, y=u+v, f(u)+f(v)?, f(u+v)=f(u)+f(v)

% f(au + bv) = f(au) + f(bv) = af(u) + bf(v)

¢ Example: L(z)= 2" -z +k’z

+ ((a+b)z)"—(a+b)z+k3(a+b)z=(az)" + (bz)" — az — bz + k3az + k3bz = af(z)+bf(z)
+ So its’s linear.

* We can find it to look degree of functions f z too. Degree of z is 1 and not any

trig combinations is involved.

I E R R i

“ (at+b)y-(atb)y+((atb)y) #ay +by —ay—by+(ay)’ + (by)’
£ Soit’s not linear.and the degree of y is 2, indicating nonlinearity.
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Theorem 2.4.1

% Consider the linear first order initial value problem:
d
POy =00, YO =Y,

If the functions p and g are continuous on an open interval
(e, B) containing the point t = t,,, then there exists a unique
solution y = (1) that satisfies the IVP for each t in (a, ).

# Proof:
t
J, “Oatdt +y,
(L)

j; p(s)ds

y= , where u(t)=e
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Theorem 2.4.2

= Consider the nonlinear first order initial value problem:

dy
dt

# Suppose f and 6f/0y are continuous on some open
rectangle (1, ¥) € (a, B) x (7, J) containing the point (t,
Yo). Then in some interval (t,- h, t, + h) c (a, B) there
exists a unique solution y = ﬁ(t) that satisfies the IVP.

=f(ty), yO) =y,

= Since there is no general formula for the solution of

arbitrary nonlinear first order IVPs, this proof is difficult,
and beyond the scope of this course.

It turns out that conditions stated in Thm 2.4.2 are
sufficient but not necessary to guarantee existence of a
solution, and continuity of f ensures existence but not
uniqueness of 4.

DE 255 M. Sakalli

*

*

i

b

on corresponding interval. | 10
| o]
Question what is the interval y 64

here for thr 2.41. "

Example 1: Linear [VP

Recall the initial value problem from Chapter 2.1 slides:
ty'—2y=>5t%, y()=2 = y=>5t"Inft|+2t’

The solution to this initial value problem is defined for

t > 0, the interval on which p(t) = -2/t is continuous.

If the initial condition is y(-1) = 2, then the solution is given
by same expression as above, but is defined on t < 0.

In either case, Theorem 2.4.1

guarantees that solution is unique T
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Example 2: Nonlinear IVP

b

Consider nonlinear initial value problem from Ch 2.2:

dy 3x*+4x+2 et
2T TS y0)=—1 4
dx - 2(y-1) o
# The functions f and of/0y are given by
3x* +4x+2 of 3 +4x+2
RO = S Y
2oy-1) "oy 2y-1y

and are continuous except on line y = 1.

4
L

* Thus possible to draw an open rectangle about (0, -1) on which
f and of/0y are continuous, as long as it doesn’t cover y = 1.

x

How wide is rectangle? Recall solution defined for X > -2,

with : >
y=1-+4X +2X" +2X+4
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Example 2: Change Initial Condition SKIP

* Our nonlinear initial value problem is
dy 3x*+4x+2
o (R S e T
dx  2(y-1) ¥

with

F(x y):3x2+4x+2 ﬂ(x y):_3x2+4x+2
: 2y-1) Toy 2(y-1y

which are continuous except on line y = 1.

>

¥
K

s [If we change initial condition to y(0) = 1, then Theorem 2.4.2
is not satisfied. Solving this new [VP, we obtain

y=1£X +2X> +2X, X>0

s Thus a solution exists but is not unique.

e
X
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Example 3: (!!!linear) [IVP (Very simple to draw tangents)

w

e

¥

X

S

e

4

S

Consider initial value problem
y=y" y0=0 (t20) :
The functions f and of/dy are given by *
of

S0 1)

Al

1
f t, he 1/3’ t, LAEaY
ty)=y . ty) 3 )

Thus f continuous everywhere, but of/dy doesn’t exist aty = 0,
and hence Theorem 2.4.2 is not satisfied. Solutions exist but are
not unique. Separating variables and solving, we obtain

R S
y “dy=dt = Ey =lrce=Ny =+ Et , 120

# Positive since t cannot be negative due to sqrt

If initial condition is not on t-axis where y=0, then Theorem
2.4.2 does guarantee existence and uniqueness.

