WATER TREATMENT

- The objective of the municipal water treatment is to provide a potable supply: one that is chemically and microbiologically safe for human consumption.
- For domestic uses, treated water must be aesthetically acceptable-free from apparent turbidity, color, odor and objectionable taste.
- Quality requirements for industrial uses are frequently more stringent than for domestic water supplies. Thus additional treatment may be required by the industry.
- Water quality can be improved both by reducing the number of contaminants that go into the water supply and by cleaning up wastewater –water that already contains contaminants.
- The techniques employed in making water safe for household use and drinking depend strongly on the initial water quality.
- Common treatment methods include advanced oxidation, ion exchange, sedimentation, carbon filtration, sand filtration and disinfection.

TREATMENT OF WATER AND WASTEWATER

A. Drinking Water Quality Standards

Water is evaluated for quality in terms of its:

- (1) Physical Properties
 - turbidity --- suspended particles
 - tastes due to VOC, decomposing organics
 - odors
 - color --- ions, minerals
- (2) Chemical Properties
 - Inorganic and organic compounds dissolved in water which are harmful
 - (3) Microbiological properties
 - pathogens (Coliform bacteria)
- Two categories
 - * primary standards : based on health criteria
 - * secondary standards : based on aesthetic and non-aesthetic characteristics

B. Water Treatment Systems

Purpose : to reduce any risks to human health and to bring raw water up to drinking quality standard

How a water treatment plant be designed depends very much on the quality of the source water!

- e.g. River/stream
 - solids Settleable Nonsettleable
 - bacteria

Lake/Reservoir

- algae
- solids
- bacteria

Groundwater (well water)

- particle free
- lack of fluoride
- bacteria
- hardness

An Overall View of Water Treatment Processes

I. Schematic for Treating River or Stream Water

River or Stream Water \rightarrow Low Lift Pumping \rightarrow Plain Sedimentation \rightarrow Chemical Coagulation & Flocculation \rightarrow Sedimentation \rightarrow Rapid Sand Filtration \rightarrow Chlorination \rightarrow Clearwater Storage Well \rightarrow High Lift Pumping \rightarrow Transmission Line \rightarrow Distribution Network

II. Treatment Schematic for Lake or Reservoir Water

Lake or Reservoir Water \rightarrow Low Lift Pumping \rightarrow Possibly Prechlorination for Taste & Odor Control \rightarrow Chemical Coagulation & Flocculation \rightarrow Rapid Sand Filtration \rightarrow Chlorination Disinfection \rightarrow Clearwater Storage Tank \rightarrow High Lift Pumping to Transmission Line \rightarrow Distribution Network

III. Schematic for Treating Well Water

Well Water (pumps) \rightarrow Chlorine Disinfection \rightarrow Possibly Fluoridation \rightarrow Clearwater Storage Tank \rightarrow High Lift Pumping to Distribution System \rightarrow

OR

Well Water (pumps) \rightarrow Water Softening \rightarrow Chlorination \rightarrow Fluoridation \rightarrow Clearwater Storage Tank \rightarrow High Lift Pumping to Distribution System

General setting :

Low lift pumping --- to take raw water from the intake structure to the site of water treatment plant

Clearwater storage tank --- to allow the treated water to be temporarily stored at the treatment site to equalize the supply and demand for the community

High lift pumping --- to deliver the finish water to the community's distribution system by a large water head (~60 to 85 psi pressure)

Water Treatment Processes:

Plain sedimentation: to allow raw water to settle in a rectangular sedimentation tank for a period of 6-8 hours so that large and settleable suspended solids will be removed. Most of the settled solids are inorganic matter.

Screening: to remove relatively large floating and suspended solids/debris.

Chemical coagulation (in a mixing tank): addition of chemicals (coagulant) in a mixing tank to encourage the small and non-settleable solids (suspended solids) to coagulate into large particles (chemical flocs) that will more easily settle.

Flocculation: a gently mixing process which induces particle collision and allows the formation of large particles of floc. It takes about 15-20 minutes to complete.

Sedimentation or settling tank: to settle out the produced chemical flocs by gravity.

Rapid sand filtration: to filter out those broken chemical flocs which fail to settle in the previous sedimentation tank. The filtered water is normally particle- and turbidity-free.

Water Treatment Processes (Contiuned)

Disinfection or chlorination: to disinfect the filtered water so that all pathogenic bacteria will become killed. Chlorination using chlorine gas (Cl₂), sodium hypochlorite (NaOCl) or calcium hypochlorite $[Ca(OCl)_2]$ is the most commonly used method of disinfection.

Prechlorination: to add a relatively large dose of chlorine (3 to 5 ppm) to water to oxide the taste- and odor-causing chemicals which are produced by the presence of algae, and to kill algae cells.

Fluoridation: Normally groundwater (or well water) is particle free, thus not requiring for coagulation & flocculation process. However, the fluoride may be absent and it is desirable to add fluoride for strengthening the dental care of baby infants.

Water softening: If groundwater contains a high concentration of divalent metal ions (which cause hardness in water), lime (CaO) and soda ash (Na_2CO_3) are used to remove calcium and magnesium from water.