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Revenue Equivalence
Game

¢ Which auction? To some extent, it doesn’t matter... TheOry
Online

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent private
valuation for a single good at auction, each drawn from cumulative
distribution F'. Then any two auction mechanisms in which

in equilibrium, the good is always allocated in the same way; and
any agent with valuation 0 has an expected utility of 0;

both yield the same expected revenue, and both result in any bidder with
valuation v making the same expected payment.
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Revenue Equivalence
Game

¢ Which auction? To some extent, it doesn’t matter... TheOry
Online

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent private
valuation for a single good at auction, each drawn from cumulative
distribution F'. Then any two auction mechanisms in which

in equilibrium, the good is always allocated in the same way; and
any agent with valuation 0 has an expected utility of 0;

both yield the same expected revenue, and both result in any bidder with
valuation v making the same expected payment.

In fact, this even holds beyond IPV and single good.
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First and Second-Price Auctions

e The k™ order statistic of a distribution: the expected value of Galne
the k™-largest of n draws. TheOf}’
e For n IID draws from [0, V.4, ], the k™ order statistic is
n+1—k
—vmal“
n+1
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e Thus in a second-price auction, the seller’s expected revenue is
n—1
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First and Second-Price Auctions

o The k™ order statistic of a distribution: the expected value of Game
the k™-largest of n draws. Theory
e For n IID draws from [0, V.4, ], the k™ order statistic is
n+1—k
— 7 Unaz-
n+1

e Thus in a second-price auction, the seller’s expected revenue is
n—1
n—HUmam-

e First and second-price auctions satisfy the requirements of the

revenue equivalence theorem
e every symmetric game has a symmetric equilibrium
e in a symmetric equilibrium of this auction game, higher bid <
higher valuation
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Applying Revenue Equivalence
PPYINg q Game

e Thus, a bidder in a FPA must bid his expected payment Th@Olﬁy
conditional on being the winner of a second-price auction

e this conditioning will be correct if he does win the FPA; otherwise,
his bid doesn’t matter anyway

e if v; is the high value, there are then n — 1 other values drawn
from the uniform distribution on [0, v;]

e thus, the expected value of the second-highest bid is the
first-order statistic of n — 1 draws from [0, v;]:

n—l—l—kvmaw: (n—l)—i—l—(l)(vi):n—lvi

n+1 (n—1)+1 n

e This shows how we derived our earlier claim about n-bidder
first-price auctions.
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Proving Revenue Equivalence
Game

Theory

® X (vi|s): i’s ex interim allocation probability given type v;, Oril;
nime

everyone following equilibrium strategy s

e p;(vs]s): ¥’s ex interim expected payment

Theorem (Bayes—Nash Equilibrium Characterization)

When values are drawn from a continuous joint distribution F' and
agents are risk neutral, a strategy profile s is in Bayes—Nash equilibrium
only if for all i:

(monotonicity) x;(v;|s) is monotone non-decreasing, and

(payment identity) p;(vi|s) = vixi(vils) — [, x(z|s)dz + pi(0]s),
where often p;(0|s) = 0. If s is onto then the converse also holds.
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Proof
Game

Theory

The proof! proceeds in three parts:

e s is a Bayes—Nash equilibrium if the characterization holds and s
is onto;

® s is a Bayes—Nash equilibrium only if monotonicity holds; and
¢ s is a Bayes—Nash equilibrium only if the payment identity holds.

We consider the special case where the support of each agent’s
distribution is [0, 00). To reduce notation we assume p;(0|s) = 0.

'The proof follows an elegant version by Jason Hartline; see
www.eecs.northwestern.edu/~hartline/amd.pdf.
We also use figures adapted from that proof, with permission.
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(1) s is BNE if characterization holds, s is onto
Game

Theory

If i deviates from s and takes action s;(?;) rather than s;(v;), i gets
utility

Wi (Uil 8) = vizg(Vils) — pi(@ils).
Note that ¢ can play any action in this way because s is onto. The
strategy profile s is in equilibrium if for all 7 and all v; and 7,

Ui, (Vi] 8) > Ui, (D3] ).
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(1) s is BNE if characterization holds, s is onto
Game

Theory

% (vils)

Consider some arbitrary, monotonic allocation rule.
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(1) s is BNE if characterization holds, s is onto

;% (vils)
14
% (vils)
0
(%3

x:(T3]s)

Game
Theory

v; (03] 8)

U U

i’s surplus for playing as type v; and v;. (We consider 0; < v;; the

opposite case follows from a similar argument.)
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(1) s is BNE if characterization holds, s is onto

Game
Theory
uniliime
pi(vils) pi(vils)
1 1
% (vils)

x:(0i]s)

0 , 0 N

i’s expected payment for playing as type v; and v;.
Recall: p;(v]s) = v;x;(vils) — [;" x(z]s)dz.
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(1) s is BNE if characterization holds, s is onto
Game

Theory

i, (V3] 5) Ui v, (3] 5)
1 1
A (vils)
(03] s)
0 | 0| }
v; 0; v;

i’s expected utility for playing as type v; and ©;.
Recall: w;,, (0;]s) = vix;(vi]s) — pi(0ils).
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(1) s is BNE if characterization holds, s is onto
Game

Theory
Ui w; (V] 8) — i 0, (Vi]5)

% (vils)
(03l s)

t
U Ui

Difference in expected utility between following s and deviating.
This difference is nonnegative by monotonicity.
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(2) s is BNE only if monotonicity holds
BNE implies Vv; and v}, u; ,, (vi|$) > w;, (vi]s). Expanding, GTaII]ne
Cory

v; % (vi]s) — pi(vils) > v (vj]s) — pi(v)]s).

