\qquad
CSE 246 Analysis of Algorithms
Spring 2016 Midterm
Duration: 105 minutes

Q1	Q2	Q3	Q4	Q5	Q6	SUM
$/ 16$	$/ 22$	$/ 20$	$/ 10$	$/ 20$	$/ 20$	$/ 100$

Q-1. ($2 \times 8=16$ pts) For each of the following, indicate whether it is true or false, by giving very short reasoning.
(i) $\log _{2} n^{2}+1 \in O(n)$.
(ii) $\sqrt{n(n+1)} \in \Omega(n)$.
(iii) $\boldsymbol{n}^{n-1} \in \Theta\left(n^{n}\right)$.
(iv) $\log _{2} \sqrt{n}$ and $\left(\log _{2} n\right)^{2}$ are of the same asymptotical order.
(v) 4^{n} has higher asymptotical order than $2^{n}+n^{3}$.
(vi) $3 \cdot \log _{2} n^{2}$ has higher aymptotical order than $2 \cdot \log _{3} \sqrt[3]{n}$.
(vii) For any function $f(n)$, it is true that $f(n) \in \Theta(f(2 n))$
(viii) For any function $f(n)$, it is true that $f(n) \in \Theta(2 f(n))$

Q-2. (a - 12 pts) How many lines, as a function of n does the following program print? Write a recurrence relation and solve it by backward substitution. You may assume n is a power of 2 .

```
function f(n)
if n<= 1:
    print_line("Take it easy")
else:
        for i=1 to n
            f(n/2)
    end for
```

$(\mathrm{b}-10 \mathrm{pts})$ What is the time complexity of the following function? Indicate your answer in $\Theta(\cdot)$ form.

```
void func2(int n) {
    int i = n;
    int x = 0;
    int count = 0;
    while (i > 1){
            x = x + 2;
            i = i/3;
    }
    for(int j = 1; j <= x; j++)
            for(int k = 1; k <= x; k++)
                    count = count + 1;
}
```

Q-3. (20 pts) Consider the following algorithm.

```
Algorithm Stooge-sort (A[0..n-1)
//Input: Array A of n numbers
//Output: A is sorted in increasing order
if n=2 and A[0]>A[1], then swap(A[0],A[1])
if n>2 then {
    Stooge-sort(A[0..ceil(2n/3)]) // sort first two-thirds.
    Stooge-sort(A[floor(n/3)..n]) // sort last two-thirds.
    Stooge-sort(A[0..ceil(2n/3)]) // sort first two-thirds again.
}
(a-6 pts) Let T(n) denote the worst case number of comparisons (A[0]>A[1]) made for an input array
of n numbers. Give a recurrence relation for T(n)
```

(b-6 pts) Solve the recurrence relation using Master theorem.
(c -8 pts) Is Stooge-sort correct? Prove your answer. If it is correct, would you use it in an application? Why?

Q-4. (10 pts) Consider the following decrease-and-conquer algorithm to check connectivity of a graph defined by its adjacency matrix.

```
Algorithm Connected(A[0..n - 1, 0..n - 1])
//Input: Adjacency matrix A[0..n - 1, 0..n - 1]) of an undirected graph G
//Output: 1 (true) if G is connected and O (false) if it is not
if n == 1 return 1 //one-vertex graph is connected by definition
else {
    if not Connected(A[0..n - 2, 0..n - 2]) return 0
    else {
        for j <- 0 to n - 2 do
            if A[n - 1, j] == 1 return 1
        return 0
    }
}
```

This code does not work. Explain why! (This is a pseudocode, so do not say "syntax error"!)

Q-5. (20 pts) Given an unsorted array of n numbers, the problem is to determine the number of pairs whose product is equal to M. (For example, for the array $2,4,3,10,6,8,12$ and $M=24$, the answer is " 3 " because $2 * 12,3 * 8$, and $4 * 6$ are all equal to 24 .) The answer is zero if there is no such pair.
(a-7 pts) Design a brute-force algorithm for this problem. (Give a pseudocode) Describe its time complexity.
(b-13 pts) Design a more efficient algorithm with \mathbf{O} (nlogn) time complexity. (Give a step-by-step description. Don't give a pseudocode.)

Q-6 (20 pts) (a -15 pts) Given n points in the plane, design a Divide-and-Conquer algorithm to count the number of pairs of points such that the distance between the points is at most twice the distance between the closest pair of points. Explain the conquer step clearly. (Hint: First compute the closest pair, and you may assume that closest pair algorithm described in the class is given to you. You don't need to explain it again.)
(b-5 pts) Write a recurrence relation for the time complexity of your algorithm and solve it using Master's Theorem.

