USE CASE DIAGRAMS

USE CASES

Use cases are a technique for capturing the
functional requirements of a system.

Requirements analysis may include a
description of related domain processes; these
can be written as use cases.

Use cases are not an object-oriented artifact—
they are simply written stories.

Example use case:

— Play a Dice Game: A player picks up and rolls the
dice. If the dice face value total seven, they win;
otherwise, they lose.

USE CASES

« An actor is something with behavior, such as a person
(identified by role), computer system, or organization; for
example, a cashier.

« A scenario is a specific sequence of actions and
interactions between actors and the system under
discussion; it is also called a use case instance.

— It is one particular story of using a system, or one path through
the use case;

— for example, the scenario of successfully purchasing items with
cash, or the scenario of failing to purchase items because of a
credit card transaction denial

« A use case is a collection of related success and failure
scenarios that describe actors using a system to support
a goal.

Example Use Case

Use Case UC1: Process Sale
Primary Actor: Cashier
Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash
drawer shortages are deducted from his/her salary.

Salesperson: Wants sales commissions updated.

Customer: Wants purchase and fast service with minimal effort. Wants
proof of purchase to support returns.

Company: Wants to accurately record transactions and satisfy customer
interests. Wants to ensure that Payment Authorization Service payment
receivables are recorded. Wants some fault tolerance to allow sales capture
even if server components (e.g., remote credit validation) are unavailable.
Wants automatic and fast update of accounting and inventory.

Government Tax Agencies: Want to collect tax from every sale. May be
multiple agencies, such as national, state, and county.

Payment Authorization Service: Wants to receive digital authorization
requests in the correct format and protocol. Wants to accurately account for
their payables to the store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (Postconditions): Sale is saved. Tax is correctly
calculated. Accounting and Inventory are updated. Commissions recorded.
Receipt is generated. Payment authorization approvals are recorded.

Example Use Case

Main Success Scenario (or Basic Flow):

1. Customer arrives at POS checkout with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.

4. System records sale line item and presents item description,
price, and running total. Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment
information to the external Accounting system (for accounting and
commissions) and Inventory system (to update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Example Use Case

« Extensions (or Alternative Flows):
At any time, System fails:
3a. Invalid identifier:

1. System signals error and rejects
entry.

3-6a: Customer asks Cashier to remove an item from the
purchase:

1. Cashier enters item identifier for removal from
sale.

2. System displays updated running total.
3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

Use Case Diagrams

« Use cases are text documents, not
diagrams, and use-case modeling is
primarily an act of writing text, not drawing.

« However, the UML defines a use case
diagram to illustrate the names of use
cases and actors, and their relationships

ACTORS

« Users of a software system are represented as
actors in a use-case diagram.

 Actors represent specific users, groups of users,
organizational users and even external software
systems.

« For example, a library may employ several
librarians. Because all of these librarians will
access the system in the same manner, a single
actor (Librarian) represents them.

USE CASES

« Actors maintain relationships with use
cases.

« A use case is a description of some
software activity that an actor may initiate.

« For example, a librarian can check out an
asset, such as a book. This activity is
represented as a use case.

Use-case relationships

« Use cases can participate in four types of
relationships:
— association,
— generalization,
—Include and
— extend.

« Each relationship has its own purpose and
notation.

Assoclation

« The association relationship is the interface
between an actor and a use case.

- ltis represented by a line between an actor and
a use case.

« For example, a librarian will use the library
system to check assets out.

Library System

check out
asset

Librarian

Generalization

« The generalization relationship is

a link between use cases. Library System
 Use cases often share common

characteristics. e

— Suppose you identified a second use ransacfion

case: Check In Asset.

« This second use case shares certain
features with the Check Out Asset

use case.
« Both use cases perform a transaction check ou
that affects the library's inventory. asset

« A generalization allows you to
represent this shared functionality in a
third use case (the Perform Librarian

Transaction use case) and inherit its
functionality in both the Check In
Asset and the Check Out Asset use
cases.

Include

The include relationship allows one use case to include
the functionality of another.

Before an asset can be checked out, the system must
verify that the patron does not owe any overdue fines.

An include relationship allows the Perform Transaction
use case to include the functionality of a Check Account
Balance use case.

The include relationship is represented by a dashed line
with an arrowhead.

The word <<include>> is superimposed above the line to
distinguish an include relationship from an extend
relationship.

The arrow points from the use case that includes the
additional functionality to the use case being included.

Include

Libranan

Library System

check
account
balance

z<jncludes=
transaction

check out
asset

Extend

The extend relationship combines the
functionality of one use case with the
functionality of another, if certain conditions
exist.

For example, Turn Left and Turn Right use
cases extend the functionality of the Turn Car
use case.

The extend relationship is represented by a
dashed line with an arrowhead.

The arrow points from the use case that
provides the additional functionality to the use
case that accepts the functionality.

Extend

Brake
<<JSES: '
Drive Car
: b b
= P TR
<<extils>> > &
= r“jS:}:}
Drive
Ambulance

system boundary

oy ~_ e
-
(M
Cashier
[]
!
ra
#
actor
gactors
Sales Activity —]
System T

System
Administrator

./

/r;{:u:ess SaI;\
\/Handle Heturns

NextGen

_ — communication

~
alternate
/ notation for
a computer
Payment system actor
Authorization o 7
Service S
g

£

«actors .
Tax Calculator

«actors

Accounting
System

wactors
HR System

Lse Case

