Student ID \# :

Q1 (15)	Q2(15)	Q3(15)	Q4(20)	Q5(20)	Q6(15)	Total (100)

ATTENTION: There are 6 questions on 4 pages. Solve all of them. Duration is ONE hour.

1-(15) Solve the following inequality

$$
|3-2 x| \geq 4
$$

Solution:

$$
\begin{aligned}
& 3-2 x \geq 4 \text { or } 3-2 x \leq-4 \\
& -2 x \geq 1 \text { or }-2 x \leq-7 \\
& \mathrm{x} \leq-\frac{1}{2} \text { or } \mathrm{x} \geq \frac{7}{2} \\
& \text { The solution is }\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{7}{2}, \infty\right)
\end{aligned}
$$

2-(15) Solve the following equation for x :

$$
\log _{2} x+\log _{4} x=3
$$

Solution:

$$
\begin{gathered}
\log _{2} x+\frac{\log _{2} x}{\log _{2} 4}=3 \\
\log _{2} x+\frac{\log _{2} x}{2}=3 \quad\left(\log _{2} 2^{2}=2 \log _{2} 2=2(1)\right) \\
\frac{3}{2} \log _{2} x=3 \quad \Rightarrow \quad \log _{2} x=2 \quad \Rightarrow \quad \log _{2} x=2 \quad \Rightarrow \quad x=2^{2} \Rightarrow \quad x=4
\end{gathered}
$$

3-(15) The T-Shirt manufacturer produces N shirts at a total labor cost (in dollars) of 1.1 N and a total material cost of 0.4 N . The fixed cost for the plant is $\$ 7200$. If each shirt sells for $\$ 3.5$, how many must be sold by the company to realize a profit.

Solution: Let $\mathrm{N}=$ required number of shirts. Then,
Total revenue $=3.5 \mathrm{~N}, \quad$ and \quad Total Cost $=1.1 \mathrm{~N}+0.4 \mathrm{~N}+7200$
Profit>0
$3.5 \mathrm{~N}-(1.1 \mathrm{~N}+0.4 \mathrm{~N}+7200)>0$
$2 \mathrm{~N}-7200>0$
$2 \mathrm{~N}>7200$

4-(20) Two lines passing through ($-3,2$). a) One is parallel to the line $2 y+4 x-2=0$ and b) the other perpendicular to it. Find equations of these lines. (do not sketch it)

Solution: a) line parallel to $y=-2 x+1$ also has slope $-2\left(m_{1}=m_{2}\right)$. Using point-slope form we get

$$
\begin{gathered}
y-(2)=-2(x-(-3)) \text { or } \\
y=-2 x-4
\end{gathered}
$$

b)Slope of perpendicular line to $y=-2 x+1$ must be $\frac{1}{2} \quad\left(m_{1}=-\frac{1}{m_{2}}\right)$. Using point-slope form we get

$$
\begin{gathered}
y-(2)=\frac{1}{2}(x-(-3)) \text { or, } \\
y=\frac{1}{2} x+\frac{3}{2}+2 \text { or, } \\
y=\frac{1}{2} x+\frac{7}{2}
\end{gathered}
$$

5-(20) For the equation $y=(2 x-2)^{2}+8 x-8$, (a) find the intercepts, (b) find the vertex, (c) state the domain and the range (d) and then sketch it.

Solution:

$$
\begin{gathered}
y=(2 x-2)^{2}+8 x-8 \quad \text { or } \quad y=4 x^{2}-8 x+4+8 x-8 \\
y=4 x^{2}-4 \quad \text { where, } \quad a=4, b=0, c=-4
\end{gathered}
$$

a) y-intercept: $c=-4 \quad$ and $\quad x$-intercept: $4 x^{2}-4=0 \Rightarrow x= \pm 1$
b) $\quad x_{\text {vertex }}=-\frac{b}{2 a}=-\frac{0}{8}=0$ and $y_{\text {vertex }}\left(x_{\text {vertex }}=0\right)=4(0)^{2}-4=-4$
c) Domain: $--\infty \leq x<\infty$ or $(-\infty, \infty)$
d) Range: all $y \geq-4$ or $-4 \geq f(x) \geq \infty$ or $[-4, \infty)$

6-(15) A trust fund for 10-years old child is being set up by a single payment so that at age 25 the child will receive $\$ 60,000$. Find how much the payment is if an interest rate of 6% compounded semiannually. (For your convenience use the following table)

$(1.06)^{-15}=0.417$	$(1.06)^{15}=2.396$	$(1.03)^{-15}=0.641$	$(1.03)^{15}=1.558$
$(1.06)^{-30}=0.174$	$(1.06)^{30}=5.743$	$(1.03)^{-30}=0.412$	$(1.03)^{30}=2.427$

Solution: Present value of payment: $P=S(1+r)^{-n}$ where

$$
S=60000, \quad r=0.06 / 2=0.03, \quad \text { and } \quad n=15 \times 2=30 .
$$

Then the payment can be calculated as:

$$
P=60000(1+0.03)^{-30}=60000(0.412)=24720
$$

