The Derivative as a Rate of Change

DEFINITION  Instantaneous Rate of Change

The *instantaneous rate of change* of $f$ with respect to $x$ at $x_0$ is the derivative

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$
Motion Along a Line: Displacement, Velocity, Speed, Acceleration, and Jerk

Suppose that an object is moving along a coordinate line its position $s$ on that line as a function of time $t$:

$$s = f(t).$$

The displacement of the object over the time interval

$$
\Delta s = f(t + \Delta t) - f(t)
$$

the average velocity of the object over that time interval is

$$
u_{av} = \frac{\text{displacement}}{\text{travel time}} = \frac{\Delta s}{\Delta t} = \frac{f(t + \Delta t) - f(t)}{\Delta t}$$
DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to time. If a body’s position at time \( t \) is \( s = f(t) \), then the body’s velocity at time \( t \) is

\[
v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}.
\]

The slope of the secant \( PQ \) is the average velocity for the 3-sec interval from \( t=2 \) sec to \( t=5 \) sec to in this case, it is about 100 ft sec or 68 mph

The slope of the tangent at \( P \) is the speedometer reading at about 57ft/sec or 39 mph. The acceleration for the period shown is a nearly constant 28.5 ft/sec\(^2\).
• Besides telling how fast an object is moving, its velocity tells the direction of motion.
• When the object is moving forward (s increasing), the velocity is positive;
• when the body is moving backward (s decreasing), the velocity is negative.
DEFINITIONS       Acceleration, Jerk

**Acceleration** is the derivative of velocity with respect to time. If a body’s position at time $t$ is $s = f(t)$, then the body’s acceleration at time $t$ is

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}.$$  

**Jerk** is the derivative of acceleration with respect to time:

$$j(t) = \frac{da}{dt} = \frac{d^3s}{dt^3}.$$  

Jerk is often used in engineering, especially when building roller coasters.

Jerk is also important to consider in manufacturing processes. Rapid changes in acceleration of a cutting tool can lead to premature tool wear and result in uneven cuts.
**DEFINITION**  
**Speed**

Speed is the absolute value of velocity.

\[
\text{Speed} = |\mathbf{v}(t)| = \left| \frac{d\mathbf{s}}{dt} \right|
\]

![Diagram showing the definition of speed with velocity-time graph]

- **MOVES FORWARD**  
  \( (v > 0) \)
  - Speeds up
  - \( v = \text{const} \)
  - Slows down

- **FORWARD AGAIN**  
  \( (v > 0) \)
  - Speeds up

- **STAYS STILL**  
  \( (v = 0) \)

- **MOVES BACKWARD**  
  \( (v < 0) \)
  - Speeds up
  - Slows down
Modeling Vertical Motion

A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec (about 109 mph) (Figure 3.17a). It reaches a height of \( s = 160t - 16t^2 \) ft after \( t \) sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the way up? On the way down?

(c) What is the acceleration of the rock at any time \( t \) during its flight (after the blast)?

(d) When does the rock hit the ground again?
The diagram shows the motion of an object with its height given as a function of time. The object starts at a height of 0 feet and reaches a maximum height of 256 feet. The height function is given by $s = 160t - 16t^2$. The velocity function is $v = \frac{ds}{dt} = 160 - 32t$. The maximum height is attained when the velocity is 0, which occurs at $t = 5$ seconds.
Derivatives in Economics

Engineers use the terms *velocity* and *acceleration* to refer to the derivatives of functions describing motion. Economists, too, have a specialized vocabulary for rates of change and derivatives. They call them *marginals*.

In a manufacturing operation, the *cost of production* $c(x)$ is a function of $x$, the number of units produced. The *marginal cost of production* is the rate of change of cost with respect to level of production, so it is $dc/dx$.

