1) A company management would like to know the total sales units that are required for the company to earn a profit of $10,000. The following data are available: unit selling price of $20; variable cost per unit of $15; total fixed cost of $60,000. Determine the required sales units.

Solution:

Profit: \(P = 10,000 \)

Unit Selling Price: \(S = 20 \)

Variable Cost per Unit: \(VC = 15 \)

Total Fixed Cost: \(FC = 60,000 \)

Determine the required sales units?

Let \(u \) denote sales unit

Total Costs: \(TC = VC + FC = 15u + 60,000 \)

Total Sales: \(TS = 20u \)

\[P = TS - TC = 20u - 15u - 60,000 = 10,000 \Rightarrow 5u = 70,000 \]

\[→ u = 14,000 \]

2) A company manufacturer a product that has a unit selling price of $30 and a unit cost of $20. If fixed costs are $30,000, determine the least number of units that must be sold for the company to have a profit.

Solution:

Unit Selling Price: \(S = 30 \)

Variable Unit Cost: \(VC = 20 \)

Fixed Cost: \(FC = 30,000 \)

Determine the least number of units sold to have a profit.

Let \(u \) denote sales unit

Total Costs: \(TC = VC + FC = 20u + 30,000 \)

Total Sales: \(TS = 30u \)

Profit: \(P = TS - TC = 30u - (20u + 30,000) = 10u - 30,000 > 0 \) to have profit

\[10u > 30,000 \Rightarrow u > 3,000 \]

The least number of units to be sold is more than 3,000 to have a profit.

3) Find the domain and range the following functions:

a) \(y = f(x) = \frac{1-x}{\sqrt{x^2 - x - 3/4}} \)

b) \(y = f(x) = \frac{3x^2 + 2}{\sqrt{x^2 - 3}} \)

c) \(y = f(x) = \frac{3x^2 + 2}{x^2 + 1} \)

d) \(y = f(x) = \frac{x^2 - 3x + 1}{x^2 - 9} \)

Solution:

a. \(y = f(x) = \frac{1-x}{\sqrt{x^2 - x - 3/4}} \)
To be definable, the inside of the square root must be greater than zero. So
\[x^2 - x - \frac{3}{4} > 0 \quad \Rightarrow \quad (x + \frac{1}{2})(x - \frac{3}{2}) > 0 \]

At \(x = -\frac{1}{2} \) and \(x = \frac{3}{2} \), the denominator is zero, so undefined.

<table>
<thead>
<tr>
<th>Roots</th>
<th>-1/2</th>
<th>3/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + \frac{1}{2})</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(x - \frac{3}{2})</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>((x + \frac{1}{2})(x - \frac{3}{2}))</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

From the table only the parts in positive signs give the domain than makes nonnegative in the square root. So

Domain: \((-\infty, -\frac{1}{2}) \cup (\frac{3}{2}, \infty)\) \quad **Forbidden Range:** \([-\frac{1}{2}, \frac{3}{2}]\)

To find the range we have to find function values at the domain. First let’s find the function values at the intervals of the domain.

\[x \to -\infty, \quad y = f(x) = \frac{\sqrt{\frac{1}{x} - 1}}{\sqrt{1 - \frac{1}{x} - \frac{3}{4x^2}}} \to +1 \]

\[x \to -\frac{1}{2}, \quad y = f(x) = \frac{1-x}{\sqrt{x^2 - x - \frac{3}{4}}} \to \frac{1-\frac{1}{2}}{0} \to \frac{3/2}{0} \to +\infty \]

\[x \to \frac{3}{2}, \quad y = f(x) = \frac{1-x}{\sqrt{x^2 - x - \frac{3}{4}}} \to \frac{1-\frac{3}{2}}{0} \to \frac{-1/2}{0} \to -\infty \]

\[x \to \infty, \quad y = f(x) = \frac{\sqrt{\frac{1}{x} - 1}}{\sqrt{1 - \frac{1}{x} - \frac{3}{4x^2}}} \to -1 \]

Range: \((-\infty, -1) \cup (1, \infty)\)
4) Using the absolute value symbol, express each fact.
 a) X is between -3 and 3, but is not equal to 3 or -3.
 b) The number x of hours that a machine will operate efficiently from 255 by less than 6
 c) The average monthly income x (in dollars) of a family differs 1050 by less than 120
 d) $x+4$ is less than 5 units from 0.
 e) The distance between 7 and x is 4.

