ME 262 BASIC FLUID MECHANICS

Assistant Professor Neslihan Semerci

Lecture 5

(Pipe Flow, Reynolds Number, Forces in Pipe Flow)

18. WATER FLOW IN PIPES

18.1. Important Definitions

Pressure Pipe Flow: Refers to full water flow in closed conduits of circular cross sections under a certain pressure gradient. For a given discharge (Q), pipe flow at any location can be described by the pipe cross section, the pipe elevation, the pressure, and the flow velocity in the pipe.

Elevation (h) of a particular section in the pipe is usually measured with respect to a horizontal reference datum such as mean sea level (MSL).

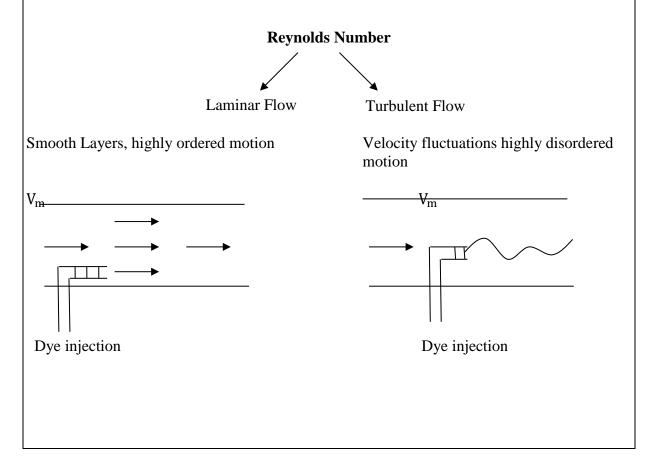
Pressure (P) in the pipe varies from one point to another, but a mean value is normally used at a given cross section.

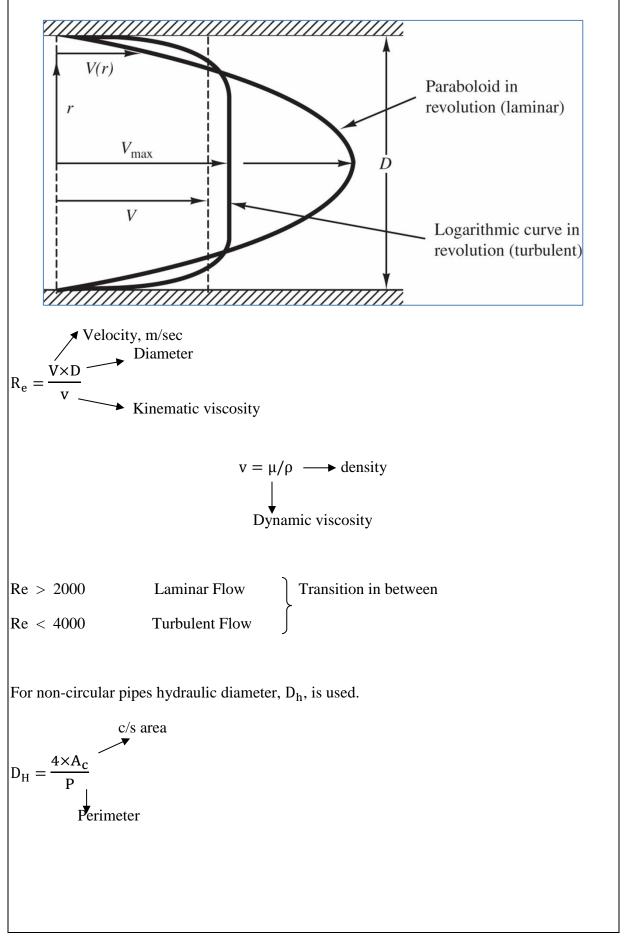
Mean velocity (V) is defined as the discharge (Q) divided by the cross-sectional area (A)

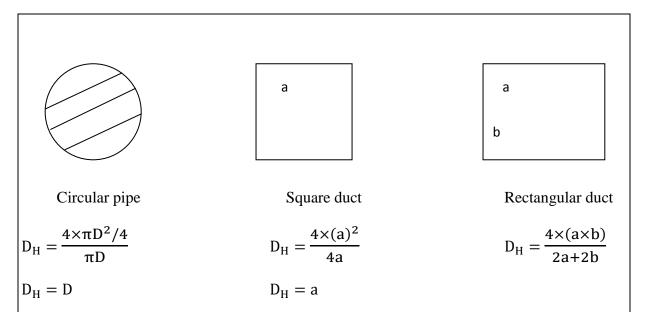
$$V = \frac{Q}{A}$$

18.2. The Reynolds Number

Reynold's Number: It is a dimensionless number to characterize the flow.

