1) A company management would like to know the total sales units that are required for the company to earn a profit of $\$ 10,000$. The following data are available; unit selling price of $\$ 20$; variable cost per unit of $\$ 15$; total fixed cost of $\$ 60,000$. Determine the required sales units.

Solution:

Profit: P = \$10,000
Unit Selling Price: $\mathrm{S}=\$ 20$
Variable Cost per Unit: VC $=\$ 15$
Total Fixed Cost: FC = \$60,000

Determine the required sales units?
Let u denote sales unit

Total Costs: $\mathrm{TC}=\mathrm{VC}+\mathrm{FC}=\$ 15 u+\$ 60,000$
Total Sales: TS = \$20 u

$$
\begin{aligned}
\mathrm{P}=\mathrm{TS}-\mathrm{TC}=20 u-15 u-60,000=10,000 & \Rightarrow 55 u=70,000 \\
& \Rightarrow \quad u=14,000
\end{aligned}
$$

2) A company manufacturer a product that has a unit selling price of $\$ 30$ and a unit cost of $\$ 20$. If fixed costs are $\$ 30,000$, determine the least number of units that must be sold for the company to have a profit.

Solution:

Unit Selling Price: $\mathrm{S}=\$ 30$
Variable Unit Cost: VC $=\$ 20$
Fixed Cost: $\mathrm{FC}=\$ 30,000$

Determine the least number of units sold to have a profit.
Let u denote sales unit

$$
\begin{aligned}
& \text { Total Costs: } \mathrm{TC}=\mathrm{VC}+\mathrm{FC}=20 u+30,000 \\
& \text { Total Sales: } \mathrm{TS}=30 u \\
& \text { Profit: } \mathrm{P}=\mathrm{TS}-\mathrm{TC}=30 u-(20 u+30,000)=10 u-30,000>0 \text { to have profit } \\
& 10 u>30,000 \Rightarrow \quad u>3,000
\end{aligned}
$$

The least number of units to be sold is more than 3,000 to have a profit.
3) Find the domain and range the following functions:
a) $y=f(x)=\frac{1-x}{\sqrt{x^{2}-x-\frac{3}{4}}}$
b) $y=f(x)=\sqrt[4]{\frac{3 x+2}{x-3}}$
c) $y=f(x)=\frac{3 x^{2}+2}{x^{2}+1}$
d) $y=f(x)=\frac{x^{2}-3 x+1}{x^{2}-9}$

Solution:

a. $y=f(x)=\frac{1-x}{\sqrt{x^{2}-x-3 / 4}}$

To be definable, the inside of the square root must be greater than zero. So

$$
x^{2}-x-\frac{3}{4}>0 \quad \Rightarrow\left(x+\frac{1}{2}\right)\left(x-\frac{3}{2}\right)>0
$$

At $x=-\frac{1}{2}$ and $x=\frac{3}{2}$, the denominator is zero, so undefined.

Roots		$-1 / 2$		3/2	
$\left(x+\frac{1}{2}\right)$		0	+		+
$\left(x-\frac{3}{2}\right)$	-		-	0	+
$\left(x+\frac{1}{2}\right)\left(x-\frac{3}{2}\right)$	+	0	-	0	+

From the table only the parts in positive signs give the domain than makes nonnegative in the square root. So

$$
\text { Domain: }\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{3}{2}, \infty\right) \quad \text { Forbidden Range: }\left[-\frac{1}{2}, \frac{3}{2}\right]
$$

To find the range we have to find function values at the domain. First let's find the function values at the intervals of the domain.

