
© 2001-2004 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

1

Remote Method
Invocation

Training Courses: Java, JSP, Servlets, Struts, & JSF:
http://courses.coreservlets.com

www.corewebprogramming.com Remote Method Invocation 2

Agenda

• Steps to build an RMI application

• Running and compiling an RMI program

• Example: Retrieving a String remotely

• Example: Performing numerical integration
remotely

• Enterprise RMI configuration

• RMI Applets

www.corewebprogramming.com May 19, 2010 JDP RMI

RMI Overview

• Simpler but less powerful variation of
Common Object Request Broker
Architecture (CORBA) that only works with
Java Systems

• Object-oriented version of Remote
Procedure Calls (RPC)

www.corewebprogramming.com Remote Method Invocation 4

RMI: Remote Method Invocation

• Idea
– Distribute objects across different machines to take

advantage of hardware and dedicated software

– Developer builds network service and installs it on
specified machine

– User requests an instance of a class using URL syntax

– User uses object as though it were a regular, local object

• Network connections happen automatically behind
the scenes

• Java “serialization” lets you pass complex data
structures over the network without writing code to
parse and reconstruct them

www.corewebprogramming.com Remote Method Invocation 5

RMI Operations

• Stub Operation
– Package identifier of remote object

– Package method identifier

– Marshall parameters

– Send package to server skeleton

• Skeleton Operation
– Unmarshall Parameters

– Calls return value or exception

– Marshall method return

– Send package to client stub

www.corewebprogramming.com Remote Method Invocation 6

RMI Details

1. Starting: Build Four Required Classes
a. An interface for the remote object

• Used by both the client and the server

b. The RMI client

• This will look up the object on the remote server, cast it to the
type of the interface from Step 1, then use it like a local object.

• Note that as long as there is a “live” reference to the remote
object, an open network connection is maintained. The
connection will be automatically closed when the remote
object is garbage collected on the client.

c. The object implementation

• This object needs to implement the interface of Step a, and will
be used by the server

d. The RMI server

• This will create an instance of the object from Step c and
register it with a particular URL

www.corewebprogramming.com Remote Method Invocation 7

RMI Details, cont.

2. Compile and Run the System
a. Compile client and server.

• Compiles the remote object interface and implementation
automatically

b. Generate the client stub and the server skeleton

• Use the rmic compiler on the remote object implementation
for this.

– The client system will need the client class, the interface
class, and the client stub class

– If the client is an applet, these three classes must be
available from the applet’s home machine

– The server system will need the server class, the remote
object interface and implementation, and the server
skeleton class

www.corewebprogramming.com Remote Method Invocation 8

RMI Details, cont.

2. Compile and Run the System, cont.
c. Start the RMI registry

• This only needs to be done once, not for each remote object

• The current version of RMI requires this registry to be running
on the same system as server

d. Start the server

• This step must be on the same machine as the registry of
step c

e. Start the client

• This step can be done on an arbitrary machine

www.corewebprogramming.com Remote Method Invocation 9

A Very Simple RMI Example:
The Four Required Classes

1. The Interface for the Remote Object
– The interface should extend java.rmi.Remote, and

all its methods should throw
java.rmi.RemoteException

import java.rmi.*;

/** The RMI client will use this interface directly.

 * The RMI server will make a real remote object that

 * implements this, then register an instance of it

 * with some URL.

 */

public interface Rem extends Remote {

 public String getMessage() throws RemoteException;

}

www.corewebprogramming.com Remote Method Invocation 10

Simple Example,
Required Classes, cont.

2. The RMI Client
– Look up the object from the host using Naming.lookup, cast it

to the appropriate type, then use it like a local object

import java.rmi.*; // For Naming, RemoteException, etc.

import java.net.*; // For MalformedURLException

import java.io.*; // For Serializable interface

public class RemClient {

 public static void main(String[] args) {

 try {

 String host = (args.length > 0) ? args[0] : "localhost";

 Rem remObject = (Rem)Naming.lookup("rmi://" + host + "/Rem");

 System.out.println(remObject.getMessage());

 } catch(RemoteException re) {

 System.out.println("RemoteException: " + re);

 } catch(NotBoundException nbe) {

 System.out.println("NotBoundException: " + nbe);

 } catch(MalformedURLException mfe) {

 System.out.println("MalformedURLException: " + mfe);

 }

 }

}

www.corewebprogramming.com Remote Method Invocation 11

Simple Example,
Required Classes, cont.

3. The Remote Object Implementation
– This class must extend UnicastRemoteObject and

implement the remote object interface defined earlier

– The constructor should throw RemoteException

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

public class RemImpl extends UnicastRemoteObject

 implements Rem {

 public RemImpl() throws RemoteException {}

 public String getMessage() throws RemoteException {

 return("Here is a remote message.");

 }

}

www.corewebprogramming.com Remote Method Invocation 12

Simple Example,
Required Classes, cont.