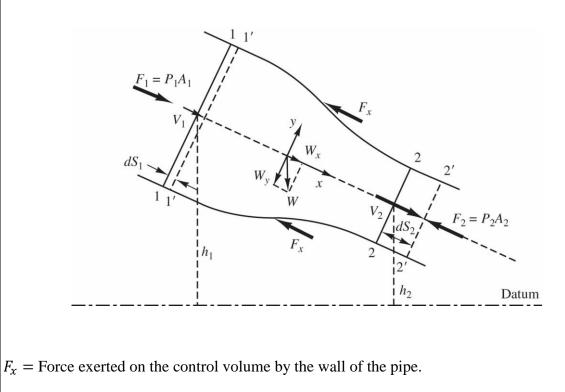






18.2. Forces in Pipe Flow

Below figure shows a section of water flowing in a circular pipe. A control volume is considered between section 1-1 and 2-2. After a short time interval, dt, the mass originally occupying the control volume, has a new position between 1'-1' and 2'-2'.



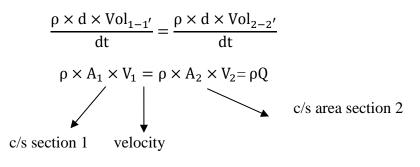
For incompressible and steady flows; mass flux (fluid mass) enters to the control volume

$$= \rho \times d \times Vol_{1-1'}$$

Mass flux leaves the control volume

$$= \rho \times d \times Vol_{2-2'}$$

According to principle of conservation of mass;



or

 $A_1 \times V_1 = A_2 \times V_2$ (Continuity Equation)

Applying Newton's second law to moving mass in the control volume yields

$$\sum \vec{F} = m\vec{a} = m\frac{d\vec{V}}{dt} = \frac{m\vec{V}_2 - m\vec{V}_1}{\Delta t}$$

Along the axial direction of the flow, the external forces exerted on the control volume may be expressed as

$$\sum F_X = P_1 \times A_1 - P_2 \times A_2 - F_X + W_X$$

V₁, V₂, P₁, P₂ are the velocities and pressures at sections 1-1 and 2-2, respectively.

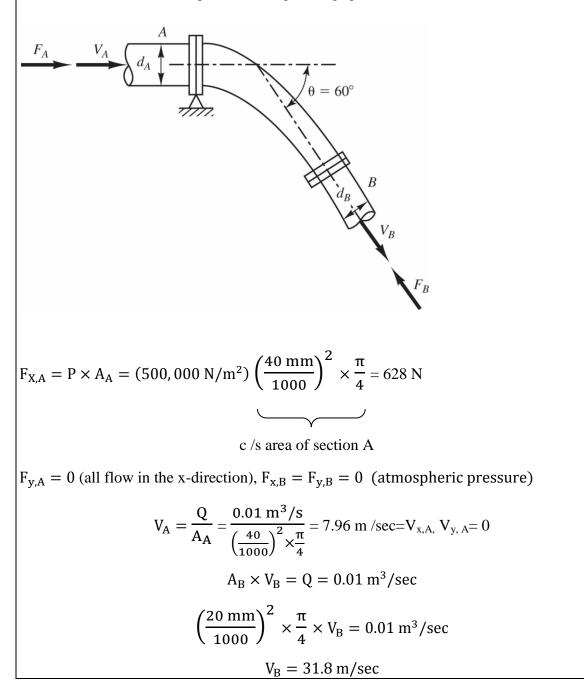
Fx= Axial direction force exerted on the control volume by the wall of the pipe, W_x = Axial component of the weight of the liquid on the control volume.

$$\sum F_{X} = \rho \times Q(V_{X_{2}} - V_{X_{1}})$$
$$\sum F_{y} = \rho \times (V_{y_{2}} - V_{y_{1}})$$
$$\sum F_{z} = \rho \times Q(V_{z_{2}} - V_{z_{1}})$$
Principle of conservation of momentum

General writing in vector quantities;

$$\sum \vec{F} = \rho Q (\vec{V}_2 - \vec{V}_1)$$

Example 18.1 (Example 3.2, Hwang, 4th Ed.): A horizontal nozzle discharges 0.01 m^3 /sec of water at 4° C into the air. The suplu pipe's diameter (dA=40 mm) is twice as large as the nozzle diamater (dB=20 mm). The nozzle is held in place by a hinge mechanism. Determine the magnitude and direction of the reaction force at the hinge, if the gauge pressure at A is 500,000 N/m². (assume weigth of the hinge is negligible).



$$V_{X,B} = (31.8 \text{ m/sec}) \times (\cos 60^{0}) = 15.9 \text{ m/sec}$$

$$V_{y,B} = (31.8 \text{ m/sec}) \times (\sin 30^{0}) = 27.5 \text{ m/sec}$$

$$\sum F_{X} = \rho \times Q(V_{XB} - V_{XA}) \rightarrow (+)$$

$$628 \text{ N} - F_{X} = (998 \text{ kg/m}^{3}) \times (0.01) \times (15.9 - 7.96)$$

$$F_{X} = 549 \text{ N} \leftarrow (-)$$

(Both forces and velocities are vector quantities that must adhere to the sign convention. Because the sign of F_x ended up positive, our assumed direction was correct).

