Name and Surname:
Student ID \# :
Section \#:

Q1 (20)	Q2(20)	Q3(20)	Q4(10)	Q5(15)	Q6(15)	Total (100)

ATTENTION: Please show all your work in details. DO NOT USE calculators and cellphones. There are 6 questions on 6 pages. Solve all of them. Duration is 90 minutes.

1-(20 P) Solve the given system of equations by using matrix reduction.

$$
\left\{\begin{array}{c}
2 x+z=-5 \\
y+z=-1 \\
x+2 y+z=0
\end{array}\right.
$$

Solution of Question 1: Corresponding augmented matrix is $\left[\begin{array}{lll|r}2 & 0 & 1 & -5 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & 1 & 0\end{array}\right]$
$\left[\begin{array}{lll|r}2 & 0 & 1 & -5 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & 1 & 0\end{array}\right] \xrightarrow{R_{3} \leftrightarrow R_{1}}\left[\begin{array}{lll|r}1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 2 & 0 & 1 & -5\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|r}1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & -4 & -1 & -5\end{array}\right]$
$\xrightarrow{4 R_{2}+R_{3}}\left[\begin{array}{lll|r}1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 3 & -9\end{array}\right] \xrightarrow{\frac{1}{3} R_{3}}\left[\begin{array}{rrr|r}1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & -3\end{array}\right] \xrightarrow{\xrightarrow{-R_{3}+R_{2}+R_{1}}}\left[\begin{array}{lll|r}1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3\end{array}\right]$
$\xrightarrow{-2 R_{2}+R_{1}}\left[\begin{array}{lll|r}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3\end{array}\right]$
Hence, we have the reduced matrix is $\left[\begin{array}{lll|r}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3\end{array}\right]$.
The number of equation is the same as the unknowns; therefore it has unique solution as $x=-1, y=2$ and $z=-3$.

2-(20 P) Use the matrix reduction to find the inverse of coefficient matrix. Solve the system of equations by using the inverse of its coefficient matrix.

$$
\left\{\begin{array}{c}
X_{1}-X_{2}=1 \\
X_{2}-X_{3}=-2 \\
2 X_{3}-X_{1}=2
\end{array}\right.
$$

Solution of Question 2: The equation can be written in the matrix form $\mathbf{A X}=\mathbf{B}$ where

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 2
\end{array}\right], \mathbf{X}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]
$$

The inverse of the coefficient matrix \mathbf{A} can be found as follows: For the inverse of coefficient matrix, corresponding augmented matrix is
$[\mathbf{A} \mid \mathbf{I}]=\left[\begin{array}{rrr|rrr}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{1}+R_{3}}\left[\begin{array}{rrr|rrr}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 1 & 0 & 1\end{array}\right]$
$\xrightarrow{R_{2}+R_{3}}\left[\begin{array}{rrr|rrr}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right] \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{rcc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
$\xrightarrow{R_{2}+R_{1}}\left[\begin{array}{lll|lll}1 & 0 & 0 & 2 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]=\left[\mathbf{I} \mid \mathbf{A}^{\mathbf{- 1}}\right]$
where $\mathbf{A}^{\mathbf{- 1}}=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$.
Hence, we may solve the system of equations using the inverse of matrix \mathbf{A} by

$$
\mathbf{X}=\mathbf{A}^{\mathbf{- 1}} \mathbf{B}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .
$$

The set of solutions is $\mathbf{X}=\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$.

3- (20P) Find the critical points of the following function and classify each critical point as a relative maximum, a relative minimum, or neither. If its extrema exist, then find it.

$$
f(x, y)=x^{3}+y^{3}-3 x y+4 .
$$

Solution of Question 3:

We have for critical points $f_{x}(x, y)=3 x^{2}-3 y=3\left(x^{2}-y\right)=0$ and $f_{y}(x, y)=3\left(y^{2}-\right.$ $x)=0$.Then $=x^{2}, x=y^{2}$ and $x^{4}=x$ or $x\left(x^{3}-1\right)=0$ so $x=0, x=1$ and $y=0, y=1$. Then the critical points are $(0,0)$ and $(1,1)$. Then

$$
\begin{gathered}
f_{x x}(x, y)=6 x, f_{y y}(x, y)=6 y, f_{x y}(x, y)=-3 \text { and } D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y) \\
D(x, y)=(6 x)(6 y)-(-3)^{2}=36 x y-9 .
\end{gathered}
$$

At $(0,0)$ we therefore have $D(0,0)=-9<0$ so $(0,0)$ is a saddle point. At $(1,1)$ we therefore have $D(1,1)=36-9=27>0$ and $f_{x x}(1,1)=6>0$ so f must have a local minimum at $(1,1)$. The minimum value of f at $(1,1)$ is $f(1,1)=3$.