Solution:

Using the absolute value symbol, express each fact.
 f) x is between -3 and 3, but is not equal to 3 or -3.

$$-3 < x < 3 \quad \Rightarrow \quad |x| < 3$$

 g) The number x of hours that a machine will operate efficiently from 255 by less than 6

$$|x - 255| < 6$$

 h) The average monthly income x (in dollars) of a family differs 1050 by less than 120

$$|x - 1050| < 120$$

 i) $x+4$ is less than 5 units from 0.

$$|x + 4| < 5$$

 j) The distance between 7 and x is 4.

It can be $7 - x = 4 \quad \Rightarrow \quad x = 3$

or $x - 7 = 4 \quad \Rightarrow \quad x = 11$

$$|x - 7| = 4 \quad \text{or} \quad |7 - x| = 4$$

supplies the above results.

5) In functions is y a function of x? Is x a function of y?
 a) $x^2 + y = 0$
 b) $y = 7x^2$
 c) $x^2 + y^2 = 1$

Solution:

a) $y = -x^2$, y is a function of x.

b) $y = 7x^2$, y is a function of x.

c) $x^2 + y^2 = 1$, Neither y nor x is a function of x or y.

6) Solve the following inequalities:
 a) $2x - (7 + x) \leq x$
 b) $3p(1 - p) > 3(2 + p) - 3p^2$
 c) $4 < \left| \frac{2}{3}x + 5 \right|$
 d) $\frac{3y - 1}{3} > \frac{5(y + 1)}{4}$

Solution:

a) $2x - (7 + x) \leq x$

$$2x - 7 - x \leq 0 \quad \Rightarrow \quad -7 \leq 0 \quad \text{true}$$
Solution: all reel numbers

\[b. \quad 3p(1-p) > 3(2+p) - 3p^2 \]
\[3p - 3p^2 > 6 + 3p - 3p^2 \quad \Rightarrow \quad 0 > 6 \quad \text{false} \]

no solution exist for this problem.

c. \[4 < \left| \frac{2}{3}x + 5 \right| \]
\[4 < \frac{2}{3}x + 5 \quad \Rightarrow \quad -1 < \frac{2}{3}x \quad \Rightarrow \quad -\frac{3}{2} < x \quad \left(\text{or } x > -\frac{3}{2} \right) \]
\[-4 > \frac{2}{3}x + 5 \quad \Rightarrow \quad -9 > \frac{2}{3}x \quad \Rightarrow \quad -\frac{27}{2} > x \quad \left(\text{or } x < -\frac{27}{2} \right) \]
Solution: \((-\infty, -27/2) \cup (-3/2, +\infty)\)

d. \[\frac{3y-1}{3} > \frac{5(y+1)}{4} \]
\[\frac{3y-1}{3} > \frac{5(y+1)}{4} \quad \Rightarrow \quad 12y - 4 > 15y + 15 \]
\[\Rightarrow \quad 12y - 15y > 15 + 4 \quad \Rightarrow \quad -3y > 19 \]
\[\Rightarrow \quad y < -\frac{19}{3} \]
Solution: \((-\infty, -19/3)\)

7) A manufacturer sells a product at $8 per unit, selling all produced. The fixed cost is $2,000 and the variable cost is $7 per unit.

a) At what level of production there will be a profit of $4,000.

b) At what level of production there will be a loss of $1,000.

