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Abstract—Delay Tolerant Networks are wireless networks point connectivity to the Internet [4], [5], [6], underwate
where disconnections may occur frequently due to propagation petworks [7], etc.
phenomena, node mobility, and power outages. Propagation 14 enaple some services to operate even under these chal-

delays may also be long due to the operational environment (e.g. | . diti h h d Hetw
deep space, underwater). In order to achieve data delivery in sin  '€9ING CONAILIONS, researchers have proposed a new or

challenging networking environments, researchers have propode INg paradigm, often referred to as Delay Tolerant Netwagkin
the use ofstore-carry-and-forward protocols: there, a node may (DTN [8]). To route messages in DTNstore-carry-and-
store a message in its buffer and carry it along for long periods forward protocols are proposed, where a node may store a
of time, until an appropriate forwardlng opportunity arises. message in its buffer and carry it along for |Ong periOdS of
Additionally, multiple message replicas are often propagated . . . - .

to increase delivery probability. This combination of long-term time, until it can forward it .fu.rther. This rqutlng may happe
storage and replication imposes a high storage overhead onrandomly, be based on statistical information [9], or evéren
untethered nodes (e.g. handhelds). Thus, efficient buffer mage- relevant information about the destination (e.g. sociakdi
ment policies are necessary to decide which messages should bgffiliation, etc.). Furthermore, due to the inherent uraiaty
discarded, when node buffers are operated close to their capagyit caused by the lack of complete (or any) information about

In this paper, we propose efficient buffer management policies . .
for delay tolerant networks. We show that traditional buffer other nodes in the network, many replicas of the same message

management policies likedrop-tail or drop-front fail to consider May be propagated to increase probability of _de“Ver)’- For
all relevant information in this context and are, thus, sub-optimal. example, one of the first and most popular routing protocols
Using the theory of encounter-based message dissemination, wen this context, namelEpidemicrouting [10], disseminates a
propose an optimal buffer management policy based on global message replica teverynode in the network.

knowledge about the network. Our policy can be tuned either to Alth hal t of effort has b . ted in th
minimize the average delivery delay or to maximize the average X oug (:_1 _arge amoun 0 9 ort has been invested In the
delivery rate. Finally, we introduce a distributed algorithm that ~design of efficient routing algorithms for DTNs, there has no
uses statistical learning to approximate the global knowledge been a similar focus on buffer management policies. Yet, the
required by the the optimal algorithm, in practice. Using sim- combination of long-term storage and the, often extensive,
ulations based on a synthetic mobility model and real mobility message replication performed by many DTN routing proto-

traces, we show that our buffer management policy based on cols 1101, 191 imposes a high storage overhead on wireless
statistical learning successfully approximates the performancefo [10], [9] imp g g

the optimal policy in all considered scenarios. At the same time, Nodes (e.g. small handhelds, sensors, etc.). Moreover, the
our policy outperforms existing ones in terms of both average data units disseminated in this context, calleaahdles are
delivery rate and delivery delay. self-contained, atomic application-level data units, aih¢an
often be large [8]. It is evident that, in this context, node
buffers will very likely run out of capacity and, thus, eféicit

The traditional view of a network as a connected graph oveuffer management policies are necessary to decide which
which end-to-end paths need to be established might not thessage(s) should be discarded when a node’s buffer is full.
appropriate for modeling existing and emerging wireless ne It has been demonstrated that buffer constraints can dgvere
works. Due to wireless propagation phenomena, node mgbiliaffect the relative and absolute performance of DTN routing
low power nodes periodically shutting down, etc., connéigti  schemes and consequently applications. For example, a num-
in many wireless networks is, more often than not, inteemitt ber of studies have clearly shown tHapidemicrouting has
Despite this limited or episodic connectivity, many emeggi minimum delivery delay under no buffer constraints (and no
wireless applications could still be supported. Some exesnpbandwidth constraints), but performs poorly when buffeesi
are the low-cost Internet provision in remote or developingre limited [11], [12]. However, it is less clear what thehtig
communities [1], [2], vehicular networks (VANETS) for dis-buffer management policy is, in this context. For example,
semination of location-dependent information (e.g. lomd$, the simpledrop-tail policy, used in many networks, has been
traffic reports, parking information, etc) [3pocket-switched shown to perform poorly in the DTN context [12]. Although
wireless networks to extend and sometimes bypass accessie improvement can be achieved, for example, using other
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policies like drop-front [12], existing policies fail to take into other than the ones stored locally, and based on this, it can
account the intrinsic characteristics and requirementdetdy decide which messages among them to forward to (or to
tolerant networking and store-carry-and-forward routiRgr request from) its peer. When no other node is currently within
example, one of our results in this paper is that the bestehocommunication range, messages are buffered.
of the message to drop is strongly dependent on the numbe©ne of the simplest routing protocols that one could imple-
of copies in the network of the different messages existing ment based on the above mechanism isEpe&emicrouting
the DTN node’s buffer. None of the existing policies takes thprotocol proposed in [10]. This protocol relies on the tlyeor
network-wide statistic into account. of Epidemicdissemination, where two nodes always exchange
In this paper, we try to solve this problem in its foundatiorall messages they don’t have in common when they encounter
We develop a theoretical framework basedEgidemicmes- each other. Thus, if there is enough buffer space, messages
sage dissemination [13], [14], [15] that takes into accaalht will spread like an “epidemic” through the network, with
information that are relevant for encounter-based (orestorevery node eventually receiving (a copy of) the message
carry-and-forward) message delivery. Based on this theoAs a result,Epidemicrouting uses the maximum amount of
we first propose an optimal buffer management policy. Thigsources and causes the highest amount of congestion.
policy uses global information about the network either to More recently, a number of other routing protocols have
maximize the average delivery rate or to minimize the abeen proposed, e.g. Spray and Wait [19], Prophet [9], etc.,
erage delivery delay. Then, we propose a distributed (Joc#that aim at reducing the overhead of Epidemic routing. We
algorithm that uses statistical learning in order to estmahave chosen to base our study Bpidemicrouting due to
information about the global state of the network, and usiss tits simplicity, its optimal performance in terms of delaydan
estimation to approximate the optimal algorithm in prastic delivery rate when resources are unbounded, but also the
Finally, to evaluate the performance of the optimal and olmgh load it causes on network buffers. However, our pddicie
statistical learning algorithm against other buffer marmagnt described in Sections Il and IV can apply to other multiple
policies, we have implemented a DTN framework includingopy schemes, as well. The only difference is a higher number
all policies in the network simulator NS-2 [16]. We haveof drop decisions to be taken in the case of Epidemic routing.
performed simulations for both the Random Waypoint modgl.
and two real-world mobility traces, the ZebraNet trace [17]
and the San Francisco’s Yellow Cab taxi trace [18]. Simatati
results show that our statistical learning algorithm otftrens

