Problem Set III for Math 171

2006 Summer Semester

1. Find the following limits if they exist:

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$
 (b) $\lim_{x \to \infty} \frac{x^2 - 1}{x^3 + 1}$

2. Find the compound amount of an investment of \$4000 for five years at the rate of 10% compounded semiannually. (Give the equation; you do not need to estimate)
3. A dept of \$1000 due in five years is to be repaid by a single payment now. Find how much the payment is if an interest rate of 8% compounded quarterly is assumed. (Give the equation)

4. a)
$$\lim_{x \to -\infty} \frac{3 - 2x - 7x^3}{7 + 2x^2 - 5x^3}$$
 b) $\lim_{r \to \infty} \frac{3r^3}{r^2 + 1}$ c) $\lim_{t \to \infty} (t - 1)^3$ d) $\lim_{x \to -\infty} \frac{2}{(4x - 1)^3}$
e) $\lim_{t \to 2} \frac{t^2 - 4}{t + 2}$ f) $\lim_{t \to -2} \frac{t^2 - 4}{t + 2}$ g) $\lim_{x \to -2^*} \frac{5x}{4 - x^2}$ h) $\lim_{x \to 0^-} \frac{5}{x + x^2}$

5. If 1000 is invested at an annual rate of 3% compounded continuously, find the compound amount at the end of eight years. (Give the equation)

6. Find all points of discontinuity for the function $f(x) = \frac{x-7}{x^3-x}$

7. Find the slope of $y=5-6x-2x^3$ when x=2.

8. Find the equation of the tangent line to the curve $y = \frac{2x+3}{x^2}$ at the point (1,5)

9. a)
$$y = \frac{2x^2 + 1}{2}$$
 $y' = ?$ b) $\frac{d}{dx} \frac{-3}{(3x^2 + 1)^3} = ?$
c) $y = \left(\frac{8x - 1}{2x + 1}\right)^3$ $y' = ?$ d) $\frac{d}{dx}(5x^2 + 2 - \sqrt{x + 4}) = ?$
 $y = 100x^{-3} + 10^3\sqrt{2x}$ $y' = ?$ f) $\frac{d}{dx}(\frac{5x^4 - 7x^2}{2x + 5})$

$$\frac{dc}{dp}$$

Problem Set III for Math 171

2008 Summer Semester

1) Due to ineffective advertising Istek Vakfi finds that its annual revenues have been cut sharply. Moreover, the

revenue, r, at the end of t years of the business satisfies the equation $r = 200,000e^{-0.2t}$. Find the annual revenue (r) at the end of two years and at the end of three years.

2) Suppose attending to a certain college cost \$21,500 in the 2000-2001 school year.

This price includes tuition, room, board, boocs and other expences. Assuming the effective 6 % inflation, determine what the college costs will be in the 2010-2011 school year. (Give the equation)

3) Find the compound amount of an investment of \$4000 for five years at the rate of 10% compounded semiannually. (Give the equation; you do not need to estimate)

4) A dept of \$1000 due in five years is to be repaid by a single payment now. Find how much the payment is if an interest rate of 8% compounded quarterly is assumed. (Give the equation)

5) Find the effective rate of interest if a nominal rate of 8% compounded

a) annually. b) quarterly. c) continuously

6) If 1000 is invested at an annual rate of 3% compounded continuously, find the compound amount at the end of eight years. (Give the equation)

7) Find the following limits if they exist:

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$
(b)
$$\lim_{x \to \infty} \frac{x^2 - 1}{x^3 + 1}$$
8. a)
$$\lim_{x \to -\infty} \frac{3 - 2x - 7x^3}{7 + 2x^2 - 5x^3}$$
(b)
$$\lim_{r \to \infty} \frac{3r^3}{r^2 + 1}$$
(c)
$$\lim_{t \to \infty} (t - 1)^3$$
(d)
$$\lim_{x \to -\infty} \frac{2}{(4x - 1)^3}$$
(e)
$$\lim_{t \to 2} \frac{t^2 - 4}{t + 2}$$
(f)
$$\lim_{t \to -2} \frac{t^2 - 4}{t + 2}$$
(g)
$$\lim_{x \to -2^2} \frac{5x}{4 - x^2}$$
(h)
$$\lim_{x \to 0^2} \frac{5}{x + x^2}$$

9)Compute the following limits

a)
$$\lim_{x \to 3} \frac{5x^2 - 8x - 13}{x^2 - 5}$$
 b) $\lim_{x \to 0} \frac{x^3 - 7x}{x^3}$ c) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$

^{d)}
$$\lim_{x \to \infty} \frac{100}{x^2 + 5}$$
^{e)}
$$\lim_{x \to -\infty} \frac{x + 7}{3x + 5}$$

10) Consider the function

$$f(x) = \begin{cases} \frac{1}{x^2}, & \text{if } x < -1 \\ 2, & \text{if } -1 \le x < 1 \\ 3, & \text{if } x = 1 \\ x+1, & \text{if } 1 < x \le 2 \\ \frac{-1}{(x-2)^2}, & \text{if } x > 2 \\ \end{cases}$$

$$\lim_{a.\) x \to -1^+} f(x) \qquad \lim_{b.\) x \to -1^-} f(x) \qquad \lim_{c.\) x \to -1} f(x)$$

$$\lim_{d.\) x \to 1^+} f(x) \qquad \lim_{c.\) x \to 1^-} f(x) \qquad \lim_{c.\) x \to 1} f(x)$$

11) Find all points of discontinuity for the function $f(x) = \frac{x-7}{x^3 - r}$

Find the points where f is discontinues a)
$$f(x) = \begin{cases} 2^{x-1} & \text{if } x > 1 \\ 2^x - 1 & \text{if } x \le 1 \end{cases}$$
 b) $f(x) = \begin{cases} e^{x-1} & \text{if } x > 1 \\ e^x - 1 & \text{if } x \le 1 \end{cases}$