Name:

| $\alpha_{4}$ | dent | TT           | ш |   |
|--------------|------|--------------|---|---|
| ► TII        | aant |              | п | • |
| Biu          | ucni | $\mathbf{H}$ | π | • |

| Q1 (15) | Q2(15) | Q3(15) | Q4(20) | Q5(20) | Q6(15) | Total (100) |
|---------|--------|--------|--------|--------|--------|-------------|
|         |        |        |        |        |        |             |

ATTENTION: There are 6 questions on 4 pages. Solve all of them. Duration is ONE hour.

**1-** (15) Solve the following inequality

$$|3-2x| \ge 4$$

**Solution:** 

$$3-2x \ge 4$$
 or  $3-2x \le -4$ 

$$-2x \ge 1$$
 or  $-2x \le -7$ 

$$x \le -\frac{1}{2}$$
 or  $x \ge \frac{7}{2}$ 

The solution is  $\left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{7}{2}, \infty\right)$ 

**2-** (15) Solve the following equation for x:

$$\log_2 x + \log_4 x = 3$$

**Solution:** 

$$\log_2 x + \frac{\log_2 x}{\log_2 4} = 3$$

$$\log_2 x + \frac{\log_2 x}{2} = 3$$
 ( $\log_2 2^2 = 2\log_2 2 = 2(1)$ )

$$\frac{3}{2}\log_2 x = 3$$
 =>  $\log_2 x = 2$  =>  $\log_2 x = 2$  =>  $x = 2^2$  =>  $x = 4$ 

**3-**(15) The T-Shirt manufacturer produces N shirts at a total labor cost (in dollars) of 1.1 N and a total material cost of 0.4N. The fixed cost for the plant is \$7200. If each shirt sells for \$3.5, how many must be sold by the company to realize a profit.

Solution: Let N=required number of shirts. Then,

Profit>0

2N-7200>0

2N>7200

N>3600 (At least 3601shirt must be sold)

**4-**(20) Two lines passing through (-3,2). a) One is parallel to the line 2y+4x-2=0 and b) the other perpendicular to it. Find equations of these lines. (do not sketch it)

**Solution:** a) line parallel to y = -2x + 1 also has slope -2 (  $m_1 = m_2$  ). Using point-slope form we get

$$y-(2) = -2(x-(-3))$$
 or

$$y = -2x - 4$$

b)Slope of perpendicular line to y=-2x+1 must be  $\frac{1}{2}$  (  $m_1=-\frac{1}{m_2}$  ). Using point-slope form we get

$$y-(2) = \frac{1}{2}(x-(-3))$$
 or,

$$y = \frac{1}{2}x + \frac{3}{2} + 2$$
 or,

$$y = \frac{1}{2}x + \frac{7}{2}$$

**5-**(20) For the equation  $y = (2x-2)^2 + 8x - 8$ , (a) find the intercepts, (b) find the vertex, (c) state the domain and the range (d) and then sketch it.

## **Solution:**

$$y = (2x-2)^2 + 8x - 8$$
 or  $y = 4x^2 - 8x + 4 + 8x - 8$   
 $y = 4x^2 - 4$  where,  $a = 4, b = 0, c = -4$ 

a) 
$$y-intercept: c=-4$$
 and  $x-intercept: 4x^2-4=0 \Rightarrow x=\pm 1$ 

b) 
$$x_{vertex} = -\frac{b}{2a} = -\frac{0}{8} = 0 \text{ and } y_{vertex}(x_{vertex} = 0) = 4(0)^2 - 4 = -4$$

c) Domain: 
$$--\infty \le x < \infty$$
 or  $(-\infty, \infty)$ 

d) Range: all 
$$y \ge -4$$
 or  $-4 \ge f(x) \ge \infty$  or  $[-4, \infty)$ 



**6-**(15) A trust fund for 10-years old child is being set up by a single payment so that at age 25 the child will receive \$60,000. Find how much the payment is if an interest rate of 6% compounded semiannually. (For your convenience use the following table)

| $(1.06)^{-15} = 0.417$ | $(1.06)^{15} = 2.396$ | $(1.03)^{-15} = 0.641$ | $(1.03)^{15} = 1.558$ |
|------------------------|-----------------------|------------------------|-----------------------|
| $(1.06)^{-30} = 0.174$ | $(1.06)^{30} = 5.743$ | $(1.03)^{-30} = 0.412$ | $(1.03)^{30} = 2.427$ |

**Solution:** Present value of payment:  $P = S(1+r)^{-n}$  where

$$S = 60000$$
,  $r = 0.06/2 = 0.03$ , and  $n = 15 \times 2 = 30$ .

Then the payment can be calculated as:

$$P = 60000(1+0.03)^{-30} = 60000(0.412) = 24720$$