Buffer management policies

A buffer management policy defines which message to drop
if the buffer of a DTN node is full when a new message
other policies achieving close-to-optimal performanceall 'S 1© be accommodated. Each messagm the buffer (B
considered scenarios. messages in total) has a s<_at of mfgrmatt_ﬁn stored with

The rest of this paper is organized as follow. Section ﬁ; S; includes: the source |d,.the time since the message
as generated, the Time-To-Live'('L), etc. In the DTN

gives the framework and assumptions of our study. In Set hi 201 thel T'L value i 4 I hich
tion Ill, we establish theoretically an optimal, “refereric 2rehitecture [20], t value is a timeout value, whic

buffer management policy that uses global knowledge ab ecifies when a message is no Ion_ger useful and shou_ld
the network. Then, we present in Section IV a learnin ¢ deleted. Let a new message arrive at_a puﬁer tha.‘t IS
process that enables us to approximate the global netw &Then, usually, a buffer management policy is a funetio

state required by the reference policy. Section V describ }éS27""i5’hS”€w) =J€ {57B]U{"ew}};{ This polilcy, dvi
the experimental setup and the results of our performan gcldes on which message to drop amongt. € ones afready In
the buffer and the new one, based on the information on all

messages in the buffer.
To evaluate the performance of our proposed buffer man-
II. DELAY-TOLERANT ROUTING AND BUFFER agement policies, we have chosen to compare them with a set
M ANAGEMENT POLICIES of existing policies that have been used in related work.[21]
%\is set includes: (iPL-Drop Last(or “Droptail”), the most

scheme that we will use throughout the paper, describe so mon among the set, simply removes the newly received

existing buffer management policies that we will compare owzssagreh, (iDDF-Drop tFr:OPt han?_lei thet qugugtln t?\ FIFO
policies to, and go over some related work. order. 'he message hat was 1Irst entered Into the queue

is the first message to be dropped when the buffer is full,
A. DTN routing (i) DO-Drop Oldest drops the message with the shortest

In the DTN context, when nodes encounter each other th’%haining life time (closest to TTL expiration), and (iD)Y-
I

evaluation. Finally, we summarize our conclusions andusisc
future work in Section VI.

In this section, we briefly introduce the basic DTN routin

perform pair-wise exchanges of messages with the goal t PP Youngestdrops the message with the longest remaining

each message wiktventuallybe delivered to its destination. lfe time first.
An index of all messages carried by a node, caledhmary  *Finite bandwidth and unexpected interruptions may not akowode to

vector is kept by each node. and when two nodes medgnsmit all the messages it would like to forward. In such satiee order
' ' in'which messages are transmitted is important. In this workyilleassume

they exchange summary vectors [10]. After this exchanggat enough bandwidth is available for each contact, ans buffer space is
each node can determine if the peer node has any messaigesnly constrain on performance.



As an additional optimization, we consider that a nod&. Problem description (assumptions)

should not discard its own valid messages (called source mes\\e will assume there ark total nodes in the network. Each
sages) to create a place in its buffer for messages forwardgdhese nodes has a buffer, in which it can store ugBto

by other nodes. This ensures that at least one copy of egg8ssages in transit, either messages belonging to othesnod
message stays in the network as long as its TTL does Rptmessages generated by itself. Each message is destined to
expire. If all buffered messages are source ones, and ¥ of the nodes in the network, and has a Time-To-Live
arriving message is also a source message, then we chq@ser) value. After this time is elapsed, the message is no
to delete the oldest one. This intuitive |d¢a of giving ptior more useful to the application and should just be dropped by
to source messages has been proposed in [12] and was sh@Wource and all intermediate nodes. The message can also
to improve the average delivery rate. be dropped when a notification of delivery is received, if an
C. Related work “anti-packet” mechanism is implemented [12]

) .. In the context of DTNs, message transmissions occur only
Several solutions have been proposed to handle routingilen nodes encounter each other. The minimum time a node

DTN. Yet, an important issue that has been largely disregird, o5 1o wait until it can forward a message further, is the time
by the DTN community is the impact of buffer managementnsii it encounters another node which can act as a relays,Thu

policies on the overall performance. In [12], Zhang et alpe (ime elapsed between node meetings is the basic delay
present an analysis of buffer-constraitgaldemicrouting, and component

evaluate some of the simple buffer management policies-prev This inter-encounter time between nodes depends on the

ously described. The authors conclude that DF outperforms Qe of a particular property of the mobility model assumed

in terms of both delivery delay and delivery rate. Additithya namely themeetingtime [24], [25F. We further consider that
they notice that giving priority to source messages impsOVgandwidth is not an issue so when two nodes meet, there is
the delivery rate further, but makes messages spread slowglo,gh time to exchange their messages. Messages are not
increasing hence their delay. In [21], Lindgren et al. e=8U fragmented and are transmitted in a FIFO order from one node

a somewhat more extensive set of combinations of existiﬂg another during a contact. We consider bandwidth impact
buffer management policies and routing protocols for DTNg, [23].