Solution:

\(u: \) the number unit produced
\(s = $8 \) (selling price)
\(FC = $2,000 \)
\(VC \) per unit = $7
Total Cost: \(TC = FC + VC = 2,000 + 7u \)
Total Sales: \(TS = 8u \)

\[a. \quad TS-TC = 4,000 \quad \Rightarrow \quad 8u - (2,000 + 7u) = 4,000 \]
\[\Rightarrow \quad u = 6,000 \text{ units must be sold.} \]

\[b. \quad TS-TC = -1,000 \quad \Rightarrow \quad 8u - (2,000 + 7u) = -1,000 \]
\[\Rightarrow \quad u = 1,000 \text{ units will be sold.} \]
8) If \(f(x) = 2x \) and \(g(x) = 6 + x \), find the following
 a) \((f \circ g)(x)\)
 b) \((g \circ f)(x)\)
 c) \((g \circ f)(2)\)

Solution:
 a) \((f \circ g)(x) = f(g(x)) = f(6 + x) = f(u) = 2u = 2(6 + x) = 2x + 12\)
 b) \((g \circ f)(x) = g(f(x)) = g(2x) = g(u) = 6 + u = 6 + 2x\)
 c) \((g \circ f)(2) = 6 + 2.2 = 10\)

9) Determine the x- and y-intercepts of the following functions. Graph them and give the domain and range of each function.
 a) \(y = 4 - x\)
 b) \(y = 4 - x^2\)

Solution:
 a) \(y = 4 - x\)

 - x-intercept \(\rightarrow \) Give \(y = 0 \), then find \(x \) \(\rightarrow x = 4 - y = 4; \) x-intercept is \((0, 4)\)
 - y-intercept \(\rightarrow \) Give \(x = 0 \), then find \(y \) \(\rightarrow y = 4 - x = 4; \) y-intercept is \((4, 0)\)

 Since \(y = 4 - x \) is actually represents a line its range and domain has no restrictions
 Therefore
 Range = \((-\infty, +\infty)\)
 Domain = \((-\infty, +\infty)\)

 ![Graph of y = 4 - x]

 b) \(y = 4 - x^2\)

 - x-intercept \(\rightarrow y = 0 \), then \(0 = 4 - x^2 \rightarrow x = \pm 2 \) \(\rightarrow (-2, 0) \ and \ (2, 0)\)
 - y-intercept \(\rightarrow x = 0 \), then \(y = 4 \) \(\rightarrow (0, 4)\)

 When you attempt to sketch a graph of a quadratic function which is a parabola, first thing to do is to determine whether it is “upward opening or downward opening type”. To do this we look at the sign of the coefficient of \(x^2 \) term. Here it is “-”, so our parabola is “downward opening.” Second thing to do is find x-intercept and y-intercept points. Third to find “vertex” position which is given as

 \[x_{\text{vertex}} = \frac{-b}{2a} = \frac{0}{2} = 0 \]
 then to find \(y_{\text{vertex}} \) simply use \(x_{\text{vertex}} \) in the equation

 \[y_{\text{vertex}} = y(x_{\text{vertex}}) = 4 - (x_{\text{vertex}})^2 = 4 \]

 \((x_{\text{vertex}}, y_{\text{vertex}}) = (0, 4)\)

 The graph is shown above (on the right hand side).
10) Find the x- and y-intercepts of the following functions. Also test for symmetry about the x-axis, the y-axis, and the origin. a) \(y = f(x) = 2x^3 - 8x \) \(\frac{\partial}{\partial x} y = 0 \)
\(\rightarrow 0 = 2x^3 - 8x = 2x(x^2 - 4) = 2x(x - 2)(x + 2) \) \(\rightarrow x = 0, \pm 2 \)

Solution:

a)
\(y = f(x) = 2x^3 - 8x \)

\(x \)-intercepts \(\rightarrow y = 0 \) \(\rightarrow 0 = 2x^3 - 8x = 2x(x^2 - 4) = 2x(x - 2)(x + 2) \) \(\rightarrow x = 0, \pm 2 \)

There are 3 points for x-intercepts. (0,0); (2,0); (-2,0)

