Q-1. (12 pts) Solve the following recurrences. Express your answer using $\Theta(\cdot)$ notation.
(a) (6 pts) $T(n) = 2T(n-2)$, $T(0) = 1$, $T(1) = 1$.

By backward substitution,

$T(n) = 2^{n/2}$ if n is even
$T(n) = 2^{n/2} \cdot 2^{1/2}$ if n is odd.

$T(n) \in \Theta(2^{n/2}) = \Theta((\sqrt{2})^n)$

(b) (6 pts) $T(n) = 4T(\lceil n/2 \rceil) + n$, $T(1) = 1$.

By backward substitution or Master's theorem

$T(n) \in \Theta(n^2)$

Q-2. (10 pts) Design a decrease-by-half algorithm for computing $\lfloor \log_2 n \rfloor$ and determine its time efficiency.

Algorithm LogFloor (n)
//Input: A positive integer n
//Output: Returns $\lfloor \log_2 n \rfloor$
if $n = 1$ return 0
else return LogFloor (\lfloor n/2 \rfloor) + 1

The recurrence relation for the number of additions is

$A(n) = A(\lfloor n/2 \rfloor) + 1$ for $n > 1$, $A(1) = 0$

Its solution is $A(n) = \lfloor \log_2 n \rfloor \in \Theta(\log n)$
Q-3. (20 pts) Consider the following variant of MergeSort: instead of splitting the list into two halves, we split it into three thirds. Then we recursively sort each third and merge them. This is called three-way MergeSort.

a. (6 pts) Write a pseudocode for three-way MergeSort. You may assume that you are given an algorithm, Merge(B,C,A) which merges two sorted arrays (B,C) into one sorted array (A).

Mergesort3(A[0..n-1]):
if n ≤ 1, then return (A[0..n-1]).
Let k = ⌈n/3⌉ and m = ⌈2n/3⌉.
Return Merge3(Mergesort3(A[0..k-1]), Mergesort3(A[k..m-1]), Mergesort3(A[m..n-1]),A[0..n-1]).

Merge3(B,C,D,X):
Merge(B,C,E); Merge(E,D,X).

b. (4 pts) What is the total number of key comparisons performed in the worst case, while merging three sorted lists, each of length n/3, to one sorted list? Also express your answer using O(\cdot) notation.

n/3+n/3 - 1 = 2n/3 - 1 for Merge(B,C,E);
2n/3 + n/3 - 1 = n - 1 for Merge(E,D,X);
Total: 5n/3 - 2 ∈ O(n)

c. (3 pts) Let T(n) denote the worst-case running time of three-way MergeSort on an array of size n. Write a recurrence relation for T(n).

T(n)=3T(n/3)+O(n)

d. (3 pts) Solve the recurrence relation in part (c). Express your answer using O(\cdot) notation.

By Master theorem, T(n)=O(nlogn)

e. (2 pts) Is the three-way MergeSort asymptotically faster than insertion sort? (Yes or No)

f. (2 pts) Is the three-way MergeSort asymptotically faster than ordinary MergeSort? (Yes or No)
Q-4 (20 pts) We have two input arrays, an array A with m elements, and an array B with n elements, where $n \geq m$. There may be duplicate elements. We want to decide if every element of B is an element of A.

(a) (6 pts) Describe a brute-force algorithm. What is the worst-case time complexity?

We compare each element of B with each element of A. If there is no match for any element of B, algorithm stops returning false. Worst-case time complexity is $O(nm)$.

(b) (14 pts) Describe an algorithm to solve this problem in $O(n \log m)$ worst case time. (Hint: You may apply instance simplification.)

First we sort A by MergeSort (in $O(m \log m)$ time). Then for each element of B we do a binary search in the sorted list of A (in $O(n \log m)$ time).

The total worst-case running time is $O((m + n) \log m) = O(n \log m)$.

Q-5 (20 pts) We have an input array A with n ($n > 1$) elements.

(a) (10 pts) Describe a $O(n)$ worst-case time algorithm to find two elements $x, y \in A$ such that $|x - y| \geq |u - v|$ for all $u, v \in A$.

For this, we have to find minimum and maximum of the list. We store a temporary variable (max or min, initially $-\infty$ or $+\infty$). We compare it with the elements one by one, and update the value of the temporary variable after each comparison. This algorithm makes $n-1$ comparisons to find each. $2n-2 \in O(n)$

There is also a divide and conquer algorithm that finds min and max simultaneously using at most $3n/2$ comparisons (As we described in the class).

(b) (10 pts) Describe a $O(n \log n)$ worst-case time algorithm to find two elements $x, y \in A$ such that $|x - y| \leq |u - v|$ for all $u, v \in A$.

For this, firstly we sort the numbers using Mergesort ($O(n \log n)$). Then x and y must be consecutive elements in the sorted order. We go through the sorted list and find the smallest difference between two neighboring elements (this is $O(n)$).

$O(n \log n) + O(n) = O(n \log n)$
Q-6 (18 pts) Consider the following almost sorted list:
L = 1, 2, 4, 6, 5, 8, 10, 13, 12, 15

(a) (5 pts) Construct a Binary Search Tree by inserting the elements of L from left to right, one by one. In the worst-case, how many comparisons is needed for searching a key in the constructed tree.

8 comparisons.

(b) (8 pts) In order to decrease the worst-case complexity of searching a key, describe an alternative algorithm for BST construction by changing the insertion sequence of the elements. In the new BST, how many comparisons is needed for searching a key (in the worst-case)?

First insert the medium element. Extract that element from the list, then divide the remaining list into two sub-lists, and insert the medium element of each sub-lists. And so on, insert all the elements recursively.

4 comparisons.

(c) (5 pts) Describe another alternative way to decrease worst-case complexity of searching a key, by transforming ordinary BST to another data structure.

We may transform unbalanced search tree to a balanced one, such as using AVL tree or red-black tree structures.

B-1 (Bonus Question - 6 pts, no partial credit): Solve the following recurrence relation:

\[T(n) = 2T(\sqrt[3]{n}) + 1, \quad T(3) = 1. \]

Put \(n = 3^k \). Accordingly, \(T(3^k) = 2T(3^{k/3}) + 1, \quad T(3^1) = 1. \)

Let \(G(k) \) denote \(T(3^k) \). Accordingly, \(G(k) = 2G(k/3) + 1, \quad G(1) = 1. \)

Using any technique (Master theorem, backward subs., etc), \(G(k) = O(2^{\log_3 k}), \) from which it follows that \(T(n) = O(2^{\log_3 \log_3 n}). \)