Economists often represent a total cost function by a cubic polynomial

$$c(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$$

where $\delta$ represents *fixed costs* such as rent, heat, equipment capitalization, and management costs. The other terms represent *variable costs* such as the costs of raw materials, taxes, and labor. Fixed costs are independent of the number of units produced, whereas variable costs depend on the quantity produced. A cubic polynomial is usually complicated enough to capture the cost behavior on a relevant quantity interval.
Lunar projectile motion  A rock thrown vertically upward from the surface of the moon at a velocity of 24 m/sec (about 86 km/h) reaches a height of \( s = 24t - 0.8t^2 \) meters in \( t \) sec.

a. Find the rock’s velocity and acceleration at time \( t \). (The acceleration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum height?

e. How long is the rock aloft?
(a) \( v(t) = s'(t) = 24 - 1.6t \text{ m/sec}, \) and \( a(t) = v'(t) = s''(t) = -1.6 \text{ m/sec}^2 \)

(b) Solve \( v(t) = 0 \ \Rightarrow \ 24 - 1.6t = 0 \ \Rightarrow \ t = 15 \text{ sec} \)

(c) \( s(15) = 24(15) - .8(15)^2 = 180 \text{ m} \)

(d) Solve \( s(t) = 90 \ \Rightarrow \ 24t - .8t^2 = 90 \ \Rightarrow \ t = \frac{30 \pm 15\sqrt{2}}{2} \)

\[ \approx 4.39 \text{ sec going up and 25.6 sec going down} \]

(e) Twice the time it took to reach its highest point or 30 sec
The accompanying figure shows the velocity $v = ds/dt = f(t)$ (m/sec) of a body moving along a coordinate line.

![Velocity Graph](image)

a. When does the body reverse direction?

b. When (approximately) is the body moving at a constant speed?

c. Graph the body’s speed for $0 \leq t \leq 10$.

d. Graph the acceleration, where defined.
Bacterium population  When a bactericide was added to a nutrient broth in which bacteria were growing, the bacterium population continued to grow for a while, but then stopped growing and began to decline. The size of the population at time $t$ (hours) was $b = 10^6 + 10^4 t - 10^3 t^2$. Find the growth rates at

a. $t = 0$ hours.

b. $t = 5$ hours.

c. $t = 10$ hours.

\[ b(t) = 10^6 + 10^4 t - 10^3 t^2 \Rightarrow b'(t) = 10^4 - (2)(10^3 t) = 10^3(10 - 2t) \]

(a) $b'(0) = 10^4$ bacteria/hr

(b) $b'(5) = 0$ bacteria/hr

(c) $b'(10) = -10^4$ bacteria/hr
**Inflating a balloon**  The volume $V = (4/3)\pi r^3$ of a spherical balloon changes with the radius.

a. At what rate (ft$^3$/ft) does the volume change with respect to the radius when $r = 2$ ft?

b. By approximately how much does the volume increase when the radius changes from 2 to 2.2 ft?

(a) $V = \frac{4}{3} \pi r^3 \Rightarrow \frac{dV}{dr} = 4\pi r^2 \Rightarrow \frac{dV}{dr} \bigg|_{r=2} = 4\pi (2)^2 = 16\pi$ ft$^3$/ft

(b) When $r = 2$, $\frac{dV}{dr} = 16\pi$ so that when $r$ changes by 1 unit, we expect $V$ to change by approximately $16\pi$. Therefore when $r$ changes by 0.2 units $V$ changes by approximately $(16\pi)(0.2) = 3.2\pi \approx 10.05$ ft$^3$. Note that $V(2.2) - V(2) \approx 11.09$ ft$^3$. 
Derivatives of Trigonometric Functions

Many of the phenomena we want information about are approximately periodic

- electromagnetic fields,
- heart rhythms,
- tides,
- weather.

