\qquad
CSE 246 Analysis of Algorithms
Spring 2012 Midterm Exam
12.04.2011 Thursday, Duration: 90 minutes

Q1	Q2	Q3	Q4	Q5	Q6	B1	SUM
$/ 12$	$/ 10$	$/ 20$	$/ 20$	$/ 20$	$/ 18$	$/ 6$	$/ 100$

Q-1. (12 pts) Solve the following recurrences. Express your answer using $\Theta(\cdot)$ notation. (a) $(6 \mathrm{pts}) T(\mathrm{n})=2 \mathrm{~T}(\mathrm{n}-2), T(0)=1, T(1)=1$.

By backward substitution,
$T(n)=2^{n / 2}$ if n is even
$T(n)=2^{n / 2} 2^{-1 / 2}$ if n is odd.
$\mathrm{T}(\mathrm{n}) \in \Theta\left(2^{\mathrm{n} / 2}\right)=\Theta\left((\sqrt{2})^{\mathrm{n}}\right)$
(b) $(6 \mathrm{pts}) \mathrm{T}(\mathrm{n})=4 \mathrm{~T}([n / 2])+\mathrm{n}, \mathrm{T}(1)=1$.

By backward substitution or Master's theorem
$\mathrm{T}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{2}\right)$

Q-2. (10 pts) Design a decrease-by-half algorithm for computing $\left\lfloor\log _{2} n\right\rfloor$ and determine its time efficiency.

Algorithm LogFloor (n)
//Input: A positive integer n
//Output: Returns $\left\lfloor\log _{2} n\right\rfloor$
if $\mathrm{n}=1$ return 0
else return LogFloor ($\lfloor\boldsymbol{n} / 2\rfloor$) +1
The recurrence relation for the number of additions is
$A(n)=A\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\mathbf{1}$ for $\boldsymbol{n}>1, A(\mathbf{1})=\mathbf{0}$
Its solution is $A(n)=\left\lfloor\log _{2} n\right\rfloor \in \Theta(\log n)$
\qquad
Q-3. (20 pts) Consider the following variant of MergeSort: instead of splitting the list into two halves, we split it into three thirds. Then we recursively sort each third and merge them. This is called three-way MergeSort.
a. (6 pts) Write a pseudocode for three-way MergeSort. You may assume that you are given an algorithm, Merge(B,C,A) which merges two sorted arrays (B,C) into one sorted array (A).

Mergesort3(A[0..n-1]):
if $\mathrm{n} \leq 1$, then return ($\mathrm{A}[0 . . \mathrm{n}-1]$).
Let $k=\lceil n / 3\rceil$ and $m=\lceil 2 n / 3\rceil$.
Return Merge3(Mergesort3(A[0..k-1]), Mergesort3(A[k..m-1]), Mergesort3(A[m..n-1]),A[0..n1]).

Merge3(B,C,D,X):
Merge(B,C,E); Merge(E,D,X).
b. (4 pts) What is the total number of key comparisons performed in the worst case, while merging three sorted lists, each of length $n / 3$, to one sorted list? Also express your answer using $\mathbf{O}(\cdot)$ notation.
$\mathrm{n} / 3+\mathrm{n} / 3-1=2 \mathrm{n} / 3-1$ for $\operatorname{Merge}(\mathrm{B}, \mathrm{C}, \mathrm{E})$;
$2 n / 3+n / 3-1=n-1$ for Merge(E,D,X);
Total: 5n/3-2 $\in \mathbf{O}(\mathrm{n})$
c. (3 pts) Let $\mathrm{T}(\mathrm{n})$ denote the worst-case running time of three-way MergeSort on an array of size n. Write a recurrence relation for $T(n)$.
$\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 3)+\mathrm{O}(\mathrm{n})$
d. (3 pts) Solve the recurrence relation in part (c). Express your answer using $\mathbf{O}(\cdot)$ notation.

By Master theorem, $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{nlogn})$
e. (2 pts) Is the three-way MergeSort asymptotically faster than insertion sort? (Yes or No)
f. (2 pts) Is the three-way MergeSort asymptotically faster than ordinary MergeSort? (Yes or No)

Q-4 (20 pts) We have two input arrays, an array A with m elements, and an array B with n elements, where $\boldsymbol{n} \geq \boldsymbol{m}$. There may be duplicate elements. We want to decide if every element of B is an element of A.
(a) (6 pts$)$ Describe a brute-force algorithm. What is the worst-case time complexity?

