Name:
No:

Q1 (15)	Q2 (20)	Q3 (20)	Q4 (25)	Q5 (10)	Q6 (10)	Total (100)

ATTENTION: There are 6 questions on 6 pages. Solve all of them. Duration is 90 minutes. Show all your calculation.

1) (a) Find $\lim _{h \rightarrow 0} \frac{\sqrt{4-h}-2}{h}$. Do not use L'Hospital. (10 pts.)

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{4-h}-2}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{4-h}-2)(\sqrt{4-h}+2)}{h(\sqrt{4-h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{4-h}-2)(\sqrt{4-h}+2)}{h(\sqrt{4-h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{A-h-4}{k(\sqrt{4-h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(\sqrt{4-h}+2)}=-\frac{1}{4}
\end{aligned}
$$

(b) Find $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{3}-8}$. Do not use L'Hospital. (5 pts.)

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{3}-8} & =\lim _{x \rightarrow 2} \frac{\left(x^{2}+4\right)\left(x^{2}-4\right)}{(x-2)\left(x^{2}+2 x+4\right)} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}+4\right)(x+2)(x-2)}{(x-2)\left(x^{2}+2 x+4\right)}=\frac{(8)(4)}{(12)}=\frac{8}{3}
\end{aligned}
$$

2) (a) Find an equation of the tangential line to the given curve at the point $(1,2)$:

$$
y=x+\frac{1}{x}
$$

(10 pts.)

Solution:

$$
y^{\prime}=1-\frac{1}{x^{2}} \quad \Rightarrow \quad m=\left.y^{\prime}\right|_{x=1}=1-1=0
$$

The equation of the straight line to the given curve at the point $(1,2)$ with the zero slope $(m=0)$ is

$$
y-y_{0}=m\left(x-x_{0}\right) \Rightarrow y-2=0(x-1) \Rightarrow y=2
$$

b) $\quad f(x)=x e^{x / 2} \quad$ find $f^{\prime \prime}(0) .(10$ pts. $)$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =e^{x / 2}+x \frac{1}{2} e^{x / 2}=\frac{1}{2}(2+x) e^{x / 2} \\
f^{\prime \prime}(x) & =\frac{1}{2}\left[(2+x)^{\prime} e^{x / 2}+(2+x)\left(e^{x / 2}\right)^{\prime}\right]=\frac{1}{2}\left[e^{x / 2}+(2+x) \frac{1}{2} e^{x / 2}\right] \\
& =\frac{1}{2}\left[1+(2+x) \frac{1}{2}\right] e^{x / 2}=\frac{1}{4}(4+x) e^{x / 2} \\
f^{\prime \prime}(0) & =\frac{1}{4}(4+0) e^{0 / 2}=1
\end{aligned}
$$

3) (a) If $f(x)=\left(1+\sqrt{\frac{x-2}{3}}\right)^{4}$, find $f^{\prime}(x) \cdot(10$ pts. $)$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =4\left(1+\sqrt{\frac{x-2}{3}}\right)^{3}\left(1+\sqrt{\frac{x-2}{3}}\right)^{\prime} \\
& =4\left(1+\sqrt{\frac{x-2}{3}}\right)^{3} \frac{1}{2}\left(\frac{x-2}{3}\right)^{-1 / 2}\left(\frac{1}{3}\right) \\
& =\frac{2}{3}\left(1+\sqrt{\frac{x-2}{3}}\right)^{3}\left(\frac{x-2}{3}\right)^{-1 / 2}
\end{aligned}
$$

b) For the below equation, use implicit differentiation to find y^{\prime} and evaluate y^{\prime} at the point $(1,1)$.

$$
x^{7}-x y=5 \ln y
$$

(10 pts.)

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{7}-x y=5 \ln y\right) \\
& \frac{d}{d x} x^{7}-\frac{d}{d x}(x y)=5 \frac{d}{d x} \ln y \\
& 7 x^{6}-y-x \frac{d y}{d x}=5 \frac{1}{y} \frac{d y}{d x} \\
& 7 x^{6}-y=\left(\frac{5}{y}+x\right) \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{7 x^{6}-y}{\left(\frac{5}{y}+x\right)}=\frac{\left(7 x^{6}-y\right) y}{(5+x y)}
\end{aligned}
$$

4) For the function $y=\frac{1}{x^{2}-1}$,
a) Determine the intervals in which the function is increasing and decreasing. State the extrema. (10 pts.)