The derivatives of sines and cosines play a key role in describing periodic changes. This section shows how to differentiate the six basic trigonometric functions.
The derivative of the sine function is the cosine function:
\[
\frac{d}{dx} \left( \sin x \right) = \cos x.
\]

\[y = x^2 \sin x:\]
\[
\frac{dy}{dx} = x^2 \frac{d}{dx} \left( \sin x \right) + 2x \sin x \quad \text{Product Rule}
\]
\[
= x^2 \cos x + 2x \sin x.
\]

\[y = \frac{\sin x}{x}:\]
\[
\frac{dy}{dx} = \frac{x \cdot \frac{d}{dx} \left( \sin x \right) - \sin x \cdot 1}{x^2} \quad \text{Quotient Rule}
\]
\[
= \frac{x \cos x - \sin x}{x^2}.
\]
The derivative of the cosine function is the negative of the sine function:

\[
\frac{d}{dx} (\cos x) = -\sin x
\]

\[y = 5x + \cos x:\]

\[
\frac{dy}{dx} = \frac{d}{dx} (5x) + \frac{d}{dx} (\cos x)
\]

\[= 5 - \sin x.\]  

\[y = \sin x \cos x:\]

\[
\frac{dy}{dx} = \sin x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (\sin x)
\]

\[= \sin x (-\sin x) + \cos x (\cos x)
\]

\[= \cos^2 x - \sin^2 x.\]
The motion of a body bobbing freely up and down on the end of a spring or bungee cord is an example of *simple harmonic motion*. The next example describes a case in which there are no opposing forces such as friction or buoyancy to slow the motion down.

**Motion on a Spring**

A body hanging from a spring is stretched 5 units beyond its rest position and released at time $t = 0$ to bob up and down. Its position at any later time $t$ is

$$s = 5 \cos t.$$ 

What are its velocity and acceleration at time $t$?
Solution

We have

Position: \[ s = 5 \cos t \]

Velocity: \[ v = \frac{ds}{dt} = \frac{d}{dt} (5 \cos t) = -5 \sin t \]

Acceleration: \[ a = \frac{dv}{dt} = \frac{d}{dt} (-5 \sin t) = -5 \cos t. \]
Derivatives of the Other Basic Trigonometric Functions

Because $\sin x$ and $\cos x$ are differentiable functions of $x$, the related functions

\begin{align*}
\tan x &= \frac{\sin x}{\cos x} \\
\cot x &= \frac{\cos x}{\sin x} \\
\sec x &= \frac{1}{\cos x} \\
\csc x &= \frac{1}{\sin x}
\end{align*}
Derivatives of the Other Trigonometric Functions

\[ \frac{d}{dx} (\tan x) = \sec^2 x \]

\[ \frac{d}{dx} (\sec x) = \sec x \tan x \]

\[ \frac{d}{dx} (\cot x) = -\csc^2 x \]

\[ \frac{d}{dx} (\csc x) = -\csc x \cot x \]
Find $d(\tan x)/dx$.

Solution

$$
\frac{d}{dx}(\tan x) = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{\cos x}{\cos^2 x}\left(\frac{\sin x}{\cos x}\right) - \sin x \frac{d}{dx}(\cos x)
$$

$$
= \frac{\cos x \cos x}{\cos^2 x} - \sin x \left(-\sin x\right)
$$

$$
= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}
$$

$$
= \frac{1}{\cos^2 x} = \sec^2 x
$$
Find \( y'' \) if \( y = \sec x \).

**Solution**

\[
y = \sec x
\]

\[
y' = \sec x \tan x
\]

\[
y'' = \frac{d}{dx} (\sec x \tan x)
\]

\[
= \sec x \frac{d}{dx} (\tan x) + \tan x \frac{d}{dx} (\sec x)
\]

\[
= \sec x (\sec^2 x) + \tan x (\sec x \tan x)
\]

\[
= \sec^3 x + \sec x \tan^2 x
\]
Derivative of a Composite Function

Composite $f \circ g$

Rate of change at $x$ is $f'(g(x)) \cdot g'(x)$.

Rate of change at $x$ is $g'(x)$.

Rate of change at $g(x)$ is $f'(g(x))$.

$y = f(u) = f(g(x))$
The Chain Rule

If $f(u)$ is differentiable at the point $u = g(x)$ and $g(x)$ is differentiable at $x$, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at $x$, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz’s notation, if $y = f(u)$ and $u = g(x)$, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$ 

where $dy/du$ is evaluated at $u = g(x)$. 

