CSE 817 Fall 2016 Assignment #1

Due: October 24^{th} , 2016, 14:30

1 2x2 Normal-Form Game

Consider the following game:

		Player 2	
		С	D
Player 1	Α	-16,0	12,12
	В	8,8	0,-16

Where the first number in each square is the payoff of player 1 and the second number is player 2's payoff.

- 1. [3 pts] Find all Pareto optimal pure strategy profiles.
- 2. [3 pts] Find the pure strategy Nash equilibria.
- 3. [3 pts] Which of the above equilibria do you prefer? Suppose player 2 has decided to play according to one of the equilibria from question 2 (but you do not know which.) What would you play as player 1?
- 4. [6 pts] Find all mixed-strategy Nash equilibria.

2 Nash Equilibrium in 3-Player Games

	D	E		D	E	
A	0, 1, 0	3, 1, 2		3, 1, 1	2, 2, 3	
B	0, 3, 1	2, 3, 1		1, 2, 3	2, 3, 2	
C	2, 3, 0	3, 2, 1	C	0, 2, 1		

Figure 1: A three-player normal form game. Player one chooses the row, player two chooses the column. Player three's choice of L or R corresponds to the left and right tables.

- 1. [6 pts] List all of the pure-strategy Nash equilibria of the game in Figure 1.
- 2. [9 pts] Characterize the set of Nash equilibria in which player two does not play a pure strategy.

3 Bertrand Duopoly

Two firms produce identical goods, with a production cost of c per unit. Each firm sets a nonnegative price $(p_1 \text{ and } p_2)$. All consumers buy from the firm with the lower price, if $p_i \neq p_j$. Half of the consumers buy from each firm if $p_i = p_j$. D is the total demand.

Profit of firm i is:

- 0 if $p_i > p_j$ (no one buys from firm i);
- $D(p_i c)/2$ if $p_i = p_j$ (half of customers buy from firm *i*);
- $D(p_i c)$ if $p_i < p_j$ (all customers buy from firm *i*).
- 1. [6 pts] Identify a *strictly* dominated strategy in this game, and explain why the strategy is strictly dominated.
- 2. [6 pts] Identify a *weakly* dominated strategy in this game that is not strictly dominated, and explain why the strategy is only weakly dominated.
- 3. [8 pts] Find a Nash equilibrium in this game.

4 *n* player game

In a college there are *n* students. They are simultaneously sending data over the colleges data network. Let $x_i \ge 0$ be the size of data sent by student *i*. Each student *i* chooses x_i , simultaneously. The speed of network is inversely proportional to the total size of the data, so that it takes $x_1 + \ldots + x_n$ minutes to send the message. The payoff of student *i* is $u_i(x_i, x_{-i}) = x_i - x_i(x_1 + \ldots + x_n)$.

1. [8 pts] Find the pure-strategy Nash equilibrium of this game, and compute the equilibrium payoffs. (*Hint: First take derivative to find best response for a single player, then apply symmetry,* $x_i = x$.)

5 Linear Programming & Nash Equilibrium

Consider the following game:

	D	E
A	3, 1	1, 2
В	0, 3	3,1
C	2, 3	2,1

- 1. [8 points] Construct the linear program that the support enumeration method would use to find a full-support Nash equilibrium of this game (i.e., an equilibrium where every action is played with positive probability).
- 2. [5 points] Show that this game has no full-support Nash equilibrium, by showing that your linear program is infeasible.

6 Iterated Elimination

1. **[3 points]** What strategies survive iterated elimination of strictly-dominated strategies in this normal-form game?

	L	C	R
U	2,0	1, 1	4, 2
M	3,4	1, 2	2, 3
D	1, 3	0, 2	3,0

- 2. [7 points] What are the pure strategy Nash equilibria of the game? Find a mixed-strategy NE.
- 3. [7 points] Prove that iterated elimination of strictly-dominated actions never removes an action that is in the support of any mixed-strategy Nash equilibrium.
- 4. [2 points] Give an example of a game where no action can be eliminated by iterated elimination of strictly-dominated actions.
- 5. [8 points] Explain why the time complexity of iterated elimination of strictly-dominated actions is $O(m^{n+2}n^2)$ for n players, each with m actions.

7 Correlated Equilibrium

Consider the following two-player game:

		Player 2		
		D	\mathbf{E}	\mathbf{F}
	Α	9,10	2,5	3,4
Player 1	В	1,6	17,9	7,5
	\mathbf{C}	0,3	2,4	$6,\!13$

1. **[12 pts]** Find a correlated equilibrium of the game where player 1 achieves an expected payoff of 14. As randomizing devices, you have three publicly observable, fair coins: a 10Kr, a 25Kr and a 50Kr coin. You may not use any other randomizing devices.