1. Sketch the given surfaces. a) 2x+3y+z=9

b) z = x

b) $z = \frac{x}{x+y}; \quad \frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y}$

d) $w = e^{x^2 yz}; \quad w_{xy} = (x, y, z)$

f) $w = e^{x+y+z} \ln xyz; \quad \partial w/\partial y, \quad \partial^2 w/\partial z \partial x$

- 2. Find the indicated partial derivatives.
 - a) $P = l^3 + k^3 lk;$ $\frac{\partial P}{\partial l}, \frac{\partial P}{\partial k}$ c) $f(x, y) = \ln \sqrt{x^2 + y^2}; \frac{\partial}{\partial y} [f(x, y)]$ e) $f(x, y) = xy \ln(xy); f_{xy}(x, y)$
- 3. If $f(x, y, z) = \frac{x + y}{xz}$ find $f_{xyz}(2,7,4)$
- 4. If $f(x, y, z) = (6x+1)e^{y^2 \ln(z+1)}$ find $f_{xyz}(0,1,0)$
- 5. If $w = x^2 + 2xy + 3y^2$, $x = e^r$, and $y = \ln(r+s)$, find $\partial w / \partial r$ and $\partial w / \partial s$
- 6. If $z^2 + \ln(yz) + \ln z + x + z = 0$, find $\partial z / \partial y$
- 7. If a manufacturer's production function is defined by $P = 20l^{0.7}k^{0.3}$, determine the marginal productivity functions.
- 8. A manufacturer's cost for producing x units of product X and y units of product Y is given by c = 3x + 0.05xy + 9y + 500 determine the (partial) marginal cost with respect to x when x=50 and y=100.
- 9. Examine $f(x, y) = x^2 + 2y^2 2xy 4y + 3$ for relative extrema.
- 10. A company manufactures two products, X and Y, and the joint-cost function for these products is given by $c = 0.002(x + y)^2 + x + 0.25y + 8000$, where c is the total cost of producing x units of X and y units of Y. Determine the marginal cost with respect to x when x=450 and y=550.
- 11. A company's production function is given by $P = 40Lk 3L^2 2k^2 + 500$, where P is the total output generated by L units of labor and k units of capital. Determine: (a) the marginal production function with respect to L, (b) the marginal production function with respect to k.
- 12. The demand function for product A is $q_A = \frac{10\sqrt{2p_B}}{p_A}$, and the demand function for product B is $q_B = 20 + 3p_A 2p_B$, where q_A and q_B are the quantities demanded for A and B, respectively, and p_A and p_B are their respective prices. Determine: (a) the marginal demand for A with respect to p_B , (b) the marginal demand for B with respect to p_A , (c) whether A and B are competitive, complementary, or neither.
- 13. Let $q_A = 50 5p_A + 6p_B^2$ and $q_B = 20\sqrt{p_A} p_B^{-1}$ be demand functions, where p_A and p_B are prices for products A and B, respectively. Find all four marginal demand functions.
- 14. Use implicit partial differentiation to find $\frac{\partial z}{\partial y}$ from $e^{xy} + 7x^3 + 8z 19 = 0$
- 15. For $\ln(xyz) + e = e^y + 1$, the partial derivative $\frac{\partial z}{\partial x}$ evaluated at $x = e^{-2}$, y = 1, $z = e^3$

16. If
$$f(x, y) = 2x^4y^3 - 3x^3y^3 + 4xy - x + 2y + 4$$
, find: $f_x(x, y), f_y(x, y), f_{xy}(x, y), f_{xy}(-1, 1), f_{yyx}(x, y)$

- 17. Let $f(x, y, z) = \ln(x^4 + 6y^2) 2z^4x^2e^{3y} + x^{20}y^3$. Find $\frac{\partial^3 f}{\partial x \partial y \partial z}$
- 18. If $z = (x^2 + y^2)^{10}$ where $x = 4r^2s^3$ and $y = e^{2r+3s-3}$, then by means of the chain rule, (a) find $\frac{\partial z}{\partial r}$; (b) evaluate $\frac{\partial z}{\partial r}$ when r=0 and s=1.
- 19. Determine the critical points of $f(x, y) = 2xy 3x y x^2 3y^2$ and also determine by the secondderivative test whether each point corresponds to a relative maximum, to a relative minimum, to neither, or whether the test gives no information.
- 20. A television manufacturing company makes two types of TV's. The cost of producing x units of type A and y units of type B is given by the function $C(x, y) = 120 + x^3 + 8y^3 24xy$. How many units of type A and B televisions should the company produce to minimize its cost?