C: $y$ turns  B: $u$ turns  A: $x$ turns
Find \( \frac{dy}{dx} \)

\[
y = \left( \frac{x}{5} + \frac{1}{5x} \right)^5
\]

With \( u = \left( \frac{x}{5} + \frac{1}{5x} \right) \), \( y = u^5 \):

\[
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 5u^4 \cdot \left( \frac{1}{5} - \frac{1}{5x^2} \right)
\]

\[
= \left( \frac{x}{5} + \frac{1}{5x} \right)^4 \left( 1 - \frac{1}{x^2} \right)
\]
“Outside-Inside” Rule

It sometimes helps to think about the Chain Rule this way: If \( y = f(g(x)) \), then

\[
\frac{dy}{dx} = f'(g(x)) \cdot g'(x).
\]

In words, differentiate the “outside” function \( f \) and evaluate it at the “inside” function \( g(x) \) left alone; then multiply by the derivative of the “inside function.”

Differentiating from the Outside In

Differentiate \( \sin(x^2 + x) \) with respect to \( x \).

Solution

\[
\frac{d}{dx} \sin(x^2 + x) = \cos(x^2 + x) \cdot (2x + 1)
\]

\( \text{inside} \) \( \text{inside left alone} \) \( \text{derivative of the inside} \)
\[ g'(t) = \frac{d}{dt} \left( \tan \left( 5 - \sin 2t \right) \right) \]

\[ = \sec^2 (5 - \sin 2t) \cdot \frac{d}{dt} (5 - \sin 2t) \]

\[ = \sec^2 (5 - \sin 2t) \cdot \left( 0 - \cos 2t \cdot \frac{d}{dt} (2t) \right) \]

\[ = \sec^2 (5 - \sin 2t) \cdot (-\cos 2t) \cdot 2 \]

\[ = -2(\cos 2t) \sec^2 (5 - \sin 2t). \]
\[
\frac{d}{dx} (5x^3 - x^4)^7 =
\]
\[
= 7(5x^3 - x^4)^6 \frac{d}{dx} (5x^3 - x^4)
\]
\[
= 7(5x^3 - x^4)^6(5 \cdot 3x^2 - 4x^3)
\]
\[
= 7(5x^3 - x^4)^6(15x^2 - 4x^3)
\]
The path traced by a particle moving in the $xy$-plane is not always the graph of a function of $x$ or a function of $y$. 
Parametric Equations

Instead of describing a curve by expressing the $y$-coordinate of a point $P(x, y)$ on the curve as a function of $x$, it is sometimes more convenient to describe the curve by expressing \textit{both} coordinates as functions of a third variable $t$.

\textbf{DEFINITION} \quad \text{Parametric Curve}

If $x$ and $y$ are given as functions

$$x = f(t), \quad y = g(t)$$

over an interval of $t$-values, then the set of points $(x, y) = (f(t), g(t))$ defined by these equations is a \textbf{parametric curve}. The equations are \textbf{parametric equations} for the curve.
The equations $x = \cos t$ and $y = \sin t$ describe motion on the circle.
The equations \( x = \sqrt{t} \) and \( y = t \) and the interval \( t \geq 0 \) describe the motion of a particle that traces the right-hand half of the parabola \( y = x^2 \).
Parametrizing a Line Segment

Find a parametrization for the line segment with endpoints \((-2, 1)\) and \((3, 5)\).

**Solution**  Using \((-2, 1)\) we create the parametric equations

\[
x = -2 + at, \quad y = 1 + bt.
\]

These represent a line, as we can see by solving each equation for \(t\) and equating to obtain

\[
\frac{x + 2}{a} = \frac{y - 1}{b}.
\]

This line goes through the point \((-2, 1)\) when \(t = 0\). We determine \(a\) and \(b\) so that the line goes through \((3, 5)\) when \(t = 1\).

\[
3 = -2 + a \quad \Rightarrow \quad a = 5 \quad \text{x = 3 when } t = 1.
\]

\[
5 = 1 + b \quad \Rightarrow \quad b = 4 \quad \text{y = 5 when } t = 1.
\]

