1. Differentiate the functions. If possible, first use properties of logarithms to simplify the given function.
 a) \(y = \ln(3x^2 + 2x + 1) \)
 b) \(y = x^2 \ln x \)
 c) \(y = x^2 \log_2 x \)
 d) \(y = \frac{x^2}{\ln x} \)

2. A total-cost function is given by \(c = 25 \ln(q + 1) + 12 \). Find the marginal cost when \(q = 6 \).

3. Differentiate the functions:
 a) \(y = x^2 e^{-x} \)
 b) \(y = \frac{e^x - e^{-x}}{e^x + e^{-x}} \)
 c) \(y = 2x^2 \)

4. If \(f(x) = e^xe^{-x} \), find \(f'(1) \)

5. Find \(dy/dx \) by implicit differentiation
 a) \(xy = 4 \)
 b) \(2x^3 + 3xy + y^3 = 0 \)
 c) \(\ln(xy) + x = 4 \)

6. Find an equation of the tangent line to the curve of \(x^3 + y^2 = 3 \) at the point \((-1, 2)\).

7. Find \(y' \) by using logarithmic differentiation.
 a) \(y = (3x^3 - 1)^2 (2x + 5)^3 \)
 b) \(y = (x + 2)\sqrt{x^2 + 9 + \sqrt{6x + 1}} \)
 c) \(y = \sqrt[6]{\frac{6(x^3 + 1)^2}{x^5 e^{4x}}} \)
 d) \(y = 4e^x x^3 \)
 e) \(y = (\ln x)^e \)

8. Differentiate
 a) \(y = x^x \)
 b) \(y = (x + 1)^{x+1} \)

9. Find \(dy/dx \)
 a) \(\ln(xy^2) = xy \)
 b) \((\ln y)e^{\ln x} = e^x \)

10. If \(y \) is defined implicitly by \(e^y = (y + 1)e^{-x} \), determine \(dy/dx \) as explicit functions of \(y \) only.

11. Determine when the function is increasing or decreasing, and determine when relative maxima and minima occur. Do not sketch the graph.
 a) \(y = -x^5 - 5x^4 + 200 \)
 b) \(y = \frac{x^2 - 3}{x + 2} \)
 c) \(y = e^x + e^{-x} \)

12. Sketch the graph of a continuous function \(f \) such that \(f(1) = 2, f(3) = 1, f'(1) = f'(3) = 0, f'(x) > 0 \) for \(x < 1 \), \(f'(x) < 0 \) for \(1 < x < 3 \), and \(f \) has a relative minimum when \(x = 3 \).

13. For a manufacturer’s product, the revenue function is given by \(r = 240q + 57q^2 - q^3 \). Determine the output for maximum revenue.

14. Determine concavity and the \(x \) values for the function \(y = \frac{-5}{2} x^4 - \frac{1}{6} x^3 + \frac{1}{2} x^2 + \frac{1}{3} x - \frac{2}{5} \). Where points of inflection occur. Do not sketch the graph.

15. Determine intervals on which the function \(y = 3x^4 - 4x^3 + 1 \) is increasing, decreasing, concave up, and concave down; relative maxima and minima; inflection points; symmetry; and those intercepts that can be obtained conveniently. Then sketch the curve.

16. Sketch the graph of a continuous function \(f \) such that \(f(4) = 4, f'(4) = 0, f''(x) < 0 \) for \(x < 4 \), and \(f''(x) > 0 \) for \(x > 4 \).

17. Sketch the graph of a continuous function \(f \) such that \(f(1) = 1, f'(1) = 0, f''(x) < 0 \) for all \(x \).

18. Test for relative maxima and minima for the function \(y = x^4 - 2x^2 + 4 \). Use the second derivative test if possible.

19. Find the horizontal and vertical asymptotes for the graphs of the functions. Do not sketch the graphs.
 a) \(y = \frac{4}{x - 6} + 7 \)
 b) \(y = \frac{2}{9} + \frac{3x}{14x^2 + x - 3} \)

20. Determine intervals on which the function is increasing, decreasing, concave up, and concave down; relative maxima and minima; inflection points; symmetry; horizontal and vertical asymptotes; and those intercepts that can be obtained conveniently. Then sketch the curve.
 a) \(y = \frac{1}{x^2 + 1} \)
 b) \(y = \frac{3x}{(x - 2)^2} \)

21. Let \(f(x) = (x^2 + 1)e^{-x} \)
 a) Determine the values of \(x \) at which relative maxima and relative minima, if any, occur. b) Determine the interval(s) on which the graph of \(f \)'s concave down, and find the coordinates of all points of inflection.

22. Indicate intervals on which the function \(y = x^3 - 12x + 20 \) is increasing, decreasing, concave up, or concave down; indicate relative maximum points, relative minimum points, points of inflection; horizontal asymptotes, vertical asymptotes, symmetry, and those intercepts that can be obtained conveniently and sketch the graph.