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CSE 246 Analysis of Algorithms 
Spring 2012 Midterm Exam 

12.04.2011 Thursday, Duration: 90 minutes 

Q1 Q2 Q3 Q4 Q5 Q6 B1 SUM 

/12 /10 /20 /20 /20 /18 /6 /100 
 

Q-1. (12 pts) Solve the following recurrences. Express your answer using Θ(∙) notation. 
(a) (6 pts) T(n)=2T(n-2), T(0)=1, T(1)=1. 
 
By backward substitution, 
 
T(n)=2n/2 if n is even 
T(n)=2n/2 2-1/2 if n is odd. 
T(n) ∈ Θ(2n/2)= Θ((√૛)n) 
 
 
 
(b) (6 pts) T(n)=4T(⌈࢔/૛⌉)+n, T(1)=1. 
 
By backward substitution or Master's theorem 
 
T(n) ∈ Θ(n2) 
 
 
 
 
 
Q-2. (10 pts) Design a decrease-by-half algorithm for computing ⌊܏ܗܔ૛  and determine its ⌊࢔
time efficiency. 
 
Algorithm LogFloor (n) 
//Input: A positive integer n 
//Output: Returns ⌊܏ܗܔ૛  ⌊࢔
if n = 1 return 0 
else return LogFloor (⌊࢔/૛⌋) + 1 
 
The recurrence relation for the number of additions is 
(࢔)࡭ = ࡭ ቀቔ࢔

૛
ቕቁ + ૚ for ࢔ > (૚)࡭ ,1 = ૙ 

Its solution is (࢔)࡭ = ૛܏ܗܔ⌋  Θ(log n) ∋ ⌊࢔
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Q-3. (20 pts) Consider the following variant of MergeSort: instead of splitting the list into two 
halves, we split it into three thirds. Then we recursively sort each third and merge them. This 
is called three-way MergeSort. 

a. (6 pts) Write a pseudocode for three-way MergeSort. You may assume that you are given an 
algorithm, Merge(B,C,A) which merges two sorted arrays (B,C) into one sorted array (A). 

Mergesort3(A[0..n-1]): 
if n ≤ 1, then return (A[0..n-1]). 
Let ࢑ = ࢓ and ⌈૜/࢔⌉ = ⌈૛࢔/૜⌉. 
Return Merge3(Mergesort3(A[0..k-1]), Mergesort3(A[k..m-1]), Mergesort3(A[m..n-1]),A[0..n-
1]). 
 
Merge3(B,C,D,X): 
Merge(B,C,E); Merge(E,D,X). 
 

b. (4 pts) What is the total number of key comparisons performed in the worst case, while 
merging three sorted lists, each of length n/3, to one sorted list? Also express your answer 
using O(∙) notation. 

n/3+n/3  -  1  =  2n/3  - 1  for Merge(B,C,E); 

2n/3 + n/3  -  1 = n - 1 for Merge(E,D,X); 

Total: 5n/3  -  2   ∈ O(n) 

c. (3 pts) Let T(n) denote the worst-case running time of three-way MergeSort on an array of 
size n. Write a recurrence relation for T(n). 

T(n)=3T(n/3)+O(n) 

 

 

d. (3 pts) Solve the recurrence relation in part (c). Express your answer using O(∙) notation. 

By Master theorem, T(n)=O(nlogn) 

 

 

 

e. (2 pts) Is the three-way MergeSort asymptotically faster than insertion sort? (Yes or No) 

f. (2 pts) Is the three-way MergeSort asymptotically faster than ordinary MergeSort? (Yes or 
No) 
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Q-4 (20 pts) We have two input arrays, an array ࡭ with ࢓ elements, and an array ࡮ with ࢔ 
elements, where ࢔ ≥  There may be duplicate elements. We want to decide if every element .࢓
of ࡮ is an element of ࡭. 

(a) (6 pts) Describe a brute-force algorithm. What is the worst-case time complexity? 

We compare each element of B with each element of A. If there is no match for any element 
of B, algorithm stops returning false. Worst-case time complexity is O(nm). 

 

 

(b) (14 pts) Describe an algorithm to solve this problem in ࢔)ࡻ ܏ܗܔ  :worst case time. (Hint (࢓
You may apply instance simplification.)  

First we sort A by MergeSort (in O(mlog m) time). Then for each element of B we do a binary 
search in the sorted list of A (in O(n log m) time).  

The total worst-case running time is O((m + n) log m) = O(n log m). 

 

 

 

  

Q-5 (20 pts) We have an input array ࡭ with n (n > 1) elements. 

(a) (10 pts) Describe a O(n) worst-case time algorithm to find two elements ࢞, ࢟ ∈  such that ࡭
|࢞ − ࢟| ≥  |࢛ − ࢜| for all ࢛, ࢜ ∈  .࡭

For this, we have to find minimum and maximum of the list.  We store a temporary variable 
(max or min, initially -∞ or +∞). We compare it with the elements one by one, and update the 
value of the temporary variable after each comparison. This algorithm makes n-1 
comparisons to find each. 2n-2 ∈ O(n) 

There is also a divide and conquer algorithm that finds min and max simultaneously using at 
most 3n/2 comparisons (As we described in the class). 

(b) (10 pts) Describe a O(n log n) worst-case time algorithm to find two elements ࢞, ࢟ ∈  ࡭
such that |࢞ − ࢟| ≤  |࢛ − ࢜| for all ࢛, ࢜ ∈  .࡭

For this, firstly we sort the numbers using Mergesort (O(nlogn)). Then x and y must be 
consecutive elements in the sorted order. We go through the sorted list and find the smallest 
difference between two neighboring elements (this is O(n)).  

O(nlogn)+O(n)=O(nlogn) 
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Q-6 (18 pts) Consider the following almost sorted list: 
L = 1, 2, 4, 6, 5, 8, 10, 13, 12, 15  
 

(a)  (5 pts) Construct a Binary Search Tree by inserting the elements of L from left to right, 
one by one. In the worst-case, how many comparisons is needed for searching a key in the 
constructed tree. 

 

8 comparisons. 

(b) (8 pts) In order to decrease the worst-case complexity of searching a key, describe an 
alternative algorithm for BST construction by changing the insertion sequence of the 
elements.  In the new BST, how many comparisons is needed for searching a key (in the 
worst-case)? 

First insert the medium element. Extract that element from the list, then divide the remaining 
list into two sub-lists, and insert the medium element of each sub-lists. And so on, insert all 
the elements recursively. 

 

4 comparisons. 

(c) (5 pts) Describe another alternative way to decrease worst-case complexity of searching a 
key, by transforming ordinary BST to another data structure.    

We may transform unbalanced search tree to a balanced one, such as using AVL tree or red-
black tree structures. 

B-1 (Bonus Question - 6 pts, no partial credit):  Solve the following recurrence relation: 

T(࢔)=2T( ૜࢔√ )+1, T(3)=1. 
 

Put n=3k. Accordingly,  T(3k)=2T(3k/3)+1, T(31)=1. 
Let G(k) denote T(3k). Accordingly, G(k)=2G(k/3)+1, G(1)=1. 
 
Using any technique (Master theorem, backward subs., etc), G(k)=O(૛܏ܗܔ૜ ࢑), from which it 
follows that T(n)=O(૛܏ܗܔ૜ ૜܏ܗܔ  .(࢔
 


