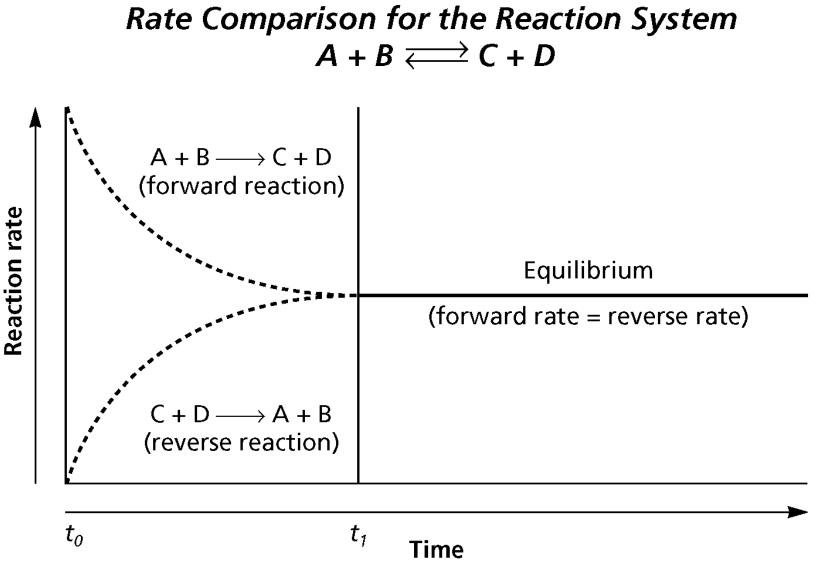
# CHEMICAL EQUILIBRIUM

Some reactions progress to <u>completion</u>.


 $A \rightarrow C + D$ 

 Many reactions that occur in nature, however, do not go to completion.

 $A + B \rightarrow C + D$  (forward)

A + B  $\leftarrow$  C + D (backward)

A + B  $\Leftrightarrow$  C + D reversible reactions



Equilibrium is a dynamic, not a static, condition.

# Equilibrium Concept, continued

- In an equilibrium reaction, initially the rate of the forward reaction is very fast.
- As more products are formed, the rate of the reverse reaction speeds up.
- When the rates of the forward and reverse reactions are the same, the system is at <u>equilibrium</u>.

reactants → products

reverse reaction

#### *Chemical equilibrium* is achieved when:

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant (no observable concentration change).