$$
\begin{array}{ll}
x \rightarrow-\infty, & y=f(x)=\frac{\not x\left(\frac{1}{x}-1\right)}{-\not x \sqrt{1-\frac{1}{x}-\frac{3}{4 x^{2}}}} \rightarrow+1 \\
x \rightarrow-\frac{1}{2}, & y=f(x)=\frac{1-x}{\sqrt{x^{2}-x-\frac{3}{4}}} \rightarrow \frac{1-\left(-\frac{1}{2}\right)}{0} \rightarrow \frac{3 / 2}{0} \rightarrow+\infty \\
x \rightarrow \frac{3}{2}, & y=f(x)=\frac{1-x}{\sqrt{x^{2}-x-\frac{3}{4}}} \rightarrow \frac{1-\frac{3}{2}}{0} \rightarrow \frac{-1 / 2}{0} \rightarrow-\infty \\
x \rightarrow \infty, & y=f(x)=\frac{\not x\left(\frac{1}{x}-1\right)}{\not x \sqrt{1-\frac{1}{x}-\frac{3}{4 x^{2}}}} \rightarrow-1
\end{array}
$$

Range: $(-\infty,-1) \cup(1, \infty)$
4) Using the absolute value symbol, express each fact.
a) X is between -3 and 3 , but is not equal to 3 or -3 .
b) The number x of hours that a machine will operate efficiently from 255 by less than 6
c) The average monthly income x (in dollars) of a family differs 1050 by lless than 120
d) $x+4$ is less than 5 units from 0 .
e) The distance between 7 and x is 4 .

Solution:

Using the absolute value symbol, express each fact.
f) x is between -3 and 3 , but is not equal to 3 or -3 .

$$
-3<x<3 \quad \Rightarrow \quad|x|<3
$$

g) The number x of hours that a machine will operate efficiently from 255 by less than 6

$$
|x-255|<6
$$

h) The average monthly income x (in dollars) of a family differs 1050 by less than 120

$$
|x-1050|<120
$$

i) $x+4$ is less than 5 units from 0 .

$$
|x+4|<5
$$

j) The distance between 7 and x is 4 .

$$
\begin{array}{rlll}
\text { It can be } 7-x=4 & & \Rightarrow & x=3 \\
\text { or } x-7=4 & & \Rightarrow & x=11 \\
|x-7|=4 & \text { or } & & |7-x|=4 \text { supplies the above results. }
\end{array}
$$

5) In functions is y a function of x ? Is x a function of y ?
a) $x^{2}+y=0$
b) $y=7 x^{2}$
c) $x^{2}+y^{2}=1$

Solution:

a. $y=-x^{2}, y$ is a function of x.
b. $y=7 x^{2}, y$ is a function of x.
c. $x^{2}+y^{2}=1$, Neither y nor x is a function of x or y.
6) Solve the following inequalities:
a) $2 x-(7+x) \leq x$
b) $\quad 3 p(1-p)>3(2+p)-3 p^{2}$
c) $4<\left|\frac{2}{3} x+5\right|$
d) $\frac{3 y-1}{3}>\frac{5(y+1)}{4}$

Solution:

a. $2 x-(7+x) \leq x$

$$
2 x-7-\not x-\not x \leq 0 \quad \Rightarrow \quad-7 \leq 0 \quad \text { true }
$$

Solution: all reel numbers
b. $3 p(1-p)>3(2+p)-3 p^{2}$

$$
3 \not p-3 p^{2}>6+3 \not p-3 p^{2} \Rightarrow \quad 0>6 \text { false }
$$

no solution exist for this problem.
c. $4<\left|\frac{2}{3} x+5\right|$

$$
\begin{aligned}
& 4<\frac{2}{3} x+5 \Rightarrow-1<\frac{2}{3} x \quad \Rightarrow-\frac{3}{2}<x \quad\left(\text { or } x>-\frac{3}{2}\right) \\
& -4>\frac{2}{3} x+5 \Rightarrow-9>\frac{2}{3} x \Rightarrow-\frac{27}{2}>x \quad\left(\text { or } x<-\frac{27}{2}\right)
\end{aligned}
$$

Solution: $(-\infty,-27 / 2) \cup(-3 / 2,+\infty)$
d. $\frac{3 y-1}{3}>\frac{5(y+1)}{4}$

$$
\begin{aligned}
\frac{3 y-1}{3}>\frac{5(y+1)}{4} & \Rightarrow 12 y-4>15 y+15 \\
& \Rightarrow 12 y-15 y>15+4 \quad \Rightarrow \quad-3 y>19 \\
& \Rightarrow y<-\frac{19}{3}
\end{aligned}
$$

Solution: $(-\infty,-19 / 3)$
7) A manufacturer sells a product at $\$ 8$ per unit, selling all produced. The fixed cost is $\$ 2,000$ and the variable cost is $\$ 7$ per unit.
a) At what level of production there will be a profit of $\$ 4,000$.
b) At what level of production there will be a loss of $\$ 1,000$.