4-(10P) If $\quad q_{A}=400-\ln \left(2^{p_{A}}\right)+3 e^{p_{A}} p_{B}$ and $q_{B}=125+\ln \left(3^{p_{B}}\right)-5 e^{-p_{A}} p_{B}-2 p_{B}$, where q_{A} and q_{B} are the number of units demanded of products A and B, respectively, and p_{A} and p_{B} are their respective prices per unit, determine whether A and B are competitive products, complementary products, or neither.

Solution of Question 4: We have the partial derivatives of q_{A} and q_{B} with respect to p_{B} and p_{A} are respectively

$$
\begin{gathered}
\frac{\partial q_{A}}{\partial p_{B}}=3 e^{p_{A}}>0 \\
\frac{\partial q_{B}}{\partial p_{A}}=5 e^{-p_{A}} p_{B}>0
\end{gathered}
$$

Therefore, the products A and B are competitive products or substitutes.
$5-(08 \mathbf{P})-(\mathbf{a}) \operatorname{If} f(u, v, w)$ is differentiable and $u=x-y, v=y-z$ and $w=z-x$, then find $f_{x}(u, v, w)+f_{y}(u, v, w)+f_{z}(u, v, w)$.

Solution of Question $5-\mathbf{a}: f_{x}(u, v, w)=\frac{\partial f}{\partial u} \frac{d u}{d x}+\frac{\partial f}{\partial v} \frac{d v}{d x}+\frac{\partial f}{\partial w} \frac{d w}{d x}=\frac{\partial f}{\partial u}-\frac{\partial f}{\partial w}$

$$
\begin{gathered}
f_{y}(u, v, w)=\frac{\partial f}{\partial u} \frac{d u}{d y}+\frac{\partial f}{\partial v} \frac{d v}{d y}+\frac{\partial f}{\partial w} \frac{d w}{d y}=-\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v} \\
f_{z}(u, v, w)=\frac{\partial f}{\partial u} \frac{d u}{d z}+\frac{\partial f}{\partial v} \frac{d v}{d z}+\frac{\partial f}{\partial w} \frac{d w}{d z}=-\frac{\partial f}{\partial v}+\frac{\partial f}{\partial w} \\
f_{x}(u, v, w)+f_{y}(u, v, w)+f_{z}(u, v, w)=0 .
\end{gathered}
$$

$\mathbf{5}-\mathbf{(0 7 P})-\mathbf{(b)}$ If $w=x^{2}+y^{2}$ and $x=r-s, y=r+s$, then find $s \frac{\partial w}{\partial r}-r \frac{\partial w}{\partial s}$.
Solution of Question $5-\mathbf{b}: \frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{d x}{d r}+\frac{\partial w}{\partial y} \frac{d y}{d r}=2 x+2 y=2(x+y)=4 r$

$$
\begin{gathered}
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{d x}{d s}+\frac{\partial w}{\partial y} \frac{d y}{d s}=-2 x+2 y=2(-x+y)=4 s \\
s \frac{\partial w}{\partial r}-r \frac{\partial w}{\partial s}=s(4 r)-r(4 s)=0 .
\end{gathered}
$$

Solution of Question $6-\mathbf{a}: f_{x}(x, y)=\frac{x}{x^{2}+y^{2}}, f_{y}(x, y)=\frac{y}{x^{2}+y^{2}}$

$$
\begin{gathered}
f_{x x}(x, y)=\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, f_{y y}(x, y)=\frac{x^{2}+y^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{x x}(x, y)+f_{y y}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0 .
\end{gathered}
$$

$6-(\mathbf{0 8 P})-(\mathbf{b})$ If $z^{3}+\ln (x y z)+\ln (z)-x^{2}+e^{z^{2}}=0$, then find $\frac{\partial z}{\partial x}$.
Solution of Question $6-\mathbf{b}: 3 z^{2} \frac{\partial z}{\partial x}+\frac{\mathrm{yz}+\mathrm{xy} \frac{\partial \mathrm{z}}{\partial x}}{\mathrm{xyz}}+\frac{\frac{\partial \mathrm{z}}{\partial x}}{\mathrm{z}}-2 \mathrm{x}+2 \mathrm{z} \frac{\partial \mathrm{z}}{\partial x} e^{z^{2}}=0$

$$
\frac{\partial \mathrm{z}}{\partial x}\left[3 z^{2}+\frac{2}{z}+2 \mathrm{z} e^{z^{2}}\right]=2 x-\frac{1}{x} \text { or } \frac{\partial \mathrm{z}}{\partial x}=\left(\frac{2 x-\frac{1}{x}}{3 z^{2}+\frac{2}{z}+2 \mathrm{ze} e^{z^{2}}}\right)
$$