Therefore,

\[
x = -2 + 5t, \quad y = 1 + 4t, \quad 0 \leq t \leq 1
\]

is a parametrization of the line segment with initial point \((-2, 1)\) and terminal point \((3, 5)\).
Parametric Formula for $\frac{dy}{dx}$
If all three derivatives exist and $\frac{dx}{dt} \neq 0$,
\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt}
\]

Differentiating with a Parameter
If $x = 2t + 3$ and $y = t^2 - 1$, find the value of $\frac{dy}{dx}$ at $t = 6$

Solution
Equation (2) gives $\frac{dy}{dx}$ as a function of $t$:
\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{2} = t = \frac{x - 3}{2}.
\]
Parametric Formula for $d^2y/dx^2$

If the equations $x = f(t)$, $y = g(t)$ define $y$ as a twice-differentiable function of $x$, then at any point where $dx/dt \neq 0$,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}.$$

(3)

Find $d^2y/dx^2$ as a function of $t$ if $x = t - t^2$, $y = t - t^3$.

1. Express $y' = dy/dx$ in terms of $t$.

$$y' = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - 3t^2}{1 - 2t}$$

2. Differentiate $y'$ with respect to $t$.

$$\frac{dy'}{dt} = \frac{d}{dt} \left( \frac{1 - 3t^2}{1 - 2t} \right) = \frac{2 - 6t + 6t^2}{(1 - 2t)^2}$$
3. Divide $dy'/dt$ by $dx/dt$.

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt} = \frac{(2 - 6t + 6t^2)/(1 - 2t)^2}{1 - 2t}$$

$$= \frac{2 - 6t + 6t^2}{(1 - 2t)^3}$$
Standard Parametrizations and Derivative Rules

**Circle** \( x^2 + y^2 = a^2 \):

\[
x = a \cos t \\
y = a \sin t \\
0 \leq t \leq 2\pi
\]

**Ellipse** \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \):

\[
x = a \cos t \\
y = b \sin t \\
0 \leq t \leq 2\pi
\]

**Function** \( y = f(x) \):

\[
x = t \\
y = f(t)
\]

**Derivatives**

\[
y' = \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} \\
\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{dy'}{dt} \frac{dt}{dx}
\]
Identify the particle’s path by finding a Cartesian equation for it. Graph the Cartesian equation.

\[ x = -\sqrt{t}, \quad y = t, \quad t \geq 0 \]

\[ x = -\sqrt{t}, y = t, t \geq 0 \Rightarrow x = -\sqrt{y} \]

or \[ y = x^2, x \leq 0 \]
Identify the particle’s path by finding a Cartesian equation for it. Graph the Cartesian equation.

\[ x = 4 \cos t, \quad y = 2 \sin t, \quad 0 \leq t \leq 2\pi \]

\[ \Rightarrow \frac{16 \cos^2 t}{16} + \frac{4 \sin^2 t}{4} = 1 \Rightarrow \frac{x^2}{16} + \frac{y^2}{4} = 1 \]
Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the form \( y = f(x) \) that expresses \( y \) explicitly in terms of the variable \( x \). We have learned rules for differentiating functions defined in this way.
when we encounter equations like;

\[ y^2 - x = 0, \quad \text{or} \quad x^3 + y^3 - 9xy = 0. \]

These equations define an implicit relation between the variables \( x \) and \( y \). In some cases we may be able to solve such an equation for \( y \) as an explicit function.
When we cannot put an equation $F(x,y) = 0$

in the form $y = f(x)$ to differentiate it in the usual way,

we may still be able to find $dy/dx$ by *implicit differentiation*
Differentiating Implicitly

Find $dy/dx$ if $y^2 = x^2 + \sin xy$
\[
\frac{d}{dx}(y^2) = \frac{d}{dx}(x^2) + \frac{d}{dx}(\sin xy)
\]

Differentiate both sides with respect to \(x\)…

\[
2y \frac{dy}{dx} = 2x + (\cos xy) \frac{d}{dx}(xy)
\]

… treating \(y\) as a function of \(x\) and using the Chain Rule.

\[
2y \frac{dy}{dx} = 2x + (\cos xy) \left( y + x \frac{dy}{dx} \right)
\]

Treat \(xy\) as a product.

\[
2y \frac{dy}{dx} - (\cos xy) \left( x \frac{dy}{dx} \right) = 2x + (\cos xy)y
\]

\[
\frac{dy}{dx} = \frac{2x + y \cos xy}{2y - x \cos xy}
\]

Solve for \(dy/dx\) by dividing.
Implicit Differentiation

Differentiate both sides of the equation with respect to $x$, treating $y$ as a differentiable function of $x$.

