Name:

Student ID:

Instructor:
Section:

YEDITEPE UNIVERSITY

MATH 172 MIDTERM EXAM

Q1	Q2	Q3	Q4	Q5	Total

ATTENTION: There are 5 questions on 4 pages. Solve all of them. Duration is $\mathbf{6 0}$ minutes. Simply giving a final result is not sufficient to answer any question, so show all the steps you pursued to get any final result. Otherwise your answer will not be evaluated as a correct answer.

1) Evaluate the following integrals. (10 points each)
a) $\int x^{2}\left(x^{3}+4\right)^{5} d x$

Solution: Let $u=x^{3}+4$. Then $d u=3 x^{2} d x$.

So $\int x^{2}\left(x^{3}+4\right)^{5} d x=\int \frac{1}{3} u^{5} d u=\frac{1}{18} u^{6}+C=\frac{1}{18}\left(x^{3}+4\right)^{6}+C$
b) $\int \frac{x}{x+5} d x$

Solution: $\int \frac{x}{x+5} d x=\int 1-\frac{5}{x+5} d x=x-5 \ln |x+5|+C$

2) Find the following integrals (10 points each)

a) $\int \frac{x+2}{(x-1) \cdot\left(x^{2}+2\right)} d x$

Solution:

$$
\left.\begin{array}{l}
\frac{x+2}{(x-1) \cdot\left(x^{2}+2\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+2} \\
\left(x^{2}+2\right) \quad(x-1)
\end{array}\right] \begin{aligned}
& x+2=A\left(x^{2}+2\right)+(B x+C) \cdot(x-1) \\
& x+2=A x^{2}+2 A+B x^{2}-B x+C x-C \\
& A+2=(A+B) x^{2}+(C-B) x+(2 A-C) \\
& A=-B \quad C \quad C-B=1 \\
& \\
& \quad \frac{2 A-C=2}{2 A-B=3} \\
& 2 A+A=3 \Rightarrow 3 A=3
\end{aligned}
$$

$$
\begin{aligned}
A=1, \quad B=-1, \quad C & =0 \\
\int \frac{x+2}{(x-1) \cdot\left(x^{2}+2\right)} d x & =\int \frac{1}{x-1} d x+\int \frac{-x+0}{x^{2}+2} d x \\
& =\int \frac{d x}{x-1}-\frac{1}{2} \int \frac{2 x}{x^{2}+2} d x \\
& =\ln |x-1|-\frac{1}{2} \ln \left|x^{2}+2\right|+C \\
& =\ln \left|\frac{x-1}{\sqrt{x^{2}+2}}\right|+C
\end{aligned}
$$

b) $\int \sqrt{x} \ln x d x$

Solution:

$\ln x=u$ and $\sqrt{x} d x=\mathrm{dv}$
Then
$\frac{d x}{x}=d u$ and $\frac{2}{3} x^{3 / 2}=v$
Therefore,

$$
\begin{aligned}
\int \sqrt{x} \ln x d x & =\frac{2}{3} x^{3 / 2} \ln x-\frac{2}{3} \int x^{3 / 2} \frac{d x}{x} \\
& =\frac{2}{3} x^{3 / 2} \ln x-\frac{2}{3} \int x^{\frac{1}{2}} d x \\
& =\frac{2}{3} x^{3 / 2} \ln x-\frac{2}{3}\left(\frac{x^{3 / 2}}{3 / 2}\right)+\mathrm{c} \\
& =\frac{2}{3} x^{3 / 2}\left(\ln x-\frac{2}{3}\right)+\mathrm{c}
\end{aligned}
$$

3) Given $y^{\prime \prime}=12 x^{2}+6 x+2, y^{\prime}(1)=10$ and $y(0)=1$, find y (10 points).

Solution: $y^{\prime}=4 x^{3}+3 x^{2}+2 x+C_{1}$.
$y^{\prime}(1)=9+C_{1}=10$, so $C_{1}=1$.
$y=x^{4}+x^{3}+x^{2}+x+C_{2}$
$y(0)=C_{2}=1$, so $y=x^{4}+x^{3}+x^{2}+x+1$
4)
a) Find the area of the region bounded by the parabola $y=-3 x^{2}+12$ and the line $y=$ $12-6 x$ (20 points).

Solution

$\int_{0}^{2}\left[\left(-3 x^{2}+12\right)-(12-6 x)\right] d x=4$
b) Find the average value of the function $y=-3 x^{2}+6 x$ between $x=0$ and $x=2$ (10 points).

Solution

$\frac{1}{2-0} \int_{0}^{2}\left(-3 x^{2}+6 x\right) d x=2$
5)
a) If the marginal reveue function for a manufacturer's product is $\frac{d r}{d q}=40-0.02 q+\frac{500}{q+1}$. Find the demand function p (10 points).

Solution

$\frac{d r}{d q}=40-0.02 q+\frac{500}{q+1}$
$r(q)=\int \frac{d r}{d q} d q=\int\left(40-0.02 q+\frac{500}{q+1}\right) d q=40 q-0.02 \frac{q^{2}}{2}+500 \ln (q+1)+C$

When no units are sold, there is no revenue then

$$
\begin{aligned}
& r(0)=40.0-0.02 \frac{0^{2}}{2}+500 \ln (0+1)+C=0 \Rightarrow C=0 \\
& r(q)=40 q-0.01 q^{2}+500 \ln (q+1)
\end{aligned}
$$

To find the demand function,

$$
p(q)=\frac{r(q)}{q}=\frac{40 q-0.01 q^{2}+500 \ln (q+1)}{q}=40-0.01 q+500 \frac{\ln (q+1)}{q}
$$

b) The demand equation for a product is $p(q+2)-2=0$ and the supply equation is $q-3 p+1=0$ Determine the producers' surplus $(P S)$ under the market equilibrium (10 points).

Solution:

From the demand equation we may pull the p price per unit as $p=\frac{2}{q+2}$ and from the
supply equation $p=\frac{q+1}{3}$.
First we have to find the market equilibrium where the demand and supply functions are equal each other as follows:

$$
\begin{array}{ll}
f\left(q_{0}\right)=g\left(q_{0}\right) \\
\frac{2}{q_{0}+2}=\frac{q_{0}+1}{3} \quad & \Rightarrow q_{0}^{2}+3 q_{0}-4=\left(q_{0}+4\right)\left(q_{0}-1\right)=0 \\
& \Rightarrow q_{0}=1 \quad \Rightarrow p_{0}=\frac{2}{q_{0}+2}=\frac{2}{3}
\end{array}
$$

Then we can find the producers' surplus ($P S$):

$$
P S=\int_{0}^{1} \underbrace{\left(\frac{2}{3}-\frac{q+1}{3}\right)}_{\frac{1}{3}(-q+1)} d q=\frac{1}{3}\left(-\frac{q^{2}}{2}+q\right)_{0}^{1}=\frac{1}{3}\left(-\frac{1}{2}+1\right)=\frac{1}{6}
$$