They show that Probabilistic routing [9] together with thgght

buffer management policy can result in better performance Pefinition 1l.1. Meeting Time: Let nodes and j move

terms of message delivery, overhead, and end-to-end deRgeording to some mobility process and let them start from

Specifically, in the context oEpidemicrouting, the authors their stationary distribution at timé). Let further X;(¢) and

find that DF (with priority to source messages) gives th&;(t) describe the mobility process (position) of nodes

highest delivery rate, while DO gives the smallest endrtd-e and j, respectively, at time. The meeting timel{) between

de|ay_ Our own results Support these f|nd|ngs the two nodes is defined as the time it takes them to first
All the buffer management policies discussed so far ffome within transmission range) of each other, that is

to consider network-wide information, such as the numbéf = min{t : [ Xi(t) — X;()|| < 5}

of replicas of each message, the number of nodes, etc. Ye

optimality cannot be achieved without this information. o . o -

best knowledge, the only relevant work that takes encoun{ep]’ we do not make any assumption about a sp_ecmp mobility

information into’account is RAPID [22]. However, RAPID’s odel u_s_ed. Our only requwement 'S th_he meeting time of

focus is on scheduling messages undernlimited ba,ndwidm e{rqe mobility model is exponentially distributed or has atsie

. . : ' “an exponential tail, with parametex = -, where E[X]
also uses a suboptimal policy. We address the issue of dpti

B
scheduling and compare ourselves against RAPID in [23].

tTo formulate the optimal buffer management policy prob-

"BBnotes the expectation of a random van%kle

It has been shown that many popular mobility models like
11l. OPTIMAL BUFFER M ANAGEMENT PoLicy Random Walk [24], Random Waypoint and Random Direc-
Hon [15], [14], as well as other more sophisticated synthet

. ! . X odels like the community model in [15] have such a property.
message to d|§card when a node’s buffer s full. W(_a first maEﬁ practice, there exist some recent studies based on traces
some assumptions regarding the routing protocol in hare, {

) - I collected from real-life mobility [6] that argue that inter
service model and the' mpbﬂﬂy chargctenstlcs Of. the nOdeesncounter and contact duration times may follow a power-law
Then, we embark on finding theoretically the optimal buffer

management policyGBD (Global Knowledge based Drap) 2once a node delivers a packet to the destination, it shoutdedthe packet
based on global knowledge about the network state. As glolfrai its buffer to save storage space and prevent the nodeiftiecting other

; ; ; o ; odes. Moreover, to avoid being reinfected by the packetdercan keep
k£]0W|¢dg$| is required, G.BD I? dlffflcult to Ibeslmp,lemf\r/]teq;ack of packet delivery. We refer to this information stortdthe node as
thus, it will serve as a point of reference. In Section IV, Wenii-packet”; various algorithms have been proposed to piepagate anti-

will show how to design docal buffer management policy packets to other infected and susceptible nodes [12].

that uses learning methods to estimate the global infoomati 31f some of the nodes in the network are static, then one needsedhe
. itting time between a mobile node and a static node, instead. For sityppli

about the network assumed by GBD, and can approximate assume here that all nodes are mobile and we refer only torgegties

performance of the optimal policy in practice. thereafter. Our theory can be easily modified to account faticshodes.

In this section, we formalize the problem of choosing whic



distribution, instead. Yet, the authors in [26] show thagrev taken. For each messadec [1, K|, let m;(T;) andn;(T;) be
these traces in fact exhibit exponential tails after a ¢ygoint, the number of nodes that have “seen” the message since it's
and argue that for most mobility models that can be seen asraatiorf (excluding the source) and those who have a copy
random walk on a graph, meeting times have an exponentilit at this instant ¢,(7;) < m;(7T;) + 1). The local optimal
tail. For this reason, we choose to stick with the exponéntibuffer management policy that maximizes the average dglive
meeting time assumption, which makes our analysis traetablate is to drop the message,;,, satisfying:

Our trace-based evaluation further supports this assompti m(Ty)
imin = argmin | (1 — =———2)AR,; exp(—=An;(T})R; 1
TABLE | min = arg" (1= 7= )ARexp(=Ani(T3)Ri) | (1)
NOTATION ) .
Proof: We know that the meeting time between nodes
[ Variable [[ Description | is exponentially distributed with paramet&r The probability
[L [[ Number of nodes in the network | that a copy of a messagewill not be delivered by a node is
l K(t) H Number of distinct messages in the network at tmq? then giVen by the prObablllty that the next meeting time with
[(TTL, [ Initial Time To Live for message ] the destination is greater thd®. This is equal texp(—AR;).
Bz [ Remaining Time To Live for message l Knowing that messagéhasn;(7;) copies in the network,
T, = TTL, - || Elapsed Time for messagalt measures the time sinck and assuming that the message has not yet been delivered, we
R; this message was generated by its source can derive the probability that the message itself will net b
ni(Ty) Number of copies of messagein the network after] delivered (i.e. none of the, copies gets delivered):
elapsed timeT; ] ) )
m;(T;) Number of nodes (excluding source) that haeen P{message not dellvered| not delivered y@t =
message since its creation until elapsed timg n; (Ti)
A Meeting rate between two nodes\ = ﬁ where H exp(—=AR;) = exp(—=An;(T;) R;). 2
E[U] is the average meeting time i=1

