Name:
Instructor:
Section:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Total		

ATTENTION: There are $\mathbf{7}$ questions on 6 pages. Solve all of them. Duration is 100 minutes. Simply giving a final result is not sufficient to answer any question, so show all the steps you pursued to get any final result. Otherwise your answer will not be evaluated as a correct answer.

1. (a) The demand function for margarine is $q_{M}=1000-50 p_{M}+2 p_{B}$ and the demand function for butter is $q_{B}=500+4 p_{M}-20 p_{B}$ where q_{M} and q_{B} are the quantities demanded for the margarine and the butter respectively, and p_{M} and p_{B} are their respective prices per unit. Determine (i) the marginal demand for margarine with respect to p_{B}, (ii) the marginal demand for butter with respect to p_{M}, (iii) whether the margarine and butter products are competitive, complimentary or neither. (10 Points)

Solution:

(i) $\frac{\partial q_{M}}{\partial p_{B}}=2>0$
(ii) $\frac{\partial q_{B}}{\partial p_{M}}=4>0$
(iii) From (i) and (ii), the margarine and butter are competitive products.
(b) A manufacturer's marginal-cost function is

$$
\frac{d c}{d q}=\frac{1000}{\sqrt{3 q+70}}
$$

If c is in TL, determine the cost involved to increase production from 10 to 33 units. (10 Points)

Solution:

$$
\begin{aligned}
c=\int_{10}^{33} \frac{d c}{d q} d q=\int_{10}^{33} \frac{1000}{\sqrt{3 q+70}} d q & =1000 \int_{10}^{33} \frac{1}{\sqrt{u}} \frac{d u}{3} \Rightarrow\left\{\begin{array} { c }
{ u = 3 q + 7 0 } \\
{ d u = 3 d q }
\end{array} \Rightarrow \left\{\begin{array}{l}
q=33 \rightarrow u=169 \\
q=10 \rightarrow u=100
\end{array}\right.\right. \\
& =\left.\frac{1000}{3} \frac{u^{1 / 2}}{1 / 2}\right|_{100} ^{169}=\frac{2000}{3} \underbrace{(\sqrt{169}-\sqrt{100})}_{=3}=2000 T L
\end{aligned}
$$

2. Take the indefinite integral of $\int 9 x^{2} \ln x d x$. (10 Points)

Solution:

$$
\begin{aligned}
\int 9 x^{2} \ln x d x & =3 x^{3} \ln x-\int 3 x^{3} \frac{1}{x} d x \Rightarrow\left\{\begin{array}{c}
\ln x=u \\
9 x^{2} d x=d v
\end{array} \Rightarrow \quad \Rightarrow \quad \begin{array}{c}
\frac{1}{x} d x=d u \\
9 \frac{x^{3}}{3}=3 x^{3}=v
\end{array}\right. \\
& =3 x^{3} \ln x-3 \frac{x^{3}}{3}+C=3 x^{3} \ln x-x^{3}+C
\end{aligned}
$$

3. Solve for x and y of the matrix equation given below: (10 Points)

$$
\left[\begin{array}{ll}
1 & x \\
2 & y
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
x & 3
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
3 & y
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & x \\
2 & y
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
x & 3
\end{array}\right]=\left[\begin{array}{ll}
2+x^{2} & 1+3 x \\
4+x y & 2+3 y
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
3 & y
\end{array}\right]} \\
& \begin{array}{l}
2+x^{2}=3 \\
1+3 x=4 \\
4+x y=3 \\
2+3 y=y \quad
\end{array} \quad \Rightarrow \quad x=1
\end{aligned}
$$

4. (a) Let $x^{2}+2 x y-2 z^{2}+x z+2=0$. Use implicit differentiation to evaluate $\frac{\partial z}{\partial x}$ when $x=1$, $y=-1$ and $\mathrm{z}=3$. (10 Points)

Solution:

$$
\frac{\partial}{\partial x}\left(x^{2}+2 x y-2 z^{2}+x z+2\right)=2 x+2 y-4 z \frac{\partial z}{\partial x}+z+x \frac{\partial z}{\partial x}=0
$$

Collecting and arranging $\frac{\partial z}{\partial x}$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}(4 z-x)=2 x+2 y+z \quad \Rightarrow \quad \frac{\partial z}{\partial x}=\frac{2 x+2 y+z}{4 z-x} \\
& \left.\frac{\partial z}{\partial x}\right|_{\substack{x=1 \\
y=-1 \\
z=3}}=\frac{2-2+3}{4 \times 3-1}=\frac{3}{11}
\end{aligned}
$$

(b) If $z=\ln \frac{x}{y}+e^{y}-x y$ where $x=s^{2}$ and $y=r+s$, evaluate $\frac{\partial z}{\partial r}$ when $r=0$ and $s=-1$. (10 Points)

Solution:

$$
\begin{aligned}
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \underbrace{\frac{\partial x}{\partial r}}_{=0}+\underbrace{\frac{\partial z}{\partial y}}_{-\frac{1}{y}+e^{y}-x} \underbrace{\frac{\partial y}{\partial r}}_{=1}=-\frac{1}{y}+e^{y}-x \\
& \left.\frac{\partial z}{\partial r}\right|_{\substack{r=0 \\
s=-1}}=-\frac{1}{-1}+e^{-1}-1=e^{-1} \\
& \begin{array}{ll}
& r=0 \\
s=-1
\end{array} \Rightarrow\left\{\begin{array}{c}
x=1 \\
y=-1
\end{array}\right.
\end{aligned}
$$