4. The RMI Server
– The server builds an object and register it with a particular URL

– Use Naming.rebind (replace any previous bindings) or
Naming.bind (throw AlreadyBoundException if a previous
binding exists)

import java.rmi.*;

import java.net.*;

public class RemServer {

 public static void main(String[] args) {

 try {

 RemImpl localObject = new RemImpl();

 Naming.rebind("rmi:///Rem", localObject);

 } catch(RemoteException re) {

 System.out.println("RemoteException: " + re);

 } catch(MalformedURLException mfe) {

 System.out.println("MalformedURLException: " + mfe);

 }

 }

}

www.corewebprogramming.com Remote Method Invocation 13

Simple Example: Compiling and
Running the System

1. Compile the Client and the Server

Prompt> javac RemClient.java

– This compiles the Rem interface automatically

Prompt> javac RemServer.java

– This compiles the RemImpl object implementation automatically

2. Generate the Client Stub and Server Skeleton

Prompt> rmic RemImpl

– This builds RemImpl_Stub.class and
RemImpl_Skeleton.class

– The client machine needs Rem.class, RemClient.class,
and RemImpl_Stub.class

– The server machine needs Rem.class, RemImpl.class,
RemServer.class, and RemImpl_Skeleton.class

www.corewebprogramming.com Remote Method Invocation 14

Simple Example: Compiling and
Running the System, cont.

3. Start the RMI Registry

Server> rmiregistry

– On Unix systems you would probably add “&” to put the registry
process in the background

– You can also specify a port number; if omitted, port 1099 is used

4. Start the Server

Server> java RemServer

– Again, on Unix systems you would probably add “&” to put the
process in the background

5. Start the Client
Client> java RemClient hostname

Here is a remote message.

www.corewebprogramming.com Remote Method Invocation 15

A Better RMI Example,
Numerical Integration

1. Simple Iterative Program
to Calculate Sums:

2. Use to Approximate
Numeric Integrals of the Form:

3. MidPoint Rule:

4. Motivation for RMI

– Since smaller rectangles typically give better results, this can often
be very cpu-intensive

– RMI can make it available on a fast floating-point box

www.corewebprogramming.com Remote Method Invocation 16

Numerical Integration,
Example, cont.

public class Integral {

 /** Returns the sum of f(x) from x=start to x=stop, where the function f
* is defined by the evaluate method of the Evaluatable object.

 */

 public static double sum(double start, double stop,

 double stepSize,

 Evaluatable evalObj) {

 double sum = 0.0, current = start;

 while (current <= stop) {

 sum += evalObj.evaluate(current);

 current += stepSize;

 }

 return(sum);

 }

 public static double integrate(double start, double stop,

 int numSteps,

 Evaluatable evalObj) {

 double stepSize = (stop - start) / (double)numSteps;

 start = start + stepSize / 2.0;

 return(stepSize * sum(start, stop, stepSize, evalObj));

 }

}

www.corewebprogramming.com Remote Method Invocation 17

Numerical Integration,
Example, cont.

/** An interface for evaluating functions y = f(x) at a specific

 * value. Both x and y are double-precision floating-point

 * numbers.

 */

public interface Evaluatable {

 public double evaluate(double value);

}

www.corewebprogramming.com Remote Method Invocation 18

Integration Example:
Four Required Classes

1. The RemoteIntegral Interface
• The interface shared by the client and server

import java.rmi.*;

public interface RemoteIntegral extends Remote {

 public double sum(double start, double stop, double stepSize,

 Evaluatable evalObj)

 throws RemoteException;

 public double integrate(double start, double stop,

 int numSteps, Evaluatable evalObj)

 throws RemoteException;

www.corewebprogramming.com Remote Method Invocation 19

Integration Example:
Four Required Classes, cont.

2. The Remote Integral Client
• Sends the RemoteIntegral an Evaluatable to integrate

public class RemoteIntegralClient {

 public static void main(String[] args) {

 try {

 String host = (args.length > 0) ? args[0] : "localhost";

 RemoteIntegral remoteIntegral =

 (RemoteIntegral)Naming.lookup("rmi://" + host + "/RemoteIntegral");
for(int steps=10; steps<=10000; steps*=10) {

 System.out.println("Approximated with " + steps + " steps:" +

 "\n Integral from 0 to pi of sin(x)=" +

 remoteIntegral.integrate(0.0, Math.PI, steps, new Sin()));

 }

 System.out.println("'Correct' answer using Math library:" +

 "\n Integral from 0 to pi of sin(x)=" +

 (-Math.cos(Math.PI) - -Math.cos(0.0)));

 } catch(RemoteException re) {

 System.out.println("RemoteException: " + re);

 } catch(NotBoundException nbe) {

 System.out.println("NotBoundException: " + nbe);

 } catch(MalformedURLException mfe) {

 System.out.println("MalformedURLException: " + mfe);

 }

 }

}

www.corewebprogramming.com Remote Method Invocation 20

Integration Example:
Four Required Classes, cont.

