MATH 171 FINAL EXAM (30.12.2010)

Name: Student No: Instructor: Signature: Section:

Q1	Q2	Q3	Q4	Q5	Total

ATTENTION: There are 5 questions on 5 pages. Solve all of them. Duration is 90 minutes. Simply giving a final result is not sufficient to answer any question, so show all the steps you pursued to get any final result. Otherwise your answer will not be evaluated as a correct answer.

1. *a.* A debt of 1500 TL due in four years is to be repaid by a single payment at the end of the second year. How much is the payment if the interest rate of 20% compounded semiannually is assumed. $(1.1^2 = 1.21; 1.1^4 \approx 1.5)$ (10 Points)

Solution:

$$P = 1500 \left(1 + \frac{0.20}{2} \right)^{-2 \times (4-2)} = 1500 \times 1.1^{-4} = \frac{1500}{1.5} = 1000 \, TL$$

b. If $y = \sqrt{\frac{(x-1)^3}{e^{x^2-1}}}$, find dy/dx by using logarithmic differentiation. (10 points)

Solution:

$$y = \sqrt{\frac{(x-1)^3}{e^{x^2 - 1}}}$$

$$\ln y = \ln\left(\frac{(x-1)^3}{e^{x^2 - 1}}\right)^{\frac{1}{2}} = \frac{1}{2}\left\{\ln(x-1)^3 - \ln e^{x^2 - 1}\right\}$$

$$\ln y = \frac{1}{2}\left\{3\ln(x-1) - (x^2 - 1)\right\}$$

$$\frac{y'}{y} = \frac{1}{2}\left\{3\frac{1}{x-1} - 2x\right\}$$

$$y' = \frac{y}{2}\left\{\frac{3 - 2x^2 + 2x}{x-1}\right\} = -\frac{1}{2}\sqrt{\frac{(x-1)^3}{e^{x^2 - 1}}}\frac{2x^2 - 2x - 3}{x-1}$$

2. a. Find the following limit if it exists. (10 points)

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = ?$$

Solution:

1st Method

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\left(\sqrt{x} - 2\right)\left(\sqrt{x} + 2\right)}{\left(x - 4\right)\left(\sqrt{x} + 2\right)} = \lim_{x \to 4} \frac{\left(x - 4\right)}{\left(x - 4\right)\left(\sqrt{x} + 2\right)} = \frac{1}{4}$$

2nd Method

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\left(\sqrt{x} - 2\right)}{\left(\sqrt{x} - 2\right)\left(\sqrt{x} + 2\right)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$$

b. Find the limit
$$\lim_{x \to \pm \infty} \frac{-3x^3 + 2x - 5}{-4 - 3x + 4x^3}$$
. (10 points)

Solution:

Bu sorunun son hali elimde değil ama yapı olarak böyle bir şeydi. Cevap pay ve paydadaki en büyük dereceli terimlerin limitine bakmak yetiyor..

$$\lim_{x \to \pm \infty} \frac{-3x^3 + 2x + 5}{4x^3} = \lim_{x \to \pm \infty} \frac{-3x^3}{4x^3} = \frac{-3}{4}$$

3. a. Find the slope of the tangent line to the curve $y = x^e + e^x + 3^e$ when x = 1. (10 points)

Solution:

$$y' = ex^{e^{-1}} + e^x$$

The slope is $y'|_{x=1} = e(1^{e^{-1}}) + e^1 = 2e$

b. If $y+3=xe^y-x^3$, find dy/dx by using implicit differentiation. (10 points)

Solution:

$$(y+3)' = (xe^{y} - x^{3})'$$

$$y' = e^{y} + xe^{y}y' - 3x^{2}$$

$$y'(1-xe^{y}) = e^{y} - 3x^{2}$$

$$y' = \frac{e^{y} - 3x^{2}}{1-xe^{y}}$$

4. a. If $y = \sqrt[3]{z}$ and $z = x^4 - x^3 + 2$, find $\frac{dy}{dx}$ by using chain rule and express it in terms of x. (10 points)

Solution:

$$y = \sqrt[3]{z} = z^{\frac{1}{3}}$$

$$\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = \frac{1}{3}z^{\frac{1}{3}-1}\left(4x^3 - 3x^2\right) = \frac{4x^3 - 3x^2}{3z^{\frac{2}{3}}} = \frac{4x^3 - 3x^2}{3\left(x^4 - x^3 + 2\right)^{\frac{2}{3}}}$$

b. Find the second derivative ($y'' = d^2y/dx^2$) of $y = e^{y+x}$ and express it in terms of y. (10 points)

Solution:

1st method for y':

$$y' = (y'+1)e^{y+x} \qquad \Rightarrow \qquad y'(1-e^{y+x}) = e^{y+x} \qquad \Rightarrow \qquad y' = \frac{e^{y+x}}{1-e^{y+x}} = \frac{y}{1-y}$$

2nd method for y':

$$\ln y = \ln e^{y+x} = (y+x) \ln e = y+x$$

$$\ln y = y + x$$

$$\frac{y'}{y} = y' + 1$$
 \Rightarrow $y'\left(\frac{1}{y} - 1\right) = 1$ \Rightarrow $y' = \frac{y}{1 - y}$

Second Derivative of *y*:

$$y'' = \frac{d^2y}{dx^2} = \frac{1 - y - (-1)y}{(1 - y)^2}y' = \frac{1}{(1 - y)^2}\frac{y}{1 - y} = \frac{y}{(1 - y)^3}$$

- **5.** Answer the questions below for the curve $y = 4x^2 x^4$ (DO NOT SKETCH IT):
 - a. Find the x-intercepts and y-intercepts. (5 points)

Solution:

$$y = 4x^{2} - x^{4} = x^{2}(4 - x^{2})$$

x-intercepts: $y = 0 = x^{2}(4 - x^{2}) \implies x = 0 \& x = \pm 2$
 $\{(-2,0), (0,0), (2,0)\}$
y-intercept: $x = 0 \implies y = 0$ (0,0)

b. Use the first derivative test to find where increasing and decreasing intervals of the function occur. (5 points)

Solution:

The derivative of y is $y' = 8x - 4x^3 = 4x(2-x^2)$.

The critical values are as follows:

$$y' = 4x(2-x^2)$$
 \Rightarrow $x = 0$ \therefore $x = \pm\sqrt{2}$.

c. Determine where relative extrema occur. (5 points)

Solution:

$$x = 0$$
 minimum $x = \pm \sqrt{2}$ maximum

d. Determine where the given function is concave up and where it is concave down, and where inflection point(s) occur. (5 points)

Solution:

The second derivative of y is $y'' = 8 - 12x^2 = 4(2 - 3x^2)$.

The inflection points are as follows:

$$y'' = 4(2-3x^2) = 0 \implies x = \pm \sqrt{2/3}$$
.