DE 255 M. Sakalli

SKIP to exactness.
Example 4: !!!linear IVP

. BN !

# Consider initial value problem RER RSN ERR N R RN,
Ry e | LI L L AL L
o=y )= R T S
% The functions f and of/dy are given by ~~ "7~~~ oo ponm
TrTTTrrryyiiian Iy

1 1 i !
ERERRRRRRRARRISRRRE

W
X

e

b

e
N ey

f(t,y)=y2,%(t,y)=2y

# Thus f and of/0y are continuous at t = 0, so Thm 2.4.2

guarantees that solutions exist and are unique.

# Separating variables and solving, we obtain

ok
t+c 1-t
The solution Yy(t) is defined on (-o0, 1). Note that the singularity
att=1 is not obvious from original [VP statement.

yrRdy=dt = '—y ' =t+c = y=_—1 = y=

DE 255 M. Sakalli

10



Interval of Definition: Linear and Nonlinear Cases

e
B

By Theorem 2.4.1, the solution of a linear initial value
problem exists throughout any interval about t = t;, on which p
and g are continuous.

Vertical asymptotes or other discontinuities of solution can
only occur at points of discontinuity of p or g. However,
solution may be differentiable at points of discontinuity of p
or g.

In the nonlinear case, the interval on which a solution exists
may be difficult to determine. The solution y = @(t) exists as
long as (t,@(1)) remains within rectangular region indicated in
Theorem 2.4.2. This is what determines the value of h in that
theorem. Since (1) is usually not known, it may be
impossible to determine this region. Furthermore, any
singularities in the solution may depend on the initial
condition as well as the equation.

DE 255 M. Sakalli

General Solutions

* For a first order linear equation, it is possible to obtain a
solution containing one arbitrary constant, from which all
solutions follow by specifying values for this constant.

# For nonlinear equations, such general solutions may not
exist. That is, even though a solution containing an arbitrary
constant may be found, there may be other solutions that
cannot be obtained by specifying values for this constant.

# Consider Example 4: The function y = 0 is a solution of the
differential equation, but it cannot be obtained by specifying
a value for ¢ in solution using separation of variables:

dy o _1
S Ay B = L s U
dt X y t+c

DE 255 M. Sakalli
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Explicit Solutions: Linear Equations

By Theorem 2.4.1, a solution of a linear initial value
problem

y'+pM®y=9®, y(0)=y,
exists throughout any interval about t = t, on which p and g
are continuous, and this solution is unique.
The solution has an explicit representation,
t
J-t ﬂ(t)g(t)dt i yo J.t p(s)ds
0 T

Vis , Wwhere u(t)=e :
u(t)

and can be evaluated at any appropriate value of t, as long
as the necessary integrals can be computed.

DE 255 M. Sakalli

Explicit Solution Approximation

%

For linear first order equations, an explicit representation
for the solution can be found, as long as necessary
integrals can be solved.

If integrals can’t be solved, then numerical methods are
often used to approximate the integrals.

t
[ ngdt+c [ aters
Ve , Wwhere u(t)=e™
u(t)

[l uhg®dt =~ ut)gt)At,
° k=1

A

DE 255 M. Sakalli
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Implicit Solutions: Nonlinear Equations

For nonlinear equations, explicit representations of solutions

may not exist.

* As we have seen, it may be possible to obtain an equation
which implicitly defines the solution. If equation is simple
enough, an explicit representation can sometimes be found.

= Otherwise, numerical calculations are necessary in order to

determine values of y for given values of t. These values can
then be plotted in a sketch of the integral curve.

Recall the following example from

=

. NJ/\/:D\\U/.
,_ YycosX X "-’r.'\ 0): (0):(0):
e naliE e iininnan &@;Qg/
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‘H-\_./_"""-\_.-f"""\-u/'_"""\_.- "

Ch 2.2 slides: ”mm N

Direction Fields

# In addition to using numerical methods to sketch the
integral curve, the nonlinear equation itself can provide
enough information to sketch a direction field.

# The direction field can often show the qualitative form of
solutions, and can help identify regions in the ty-plane
where solutions exhibit interesting features that merit more
detailed analytical or numerical investigations.

¥

Chapter 2.7 and Chapter 8 focus on numerical methods.