#### **Physical equilibrium**

$$H_2O(I) \longrightarrow H_2O(g)$$

#### **Chemical equilibrium**

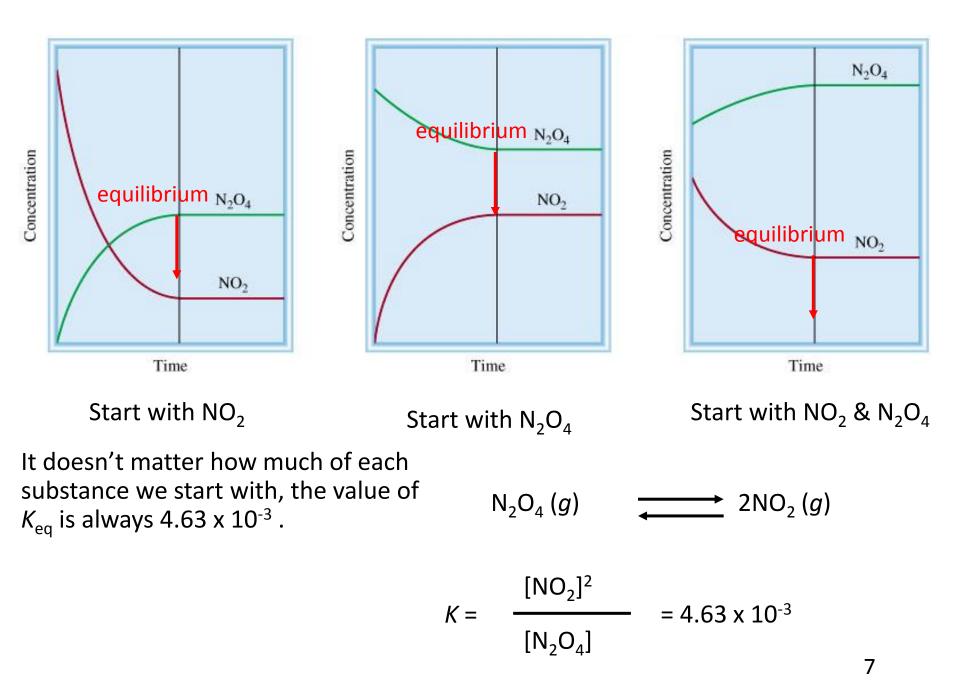
$$N_2O_4(g) \implies 2NO_2(g)$$

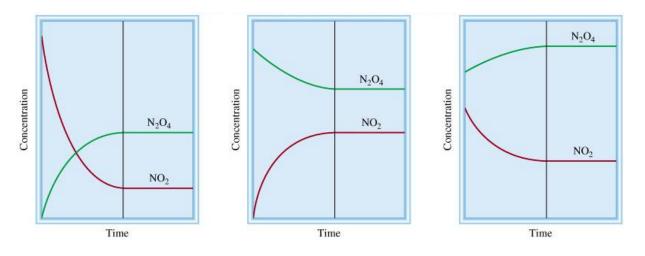
#### **Chemical Kinetics and Chemical Equilibrium**

A + 2B 
$$\stackrel{k_f}{\longleftrightarrow}$$
 AB<sub>2</sub>  
 $k_r$  AB<sub>2</sub> rate<sub>r</sub> =  $k_r$  [A][B]<sup>2</sup>  
rate<sub>r</sub> =  $k_r$  [AB<sub>2</sub>]

Equilibrium rate<sub>f</sub> = rate<sub>r</sub>

 $k_{\rm f}$  [A][B]<sup>2</sup> =  $k_{\rm r}$  [AB<sub>2</sub>]


$$\frac{k_f}{k_r} = K_{eq} = \frac{[\mathsf{AB}_2]}{[\mathsf{A}][\mathsf{B}]^2}$$


# Equilibrium Constant $K_{eq}$ aA + bB $\iff$ cC + dD

• Mathematically, we express the law of chemical equilibrium as follows:

$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- The constant, K<sub>eq</sub>, is the <u>general equilibrium</u>
   <u>constant</u>.
- The value of  $K_{eq}$  varies with temperature. So a given value of  $K_{eq}$  is valid only for a specific temperature.





constant

| Initial<br>Concentrations<br>( <i>M</i> ) |                                  | Equilibrium<br>Concentrations<br>( <i>M</i> ) |                                  | Ratio of<br>Concentrations<br>at Equilibrium |                                  |
|-------------------------------------------|----------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|
|                                           |                                  | 0.                                            |                                  | [NO <sub>2</sub> ]                           | [NO <sub>2</sub> ] <sup>2</sup>  |
| [NO <sub>2</sub> ]                        | [N <sub>2</sub> O <sub>4</sub> ] | [NO <sub>2</sub> ]                            | [N <sub>2</sub> O <sub>4</sub> ] | [N <sub>2</sub> O <sub>4</sub> ]             | [N <sub>2</sub> O <sub>4</sub> ] |
| 0.000                                     | 0.670                            | 0.0547                                        | 0.643                            | 0.0851                                       | $4.65 \times 10$                 |
| 0.0500                                    | 0.446                            | 0.0457                                        | 0.448                            | 0.102                                        | $4.66 \times 10^{-10}$           |
| 0.0300                                    | 0.500                            | 0.0475                                        | 0.491                            | 0.0967                                       | $4.60 \times 10^{-10}$           |
| 0.0400                                    | 0.600                            | 0.0523                                        | 0.594                            | 0.0880                                       | $4.60 \times 10^{-10}$           |
| 0.200                                     | 0.000                            | 0.0204                                        | 0.0898                           | 0.227                                        | $4.63 \times 10^{-10}$           |

Depending on the type of reaction, K may be called

- acidity or dissociation constant for acid/base reactions, K<sub>a</sub> or K<sub>b</sub>, K<sub>w</sub>
- solubility product for dissolution reaction, K<sub>sp</sub>
- complexation constant for complexation reactions
- Henry's constant for gas dissolution in water, H
- adsorption constant for surface reactions

## Acid-base equilibrium

• How much will my river water change if an acidic waste stream starts to discharge into it?

### Heterogeneous equilibria

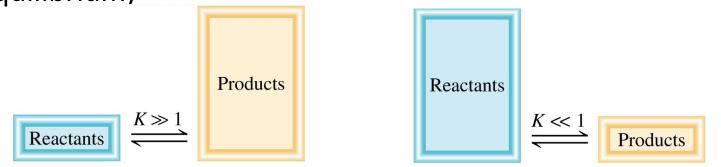
• How much will the pH of my water change if atmospheric CO2 levels increased to 500 ppm?

*Climate Change research suggests the oceans will acidify with increased carbon dioxide levels.* 

• How do I get rid of the precipitates that clog the pipes?

#### **Equilibrium Position**

The composition of the reactant-product mixture at equilibrium is called the <u>equilibrium position</u>.


•Some reactions reach equilibrium after forming on a small amount of product.

If K<sub>eq</sub> < 1 then [products] < [reactants]

•Some proceed until only small amounts of reactant remain.

