
Name: _ ID: _

Page 1 / 4

CSE 246 Analysis of Algorithms
Spring 2012 Midterm Exam

12.04.2011 Thursday, Duration: 90 minutes

Q1 Q2 Q3 Q4 Q5 Q6 B1 SUM

/12 /10 /20 /20 /20 /18 /6 /100

Q-1. (12 pts) Solve the following recurrences. Express your answer using Θ(∙) notation.
(a) (6 pts) T(n)=2T(n-2), T(0)=1, T(1)=1.

By backward substitution,

T(n)=2n/2 if n is even
T(n)=2n/2 2-1/2 if n is odd.
T(n) ∈ Θ(2n/2)= Θ((√૛)n)

(b) (6 pts) T(n)=4T(⌈࢔/૛⌉)+n, T(1)=1.

By backward substitution or Master's theorem

T(n) ∈ Θ(n2)

Q-2. (10 pts) Design a decrease-by-half algorithm for computing ⌊܏ܗܔ૛ and determine its ⌊࢔
time efficiency.

Algorithm LogFloor (n)
//Input: A positive integer n
//Output: Returns ⌊܏ܗܔ૛ ⌊࢔
if n = 1 return 0
else return LogFloor (⌊࢔/૛⌋) + 1

The recurrence relation for the number of additions is
(࢔)࡭ = ࡭ ቀቔ࢔

૛
ቕቁ + ૚ for ࢔ > (૚)࡭ ,1 = ૙

Its solution is (࢔)࡭ = ૛܏ܗܔ⌋ Θ(log n) ∋ ⌊࢔

Name: _ ID: _

Page 2 / 4

Q-3. (20 pts) Consider the following variant of MergeSort: instead of splitting the list into two
halves, we split it into three thirds. Then we recursively sort each third and merge them. This
is called three-way MergeSort.

a. (6 pts) Write a pseudocode for three-way MergeSort. You may assume that you are given an
algorithm, Merge(B,C,A) which merges two sorted arrays (B,C) into one sorted array (A).

Mergesort3(A[0..n-1]):
if n ≤ 1, then return (A[0..n-1]).
Let ࢑ = ࢓ and ⌈૜/࢔⌉ = ⌈૛࢔/૜⌉.
Return Merge3(Mergesort3(A[0..k-1]), Mergesort3(A[k..m-1]), Mergesort3(A[m..n-1]),A[0..n-
1]).

Merge3(B,C,D,X):
Merge(B,C,E); Merge(E,D,X).

b. (4 pts) What is the total number of key comparisons performed in the worst case, while
merging three sorted lists, each of length n/3, to one sorted list? Also express your answer
using O(∙) notation.

n/3+n/3 - 1 = 2n/3 - 1 for Merge(B,C,E);

2n/3 + n/3 - 1 = n - 1 for Merge(E,D,X);

Total: 5n/3 - 2 ∈ O(n)

c. (3 pts) Let T(n) denote the worst-case running time of three-way MergeSort on an array of
size n. Write a recurrence relation for T(n).

T(n)=3T(n/3)+O(n)

d. (3 pts) Solve the recurrence relation in part (c). Express your answer using O(∙) notation.

By Master theorem, T(n)=O(nlogn)

e. (2 pts) Is the three-way MergeSort asymptotically faster than insertion sort? (Yes or No)

f. (2 pts) Is the three-way MergeSort asymptotically faster than ordinary MergeSort? (Yes or
No)

Name: _ ID: _

Page 3 / 4

Q-4 (20 pts) We have two input arrays, an array ࡭ with ࢓ elements, and an array ࡮ with ࢔
elements, where ࢔ ≥ There may be duplicate elements. We want to decide if every element .࢓
of ࡮ is an element of ࡭.

(a) (6 pts) Describe a brute-force algorithm. What is the worst-case time complexity?

We compare each element of B with each element of A. If there is no match for any element
of B, algorithm stops returning false. Worst-case time complexity is O(nm).

(b) (14 pts) Describe an algorithm to solve this problem in ࢔)ࡻ ܏ܗܔ :worst case time. (Hint (࢓
You may apply instance simplification.)

First we sort A by MergeSort (in O(mlog m) time). Then for each element of B we do a binary
search in the sorted list of A (in O(n log m) time).

The total worst-case running time is O((m + n) log m) = O(n log m).

Q-5 (20 pts) We have an input array ࡭ with n (n > 1) elements.

(a) (10 pts) Describe a O(n) worst-case time algorithm to find two elements ࢞, ࢟ ∈ such that ࡭
|࢞ − ࢟| ≥ |࢛ − ࢜| for all ࢛, ࢜ ∈ .࡭

For this, we have to find minimum and maximum of the list. We store a temporary variable
(max or min, initially -∞ or +∞). We compare it with the elements one by one, and update the
value of the temporary variable after each comparison. This algorithm makes n-1
comparisons to find each. 2n-2 ∈ O(n)

There is also a divide and conquer algorithm that finds min and max simultaneously using at
most 3n/2 comparisons (As we described in the class).

(b) (10 pts) Describe a O(n log n) worst-case time algorithm to find two elements ࢞, ࢟ ∈ ࡭
such that |࢞ − ࢟| ≤ |࢛ − ࢜| for all ࢛, ࢜ ∈ .࡭

For this, firstly we sort the numbers using Mergesort (O(nlogn)). Then x and y must be
consecutive elements in the sorted order. We go through the sorted list and find the smallest
difference between two neighboring elements (this is O(n)).

O(nlogn)+O(n)=O(nlogn)

Name: _ ID: _

Page 4 / 4

Q-6 (18 pts) Consider the following almost sorted list:
L = 1, 2, 4, 6, 5, 8, 10, 13, 12, 15

(a) (5 pts) Construct a Binary Search Tree by inserting the elements of L from left to right,
one by one. In the worst-case, how many comparisons is needed for searching a key in the
constructed tree.

8 comparisons.

(b) (8 pts) In order to decrease the worst-case complexity of searching a key, describe an
alternative algorithm for BST construction by changing the insertion sequence of the
elements. In the new BST, how many comparisons is needed for searching a key (in the
worst-case)?

First insert the medium element. Extract that element from the list, then divide the remaining
list into two sub-lists, and insert the medium element of each sub-lists. And so on, insert all
the elements recursively.

4 comparisons.

(c) (5 pts) Describe another alternative way to decrease worst-case complexity of searching a
key, by transforming ordinary BST to another data structure.

We may transform unbalanced search tree to a balanced one, such as using AVL tree or red-
black tree structures.

B-1 (Bonus Question - 6 pts, no partial credit): Solve the following recurrence relation:

T(࢔)=2T(૜࢔√)+1, T(3)=1.

Put n=3k. Accordingly, T(3k)=2T(3k/3)+1, T(31)=1.
Let G(k) denote T(3k). Accordingly, G(k)=2G(k/3)+1, G(1)=1.

Using any technique (Master theorem, backward subs., etc), G(k)=O(૛܏ܗܔ૜ ࢑), from which it
follows that T(n)=O(૛܏ܗܔ૜ ૜܏ܗܔ .(࢔