Here, we have not taken into account that more copies

Given the above problem setting, a key question to answg a given messagé may be created in the future through
is the following: if a node is congested, which message showlew node encounters, also we have not taken into account
it drop so as to optimize a specific routing metric? Our optimghat a copy of messagg could be dropped within?; (and
buffer management policy derives a per-messatjéty, and thus this policy is to some extent greedy or locally optimal)
then drops the message with the smallest utility value. Thigedicting future encounters and the effect of furthericegl
utility captures themarginal valueof a given message copycreated complicates the problem significantly. Neverswle
for the overall routing process, and with respect to the ehosthe same assumptions are performed for all messages equally
optimization metric. We derive here suchudlity for two and thus can justify the relative comparison between the
popular metrics: maXimiZing the average delivel’y rate, a%]ivery probab”ities for different messages.

minimizing the average delivery delay. N We should also take into consideration what has happened
_In Table I, we summarize the various quantities and notgr the network since the message generation, in the absence
tions we will use throughout the paper. of an explicit delivery notification. Since all nodes incing

the destination have the same chance to see the message, the

B. Maximizing the average delivery rate ! ) ] -
S . . . robability that a messagehas been already delivered is equal
We will first look into the following scenario. We assum{) )

that a number of messages are propagated in the network
using replication (e.gEpidemig, each of which has énite P{message already delivere=m;(T;)/(L —1). (3)
TTL value. The source of the message keeps a copy of it . . ,
during the wholeTTL duration, while intermediate nodesCOMPINIng Ed.(2) and Eq.(3) the probability that a message
are not obliged to do so. We consider a time instant WheWé" get delivered before its"I"L expires:

the network iscongestedand a new message copy arrives P; = P{message not delivered yet* (1 — exp(—An;(Ti)R;:))

to a new node during an encounter, to find its buffer full. + P{message already deliveref

Assuming now that we know all messages in the network mi(Ty)

_ i m;(T3)
and the number of copies for each message at that time, the = (1 = 7 —1 ) * (1 —exp(=Ani(T) o)) + 77—+

problem we would like to solve isvhat is the best message to g4 it we take at instant a snapshot of the network, the

be dropped lpcally), among the ones already in the buffer of,a) gelivery rate for the whole network will be:
the given node and the newly arrived one, in order to maximize

®
the average delivery rate among all messages in the netwoB<R _ 1_ mi(T}) 1_ (TR, m;(T})
(globally)? The answer is given in the following theorem. 2 |¢ L1« 0 een@)R)) + 5

=1
Theorem Ill.1. Delivery-Rate: Let us assume that there &fe ] )
We say that a nodé has “seen” a message when A had received a

messages in the network, with e'aps?‘?' tifpéor the mesgage copy of messagé sometime in the past, regardless of whether it still has the
1 at the moment when the drop decision by the node is to &y or has already removed it from the buffer.



In case of congestion, a DTN node should take a drop
decision, that leads to the best gain in the global delivatg r 1
DR. To define this optimal decision, we differentiate DR with BXi|X: > T =T + ni(T)N
i(T}), th [ i I I .
respect ton;(T;), then we discretize and replace ttie by Substituting Eq.(7) in Eq.(6), we get,

)

An to obtain:
K(t)
K®) m;i(Ty) 1
_ ﬂ (T D = 1— LSl Tz + .
ADR) = s Oni(Ty) * &na(T) ;( -1\ ni(Ti))\)
K(®) ma(TY) Now, we differentiateD with respect ton;(7;) to find the
= Z {(1 - LZ_ 1 JAR; exp(=An;(Ti)R;) * Ani(T:) | policy that maximizes the improvement i,
1=1
The best drop decision is the one that maximi2dDR). IO m(T)
We know that:An;(T;) = —1 if we drop an already existing A(D) = Z ﬂ(ﬁ — 1) * Any(T3).
message from the buffer,An;(7;) = 0 if we don'’t drop an =1 ni(T3) -

already existing messagérom the buffer and\n,(7i) = +1  The best drop decision will be the one that maximizes
if we keep and store the newly-received messageence, |A(D)| (or —A(D)). This corresponds to dropping the mes-

the optimal buffer management policy that maximizes theagei that minimizes the following utility metric,
future delivery rate is the one that drops messadaving

the smallest value of the following utility: —
oE -1 ©
(1- ﬂzi(Til)))\Ri exp(—An;(T;)R;). (4) This per-message utility is different than the one for the

delivery rate and can be seen as tharginal utility value
This utility can be viewed as thearginal utility valuefor a of a copy of a messageregarding the average delivery delay.
copy of a message with respect to the total delivery rate.Again it is a function of the global state of this message s&ro
The value of this utility is a function of the global state bkt the network. [

message in the network.
IV. USING LEARNING TO APPROXIMATE GLOBAL

KNOWLEDGE IN PRACTICE

C. Minimizing the average delivery delay In order to optimize a specific routing metric using GBD, we
We now turn our attention to minimizing the averagé&eed global information about the network and the “spredd” o

delivery delay. We assume that all messages generated ha@ssages. In particular, for each message present in tieésnod

infinite TT'L or at least a'T'L value large enough to ensurebuffer, we need to know the values of;(T;) andn;(7;), the

a delivery probability close ta. In this context, we will look number of nodes that have seen the message and those that

for a buffer management policy that minimizes the expecté@ve a copy of it. Unfortunately, this is not feasible in fice

delivery delay over all messages in the network. due to intermittent network connectivity and the long timhe i

takes to flood buffer status information across DTN nodes,

Theorem IIl.2. To minimize the average delivery delay ofypich could make such info obsolete. Our proposed solution
all messages, a DTN node should drop the message s 1o find appropriate estimators for these utilities.

satisfying: We do this by designing and implementing a learning
‘ ‘ m;(T;) process that permits to a DTN node to gather knowledge about
bmin = ATGMIN T (Ti)Q)\(l T -1 ) ®)  the global network state history by making in-band exchange

with other nodes. Each node maintains a list of encountered

~ Proof: Let us denote the delivery delay for message noges and the state of each message carried by them as a
with random variableX;. This delay is set t@ (or any other ¢ nction of time, which could b@ if the message was in the

constant value) if the message has been already delivers§ye's puffer at the specified time arif the message was
Then, the total expected delivery delap)(for all messages geen put deleted due to congestion as described in Figure 1.
for which copies still exist in the network (or if we want inNgte that each node maintains the time of the last list update
the local buffer) is given by, and only sends the list if it has been updated since the last
exchange. This way and after some time, all nodes will have
AT AT the same global and accurate view about the network history.
D= Z |:n£(_1) *0+(1- 72(_ 1)) * BIXi|Xs >T]| . (6)  This history can be limited to some time duration if the
=1 network size is large.