Game Theory Course: Jackson, Leyton-Brown & Shoham Revenue Equivalence



(2) s is BNE only if monotonicity holds

BNE implies Vv; and v}, u; ,, (vi|$) > w;, (vi]s). Expanding, Game

, , Theory
v X (vi]s) — Pz‘(Ui|S) > vix;(vg]s) — pi(vi|8)'

Consider two values z; and z,. Subbing in v; = 2, v] = 25 and
v; = 22, v, = z1, we obtain two inequalities:

v = zl,vé =2 = 2x(xnls) - Pz(22| 5) > 2xi(2ls) —Pi(21|5)3
v=2,0, =2 = z1x5(als) — pi(zls) > z21%(2ls) — pi(z]s).
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(2) s is BNE only if monotonicity holds

BNE implies Vv; and v}, u; ,, (vi|$) > w;, (vi]s). Expanding, Game

, , Theory
v X (vi]s) — Pz‘(Ui|S) > vix;(vg]s) — pi(vi|8)'

Consider two values z; and z,. Subbing in v; = 2, v] = 25 and
v; = 22, v, = z1, we obtain two inequalities:

v = zl,vé =2 = 2x(xnls) - Pz(22| 5) > 2xi(2ls) —Pi(31|5)3
v=2,0, =2 = z1x5(als) — pi(zls) > z21%(2ls) — pi(z]s).

Adding them and canceling p; terms we have

22%(22|8) + 214 (21]5) > 224:(21]8) + 2146(22]5)
(22 — 21)(%i(22]5) — x(21]5)) = 0
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(2) s is BNE only if monotonicity holds

BNE implies Vv; and v}, u; ,, (vi|$) > w;, (vi]s). Expanding, Game

, , Theory
v X (vi]s) — Pz‘(Ui|S) > vix;(vg]s) — pi(vi|8)'

Consider two values z; and z,. Subbing in v; = 2, v] = 25 and

v; = 22, v, = z1, we obtain two inequalities:

vi=2,0 =2 = 2x(als) - pilels) = wx(als) - pilals);
v=2,0, =2 = z1x5(als) — pi(zls) > z21%(2ls) — pi(z]s).

Adding them and canceling p; terms we have
2%(22ls) + 214(21]) = 222(21s) + 214 (22])
(22 — 21)(%(22]s) — %:(=1]s)) 2 0

Thus, 25 — z; > 0 implies x;(22|s) — x;(21]s) > 0. In other words,
x;(+|s) must be monotone non-decreasing.
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3) s is BNE only if payment identity holds
(3) y if pay y G

Theory

Recall our two inequalities from Step (2):

V; = Zlﬂ’; =2z = 227G(22|5) - Pi(z2|3) > nx(2ls) — Pi(zl|5);
v = 2,0 =21 = ax(als) - pi(als) > z1x(2ls) — pizls).

Solve each for p;(22]s) — pi(z1]s):
22(%(22]s) = x(21]s)) = pi(zls)—pi(zals) = z1(x(22]s) —x(=1]s))

We now have an upper bound and a lower bound on the difference
in expected payments for types z; and z;.
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3) s is BNE only if payment identity holds
(3) y if pay y G

Theory

Recall our two inequalities from Step (2):

) = pi(22]s) = zxi(21]s) — pi(z1]s);
) = pi(z1ls) > z14(22]s) — pilzals).

vi= 2,0 =2 = 2X(zls
vi =z, =2 = z2x(als
Solve each for p;(22]s) — pi(z1]s):

22(A(22ls)=x(21]s)) = pi(zls)—pi(zals) = z1(x(22]s) —x(=ls))

We now have an upper bound and a lower bound on the difference
in expected payments for types z; and z;.

We can visualize this...
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(3) s is BNE only if payment identity holds

Game
Theory
22(%(22]3) — x:(21]9)) z1(x(22]s) — x(2109))
el ] -/ (el
X (21]s) /| % (211s)
0 0 |
21 22 21 22

The upper bound and lower bound on the payment difference.

29(%(228) — % (2118)) > pilzals) — pi(21ls) > 21(X(22ls) — % (21]5))
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3) s is BNE only if payment identity holds
(3) y if pay y G

Theory

pi(z2ls) = pi(=1ls)

14
% (22ls) —
i (z1]s)
0 T T
Z1 z2

The only payment rule that satisfies these upper and lower bounds
for all pairs of types z; and z; has payment difference exactly equal
to the area to the left of the allocation rule between x;(z1|s) and

%(72ls)-
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3) s is BNE only if payment identity holds
(3) y if pay y G

Theory

pi(z2ls) = pi(=1ls)

14
% (22ls) —
i (z1]s)
0 T T
Z1 z2

The only payment rule that satisfies these upper and lower bounds
for all pairs of types z; and z; has payment difference exactly equal
to the area to the left of the allocation rule between x;(z1|s) and

X (22|s). The payment identity follows by taking z; = 0 and 2z, = v;.
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Conclusions
Game

Theory

If two mechanisms have the same allocation rule, they need to
have (essentially) the same payment rule too.

A key corollary: all efficient auctions yield the same revenue in
equilibrium.

This applies to some pretty strange auction types: 3rd price,
auctions in which losers have to pay, etc.

e Do note: we need risk neutrality for revenue equivalence.
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