1. Differentiate the functions. If possible, first use properties of logarithms to simplify the given function.
a) $y=\ln \left(3 x^{2}+2 x+1\right)$
b) $y=x^{2} \ln x$
c) $y=x^{2} \log _{2} x$
d) $y=\frac{x^{2}}{\ln x}$
2. A total-cost function is given by $c=25 \ln (q+1)+12$. Find the marginal cost when $q=6$.
3. Differentiate the functions:
a) $y=x^{2} e^{-x}$
b) $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
c) $y=2^{x} x^{2}$
4. If $f(x)=e e^{x} e^{x^{2}}$, find $f^{\prime}(-1)$
5. Find $d y / d x$ by implicit differentiation
a) $x y=4$
b) $2 x^{3}+3 x y+y^{3}=0$
c) $\ln (x y)+x=4$
6. Find an equation of the tangent line to the curve of $x^{3}+y^{2}=3$ at the point $(-1,2)$.
7. Find y^{\prime} by using logarithmic differentiation.
a) $y=\left(3 x^{3}-1\right)^{2}(2 x+5)^{3}$
b) $y=(x+2) \sqrt{x^{2}+9} \sqrt[3]{6 x+1}$
c) $y=\sqrt[3]{\frac{6\left(x^{3}+1\right)^{2}}{x^{6} e^{-4 x}}}$
d) $y=4 e^{x} x^{3 x}$
e) $y=(\ln x)^{e^{x}}$
8. Differentiate
a) $y=x^{x^{3}}$
b) $y=(x+1)^{x+1}$
9. Find $d y / d x$

a) $\ln \left(x y^{2}\right)=x y$

b) $(\ln y) e^{y \ln x}=e^{2}$
10. If y is defined implicitly by $e^{y}=(y+1) e^{x}$, determine $d y / d x$ as explicit functions of y only.
11. Determine when the function is increasing or decreasing, and determine when relative maxima and minima occur. Do not sketch the graph.
a) $y=-x^{5}-5 x^{4}+200$
b) $y=\frac{x^{2}-3}{x+2}$
c) $y=e^{x}+e^{-x}$
12. Sketch the graph of a continuous function f such that $f(1)=2, f(3)=1, f(1)=f(3)=0, f(x)>0$ for $x<1, f(x)<0$ for $1<x<3$, and f has a relative minimum when $x=3$.
13. For a manufacturer's product, the revenue function is given by $r=240 q+57 q^{2}-q^{3}$. Determine the output for maximum revenue.
14. Determine concavity and the x values for the function $y=-\frac{5}{2} x^{4}-\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+\frac{1}{3} x-\frac{2}{5}$ where points of inflection occur. Do not sketch the graph.
15. Determine intervals on which the function $y=3 x^{4}-4 x^{3}+1$ is increasing, decreasing, concave up, and concave down; relative maxima and minima; inflection points; symmetry; and those intercepts that can be obtained conveniently. Then sketch the curve.
16. Sketch the graph of a continuous function f such that $f(4)=4, f^{\prime}(4)=0, f^{\prime \prime \prime}(x)<0$ for $x<4$, and $f^{\prime \prime \prime}(x)>0$ for $x>4$.
17. Sketch the graph of a continuous function f such that $f(1)=1, f^{\prime}(1)=0$, and $f^{\prime \prime}(x)<0$ for all x.
18. Test for relative maxima and minima for the function $y=x^{4}-2 x^{2}+4$. Use the second derivative test if possible.
19. Find the horizontal and vertical asymptotes for the graphs of the functions. Do not sketch the graphs.
a) $y=\frac{4}{x-6}+7$
b) $y=\frac{2}{9}+\frac{3 x}{14 x^{2}+x-3}$
20. Determine intervals on which the function is increasing, decreasing, concave up, and concave down; relative maxima and minima; inflection points; symmetry; horizontal and vertical asymptotes; and those intercepts that can be obtained conveniently. Then sketch the curve.
a) $y=\frac{1}{x^{2}+1}$
b) $y=\frac{3 x}{(x-2)^{2}}$
21. Let $f(x)=\left(x^{2}+1\right) e^{-x}$
a) Determine the values of x at which relative maxima and relative minima, if any, occur. b) Determine the interval(s) on which the graph of f is concave down, and find the coordinates of all points of inflection.
22. Indicate intervals on which the function $y=x^{3}-12 x+20$ is increasing, decreasing, concave up, or concave down; indicate relative maximum points, relative minimum points, points of inflection; horizontal asymptotes, vertical asymptotes, symmetry, and those intercepts that can be obtained conveniently and sketch the graph.