We know that the time until the first copy of the message Since the global information thus gathered on a specific
1 reaches the destination follows an exponential distriputi message might take a long time to propagate (as mentioned
with mean1/(n;(7;)\). It follows that, earlier) and hence might be obsolete when we calculate the

K(t)




T [ stawe o ]_ andm (T) so that the calculation of the average delivery rate
Mz eting Tirme - Message_11_Elapsed_Time is unbiased.
— M(T M(T
o g1 - D) (1 expannyry) + 0
A A
. ~ 1 If the message was deleted by the node m (T) VAN m (T)
Stawe = {O If the message is in the node's buffer ( - L o 1 ) * (1 - exp(_A n (T)R’L)) + ﬁ

By plugging in the utility expression in Eq.(4) any values
of n (T) and m (T) that verify this equality, one can be
utility of the message, we follow a different route. Ratteart Sure that the obtained policy minimizes the average deliver
looking for the current value of.;(T') andn; (7)) for a specific rate. This is (/a\xactly our purpose. Suppose now that the best
message at an elapsed tim&, we look at what happens, onestimator form (7T') is its average, i.eqn (T) =m (T) =
average, for all messages after an elapsed fimén other E[M(T')]. A justification for this assumption will be given in
words, them;(T') andn;(T) values for messageat elapsed paragraph IV-C. Then, we solve the equation for:

Fig. 1. List maintained by each DTN node.

time T are estimated using measurementsnondn for the M(T)

; E[(1- —AN(T)R;
same elapsed tim& but measured for (and averaged over) all n (T) = — 1 In( ( L1 )e>ip( () )]) (9)
other older messages. These estimations are then used in the AR (1— nL“L(_T1>)

evaluation of the per-message utility.
Let's assume that the quantities (7') andn;(T") at elapsed Substituting this expression into the GBD's delivery raiéty
time T are distributed according to random variab®$7") in Eq.(4), we get the following utility for HBD,
and M (T'), respectively. Further, let's denote lﬁy(T) and
m (T') estimators for;(T") andm;(T). By finding appropriate ARE[(1 — M(T) ) exp(—AR;N(T))]
estimatorsn (T) and (T) and plugging them into the L-1
GBD’s delivery rate and delay utility-metrics calculateal j The expectation in this expression is calculated by summing
Section 1Il, we get two new utility-metrics, which could beover all values of N(T) and M(T) for past messages at
used by a DTN node without any need for global informatiofilapsed timeT'. Note, thatL, the number of nodes in the
about messages. This results in a new buffer managem@ﬂiWOfk: could be calculated from the list maintained byheac
policy, calledHBD (History Based Drop)a deployable variant node in the network. In this work, we assume it to be fixed
of GBD that uses the new utilities based on estimates ahd a@nd known, but one could estimate it as well in the same
n. The estimation algorithms are described in paragraphs Ivway we do forn andm, or using some additional estimation
and IV-B. algorithm. We defer this for future work. Thus, unlike GBD’s
As a final note, in order to justify our motivation for thedelivery rate utility, this new utility is a function only qfast
history-based learning process described above, we inteod and accurate global network history and so can be calculated
another buffer management polidyBD (Flood Based Drop) locally since it does not depend on the flooding time.
F.BD accounts only for _the gIobaI. infor.mation collgcteq gsing. Calculating estimators n (T) and m (T) for the average
3|.mple message flooding, that is, Wlthogt c'ons[dermg pa(?élivery delay utility
history or other messages. So, from the st (in Fig. 1), DTN Similar to the case of delivery rate, we calculate the esti-
nodes extrack;(7;) value for message simply by looking A A : y !
at the number of nodes that said they hold it andshg¢z;) Matorsn (T) andm (T) in such a way that the average delay
value by looking at those nodes that said they saw it, evE@lculation is unbiased.
if this information is obsolete. These values are then phalgg M(T) 1 m (T) 1
into the GBD's delivery rate and delay utilities as in theecas?[(1 L_1 )T + N(T)/\)} =(1- ﬁ)(Ti AT
of HBD. Our results from Section V indicate that, unlike n (T)A
HBD, FBD approximates poorly GBD's performance for botfagain, supposing thatn (T) =m (T) = E[M(T)] and
routing metriCS, and thus is not sufficient to infer the req(h S|mp||fy|ng this last expression further, we obtain:
global information in practice.