2. The Remote Integral Client, cont.
• Evaluatable Sin function

import java.io.Serializable;

class Sin implements Evaluatable, Serializable {

 public double evaluate(double val) {

 return(Math.sin(val));

 }

 public String toString() {

 return("Sin");

 }

}

www.corewebprogramming.com Remote Method Invocation 21

Integration Example:
Four Required Classes, cont.

3. The Remote Integral Implementation
• Remote object that calculates the integral value

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

public class RemoteIntegralImpl extends UnicastRemoteObject

 implements RemoteIntegral {

 public RemoteIntegralImpl() throws RemoteException {}

 public double sum(double start, double stop, double stepSize,

 Evaluatable evalObj) {

 return(Integral.sum(start, stop, stepSize, evalObj));

 }

 public double integrate(double start, double stop, int numSteps,

 Evaluatable evalObj) {

 return(Integral.integrate(start, stop, numSteps, evalObj));

 }

}

www.corewebprogramming.com Remote Method Invocation 22

Integration Example:
Four Required Classes, cont.

4. The Remote Integral Server
• Creates the RemoteIntegral and registers it with

the rmi registry

import java.rmi.*;

import java.net.*;

public class RemoteIntegralServer {

 public static void main(String[] args) {

 try {

 RemoteIntegralImpl integral = new RemoteIntegralImpl();

 Naming.rebind("rmi:///RemoteIntegral", integral);

 } catch(RemoteException re) {

 System.out.println("RemoteException: " + re);

 } catch(MalformedURLException mfe) {

 System.out.println("MalformedURLException: " + mfe);

 }

 }

}

www.corewebprogramming.com Remote Method Invocation 23

Integration Example: Compiling
and Running the System

1. Compile the Client and the Server

Prompt> javac RemoteIntegralClient.java
Prompt> javac RemoteIntegralServer.java

2. Generate the Client Stub and Server Skeleton

Prompt> rmic –v1.2 RemoteIntegralImpl

– Client requires: RemoteIntegral.class,
RemoteIntegralClient.class and
RemoteIntegralImpl_Stub.class

– Server requires: RemoteIntegral.class,
RemoteIntegralImpl.class, and
RemoteIntegralServer.class

– If the server and client are both running JDK 1.1, use the -v1.1
switch to produce the RMI 1.1 skeleton stub,
RemoteIntegralImpl_Skeleton, required by the server

www.corewebprogramming.com Remote Method Invocation 24

Integral Example: Compiling
and Running the System, cont.

3. Start the RMI Registry
 Prompt> rmiregistry

4. Start the Server
 Prompt> java RemoteIntegralServer

5. Start the Client
Prompt> java RemoteIntegralClient

Approximated with 10 steps:

 Integral from 0 to pi of sin(x)=2.0082484079079745

Approximated with 100 steps:

 Integral from 0 to pi of sin(x)=2.0000822490709877

Approximated with 1000 steps:

 Integral from 0 to pi of sin(x)=2.0000008224672983

Approximated with 10000 steps:

 Integral from 0 to pi of sin(x)=2.00000000822436
...

www.corewebprogramming.com Remote Method Invocation 25

Enterprise RMI Configuration

• Stub files need to be placed on a HTTP
server for downloading

– In Java 2, the RMI 1.2 protocol does not require the
skeleton

• Client must install an RMISecurityManager
to load the RMI classes remotely

 System.setSecurityManager(new RMISecurityManager());

• Client requires a policy file to connect to
registry and HTTP server

www.corewebprogramming.com Remote Method Invocation 26

Policy File for Client

grant {

 // rmihost - RMI registry and the server

 // webhost - HTTP server for stub classes

 permission java.net.SocketPermission

 "rmihost:1024-65535", "connect";

 permission java.net.SocketPermission

 "webhost:80", "connect";

};

– Need to grant permission to ports 1024-65535 on the server

• The server communicates with the rmiregistry (and client)
on a randomly selected source port

– Alternatively, can set policies in java.policy located in
JAVA_HOME/lib/security/

www.corewebprogramming.com Remote Method Invocation 27

Enterprise RMI,
Remote Integral, Example

public class RemoteIntegralClient2 {

 public static void main(String[] args) {

 try {

 System.setSecurityManager(new RMISecurityManager());

 String host = (args.length > 0) ? args[0] : "localhost";

 RemoteIntegral remoteIntegral =

 (RemoteIntegral)Naming.lookup("rmi://" + host +

 "/RemoteIntegral");

 for(int steps=10; steps<=10000; steps*=10) {

 System.out.println
 ("Approximated with " + steps + " steps:" +

 "\n Integral from 0 to pi of sin(x)=" +

 remoteIntegral.integrate(0.0, Math.PI,

 steps, new Sin()));

 }

 ...

