Name: ID:

CSE 246 Analysis of Algorithms
Spring 2012 Midterm Exam
12.04.2011 Thursday, Duration: 90 minutes

Qi1 Q2 Q3 Q4 Q5 Q6 B1 SUM

Q-1. (12 pts) Solve the following recurrences. Express your answer using ®(+) notation.
(a) (6 pts) T(n)=2T(n-2), T(0)=1, T(1)=1.

By backward substitution,
T(n)=2"if n is even

T(n)=2">2"7if n is odd.
T(n) €EO(2"%)=O((V2)")

(b) (6 pts) T(n)=4T(In/2])+n, T(1)=1.
By backward substitution or Mastet's theorem

T(n) EO(n?)

Q-2. (10 pts) Design a dectease-by-half algorithm for computing |log, n| and determine its
time efficiency.

Algorithm LogFloor (n)
//Input: A positive integer n
//Output: Returns [log, n|

if n =1 return 0

else return LogFloor (In/2]) + 1

The recurrence relation for the number of additions is
An) =A (EJ) +1forn>1,4(1) =0
Its solution is A(n) = |log, n| € O(log n)

Page1/ 4

Name: ID:

Q-3. (20 pts) Consider the following variant of MergeSort: instead of splitting the list into two
halves, we split it into three thirds. Then we recursively sort each third and merge them. This
is called three-way MergeSort.

a. (6 pts) Write a pseudocode for three-way MergeSort. You may assume that you are given an
algorithm, Merge(B,C,A) which merges two sorted arrays (B,C) into one sorted array (A).

Mergesort3(A[0..n-1]):
if n <1, then return (A[0..n-1]).

Let k = [n/3] and m = [2n/3].
Return Merge3(Mergesort3(A[0..k-1]), Mergesort3(A[k..m-1]), Mergesort3(A[m..n-1]),A[0..n-

1]).
Merge3(B,C,D,X):
Merge(B,C,E); Merge(E,D,X).

b. (4 pts) What is the total number of key comparisons performed in the worst case, while
merging three sorted lists, each of length n/3, to one sorted list? Also express your answer
using O(*) notation.

n/3+n/3 - 1 = 2n/3 -1 for Merge(B,C,E);
2n/3+n/3 - 1=n-1for Merge(E,D,X);
Total: 5n/3 - 2 € O(n)

c. (3 pts) Let T(n) denote the worst-case running time of three-way MergeSort on an array of
size n. Write a recurrence relation for T(n).

T(n)=3T(n/3)+O0(n)

d. (3 pts) Solve the recurrence relation in part (c). Express your answer using O(*) notation.

By Master theorem, T(n)=0O(nlogn)

e. (2 pts) Is the three-way MergeSort asymptotically faster than insertion sort? (Yes or No)

f. (2 pts) Is the three-way MergeSort asymptotically faster than ordinary MergeSort? (Yes or
No)

Page2 / 4

Name: ID:

Q-4 (20 pts) We have two input arrays, an array A with m elements, and an array B with n
elements, where n > m. There may be duplicate elements. We want to decide if every element
of B is an element of A.

(a) (6 pts) Describe a brute-force algorithm. What is the worst-case time complexity?

We compare each element of B with each element of A. If there is no match for any element
of B, algorithm stops returning false. Worst-case time complexity is O(nm).

(b) (14 pts) Describe an algorithm to solve this problem in O(nlogm) worst case time. (Hint:
You may apply instance simplification.)

First we sort A by MergeSort (in O(mlog m) time). Then for each element of B we do a binary
search in the sorted list of A (in O(n log m) time).

The total worst-case running time is O((m + n) log m) = O(n log m).

Q-5 (20 pts) We have an input array A4 with n (n > 1) elements.

(a) (10 pts) Describe a O(n) worst-case time algorithm to find two elements x,y € A such that
|x —y| = |u—v| for all u,v € A.

For this, we have to find minimum and maximum of the list. We store a temporary variable
(max or min, initially -o0 or +0). We compare it with the elements one by one, and update the
value of the temporary variable after each comparison. This algorithm makes n-1
comparisons to find each. 2n-2 € O(n)

There is also a divide and conquer algorithm that finds min and max simultaneously using at
most 3n/2 comparisons (As we described in the class).

(b) (10 pts) Describe a O(n log n) worst-case time algorithm to find two elements x,y € A
such that |[x — y| < |lu—v| for allu,v € A.

For this, firstly we sort the numbers using Mergesort (O(nlogn)). Then x and y must be
consecutive elements in the sorted order. We go through the sorted list and find the smallest
difference between two neighboring elements (this is O(n)).

O(nlogn)+0(n)=0(nlogn)

Page 3 / 4

Name: ID:

Q-6 (18 pts) Consider the following almost sorted list:
L=1,24,6,5,8,10,13,12,15

(a) (5 pts) Construct a Binary Search Tree by inserting the elements of L from left to right,
one by one. In the worst-case, how many comparisons is needed for searching a key in the
constructed tree.

O
B0
@
ORI
(2)
8 comparisons.

(b) (8 pts) In order to decrease the worst-case complexity of searching a key, describe an
alternative algorithm for BST construction by changing the insertion sequence of the
elements. In the new BST, how many comparisons is needed for searching a key (in the
worst-case)?

First insert the medium element. Extract that element from the list, then divide the remaining
list into two sub-lists, and insert the medium element of each sub-lists. And so on, insert all

the elements recursively.

ORNONOXO,
OO0 (1)

4 comparisons.

(c) (5 pts) Describe another alternative way to decrease worst-case complexity of searching a
key, by transforming ordinary BST to another data structure.

We may transform unbalanced search tree to a balanced one, such as using AVL tree or red-
black tree structures.

B-1 (Bonus Question - 6 pts, no partial credit): Solve the following recurrence relation:

Tn)=2T@ /n)+1, T(3)=1.

Put n=3". Accordingly, T(3")=2T3"’)+1, T(3")=1.
Let G(k) denote T(3"). Accordingly, G(k)=2G(k/3)+1, G(1)=1.

Using any technique (Master theorem, backward subs., etc), G(k)=0(2!°83¥), from which it
follows that T(n)=0(2!0831083 1),

Page 4 / 4