Solution:

u: the number unit produced
$\mathrm{s}=\$ 8$ (selling price)
FC = \$2,000
VC per unit = \$7
Total Cost: TC = FC + VC = \$2,000 + \$7 u
Total Sales: TS = \$ 8 u
a. $\mathrm{TS}-\mathrm{TC}=\$ 4,000 \Rightarrow \$ 8 \mathrm{u}-(\$ 2,000+\$ 7 \mathrm{u})=\$ 4,000$
$\Rightarrow \quad u=6,000$ units must be sold.
b. TS-TC $=-\$ 1,000 \Rightarrow \$ 8 u-(\$ 2,000+\$ 7 u)=-\$ 1,000$
$\Rightarrow \quad u=1,000$ units will be sold.
8) If $f(x)=2 x$ and $g(x)=6+x$, find the following
a) $(f \circ g)(x) b)(g \circ f)(x)$
c) $(g \circ f)(2)$

Solution:

a) $(f \circ g)(x)=f(g(x))=f(6+x)=f(u)=2 u=2 .(6+x)=2 x+12$
b) $(g \circ f)(x)=g(f(x))=g(2 x)=g(u)=6+u=6+2 x$
c) $(g \circ f)(2)=6+2.2=10$
9) Determine the x - and y-intercepts of the following functions. Graph them and give the domain and range of each function.
a) $y=4-x$
b) $y=4-x^{2}$

Solution:

$$
\text { a) } y=4-x
$$

$$
\begin{array}{lll}
x \text {-intercept } & \rightarrow \text { Give } y=0, \text { then find } x & \rightarrow x=4-y=4 ;
\end{array} \quad x \text {-int ercept is }(0,4)
$$

Since $y=4-x$ is actually represents a line its range and domain has no restrictions therefore
Range $=(-\infty,+\infty) \quad$ Domain $=(-\infty,+\infty)$

b) $y=4-x^{2}$

$$
\begin{array}{ll}
x \text { - int ercept } \rightarrow y=0, \text { then } 0=4-x^{2} \rightarrow x= \pm 2 & \rightarrow \\
y \text {-int ercept } \rightarrow x=0, \text { then } y=4 & \rightarrow \quad(0,4)
\end{array}
$$

When you attempt to sketch a graph of a quadratic function which is a parabole. first thing to do is to determine whether it is "upward opening or downward opening type". To do this we look at the sign of the coefficient of x^{2} term. Here it is "-"", so our parabole is "downward opening. Second thing to do is find x-intercept and y-intercept points. Third to find "vertex" position which is given as
$x_{\text {Vertex }}=\frac{-b}{2 a}=\frac{0}{2}=0 \quad$ then to find $y_{\text {vertex }}$ simply use $x_{\text {vertex }}$ in the equation
$y_{\text {vertex }}=y\left(x_{\text {vertex }}\right)=4-\left(x_{\text {vertex }}\right)^{2}=4$
$\left(x_{\text {vertex }}, y_{\text {vertex }}\right)=(0,4)$
The graph is shown above (on the right hand side).
10) Find the x - and y-intercepts of the following functions. Also test for symmetry about the x axis, the y-axis, and the origin. a) $y=f(x)=2 x^{3}-8 x$
b) $y=5 x^{2}-10$