 } catch(RemoteException re) {

 System.out.println("RemoteException: " + re);

 }
 ...
}

www.corewebprogramming.com Remote Method Invocation 28

Enterprise Example: Compiling
and Running the System

1. Compile the Client and the Server
 Prompt> javac RemoteIntegralClient2.java

 Prompt> javac RemeteIntegralServer.java

2. Generate the Client Stub and Server Skeleton
 Prompt> rmic –v1.2 RemoteIntegralImpl

3. Place the files on the correct machines

www.corewebprogramming.com Remote Method Invocation 29

Enterprise Example: Compiling
and Running the System, cont.

4. Start the HTTP Server
• Place RemoteIntegral_Stub.class,

RemoteIntegeral.class, and
Evaluatable.class on an HTTP server

• Verify that you can access the files through a browser

5. Start the RMI Registry
 Server> /somedirectory/rmiregistry

• Make sure that none of the class files are in the directory in
which you started the registry or available through the
classpath

6. Start the Server
Server> java -Djava.rmi.server.codebase=http://webhost/rmi/

 RemoteIntegralServer

– Server must be started on same host as rmiregistry

www.corewebprogramming.com Remote Method Invocation 30

Enterprise Example: Compiling
and Running the System, cont.

7. Start the Client

 Client> java -Djava.security.policy=rmiclient.policy

 RemoteIntegralClient2 rmihost

 Approximated with 10 steps:

 Integral from 0 to pi of sin(x)=2.0082484079079745

 Approximated with 100 steps:

 Integral from 0 to pi of sin(x)=2.0000822490709877

 ...

– The rmihost is where server in which the rmiregistry
was started

www.corewebprogramming.com Remote Method Invocation 31

An RMI Applet

• Applet does not require a RMI Security
Manager

• Applet can only access server in which
class files were loaded
– RMI Registry and remote object server must be the same

HTTP host in which the applet was loaded

• RMI 1.1 stub protocol not properly
supported in IE

• RMI 1.2 stub protocol require Java Plug-In
or Netscape 6

www.corewebprogramming.com Remote Method Invocation 32

RMI Applet, Example

...

import javax.swing.*;

public class RemoteIntegralApplet extends JApplet

 implements ActionListener {

 private Evaluatable[] shapes;

 private RemoteIntegral remoteIntegral;

 private JLabel result;

 private JTextField startInput, stopInput, stepInput;

 private JComboBox combo;

 public void init() {

 String host = getCodeBase().getHost();

 try {

 remoteIntegral =

 (RemoteIntegral)Naming.lookup("rmi://" + host +

 "/RemoteIntegral");

 } catch(RemoteException re) {

 reportError("RemoteException: " + re);

 }

 ...

www.corewebprogramming.com Remote Method Invocation 33

RMI Applet, Example

 ...

 public void actionPerformed(ActionEvent event) {

 try {

 int steps = Integer.parseInt(stepInput.getText());

 double start = Double.parseDouble(startInput.getText());

 double stop = Double.parseDouble(stopInput.getText());

 showStatus("Calculating ...");

 Evaluatable shape = (Evaluatable)combo.getSelectedItem();

 double area = remoteIntegral.integrate(start, stop,

 steps, shape);

 result.setText(Double.toString(area));

 showStatus("");

 } catch(NumberFormatException nfe) {

 reportError("Bad input: " + nfe);

 } catch(RemoteException re) {

 reportError("RemoteException: " + re);

 }

 }

}

www.corewebprogramming.com Remote Method Invocation 34

RMI Applet, Result

Applet that communicates to a

remote object through RMI in Netscape 6

www.corewebprogramming.com Remote Method Invocation 35

Summary

• RMI is a pure Java-based protocol for
communicating with remote objects

• Register (bind) and look-up remote objects in a
registry

• Java 2 no longer requires the skeleton class
needed with the RMI 1.1 protocol

• Enterprise RMI configuration requires a RMI
Security Manager and client policy file for
permissions

© 2001-2004 Marty Hall, Larry Brown http://www.corewebprogramming.com

Web
core

programming

36

Questions?

