CSE 817 Fall 2016 Assignment \#1

Due: October $24^{\text {th }}$, 2016, 14:30

1 2x2 Normal-Form Game

Consider the following game:

		Player 2	
		C	D
Player 1	A	$-16,0$	12,12
	B	8,8	$0,-16$

Where the first number in each square is the payoff of player 1 and the second number is player 2's payoff.

1. [$\mathbf{3} \mathbf{~ p t s}]$ Find all Pareto optimal pure strategy profiles.
2. [$\mathbf{3} \mathbf{p t s}]$ Find the pure strategy Nash equilibria.
3. [$\mathbf{3} \mathbf{p t s}$] Which of the above equilibria do you prefer? Suppose player 2 has decided to play according to one of the equilibria from question 2 (but you do not know which.) What would you play as player 1?
4. [$\mathbf{6} \mathbf{p t s}]$ Find all mixed-strategy Nash equilibria.

2 Nash Equilibrium in 3-Player Games

	D	E
A	0,1,0	3, 1,2
B	0,3,1	2,3,1
C	2,3,0	3,2,1

	D	E
A	3,1,1	2,2,3
B	1,2,3	2,3,2
C	0,2,1	3,2,2

Figure 1: A three-player normal form game. Player one chooses the row, player two chooses the column. Player three's choice of L or R corresponds to the left and right tables.

1. [$\mathbf{6} \mathbf{p t s}]$ List all of the pure-strategy Nash equilibria of the game in Figure 1.
2. [$\mathbf{9} \mathbf{p t s}$] Characterize the set of Nash equilibria in which player two does not play a pure strategy.

3 Bertrand Duopoly

Two firms produce identical goods, with a production cost of c per unit. Each firm sets a nonnegative price $\left(p_{1}\right.$ and $\left.p_{2}\right)$. All consumers buy from the firm with the lower price, if $p_{i} \neq p_{j}$. Half of the consumers buy from each firm if $p_{i}=p_{j}$. D is the total demand.

Profit of firm i is:

- 0 if $p_{i}>p_{j}$ (no one buys from firm i);
- $D\left(p_{i}-c\right) / 2$ if $p_{i}=p_{j}$ (half of customers buy from firm i);
- $D\left(p_{i}-c\right)$ if $p_{i}<p_{j}$ (all customers buy from firm i).

1. [6 pts] Identify a strictly dominated strategy in this game, and explain why the strategy is strictly dominated.
2. [6 pts] Identify a weakly dominated strategy in this game that is not strictly dominated, and explain why the strategy is only weakly dominated.
3. [8 pts] Find a Nash equilibrium in this game.

$4 \quad n$ player game

In a college there are n students. They are simultaneously sending data over the colleges data network. Let $x_{i} \geq 0$ be the size of data sent by student i. Each student i chooses x_{i}, simultaneously. The speed of network is inversely proportional to the total size of the data, so that it takes $x_{1}+\ldots+x_{n}$ minutes to send the message. The payoff of student i is $u_{i}\left(x_{i}, x_{-i}\right)=x_{i}-x_{i}\left(x_{1}+\ldots+x_{n}\right)$.

1. [8 pts] Find the pure-strategy Nash equilibrium of this game, and compute the equilibrium payoffs. (Hint: First take derivative to find best response for a single player, then apply symmetry, $x_{i}=x$.)

5 Linear Programming \& Nash Equilibrium

Consider the following game:

	D	E
A	3,1	1,2
B	0,3	3,1
C	2,3	2,1

1. [8 points] Construct the linear program that the support enumeration method would use to find a full-support Nash equilibrium of this game (i.e., an equilibrium where every action is played with positive probability).
2. [5 points] Show that this game has no full-support Nash equilibrium, by showing that your linear program is infeasible.

6 Iterated Elimination

1. [3 points] What strategies survive iterated elimination of strictly-dominated strategies in this normal-form game?

	L	C	R
U	2,0	1,1	4,2
M	3,4	1,2	2,3
D	1,3	0,2	3,0

2. [7 points] What are the pure strategy Nash equilibria of the game? Find a mixed-strategy NE.
3. [7 points] Prove that iterated elimination of strictly-dominated actions never removes an action that is in the support of any mixed-strategy Nash equilibrium.
4. [2 points] Give an example of a game where no action can be eliminated by iterated elimination of strictly-dominated actions.
5. [8 points] Explain why the time complexity of iterated elimination of strictly-dominated actions is $O\left(m^{n+2} n^{2}\right)$ for n players, each with m actions.

7 Correlated Equilibrium

Consider the following two-player game:

		Player 2		
		D	E	F
Player 1	A	9,10	2,5	3,4
	B	1,6	17,9	7,5
	C	0,3	2,4	6,13

1. [12 pts] Find a correlated equilibrium of the game where player 1 achieves an expected payoff of 14 . As randomizing devices, you have three publicly observable, fair coins: a 10 Kr , a 25 Kr and a 50 Kr coin. You may not use any other randomizing devices.