DE 255 . bakalu
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Ch 2.6: Exact Equations (chain rule!!!).
# Consider a first order ODE of the form

M(X, y)+N(X, y)y =0

#= Suppose there is a function y such that
v (XY)=M(XY), v, (X, y) = N(XY)
and such that y(X,y) = ¢ defines y = ¢(X) implicitly. Then

e ¥ dy dy s i(/,[x, ¢(X)] and hence the original ODE becomes
ox oy dx dx d
S VDog00]=0

#*

Thus y(X,y) = ¢ defines a solution implicitly.
In this case, the ODE is said to be exact.

i

DE 255 M. Sakalli

Theorem 2.6.1- Continuity and Existence of y and the
condition of Exactness.

» Suppose an ODE can be written in the form

M, y)+N(X )y =0 (1)
where the functions M, N, My and N, are all continuous in the
rectangular region R: (X, ¥) € (&, B) X (%, 6). Then Eq. (1) is
an exact differential equation iff

M, (% y) =N (%Y), V(X y)eR (2)

» That is, there exists a function y satisfying the conditions

v, (% Y)=MXY), v, (X, y)=NXy) )
iff M and N satisfy Equation (2). Think here.. How to solve it.

DE 255 M. Sakalli
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Example 1: Exact Equation (1 of4)

# Consider the following differential equation.
dy  x+4y

S (X+4y)+(@x-y)y'=0
dx 4x—-y

Then M(X,y)=Xx+4y, N(X,y) =4x-y
and hence M (x,y)=4=N,(x,y) = ODEis exact

From Theorem 2.6.1, l//x(X y)=X+4y, l//y(x y) A=Y
Thus  y (X, y) = [y, (X, y)dx = [ (x+ 4y )ix _EX +4xy +C(y)

L

L

L

w,(Xy)=4x—y= 4x+C(y) = C'(y)=-y = C(y)_——y +k
1
(X, y)_—x +4xy——y k&=
* By Theorem26l the solutlon is given implicitly by X +8xy y

Example 2: (ycosx+2xe’)+(sinx+x’e’ —1)y'=0
M(X,y)=ycosx+2xe’, N(X,y)=sinx+x’e’ —1
M, (X,y) =cosx+2xe’ =N, (X,y) = ODEisexact

#% From Theorem 2.6.1,

v, (X, Y) =M = ycosx+2xe’, w,(x,y) =N =sinx+x’e’ -1
w(X, y):wa(x, y)dx:j(ycosx+2xey)dx: ysinx+x’e’ +C(y)=c

v, (X y) =sinx+x%’ -1

T e e e e e e e
ey o, T e e e e e
B
T T ey e o e AT T

=sin X+ x’e’ +C'(y)
C'(y)=-1 = C(y)=-y+k

w(X,y)=ysinx+xe’ —y+k=c

DE 255 M. Sakalli
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Example 3: Non-Exact Equation Treated by Integrating
Factors. Interesting therefore potential Exam Question
It is sometimes possible to convert a inexact DE into an exact
equation by treating with a suitable integrating factor z(X,Y):
M y)+N(Xy)y =0

MO YIM (X, Y) + u(X, YIN(X, Y)Y’ =0
For this equation to be exact, we need

(uM), =(uN), < Mg, ~Nu,+(M, =N, Ju=0

This partial differential equation may be difficult to solve. If u
is a function of X alone, then zoe0 and hence we solve

LA
dx N

provided right side is a function of X only. Similarly if zis a
function of y alone. See text for more details.

S

S

S
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Non-Exact Equation Example treated.

# Consider the following non-exact differential equation.
Gxy+y)+(X*+xy)y' =0
Seeking an integrating factor, we solve the linear equation
M, —N
St e
dx N dx

Multiplying our differential equation by 1, we obtain the
exact equation

BX°y+xy*)+ (X +x*y)y' =0,

L

= u(X)=x

L

which has its solutions given implicitly by

1
X’y+—x*y*=c
y > y

DE 255 M. Sakalli
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#* Exam question, and HW, 27.b, 29, 29, 30 at
page 73 and 74, solve bernoullie problems at
least two to prove that eq reduces to a 1rst
order linear DE.

DE 255 M. Sakalli

2

y = dsolve('Dy=1+y"2',)

2

o

y=

*

*

tan(t+C1)

*

*

>>y = dsolve('Dy=1+y"2",'y(0)=1°, ‘t’)

oA

1

y=

EH

i

tan(t+1/4*pi)

oM

FH

>> diff(y, 't')

EH

H

ans =

3

1+tan(t+1/4*pi)"2

3

S

DE 255 M. Sakalli
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