Solution:

$$
y^{\prime}=-\frac{2 x}{\left(x^{2}-1\right)^{2}}
$$

Critical values come from $y^{\prime}=0$ and $x^{2}-1=0$ that makes y^{\prime} undefined, as given:

$$
y^{\prime}=0 \Rightarrow x=0 \quad \text { and } \quad x^{2}-1=0 \quad \Rightarrow \quad x= \pm 1
$$

So there are three critical values: $x=-1,0,1$.

x	-1			0	+1	
y^{\prime}	+	+	ϕ	-	-	
y	\nearrow	\nearrow		\searrow	\searrow	
	increasing		increasing	max	decreasing	

b) Determine the intervals in which the function is concave up and concave down. Find the inflection points. (10 pts.)

Solution:

So the second derivative of y is

$$
\begin{aligned}
y^{\prime \prime} & =-\frac{2\left(x^{2}-1\right)^{2}-2 x \cdot 2\left(x^{2}-1\right)(2 x)}{\left(x^{2}-1\right)^{4}} \\
& =-\frac{2\left(x^{2}-1\right)\left[x^{2}-1-4 x^{2}\right]}{\left(x^{2}-1\right)^{4^{3}}}=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

From here, there are no inflection point where $y^{\prime \prime}=0$. To configure the concavity, we have to consider the points where $y^{\prime \prime}$ is not defined as follows:

$$
x^{2}-1=0 \quad \Rightarrow \quad x= \pm 1
$$

x	$x<-1$	-1	$-1<x<1$	1	$x>1$
$y^{\prime \prime}$	$f^{\prime \prime}(x)>0$	1	$f^{\prime \prime}(x)<0$	1	$f^{\prime \prime}(x)>0$
	Concave up	Vertical Asymptote	Concave down	Vertical Asymptote	Concave up

c) Complete the sketch of the graph below: (5 pts.)

Solution:

From the symmetry, we sketch the right hand side of the graph from the left:

5) Find all asymptotes of the function $y=\frac{x}{\sqrt{x^{2}-1}}$. (10 pts.)

Solution:

Vertical Asymptote

Let us find the x -values that the denominator is $0 . x^{2}-1=0 \Rightarrow x= \pm 1$
$\lim _{x \rightarrow 1^{+}} \frac{x}{\sqrt{x^{2}-1}}=\frac{1}{+0}=+\infty \quad$ and $\quad \lim _{x \rightarrow-1^{-}} \frac{x}{\sqrt{x^{2}-1}}=\frac{-1}{+0}=-\infty$
The lines $x=1$ and $x=-1$ are the vertical asymptotes.

Horizontal Asymptote

$\lim _{x \rightarrow \pm \infty} \frac{x}{\sqrt{x^{2}-X}}=\lim _{x \rightarrow \pm \infty} \frac{x}{\sqrt{x^{2}}}=\lim _{x \rightarrow \pm \infty} \frac{x}{|x|}= \pm 1$
The lines $y=1$ and $y=-1$ are the horizontal asymptotes.
6) A producer finds that the total revenue function is $r(q)=100 q-2 q^{2}$ where q in thousands of units. If the producer's costs are given by $c(q)=20+40 q$, what should his level of production be to maximize profits? Show that the second derivative test is satisfied for maximization. (10 pts.)

Solution:

$$
\begin{aligned}
\text { Profit }=P=r(q)-c(q) & =100 q-2 q^{2}-20-40 q \\
& =-2 q^{2}+60 q-20
\end{aligned}
$$

To find the extremum values, we take the derivative of profit P with respect to q and then equate it to zero to find the q extremum values:

$$
\frac{d P}{d x}=-4 q+60=0 \quad \Rightarrow \quad q=60 / 4=15
$$

To test if it is maximum or not by using the second derivative test:
$\frac{d^{2} P}{d x^{2}}=-4<0$ so this proves that the level of production $q=15$ is a maximum value.