\(y \)-intercept \(\rightarrow x = 0 \) \(\rightarrow y = 2.0 - 8.0 = 0 \) \(\rightarrow (0,0) \)

\(y \)-axis symmetry \(\rightarrow (-a,b) \leftrightarrow (a,b) \) so for x-axis symmetry \(f(x) = f(-x) \)

\(f(-a) = 2.(-a)^3 - 8(-a) = -2a^3 + 8a \)

\(\neq f(a) \) \(\rightarrow \) NOT y-axis symmetry

\(x \)-axis symmetry \(\rightarrow (a,-b) \leftrightarrow (a,b) \)

Let us try \(x = 1 \) \(\rightarrow y = -6 \) if \((1,-6) \) is a point then \((1,6) \) MUST also be a point on the graph.

\(x = -1 \) \(\rightarrow y = +6 \) \(\rightarrow \) Therefore NOT x-axis symmetry

symmetry about origin requires \((a,b) \rightarrow (-a,-b) \)

We found that \((1,-6) \leftrightarrow (-1,6) \) \(\rightarrow \) Therefore It is symmetric about origin.

11) Find the equation of the straight line that has the following properties:

a) Passes through \((4, -2)\) and \((-6, 3)\)

b) Passes through \((-2, 5)\) and has a slope 4

c) Perpendicular to \(y = x + 5 \) and passes through \((1, 1)\)

Solution:

a) slope \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-2)}{-6 - 4} = \frac{5}{-10} = -0.5 \)

\(y - y_1 = m(x - x_1) = -0.5(x - 4) = -0.5x + 2 = y - (-2) \) \(\rightarrow y = -0.5x \)

c) For perpendicular lines, their slopes must satisfy the condition \(m_1m_2 = -1 \)

\(m_1 = +1 \) \(\rightarrow m_2 = -1 \) \(\rightarrow \) and the point is \((1,1)\)

\(y - y_1 = m(x - x_1) = -1(x - 1) \) \(\rightarrow y = -x + 2 \)

12) For the following find a) the vertex b) x-intercepts, c) y-intercept, d) sketch the graph.

a) \(y = 12 - 8s + s^2 \) \(\frac{\partial}{\partial s} y = 0 \)

b) \(y = x^2 - 4 \)

c) \(y = -4x^2 \)

Solution:

a)
\(y = 12 - 8s + s^2 = s^2 - 8s + 12 \)

\(s_{\text{vertex}} = \frac{b}{2a} = \frac{-(-8)}{2} = 4 \) \(\rightarrow y_{\text{vertex}} = 4^2 - 8.4 + 12 = -4 \)

\(s \)-intercepts

\(y = 0 \) \(0 = s^2 - 8s + 12 \) \(\rightarrow s = +2, +6 \)
13) The demand function for an electronic company’s computer line is \(p = 1200 - 3q \), where \(p \) is the price per unit when \(q \) units are demanded by consumers. Find the level of production that will maximize the manufacturer’s total revenue, and determine this revenue.

Solution:

Total Revenue = \(p \cdot q = (1200 - 3q)q = -3q^2 + 1200q \)

Maximum revenue would occur at the vertex of the parabola. Therefore

\[q_{\text{vertex}} = \frac{-b}{2a} = \frac{-1200}{2(-3)} = 200 \text{ units} \]

Maximum revenue at this production level is

\[r_{\text{vertex}} = -3(200)^2 + 1200 \cdot 200 = 120,000 \]

14) Suppose consumers will demand 40 units a product when the price is $12 per unit and 26 units when the price is $19 each. Find the demand equation assuming that it is linear. Find the price per unit when 30 units are demanded.

Solution:

Two points are

\((q, p) = (12, 40)\)

\(= (19, 26)\)

The equation of the line passing through two points

\[m = \frac{p_2 - p_1}{q_2 - q_1} = \frac{40 - 26}{12 - 19} = -2 \]

\[p - p_1 = m(q - q_1) = -2(q - 12) = p - 40 \quad \rightarrow \quad p = -2q + 64 \]