Collect the terms with $dy/dx$ on one side of the equation. Solve for $dy/dx$.

Solve for $dy/dx$. 
Tangent and Normal to the Folium of Descartes

Show that the point (2, 4) lies on the curve \( x^3 + y^3 - 9xy = 0 \). Then find the tangent and normal to the curve there.
\[ \frac{d}{dx} (x^3) + \frac{d}{dx} (y^3) - \frac{d}{dx} (9xy) = \frac{d}{dx} (0) \]

\[ \frac{dy}{dx} = \frac{3y - x^2}{y^2 - 3x} . \]

We then evaluate the derivative at \((x, y) = (2, 4)\):

\[ \left. \frac{dy}{dx} \right|_{(2, 4)} = \left. \frac{3y - x^2}{y^2 - 3x} \right|_{(2, 4)} = \frac{3(4) - 2^2}{4^2 - 3(2)} = \frac{8}{10} = \frac{4}{5} . \]

The tangent at \((2, 4)\) is the line through \((2, 4)\) with slope \(4/5\):

\[ y = 4 + \frac{4}{5} (x - 2) \]

\[ y = \frac{4}{5} x + \frac{12}{5} . \]
Finding a Second Derivative Implicitly

Find \( \frac{d^2y}{dx^2} \) if \( 2x^3 - 3y^2 = 8 \).

\[
\frac{d}{dx} \left( 2x^3 - 3y^2 \right) = \frac{d}{dx} (8)
\]

\[
6x^2 - 6yy' = 0
\]

\[
x^2 - yy' = 0
\]

\[
y' = \frac{x^2}{y}, \quad \text{when } y \neq 0
\]
We now apply the Quotient Rule to find $y''$.

\[
y'' = \frac{d}{dx} \left( \frac{x^2}{y} \right) = \frac{2xy - x^2y'}{y^2} = \frac{2x}{y} - \frac{x^2}{y^2} \cdot y'
\]

we substitute $y' = x^2/y$ to express $y''$ in terms of $x$ and $y$.

\[
y'' = \frac{2x}{y} - \frac{x^2}{y^2} \left( \frac{x^2}{y} \right) = \frac{2x}{y} - \frac{x^4}{y^3}, \quad \text{when } y \neq 0
\]
verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.

\[ x^2 + xy - y^2 = 1, \quad (2, 3) \]
Related Rates

- finding a rate you cannot measure easily
- problems that ask for the rate at which some variable changes
- write an equation that relates the variables involved
- differentiate it to get an equation that relates the rate
A Rising Balloon

A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft from the liftoff point. At the moment the range finder’s elevation angle is $\pi/4$, the angle is increasing at the rate of 0.14 rad/min. How fast is the balloon rising at that moment?

Solution

We answer the question in six steps.

1. *Draw a picture and name the variables and constants*
2. Write down the additional numerical information.

\[
\frac{d\theta}{dt} = 0.14 \text{ rad/min} \quad \text{when} \quad \theta = \frac{\pi}{4}
\]

3. Write down what we are to find.

We want \( \frac{dy}{dt} \) when \( \theta = \frac{\pi}{4} \)

4. Write an equation that relates the variables \( y \) and \( \theta \).

\[
\frac{y}{500} = \tan \theta \quad \text{or} \quad y = 500 \tan \theta
\]
5. Differentiate with respect to \( t \) using the Chain Rule. The result tells how \( \frac{dy}{dt} \) (we want) is related to \( \frac{d\theta}{dt} \) (which we know).

\[
\frac{dy}{dt} = 500 \left( \sec^2 \theta \right) \frac{d\theta}{dt}
\]