$$\sum F_{y} = \rho \times Q(V_{yB} - V_{yA}) \quad \uparrow \quad (+)$$

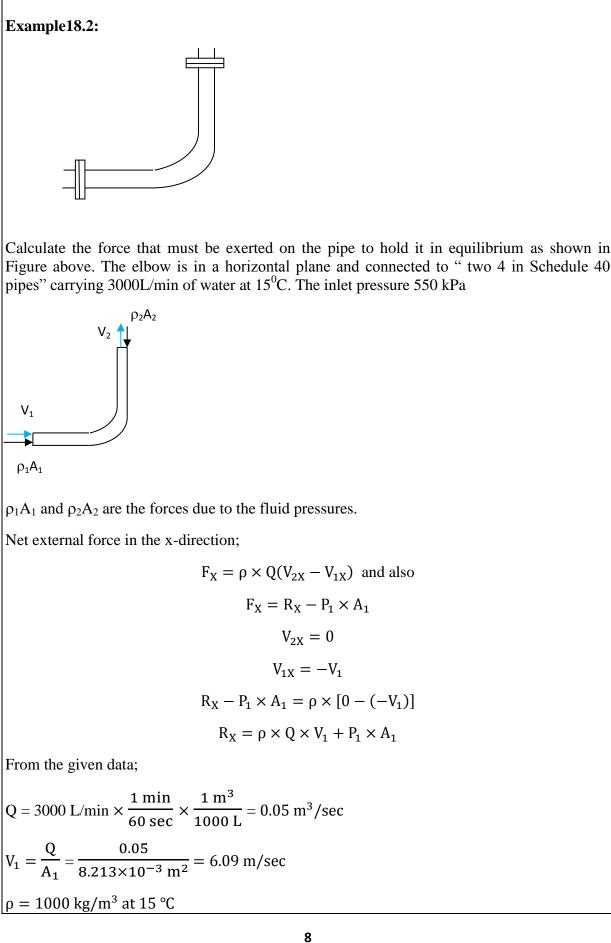
Assume F_y is negative

$$-F_y = (998 \text{ kg/m}^3) \times (0.01) \times (-27.5 - 0)$$

 $F_y = 274 \text{ N} \downarrow$

The resultant force is;

$$F = [(549 \text{ N})^2 + (274 \text{ N})^2]^{1/2} = 614 \text{ N}$$
$$\theta = \tan^{-1} \left(\frac{F_y}{F_x}\right) = 26.5^{\circ}$$



$$\begin{split} R_X &= (1000 \text{ kg/m}^3) \times (0.05 \text{ m}^3/\text{sec}) \times (6.09 \text{ m/sec}) + (550 \text{ N/m}^2) \times 8.21 \times 10^{-3} \text{m}^2 \\ &= 4517 \text{ N} \\ &= 4822 \text{ N} \\ \\ \text{In y-direction, the equation for the net external force;} \\ F_y &= \rho \times Q(\vec{V}_{2y} - \vec{V}_{1y}) \\ &\qquad R_y = F_y + P_2 \times A_2 \\ &\qquad F_y = R_y - P_2 \times A_2 \\ &\qquad R_y = \rho \times Q(\vec{V}_{2y} - \vec{V}_{1y}) + P_2 \times A_2 \\ &\qquad R_y = (1000 \text{ kg/m}^3) \times (V_2 - 0) + P_2 \times A_2 \\ &\qquad V_{2y} = V_2 V_{1y} = 0 , \end{split}$$

If energy losses in the elbow is neglected $\rightarrow V_2 = V_1$, $\rho_2 = \rho_1$ since the sizes of the inlet and oulet are equal.

 $\rho \times Q \times V_2 = 305 \text{ N}$ $P_2 \times A_2 = 4517 \text{ N}$ $R_y = (305 + 4517) = 4822 \text{ N}$

The forces R_x and R_y are the reactions caused at the elbow as the fluid turns 90⁰.

Example 18.3 (Pr. 3.3.1, Hwang 4th Edition):

с

A jet of water exits a nozzle heading in the positive x-direction and strikes a flat plate at a 90° angle. The water then sprays through a 360° arc (y- and z-directions) exiting the plate. If the nozzle has a 20-cm diameter and the flow has a 3.44 m/sec velocity, what is the force exerted on the plate by the water?

$$\sum F_{x} = \rho \times Q(v_{x}, out, -v_{x}, in)$$
/s area = $\frac{\pi \times D^{2}}{4} = \frac{\pi \times (20/100)^{2}}{4}$

$$Q = v \times A$$

$$= (3.44 \text{ m/sec}) \times \pi \times \frac{\left(\frac{20}{100}\right)^2}{4} = 0.108 \text{ m}^3/\text{sec}$$

$$F_x = (998 \text{ kg/m}^3) \times (0.108 \text{ m}^3/\text{sec}) \times (0 - 3.44 \text{ m/sec})$$

$$-F_x = -371 \text{ N}$$

$$F_y = 0 \qquad F_z = 0$$

$$F_x = 371 \text{ N}$$

Since all flow in control volume is x-directed and the out flow is zero in the y and z direction since the spray is equal in all.