/\T_L—l—T;L<T) 10
A. Calculating estimators n (T) and m (T') for the average n (1) = E[Lf}vf(%(T) (10)

delivery rate utility
When the global information is unavailable, one can calc@Y substituting this value in the GBD's delivery delay uili

late the average delivery rate of a message, by averaging deEd.(8), we can find the delay utility specific to HBD,

all possible values for random variabléd(T") and N(T). E[L—l—M(T)]z

Then, one can try to minimize this average. In the framework N(T) —

of the GDB, this is equivalent to choosing the estimatord") AL =1)(L=1=m (1))




Also, unlike GBD’s delivery delay utility, this new utilitys average delivery rate and the delivery delay in the case of

function of the locally available history of other messages infinite T'T'L. Concerning the evaluation of the HBD policy,
. A we suppose that different nodes are already in a converged

C. On the approximation of m (T') by E[M(T)] state, so we start accounting for HBD's res@#d'T L seconds

In paragraphs IV-A and IV-B, we have supposed thaifter simulation starts. The choice of this value will betified

m (T) = E[M(T)]. This approximation is driven by thein paragraph V-D. Note that the results presented here are

observation we made that the histogram of the random variablerages from 20 simulation runs, which is enough to ensure

M(T) can be approximated by a Gaussian distribution witonvergence.

good accuracy. To confirm this, we have applied the Lilli . .

test [27], a robust version of the well known Kolmogorov-E - Performance evaluation for delivery rate

Smirnov goodness-of-fit test, td/(T) for different elapsed First, we compare the delivery rate of all policies for the

times (' = 25%,50% and 75% of th&@TL). This test led three scenarios shown in Table Il. Figures 2, 3 and 4 show

to acceptance for a 5% significance level. Consequently, tigspectively the delivery rate based on the Random Waypoint

average ofM(T) is at the same time the unbiased estimatépodel, the ZebraNet trace, and the Taxi trace.

and the most frequent value among the vedH(T).

TABLE I

V. PERFORMANCE EVALUATION SIMULATION PARAMETERS

A. Experimental setup Mobility pattern: RWP Zebra’s Taxi's
Traces Traces

To evaluate our policies, we have implemented a DTN

framework into the Network Simulator NS-2. This implel Simmationys Duration(s): || 5000 [[ 5000 [ 36000 |
mentation includes th&pidemicrouting protocol, the buffer omuation Area ¢2%): || 10001000]] 150071500]] - [
management policies described in Section 11, against wivigh L Number of Nodes: [[ 30 [[ 40 [[ 40 l
compare our policies, and the VACCINE anti-packet mech-Average Speed (Km/H): || 6 Il - Il - |
anism described in [12] Each node uses a wireless comi TZL(s): || 650 || 650 [ 7200 |
munication channel 802.11b that has a range of 100 meter<BR Interval(s): I 200 [[ 200 [ 2100 l

to obtain network scenarios that are neither fully conrgcte
(e.g. MANET) nor extremely sparse. Our simulations are From these plots, it can be seen that the GBD policy
based on three mobility patterns, a synthetic one, based @ives the best performance for all numbers of sources. When
the Random Waypoint model and two real-world mobilitgongestion-level decreases, so does the difference betwee
traces: the first trace was collected as part of the ZebraNeBD and other policies, as expected. Moreover, the HBD
wildlife tracking experiment in Kenya described in [17].&h policy outperforms existing policies (DF, DO, DL, DY) and
second mobility trace tracks San Francisco’s Yellow Calstaxperforms very close to GBD. For example, 80 sources
Many cab companies outfit their cabs wi@PSto aid in and Random Waypoint mobility, HBD’s delivery rate is 10%
rapidly dispatching cabs to their costumers. The Cabsypttihigher than Drop Front and only 2% worse than GBD. Sim-
system [18] talks to the Yellow Cab server and stores the dalgly, for 40 sources and the ZebraNet traces, HBD delivers
in a database. We have use an API provided by the Cabspottliy6 more messages than Drop Front and 3% worse than GBD.
system in order to extract mobility traces. Note that thaedr Finally for the Taxi traces and 40 sources HBD performs 17%
describes taxi's positions according to tk&PS cylindrical better than Drop Front and 3% worse than GBD.
coordinates l(ongitude Latitude and in order to uses these Note that the fact that Drop Front gives a higher delivery
traces as input for the NS-2 simulator, we have implementeate than Drop Oldest could be deduced from our delivery
a tool based in the Mercator [28] cylindrical map projectionate utility in Eq.(4). Specifically, at an instant t, we have
which permit us to convert traces to plane coordinates.  Rfront — Rotdest >> |Nfront — Noldest|, Which implies that

To each source node, we have associated a CBR (Constautdelivery rate utility gives a smaller value for the megsa
Bit Rate) application, which chooses randomly fromJ@ L] at the front of the queue than for the oldest message. Hence,
the time to start generating messages of $¥@ a randomly our utility predicts that dropping the message at the head of
chosen destination. Unless otherwise stated, we assdoiaté¢he queue will increase the delivery rate more than dropping
each node a buffer with a capacity of 10 messages. Finallye oldest.
we assume that each time two nodes meet, they have enough order to justify our motivation for the learning process
time (bandwidth) to exchange all data and control messages also compare our HBD policy explicitly to FBD that uses
so we take into consideration only buffer constraints. only collected information per message. Figure 5 shows that

We compare the performance of the various buffer managghen the congestion level increases the difference between
ment policies using the following two metrics: the messageFBD and GBD becomes significant, unlike the case of HBD.

For example, for 30 CBR sources the difference is about 19%

Swe have also performed simulations without any anti-packetar@sm, \\hile HBD differs from GBD only by 2%. These results
from which similar conclusions can be drawn. . . . .