6. Evaluate with \( \theta = \pi/4 \) and \( \frac{d\theta}{dt} = 0.14 \) to find \( \frac{dy}{dt} \).

\[
\frac{dy}{dt} = 500 \left( \sqrt{2} \right)^2 (0.14) = 140 \quad \sec \frac{\pi}{4} = \sqrt{2}
\]

the balloon is rising at the rate of 140 ft/min.
A sliding ladder  A 13-ft ladder is leaning against a house when its base starts to slide away. By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft/sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder, wall, and ground changing then?

c. At what rate is the angle $\theta$ between the ladder and the ground changing then?
Given: \( \frac{dx}{dt} = 5 \text{ ft/sec} \), the ladder is 13 ft long, and \( x = 12, y = 5 \) at the instant of time

(a) Since \( x^2 + y^2 = 169 \) \( \Rightarrow \frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt} = -\left(\frac{12}{5}\right) (5) = -12 \text{ ft/sec} \), the ladder is sliding down the

(b) The area of the triangle formed by the ladder and walls is \( A = \frac{1}{2} xy \Rightarrow \frac{dA}{dt} = \left(\frac{1}{2}\right) \left( x \frac{dy}{dt} + y \frac{dx}{dt} \right) \)

is changing at \( \frac{1}{2} \left[ 12(-12) + 5(5) \right] = -\frac{119}{2} = -59.5 \text{ ft}^2/\text{sec} \).

(c) \( \cos \theta = \frac{x}{13} \Rightarrow -\sin \theta \frac{d\theta}{dt} = \frac{1}{13} \frac{dx}{dt} \Rightarrow \frac{d\theta}{dt} = -\frac{1}{13 \sin \theta} \cdot \frac{dx}{dt} = -\left(\frac{1}{5}\right) (5) = -1 \text{ rad/sec} \)
A growing sand pile  Sand falls from a conveyor belt at the rate of 10 m$^3$/min onto the top of a conical pile. The height of the pile is always three-eighths of the base diameter. How fast are the (a) height and (b) radius changing when the pile is 4 m high? Answer in centimeters per minute.

\[ V = \frac{1}{3} \pi r^2 h, \quad h = \frac{3}{8} (2r) = \frac{3r}{4} \Rightarrow r = \frac{4h}{3} \Rightarrow V = \frac{1}{3} \pi \left( \frac{4h}{3} \right)^2 h = \frac{16\pi h^3}{27} \Rightarrow \frac{dV}{dt} = \frac{16\pi h^2}{9} \frac{dh}{dt} \]

(a) \[ \frac{dh}{dt} \bigg|_{h=4} = \left( \frac{9}{16\pi 4^2} \right) (10) = \frac{90}{256\pi} \approx 0.1119 \text{ m/sec} = 11.19 \text{ cm/sec} \]

(b) \[ r = \frac{4h}{3} \Rightarrow \frac{dr}{dt} = \frac{4}{3} \frac{dh}{dt} = \frac{4}{3} \left( \frac{90}{256\pi} \right) = \frac{15}{32\pi} \approx 0.1492 \text{ m/sec} = 14.92 \text{ cm/sec} \]
A balloon and a bicycle  A balloon is rising vertically above a level, straight road at a constant rate of 1 ft/sec. Just when the balloon is 65 ft above the ground, a bicycle moving at a constant rate of 17 ft/sec passes under it. How fast is the distance \( s(t) \) between the bicycle and balloon increasing 3 sec later?

The relationship between the variables is \( s^2 = h^2 + x^2 \)

\[
\frac{ds}{dt} = \frac{1}{s} \left( h \frac{dh}{dt} + x \frac{dx}{dt} \right)
\]

\[
\frac{ds}{dt} = \frac{1}{85} \left[ 68(1) + 51(17) \right] = 11 \text{ ft/sec}.
\]
Making coffee  Coffee is draining from a conical filter into a cylindrical coffeepot at the rate of 10 in$^3$/min.

a. How fast is the level in the pot rising when the coffee in the cone is 5 in. deep?

b. How fast is the level in the cone falling then?