LECTURE 13: Flow measurement in open channels

Figure 8.8 Flow over sharp-crested weir (free-falling nappe and submerged flow)

Water depth above weir => width of the weir

=> unit discharge (width of weir $= \frac{Q}{6} = q$)

Sharp Crested Weir

Figure 9.10 Common sharp-crested weirs: (a) uncontracted horizontal weir, (b) contracted horizontal weir, (c) V-notched weir, and (d) trapezoidal weir

Basic discharge equation for standard, uncontracted horizontal weir

Discharge coefficient Weir length Number of contractions for 2

 $Q = C. (L - 2H/10). H^{3/2}$

Contractions from both sides

For standard contracted horizontal weir

Q =
$$3.33(L - 0.2H)$$
. H^{3/2}
British Units (ft)
Q = $1.84(L - 0.2H)$. H^{3/2}

V-Notched weir

$$Q = C. (\tan \theta/2). H^{5/2}$$