§in future work, we intend to evaluate the effect of message sizh TUrther underline the importance of the history-basedniegy
realistic wireless communication environments. process in order to implement GBD in practice.



four buffer management policies (DF, DO, DL, DY) and
performs close to GBD. Specifically, for 30 sources and
Random Waypoint mobility, HBD's average delivery delay is

[ \\\ g [ o —— N\ < | 24% better than Drop Oldest and 6% worse than GBD. For the
o Sogf | -+ oonom | ZebraNet traces, HBD performs 15% better than Drop Oldest

Delivery Rate (%)

[ — Drop Oldest 4 —+-GBD A ) A
5 Dop Yourgest ] | e and 5% worse than GBD. Finally the highest improvement
YT e e w = = | - was observed for the Taxi trace, where HBD performs 29%

Number of sources
Number of sources.

better than Drop Oldest and only 3% worse than GBD.
Fig. 2.  Average delivery rate foFig. 3. Average delivery rate for the

Random Waypoint mobility. ZebraNet trace. ) =
50 -5 Drop Last ; 5 Drop Last
- —#-Drop Front 1200 - f Crop Front "
1 70 —#-Drop Youngast iggg‘(nunges' , .
! EG"U -=-HBD 5™ | < Drop Oldest q
&0 ~4-GBD > —&-HBD
v 08 8. - Drop Oldest fm- P ’
03 _ s 50 +Drop 8 P
Qo7 308 240 § 600 -
S & U > <
gos [ < 0~
o5 2
b 507 —+-GBD 20 -
204 ~5-Drop Last T 2
3 —&—Drop Front a _m_HBD 20
Qs —+—Drop Youngest 06 B e B 0
02 —+-GBD —4 FBD s o 5 20 -~ « 5 1 5 0 % il 0
< Drop Oldest Number of sources Humber of sources
01 05
—&-HBD ’

5 w15 om0 2% w0 %4 ’ TJumLEerofsouvzgs z ® Flg 7. average denvery delay for thag 8. average deIiVery delay for the
Number of Sources Random Waypoint mobility. ZebraNet trace.

Fig. 5. Comparison of HBD and FBD

8e|ivery rate for Random Waypoint

mobility.

Fig. 4. Average delivery rate for th
Taxi trace.

12000

So far we assumed the sarfid’L value for all generated
messages in different scenarios. In our last scenario, we
the number of sources to 30 and arrange them in three groi
of 10 nodes. Nodes in each group generate messages \

12000

Average Delay (s)
Average Delay (s)

; 4000 5 Drop Last .
TTL values equal to 250, 450 and 650 seconds, respective® e [ e
We range here the buffer size from 10 to 35 messages. (N| kil | i

5 0 15 20 % Eal

that in this scenario we start accounting for HBD's resRlts N T L Hunbe s
650 = 1300 seconds after simulations starts, for convergence.,) _ Fig. 10. Comparison of HBD and
Figure 6 shows that even for this scenario, HBD outperformg; S;)r.acg\./erage delivery delay for thegp delivery delay for Random Way-
the four existing buffer management policies (DF, DO, DL point mobility.

and DY) and performs close to GBD. For example, for buffer

: . nce more, the fact that Drop Oldest has smaller deliver

size equal to 10 messages, HBD delivers 14% messages md)er% than Drop Front can be p'ustified based on our delay

than Drop Front and 3% messages less than GBD. -ay. p ror . J y
utility in Eq.(8). Specifically, in most cases the oldest sagges

; have a greatest number of copies, on average, than the messag
at the front of the queue. Thus, if we apply our delay utility

g0 W to the oldest message, we will get a smaller value than for the
g /;3,4 messages in the front of the queuﬁ(l—m << ﬁ),
' - HBD oldest

2 . . . d Front(t)’

s - Drop Oldest which explains why dropping the oldest message gives a
03 —%— Drop Younges . . .
° e st smaller average delivery delay than dropping the message in

o - Drop Last the front of the queue.
10 15 20 2 20 2 Finally, in order to further emphasize on the importance

Queue Size(messages)

of the learning process we compare again the HBD policy to
Fig. 6. Average delivery rate for Random Waypoint mobilitydadifferent GND and FBD, in terms O_f dellveryl delay also. F|ggre 10
TTL(s). shows that, when congestion level increases, the differenc
between FBD and GBD becomes significant which is not the

. ) 0 )
C. Performance evaluation for delivery delay CH???S (c)ififlfl ?SD];rE(;: éOBCDBE goo/;Jrces, the difference is 30% while

To evaluate the average delivery delay metric, we keep the
same simulations durations and messages generation ste8-aHBD’s Convergence
those used for the delivery rate. Figures 7, 8 and 9 depict then this last part, we look at the time taken by the learn-
average delivery delay for the Random Waypoint model, thieg process to converge. We consider the same simulations
ZebraNet trace, and the Taxi trace, respectively. As in #sec parameters as in Table Il fixing the number of sources to
of delivery rate, GBD gives the best performance for all ¢hrel5. For the HBD policy and for different randomly chosen
mobility patterns. Moreover, the HBD policy outperform&thnodes, Figure 11 shows that as the number of measurements at



-~ -Nodeé
0 ; --~-Node 1

i —— Averagevalue of GBD's Delivery D

- ~ = Node2
oty -~ -Node4
N Node 10

| -~ Node15
i —— Average value of GBD's Delivery Rate utility )

HBD's Delay utility value

HBD's Delivery Rate utility value

‘

.

S eererrrrrsrrreprere | (280esssesppsesessseps | U
Time (s) Time (s)

Fig. 11. HBD’s delivery rate util-Fig. 12. HBD’s delivery delay util-
ity convergence for different randomigy convergence for different randomly [3]
chosen nodes. chosen nodes.