We compare each element of B with each element of A. If there is no match for any element of B, algorithm stops returning false. Worst-case time complexity is $\mathbf{O}(\mathrm{nm})$.
(b) (14 pts) Describe an algorithm to solve this problem in $\boldsymbol{O}(\boldsymbol{n} \log m)$ worst case time. (Hint: You may apply instance simplification.)

First we sort A by MergeSort (in $\mathbf{O}(\mathrm{mlog} \mathrm{m})$ time). Then for each element of B we do a binary search in the sorted list of A (in $O(n \log m)$ time).

The total worst-case running time is $\mathbf{O}((\mathrm{m}+\mathrm{n}) \log \mathrm{m})=\mathbf{O}(\mathrm{n} \log \mathrm{m})$.

Q-5 (20 pts) We have an input array A with $\mathrm{n}(\mathrm{n}>1)$ elements.
(a) (10 pts) Describe a $O(n)$ worst-case time algorithm to find two elements $x, y \in A$ such that $|x-y| \geq|u-v|$ for all $u, v \in A$.

For this, we have to find minimum and maximum of the list. We store a temporary variable (max or min, initially $-\infty$ or $+\infty$). We compare it with the elements one by one, and update the value of the temporary variable after each comparison. This algorithm makes n-1
comparisons to find each. $2 \mathrm{n}-2 \in \mathrm{O}$ (n)
There is also a divide and conquer algorithm that finds min and max simultaneously using at most $3 \mathrm{n} / 2$ comparisons (As we described in the class).
(b) (10 pts) Describe a $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ worst-case time algorithm to find two elements $\boldsymbol{x}, \boldsymbol{y} \in A$ such that $|x-y| \leq|u-v|$ for all $u, v \in A$.

For this, firstly we sort the numbers using Mergesort ($\mathrm{O}(\mathrm{nlogn})$). Then x and y must be consecutive elements in the sorted order. We go through the sorted list and find the smallest difference between two neighboring elements (this is $\mathbf{O}(\mathrm{n})$).
$\mathrm{O}(\mathrm{n} \log \mathrm{n})+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Name: \qquad
Q-6 (18 pts) Consider the following almost sorted list:
$\mathrm{L}=1,2,4,6,5,8,10,13,12,15$
(a) (5 pts) Construct a Binary Search Tree by inserting the elements of L from left to right, one by one. In the worst-case, how many comparisons is needed for searching a key in the constructed tree.

8 comparisons.
(b) (8 pts) In order to decrease the worst-case complexity of searching a key, describe an alternative algorithm for BST construction by changing the insertion sequence of the elements. In the new BST, how many comparisons is needed for searching a key (in the worst-case)?

First insert the medium element. Extract that element from the list, then divide the remaining list into two sub-lists, and insert the medium element of each sub-lists. And so on, insert all the elements recursively.

4 comparisons.
(c) (5 pts) Describe another alternative way to decrease worst-case complexity of searching a key, by transforming ordinary BST to another data structure.

We may transform unbalanced search tree to a balanced one, such as using AVL tree or redblack tree structures.

B-1 (Bonus Question - 6 pts , no partial credit): Solve the following recurrence relation:
$\mathrm{T}(n)=2 \mathrm{~T}(\sqrt[3]{n})+1, \mathrm{~T}(3)=1$.

Put $\mathrm{n}=3^{\mathrm{k}}$. Accordingly, $\mathrm{T}\left(3^{\mathrm{k}}\right)=2 \mathrm{~T}\left(3^{\mathrm{k} / 3}\right)+1, \mathrm{~T}\left(3^{1}\right)=1$.
Let $\mathrm{G}(\mathrm{k})$ denote $\mathrm{T}\left(3^{\mathrm{k}}\right)$. Accordingly, $\mathrm{G}(\mathrm{k})=2 \mathrm{G}(\mathrm{k} / 3)+1, \mathrm{G}(1)=1$.
Using any technique (Master theorem, backward subs., etc), $\mathrm{G}(\mathrm{k})=\mathrm{O}\left(2^{\log _{3} k}\right)$, from which it follows that $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(2^{\log _{3} \log _{3} n}\right)$.