Solution:

a)
$y=f(x)=2 x^{3}-8 x$
x-int ercepts $\rightarrow \quad y=0 \quad \rightarrow 0=2 x^{3}-8 x=2 x\left(x^{2}-4\right)=2 x(x-2)(x+2) \quad \rightarrow x=0, \pm 2$
There are 3 points forx - intercepts. $(0,0) ;(2,0) ;(-2,0)$
y-int ercept $\rightarrow \quad x=0 \quad \rightarrow y=2.0-8.0=0 \quad \rightarrow(0,0)$
y-axis symmetry $\rightarrow(-a, b) \leftrightarrow(a, b)$ so for x-axis symmetry $f(x)=f(-x)$

$$
\begin{aligned}
f(-a) & =2 .(-a)^{3}-8(-a)=-2 a^{3}+8 a \\
& \neq f(a) \rightarrow \text { NOT } y \text {-axis symmetry }
\end{aligned}
$$

x-axis symmetry $\quad \rightarrow(a,-b) \leftrightarrow(a, b)$
Let us try $x=1 \rightarrow y=-6$ if $(1,-6)$ is a point then $(1,6)$ MUST also be a point on the graph. $x=-1 \rightarrow y=+6 \rightarrow$ Therefore NOT x-axis symmetry
symmetry about origin requires $(a, b) \rightarrow(-a,-b)$
We found that $(1,-6) \leftrightarrow(-1,+6) \quad$ Therefore It is symmetric about origin.
11) Find the equation of the straight line that has the following properties:
a) Passes through ($4,-2$) and ($-6,3$)
b) Passes through $(-2,5)$ and has a slope 4
c) Perpendicular to $\mathrm{y}=\mathrm{x}+5$ and passes through $(1,1)$

Solution:

a) slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-(-2)}{-6-4}=\frac{5}{-10}=-0.5$

$$
y-y_{1}=m\left(x-x_{1}\right)=-0.5(x-4)=-0.5 x+2=y-(-2) \quad \rightarrow y=-0.5 x
$$

c) For perpendicular lines, their slopes must satisfy the condition $m_{1} m_{2}=-1$

$$
\begin{aligned}
& m_{1}=+1 \rightarrow m_{2}=-1 \text { and the point is }(1,1) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=-1(x-1) \quad \rightarrow y=-x+2
\end{aligned}
$$

12) For the following find a) the vertex b) x-intercepts, c) y-intercept, d) sketch the graph.
a) $y=12-8 s+s^{2}$
b) $y=x^{2}-4$
c) $y=-4 x^{2}$

Solution:

a)

$$
\begin{array}{ll}
y=12-8 s+s^{2}=s^{2}-8 s+12 & \\
s_{\text {vertex }}=\frac{-b}{2 a}=\frac{-(-8)}{2.1}=4 & y_{\text {vertex }}=4^{2}-8.4+12=-4
\end{array}
$$

s-int ercepts

$$
y=0, \quad 0=s^{2}-8 s+12 \quad \rightarrow s=+2,+6
$$

13)The demand function for an electronic company's computer line is $p=1,200-3 q$, where p is the price per unit when q units are demanded by consumers. Find the level of production that will maximize the manufacturer's total revenue, and determine this revenue.

Solution:

Total Re venue $=p . q=(1200-3 q) q=-3 q^{2}+1200 q$
Maximum revenue would occur at the vertex of the parabole. Therefore

$$
q_{\text {vertex }}=\frac{-b}{2 a}=\frac{-1200}{2 \cdot(-3)}=200 \quad q=200 \text { units }
$$

Maximum revenue at this production level is

$$
r_{\text {vertex }}=-3(200)^{2}+1200.200=120,000
$$

14) Suppose consumers will demand 40 units a product when the price is $\$ 12$ per unit and 26 units when the price is $\$ 19$ each. Find the demand equation assuming that it is linear. Find the price per unit when 30 units are demanded.

Solution:

Two points are

$$
\begin{aligned}
(q, p) & =(12,40) \\
& =(19,26)
\end{aligned}
$$

The equation of the line passing through two points

$$
\begin{gathered}
m=\frac{p_{2}-p_{1}}{q_{2}-q_{1}}=\frac{40-26}{12-19}=-2 \\
p-p_{1}=m\left(q-q_{1}\right)=-2(q-12)=p-40 \quad \rightarrow p=-2 q+64
\end{gathered}
$$