4
elapsed timd’ = 100 increases, the delivery rate utility’s value “
increases and converges to the average value of the GBD®
delivery rate utility, which is equal t06.17. From Figure 11,
one can also extract the convergence times of the delivégy rae]
utility. These values are illustrated in Table Ill. In Figut2,
we depict similar convergence results for delivery deldye T 7,
average delivery delay utility converges 241, the average
value of the HBD's utility. The different convergence times g
are described in Table IV. These results justify the choic{ag]

TABLE Il TABLE IV
THE TIME OF CONVERGENCE OF  THE TIME OF CONVERGENCE OF  [10]
HBD'S DELIVERY RATE UTILITY HBD’S DELIVERY DELAY UTILITY

[11]
[ Node 2 ][ 1100 seconds [ Node 6 [[ 700 seconds|
[ Node 4 [ 1000 seconds [ Node 11 [[ 600 seconds| (12]
[ Node 10 ][ 600 seconds ] [ Node 20 [[ 750 seconds|
[ Node 15 [[ 1150 seconds [ Node 23 [ 700 seconds| [13]

of the time of convergence in V-A. Indeed, in the differenfi4]
simulations scenarios described above, the HBD's uslitéke

less thar « TT'L seconds to converge to the GBD’s averag[és]
utilities values for a fixed elapsed time.

o
VI. CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of buffer mangg}
agement in delay tolerant networks. First, we proposed an
optimal buffer management policy based on global knowled%]
about the network state. Then, we have introduced a disédbu
algorithm that uses statistical learning to approximate tfi1]
required global knowledge of the optimal algorithm. Using
simulations based on a synthetic mobility model (Randopy)
Waypoint), and two real mobility traces (ZebraNet and San
Francisco taxi traces), we showed that our buffer managem
policy based on statistical learning successfully appnates
the performance of the optimal algorithm in all consideregts
narios. Finally, both policies outperform existing padisiwith
respect to delivery rate and delivery delay, in all consder
scenarios.

Note that in this work, we considered that all messagézé]
have the same size. It would be interesting to define buffgs)
management policies that take into account different ngessa
sizes. For example, in case of congestion, the end-to- Q?
delay versus message delivery trade-off could be influence
by the choice of dropping several small messages or one Iargge
message that occupies the entire node’s buffer. (28]

(24]

ACKNOWLEDGMENTS

S TR We thank Michal Piorkowski and Wei-Jen Hsu for pointing
us out to the San Francisco’s taxi cab mobility traces.

REFERENCES

S. Jain, K. Fall, and R. Patra, “Routing in a delay toleéraetwork,” in
Proceedings of ACM SIGCOMMug. 2004.

] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Reting connec-

tivity in developing nations,1EEE Computer 2004.

P. Basu and T. Little, “Networked parking spaces: aettiire and
applications,” inlEEE Vehicular Technology Conference (VT2D02.
M. Papadopouli and H. Schulzrinne, “Seven degrees ofusdion in
mobile ad hoc networks,” ifProceedings of IEEE GLOBECQON2000.
M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peom@erengineering
a wireless virtual social network,” ifroceedings of ACM/IEEE Mobi-
Com 2005.

A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, ahdScott,
“Impact of human mobility on the design of opportunistic fordiag
algorithms,” inProceedings of IEEE INFOCOM2006.

J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Reseactiallenges
and applications for underwater sensor networking,Pmceedings of
the IEEE Wireless Communications and Networking Confexe2@06.
“Delay tolerant networking research groumttp://www.dtnrg.org

A. Lindgren, A. Doria, and O. Schelen, “Probabilisticuting in in-
termittently connected networksSIGMOBILE Mobile Computing and
Communication Reviewol. 7, no. 3, 2003.

A. Vahdat and D. Becker, “Epidemic routing for partiattpnnected ad
hoc networks,” Duke University, Tech. Rep. CS-200006, 2000

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, ¢iEfft routing
in intermittently connected mobile networks: The multiplgggaase,”
to appear in Transactions on Networkingeb. 2008.

X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Perfonceamodeling
of epidemic routing,” inProceedings of IFIP Networking2006.

Z. J. Haas and T. Small, “A new networking model for biokagi
applications of ad hoc sensor networkfEEE/ACM Transactions on
Networking vol. 14, no. 1, pp. 27-40, 2006.

R.Groenevelt, G. Koole, and P. Nain, “Message delay inehéextended
abstract),” inProc. ACM Sigmetrigs2005.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra,f6Raance
analysis of mobility-assisted routing,” iffroceedings of ACM/IEEE
MOBIHOC, 2006.

“The network simulator ns-2 http://www.isi.edu/nsnam/ns/

Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi,d\¢ment data
traces from princeton zebranet deployments,” CRAWDAD Databa
“Cabspotting project, ’http://cabspotting.org/

K. P. Thrasyvoulos Spyropoulos and C. Raghavendra, &ficient
routing scheme for intermittently connected mobile netwdri&sCM
SIGCOMM workshop on Delay Tolerant Networking (WDTN;@®)05.
K. Scott and S. Burleigh, “Bundle protocol specificatioRFC 5050,
November 2007.

A. Lindgren and K. S. Phanse, “Evaluation of queuingigies and
forwarding strategies for routing in intermittently context networks,”
in Proc. of IEEE COMSWARBanuary 2006.

A. Balasubramanian, B. N. Levine, and A. Venkataramabin“routing
as a resource allocation problem,” Rroc. ACM SIGCOMM August
2007.

] A. Krifa, C. Barakat, and T. Spyropoulos, “An optimal jvischeduling

and drop policy for delay tolerant networks,” ia appear in WoWMoM
workshop on Autonomic and Opportunistic CommunicationGAQune
2008.

D. Aldous and J. Fill, “Reversible markov chains and ran-
dom walks on graphs. (monograph in preparationhftp:/stat-
www.berkeley.edu/users/aldous/RWG/book.html

R. Durrett,Probability: Theory and Example2nd ed. Duxbury Press,
1995.

M. V. Thomas Karagiannis, Jean-Yves Le Boudec, “Powev &nd
exponential decay of inter contact times between mobile deyidn
Proc. of ACM/IEEE MobiCom2007.

H. Lilliefors, “On the kolmogorov-smirnov test for nornity with mean
and variance unknown,” Journal of the American Statisticsddiation,
Vol. 62. pp. 399-402, June 1967.

“The mercator projection http://en.wikipedia.org/wiki/Mercatoprojection/



