MATH 172 MIDTERM EXAM 27/03/2014

Name and Surname:_______ Student ID \#:_____ Section \#:____

| Q1 (20) | Q2 (20) | Q3 (20) | Q4(20) | Q5(20) | Total (100) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

ATTENTION: Please show all your work in details. DO NOT USE calculators and cellphones. There are 5 questions on 5 pages. Solve all of them. Duration is $\mathbf{6 0}$ minutes.

1-(20 P) Evaluate the following indefinite integrals each of them is 10 Points.
(10 P) - (a) $\int \frac{(1+\ln (x))}{x} d x$

Let $u=1+\ln (x), d u=\frac{1}{x} d x$. Hence,

$$
\int \frac{(1+\ln (x))}{x} d x=\int \frac{d u}{u}=\ln |u|+C=\ln |1+\ln (x)|+C
$$

where C (any real mumber) is constant of integration.
$\left(10\right.$ P) -(b) $\int\left(x+2 x^{3}\right) e^{x^{4}+x^{2}+5} d x$

Let $u=x^{4}+x^{2}+5, \frac{d u}{2}=\left(x+2 x^{3}\right) d x$. Hence,

$$
\int\left(x+2 x^{3}\right) e^{x^{4}+x^{2}+5} d x=\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{x^{4}+x^{2}+5}+C
$$

where C (any real number) is constant of integration.

2-(20 P) Evaluate the following indefinite integrals each of them is 10 Points.
(10 P) - (a) $\int \frac{3 x+5}{x^{2}-x-42} d x$

By using partial fraction decompositions, we have
$\frac{3 x+5}{x^{2}-x-42}=\frac{3 x+5}{(x-7)(x+6)}=\frac{A}{(x-7)}+\frac{B}{(x+6)}$. Then, $3 x+5=A(x+6)+B(x-7)$.
For $x=-6,-13=-13 B, \quad B=1$.
For $x=7,26=13 A . \quad A=2$.
$\int \frac{3 x+5}{x^{2}-x-42} d x=\int\left(\frac{2}{(x-7)}+\frac{1}{(x+6)}\right) d x$

$$
\begin{aligned}
& =2 \ln |x-7|+\ln |x+6|+c \\
& =\ln \left[(x-7)^{2}|x+6|\right]+c
\end{aligned}
$$

where C is constant of integration.

$$
(10 \mathrm{P})-(b) \int\left(x^{2}+1\right) \ln (x) d x
$$

By using integration by parts, we choose
$u=\ln (x), d u=\frac{1}{x} d x$
$d v=\left(x^{2}+1\right) d x, v=\frac{x^{3}}{3}+x$. Hence,
$\int\left(x^{2}+1\right) \ln (x) d x=\left(\frac{x^{3}}{3}+x\right) \ln (x)-\int\left(\frac{x^{3}}{3}+x\right) \frac{1}{x} d x$
$=\left(\frac{x^{3}}{3}+x\right) \ln (x)-\int\left(\frac{x^{2}}{3}+1\right) d x=\left(\frac{x^{3}}{3}+x\right) \ln (x)-\frac{x^{3}}{9}-x+C$
where C is constant of integration.

3-(20 P) Given $y^{\prime \prime}=30 x^{4}+20 x^{3}+2, y(0)=1$ and $y^{\prime}(0)=1$. Find $y(x)$.

$$
y^{\prime}(x)=\int\left(30 x^{4}+20 x^{3}+2\right) d x=6 x^{5}+5 x^{4}+2 x+C
$$

$C=1$ since $y^{\prime}(0)=1$.Then $y^{\prime}(x)=6 x^{5}+5 x^{4}+2 x+1$

$$
y(x)=\int\left(6 x^{5}+5 x^{4}+2 x+1\right) d x=x^{6}+x^{5}+x^{2}+x+D
$$

$D=1$ since $y(0)=1$. Hence,

$$
y(x)=x^{6}+x^{5}+x^{2}+x+1 .
$$

In fact $y^{\prime \prime}(x)=30 x^{4}+20 x^{3}+2$ and $y(0)=1, y^{\prime}(0)=1$.
4-(20 P) Find the area of the region bounded by the parabola $y(x)=x^{2}-5 x+4$ and the line $y(x)=-4 x+4$.

For the limits of integrations, we have $x^{2}-5 x+4=-4 x+4 . x^{2}-x=$ $(x)(x-1)=0$. Then $x=0$ and $x=1$ are the intersection points. The area of the region bounded by the parabola and the line is then
$A=\int_{0}^{1}\left[(-4 x+4)-\left(x^{2}-5 x+4\right)\right] d x=\int_{0}^{1}\left(-x^{2}+x\right) d x$
$=-\frac{x^{3}}{3}+\left.\frac{x^{2}}{2}\right|_{0} ^{1}=-\frac{1}{3}(1-0)+\frac{1}{2}(1-0)$
$=-\frac{1}{3}+\frac{1}{2}=\frac{1}{6}(u n)^{2}$.

5- (20 P) The demand equation for a product is $p=0.01 q^{2}-1.1 q+30$ and the supply equation is $p=0.01 q^{2}+8$. Determine the consumers' surplus (CS) under the market equilibrium.

In order to find the equilibrium point $0.01 q^{2}-1.1 q+30=0.01 q^{2}+8$. Then, we have
$-1.1 q+30=8,-1.1 q=-22, \quad 11 q=220, \quad q_{0}=20$ and for $p_{0}=$ $0.01(20)^{2}+8=4+8=12$. Hence, the consumers' surplus (CS) is
$C S=\int_{0}^{20}\left[f(p)-p_{0}\right] d q=\int_{0}^{20}\left[0.01 q^{2}-1.1 q+30-12\right] d q$
$=\int_{0}^{20}\left[0.01 q^{2}-1.1 q+18\right] d q=0.01 \frac{q^{3}}{3}-1.1 \frac{q^{2}}{2}+\left.18 q\right|_{0} ^{20}$
$=\frac{0.01}{3}(8000)-1.1 \frac{1}{2}(400)+18(20)$
$=\frac{80}{3}-220+360=\frac{80}{3}+140=\frac{500}{3}$
$=166 \frac{2}{3}$.

