Name:
Student ID:
Instructor:
Section:
YEDITTEPE UNIVERSITY
MATH 172 FINAL EXAM

Q1	Q2	Q3	Q4	Q5	Total

ATTENTION: There are 5 questions on 4 pages. Solve all of them. Duration is 90 minutes. Simply giving a final result is not sufficient to answer any question, so show all the steps you pursued to get any final result. Otherwise your answer will not be evaluated as a correct answer.

1) (a) Find the critical point(s) of the function (10 points)

$$
f(x, y)=x^{2}+y^{2}-\sqrt{e} y x
$$

Solution:

$$
\begin{gathered}
f_{x}(x, y)=2 x-\sqrt{e} y=0 \\
f_{y}(x, y)=2 y-\sqrt{e} x=0 \\
x=0 \text { and } y=0
\end{gathered}
$$

There is only one critical point which is $(0,0)$.
(b) Classify each critical point as a relative maximum, a relative minimum, or neither (10 points).
Solution:

$$
\begin{gathered}
f_{x x}(x, y)=2 \\
f_{y y}(x, y)=2 \\
f_{x y}=-\sqrt{e} \\
D=f_{x x} f_{y y}-f_{x y}^{2}=4-e>0 \\
f_{x x}(x, y)=2>0
\end{gathered}
$$

$\mathrm{f}(\mathrm{x}, \mathrm{y})$ has a relative minimum (absolute minimum) at $(0,0)$.
2) If $q_{A}=1000-e^{p_{A}}+p_{B}$ and $q_{B}=400+2 p_{A}-\sqrt[3]{12} p_{B}$, where q_{A} and q_{B} are the number of units demanded of products A and B , respectively, and p_{A} and p_{B} are their respective prices per unit, determine whether A and B are competitive products, complementary products, or neither (10 points).

Solution:

$$
\begin{aligned}
& \frac{\partial q_{A}}{\partial p_{B}}=1>0 \\
& \frac{\partial q_{B}}{\partial p_{A}}=2>0
\end{aligned}
$$

Therefore, A and B are competitive products.
3) Calculate the following indefinite integral (10 points)

$$
\int \frac{x}{\sqrt{x+2}} d x=?
$$

Solution:

$x+2=u$ then $x=u-2$
$d x=d u$
$\int \frac{x}{\sqrt{x+2}} d x=\int \frac{u-2}{\sqrt{u}} d u=\int \frac{u}{\sqrt{u}} d u-2 \int \frac{1}{\sqrt{u}} d u$
$=\int(u)^{1 / 2} d u-2 \int(u)^{-1 / 2} d u=\frac{u^{3 / 2}}{3 / 2}-2 \frac{u^{1 / 2}}{1 / 2}+c$
$=\frac{2}{3}(x+2)^{3 / 2}-4(x+2)^{1 / 2}+c$
4) (a) Given $\ln (x y)=x^{2} y$, find $\frac{d y}{d x}$ (15 points).

Solution: Differentiate both sides with respect to x ue get:

$$
\begin{aligned}
& \frac{1}{x y}\left(y+x \frac{d y}{d x}\right)=2 x y+x^{2} \frac{d y}{d x} \\
& \frac{1}{x}-2 x y=\frac{d y}{d x}\left(x^{2}-\frac{1}{y}\right) \\
& \frac{d y}{d x}=\frac{\frac{1}{x}-2 x y}{x^{2}-\frac{1}{y}}
\end{aligned}
$$

(b) If $z=\sqrt{2 x+3 y}$ where $x=3 t+2 s$ and $y=t^{2}+e^{2 t}+s^{2}$ evaluate $\frac{\partial z}{\partial t}$ when $t=0$ and $s=1$ (15 points).

Solution:

$$
\begin{aligned}
& \begin{aligned}
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}=\left(\frac{1}{2}(2 x+3 y)^{-1 / 2} \cdot 2\right)(3)+\left(\frac{1}{2}(2 x+3 y)^{-1 / 2} \cdot 3\right)\left(2 t+2 e^{2 t}\right) \\
&=\frac{3}{\sqrt{2 x+3 y}}+\frac{3\left(t+e^{2 t}\right)}{\sqrt{2 x+3 y}}=\frac{3\left(1+t+e^{2 t}\right)}{\sqrt{2 x+3 y}} \\
& t=0 \text { and } s=1 \text { then } x=2 \text { and } y=2
\end{aligned} \\
& \frac{\partial z}{\partial t}=\frac{3\left(1+t+e^{2 t}\right)}{\sqrt{2 x+3 y}}=\frac{3(1+0+1)}{\sqrt{2.2+3.2}}=\frac{6}{\sqrt{10}}
\end{aligned}
$$

5) (a) By using matrix reduction, solve the given system and determine whether it has unique solution or infinitely many solutions (15 Points).

$$
\begin{array}{r}
3 x+3 y-z=1 \\
-2 x-2 y+z=1 \\
-4 x-5 y+2 z=1
\end{array}
$$

Solution:

$\xrightarrow[R_{2} \rightarrow R_{3}]{-R_{3} \rightarrow R_{2}}\left(\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 5\end{array}\right)$
The number of equation is the same as the unknowns; therefore it has unique solution as $x=1, y=1$ and $z=5$.
(b) Solve the given system below by using the inverse of its coefficient matrix (15 Points).

$$
\left\{\begin{array}{l}
2 x-3 y+1=0 \\
y-x-1=0
\end{array}\right.
$$

Solution:

The equation can be written in matrix form as:

$$
\mathbf{A X}=\mathbf{B} \quad \Rightarrow \quad \mathbf{A}=\left[\begin{array}{cc}
2 & -3 \\
-1 & 1
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The inverse of the coefficient matrix \mathbf{A} can be found as follows:

$$
\begin{aligned}
{[\mathbf{A} \mid \mathbf{I}]=} & {\left[\left.\begin{array}{cc}
2 & -3 \\
-1 & 1
\end{array} \right\rvert\, \begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{cc|cc}
1 & -\frac{3}{2} & \frac{1}{2} & 0 \\
-1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{R_{1}+R_{2}}\left[\begin{array}{cc|cc}
1 & -\frac{3}{2} & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right] } \\
& \xrightarrow{-2 R_{2}}\left[\begin{array}{cc|cc}
1 & -\frac{3}{2} & \frac{1}{2} & 0 \\
0 & 1 & -1 & -2
\end{array}\right] \xrightarrow{\frac{3}{2} R_{2}+R_{1}}\left[\begin{array}{ll|ll}
1 & 0 & -1 & -3 \\
0 & 1 & -1 & -2
\end{array}\right]=\left[\mathbf{I} \mid \mathbf{A}^{-1}\right]
\end{aligned}
$$

Hence we may solve the system of equations using the inverse of A matrix by

$$
\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}=\left[\begin{array}{ll}
-1 & -3 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

The solution set is $\{-2,-1\}$.

