Section \#:

Q1 (10)	Q2(15)	Q3(15)	Q4(20)	Q5(20)	Q6(20)	Total (100)

ATTENTION: Please show all your work in details. DO NOT USE calculators and cellphones. There are 6 questions on 4 pages. Solve all of them. Duration is ONE hour.

1- (10) Solve the following inequality for x

$$
|-3|<\left|\frac{5 x-7}{-11}\right|
$$

Solution: This inequality is equivalent to

$$
3<\frac{||5 x-7|}{11} \text { implies that } 33<|5 x-7| .
$$

Therefore we have

$$
\begin{gathered}
33<5 x-7 \text { or }-33>5 x-7 \\
40<5 x \text { or }-26>5 x \\
8<x \text { or } \frac{-26}{5}>x
\end{gathered}
$$

Hence, the solution of the inequality is $\left(-\infty, \frac{-26}{5}\right) \cup(8,+\infty)$.
2- (15) Let $f(x)=x^{2}-4 x+4$, for $\mathrm{x} \geq 2$ and $g(x)=x+1$. Then find $(f \circ g)(x)$, and $(f \circ g)^{-1}(x)$.

Solution: Let $f(x)=x^{2}-4 x+4=(x-2)^{2}$ and $g(x)=x+1$. Then

$$
h(x)=(f \circ g)(x)=f(g(x))=f(x+1)=(x+1-2)^{2}=(x-1)^{2} .
$$

Let $h^{-1}(x)=(f \circ g)^{-1}(x)$. Then $\left(h \circ h^{-1}\right)(x)=h\left(h^{-1}(x)\right)=x$,

$$
\left(h^{-1}(x)-1\right)^{2}=x \text { for } x \geq 2 \text { or }^{h^{-1}(x)}=\sqrt{x}+1 \text { for } x \geq 2 .
$$

Or, $h^{-1}(x)=(f \circ g)^{-1}(x)$.
$h^{-1}(x)=(f \circ g)^{-1}(x)=\left((g)^{-1} o(f)^{-1}\right)(x)$
where $f^{-1}(x)=\sqrt{x}+2$ for $x \geq 0$ and $g^{-1}(x)=x-1$. Hence we have obtained the same result;
$h^{-1}(x)=\left((g)^{-1}\left(\left((f)^{-1}\right)(x)\right)\right)=\sqrt{x}+2-1=\sqrt{x}+1$ for $x \geq 0$.

3-(15) The Car care company manufactures a product that has a selling price of $\$ 40$ and a unit cost of $\$ 30$. If fixed costs are $\$ 1,200,000$, determine the least number of units that must be sold for the company to have a profit.

Solution: Let q be the number of units that must be sold. Then variable cost is 30 q and so the total cost is $30 q+1,200,000$. The total revenue is $40 q$. Since we want to profit >0, we have

$$
\begin{gathered}
\text { Total revenue-Total cost }>0 \\
\begin{array}{c}
40 q-(30 q+1,200,000)>0 \\
10 q>1,200,000 \\
q>120,000
\end{array}
\end{gathered}
$$

So, the least number of units that must be sold is $q=120001$.
4-(20) Find the equations of the lines that passes through the point $(-1,-2)$ one is parallel and the other one is perpendicular to the line $-4 y+8 x+5=0$. (do not sketch it)

Solution: The line is parallel to $y=2 x+5 / 4$ also has slope $2\left(m_{1}=m_{2}=2\right)$.
Using point-slope form we get

$$
y-(-2)=2(x-(-1)), y+2=2(x+1)
$$

or

$$
y=2 x .
$$

Slope of the perpendicular line to $y=2 x+5 / 4$ must be

$$
m_{1}=-\frac{1}{m_{z}}=-\frac{1}{2}=2
$$

Using point- slope form we get $y+2=-\frac{1}{2}(x+1)$, or

$$
y=-\frac{1}{2} x-\frac{5}{2}
$$

The perpendicular line of the equation is found.

5-(20) For the equation $f(x)=-(2 x-1)^{2}-8 x+9$.
(a) Find the intercepts. (b) Find the vertex. (c) State the domain and the range. (d) Find the symetry axis (e) Sketch its graph.

Solution (a) x-intercept when $f(x)=0=x^{2}+x-2=(x+2)(x-1)$ implies $x=1$ and $x=-2$. y-intercept when $\mathrm{x}=0$ then $f(0)=-(2.0-1)^{2}-8.0+9=c=8$.
(b) Vertex
$f(x)=-(2 x-1)^{2}-8 x+9$

$$
\begin{gathered}
f(x)=-\left(4 x^{2}-4 x+1\right)-8 x+9=-4 x^{2}-4 x+8=-4\left(x^{2}+x-2\right) \\
a=-4, b=-4, c=8 \\
\text { Vertex at } x=\frac{-b}{2 a}=\frac{4}{-8}=-\frac{1}{2} \\
f\left(-\frac{1}{2}\right)=-\left(2\left(-\frac{1}{2}\right)-1\right)^{2}-8\left(-\frac{1}{2}\right)+9=-(-2)^{2}+4+9=9 .
\end{gathered}
$$

© Range $-\infty<f(x) \leq 9$ or $(-\infty, 9]$ and Domain: $-\infty<x<+\infty$ or $(-\infty,+\infty)$.
(d) The symmetry axis is the vertex

Vertex at $x=\frac{-b}{2 a}=\frac{4}{-8}=-\frac{1}{2}$
(e) The graph of the function $f(x)=-(2 x-1)^{2}-8 x+9$ is

6) (20) Suppose consumers will demand 60 units of a product when the price $\$ 12.30$ per unit and 36 units when the price $\$ 16.30$ each. Find the demand equation, assuming that is linear. Find the price per unit when 48 units are demanded.

Solutions: The slope of the line passing through $(60,12.30)$ and $(36,16.30)$ is
$m=\frac{16.30-12.30}{36-60}=\frac{4}{-24}=-\frac{1}{6}$
An equation of the line-point slope form is
$p-p_{1}=m\left(q-q_{1}\right)$
$p-12.30=-\frac{1}{6}(q-60)$
Hence, the demand equation is
$p=-\frac{1}{6} q+22.30$.
The price per unit when 48 units are demanded is
$p=-\frac{1}{6} 48+22.30=-8+22.30=14.30 \$$.