If K<sub>eq</sub> > 1 then [products] > [reactants]

•Many reactions end up somewhere in between. (significant amounts of both reactant and product present at equilibrium)



### Time to Reach Equilibrium

•Some reactions reach equilibrium almost immediately, i.e. in fractions of a second.

•Other reactions proceed more slowly, taking days, decades, millennia to reach equilibrium.

•In this lecture we will focus on the 'fast' reactions.

#### Le Châtelier's Principle

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.

<u>Changes in Concentration</u>

 $N_2(g) + 3H_2(g)$   $\longrightarrow$   $2NH_3(g)$ Equilibrium shifts left to offset stress  $NH_3$ 

#### Le Châtelier's Principle

• Changes in Volume and Pressure

$$A(g) + B(g) \implies C(g)$$

#### **Change**

Increase pressure Decrease pressure Increase volume Decrease volume

#### **Shifts the Equilibrium**

Side with fewest moles of gas Side with most moles of gas Side with most moles of gas Side with fewest moles of gas

#### Le Châtelier's Principle

• <u>Changes in Temperature</u>

| <u>Change</u>        | Exothermic Rx      | <u>Endothermic Rx</u> |
|----------------------|--------------------|-----------------------|
| Increase temperature | K decreases        | Kincreases            |
| Decrease temperature | <i>K</i> increases | K decreases           |

- Adding a Catalyst
  - does not change K
  - does not shift the position of an equilibrium system
  - system will reach equilibrium sooner

### pH of Pure Rain Water

The pH scale is used to express the acidity or hydrogen ion (H+) concentration in solution.

pH = -log [H+]

A solution with pH = 7 is neutral, pH < 7 is acidic, and pH > 7 is basic.

The most important weak acid in nature is carbonic acid  $\rm H_2CO_3$ 

$$H_{2}CO_{3} \xleftarrow{\kappa_{a_{1}}} H^{+} + HCO_{3}^{-}$$
$$HCO_{3}^{-} \xleftarrow{\kappa_{a_{2}}} H^{+} + CO_{3}^{2-}$$

All gases are also in a equilibrium between air and water

$$CO_{2(air)} = CO_{2(aqueous)}$$
$$CO_{2(aqueous)} + H_2O = H_2CO_3$$

Even in remote, unpolluted regions rainwater has a slightly acidic pH of **approximately 5.6 due to the** presence of **carbon dioxide gas** in the atmosphere. Carbon dioxide has a uniform concentration around the globe and dissolves in water to produce the weak acid, carbonic acid, as shown in the following reactions.

$$CO_2(g) \leftrightarrow CO_2(aq) \equiv H_2CO_3^0$$

(1)  $H_2CO_3^0 \leftrightarrow HCO_3^- + H^+$   $K_{a1} = 10^{-6.35} = \frac{[H^+][HCO_3^-]}{[H_2CO_3^0]}$ 

(2) 
$$HCO_3^- \leftrightarrow CO_3^{2-} + H^+$$
  $K_{a2} = 10^{-10.33} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$ 

One can calculate the pH of unpolluted rainwater using reactions 1 and 2. However, to start with, what is the concentration of  $H_2CO_3^0$ ?

How do we determine the concentration of  $H_2CO_3^0$ ?

 $CO_2(g) \leftrightarrow CO_2(aq) \equiv H_2CO_3^0$ 

An equilibrium is established between the gas in the atmosphere and the same gas dissolved in water. Therefore, use **Henry's Law**.

# Henry's Law



 $P_A$  = partial pressure of the chemical at the system temperature (atm)

- $C_A$  = concentration of the chemical in the aqueous phase in equilibrium with the air phase (mol/L)
- $H_A$  = Henry's constant (atm.L/mol)

What is the pH of rainwater in equilibrium with atmospheric  $CO_2$  ( $P_{CO_2} = 10^{-3.5}$  atm)?

$$H_{CO2} = 29.41 \text{ atm.L/mol}$$

 $C_{CO2} = 10^{-3.5} \text{ atm} / 29.41 \text{ atm.L/mol}$  $C_{CO2} = 1.075 \text{ x} 10^{-5} \text{ mol/L} = 10^{-4.96} \text{ M}$ 

$$K_1 = 10^{-6.35} = \frac{M_{H^+} M_{HCO_3^-}}{M_{H_2CO_3^0}} = \frac{X^2}{10^{-4.96}}$$

$$X^{2} = (10^{-6.35})(10^{-4.96}) = 10^{-11.31}$$
$$X = [H^{+}] = [HCO_{3}^{-}] = 10^{-5.655} = 2.21 \times 10^{-6} \text{ mol/L}$$
$$\mathbf{pH} = \mathbf{5.66}$$

So the pH of pure rainwater is acidic!