5. Examine the function $f(\omega, z)=2 \omega^{3}+2 z^{3}-6 \omega z+7$ for relative extrema using the second derivative test. (15 Points)

Solution:

The first derivatives of $f(\omega, z)$ function:

$$
\begin{array}{ll}
f_{\omega}=\frac{\partial f}{\partial \omega}=6 \omega^{2}-6 z=6\left(\omega^{2}-z\right)=0 & \Rightarrow \quad \omega^{2}=z \\
f_{z}=\frac{\partial f}{\partial z}=6 z^{2}-6 \omega=6\left(z^{2}-\omega\right)=0
\end{array} \quad \Rightarrow \quad\left(\omega^{2}\right)^{2}-\omega=\underset{\substack{\omega=0 \text { or } \omega=1}}{\omega\left(\omega^{3}-1\right)=0}
$$

From the first partial derivatives, the solutions for ω are $\omega=0$ or $\omega=1$, and the corresponding solutions for z are $z=0$ or $z=1$, respectively. The critical points are $(0,0)$ and $(1,1)$ points.

The second derivatives are as follows

$$
f_{\omega \omega}=\frac{\partial^{2} f}{\partial \omega^{2}}=12 \omega, \quad f_{z z}=\frac{\partial^{2} f}{\partial z^{2}}=12 z, \quad f_{\omega z}=\frac{\partial^{2} f}{\partial \omega \partial z}=-6
$$

The function $D(\omega, z)$ for the second-derivative test is given by

$$
D(\omega, z)=f_{\omega \omega} f_{z z}-f_{\omega z}^{2}=144 \omega z-(-6)^{2}=144 \omega z-36
$$

The extrama at $(0,0),(1,1)$ critical points are as follows:
The $(0,0)$ point: $D(0,0)=-36<0$, a saddle point
The $(1,1)$ point: $D(1,1)=144-36=108>0, f_{\omega \omega}(1,1)=12>0$ so a relative minimum

6. By using matrix reduction, solve the given system and determine whether it has unique solution or infinitely many solutions. (15 Points)

$$
\begin{aligned}
& x+y+7 z=0 \\
& x-y-z=0 \\
& 2 x-3 y-6 z=0 \\
& 3 x+y+13 z=0
\end{aligned}
$$

Solution:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 1 & 7 \\
1 & -1 & -1 \\
2 & -3 & -6 \\
3 & 1 & 1
\end{array}\right] \xrightarrow[\substack{-2 R_{1}+R_{1} \\
-3 R_{1}+R_{4}}]{\substack{-R_{2}+R_{2}}}\left[\begin{array}{ccc}
1 & 1 & 7 \\
0 & -2 & -8 \\
0 & -5 & -20 \\
0 & -2 & -8
\end{array}\right] \xrightarrow{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc}
1 & 1 & 7 \\
0 & 1 & 4 \\
0 & -5 & -20 \\
0 & -2 & -8
\end{array}\right]} \\
\\
\substack{-R_{2}+R_{1} \\
2 R_{2}+R_{3}}
\end{gathered}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{c}
-R_{4}
\end{array}\right]
$$

The number of equation is less than the unknowns (x, y, z); therefore it has infinitely many solutions as

$$
\begin{array}{lll}
x+3 z=0 & \Rightarrow & x=-3 r \\
y+4 z=0 & \Rightarrow & y=-4 r \\
z=r
\end{array}
$$

where r is any real number.
7. Solve the given system by using the inverse of its coefficient matrix. (15 Points)

$$
\begin{aligned}
& 3 x+y+4 z=1 \\
& x+z=0 \\
& 2 y+z=0
\end{aligned}
$$

Solution:

The equation can be written in matrix form as:

$$
\mathbf{A X}=\mathbf{B} \quad \text { with } \quad \mathbf{A}=\left[\begin{array}{lll}
3 & 1 & 4 \\
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The inverse of the coefficient matrix \mathbf{A} can be found as follows:

$$
\begin{aligned}
{[\mathbf{A} \mid \mathbf{I}]=\left[\begin{array}{lll|lll}
3 & 1 & 4 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{\xrightarrow[R_{1} \leftrightarrow R_{2}]{ }}\left[\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & 1 & 4 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{-3 R_{1}+R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & -3 & 0 \\
0 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{-2 R_{2}+R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & -3 & 0 \\
0 & 0 & -1 & -2 & 6 & 1
\end{array}\right] \xrightarrow{-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & -3 & 0 \\
0 & 0 & 1 & 2 & -6 & -1
\end{array}\right] \\
& \xrightarrow{-R_{3}+R_{2}}\left[\begin{array}{ccc|cc|}
1 & 0 & 0 & -2 & 7 \\
0 & 1 & 1 \\
0 & 1 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -6 \\
\hline-1
\end{array}\right]=\left[\mathbf{I} \mid \mathbf{A}^{-1}\right]
\end{aligned}
$$

Hence we may solve the system of equations using the inverse of \mathbf{A} by

$$
\mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{A}^{-1} \mathbf{B}=\left[\begin{array}{ccc}
-2 & 7 & 1 \\
-1 & 3 & 1 \\
2 & -6 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]
$$

The solution of the equation system is $(-2,-1,2)$.

