1. A company's production function is given by \(P = 2L^2 - 3k^2 + 10Lk - \frac{500}{k} \), where \(P \) is the total output generated by \(L \) units of labor and \(k \) units of capital. Determine the marginal production function with respect to \(L \) when \(k = 50 \) units and \(L = 10 \) units. (10 Points)

Solution:

\[
\frac{\partial P}{\partial L} = 4L + 10k
\]

\[
\left. \frac{\partial P}{\partial L} \right|_{L=10, k=50} = 4L + 10k = 40 + 500 = 540
\]

2. Evaluate the integral \(\int \frac{x+1}{e^x} \, dx \). (10 Points)

Solution:

\[
\int \frac{x+1}{e^x} \, dx = - (x+1) e^{-x} - \int -e^{-x} \, dx = -(x+1) e^{-x} - e^{-x} + C
\]

\[
= -(x+2) e^{-x} + C
\]
3. Let \(q_A = 50 - 5p_A + 6p_B^2 \) and \(q_B = 20\sqrt{p_A^{-1}p_B^{-1}} \) be demand functions, where \(p_A \) and \(p_B \) are prices for products A and B, respectively. Determine: (i) the marginal demand for A with respect to \(p_B \), (ii) the marginal demand for B with respect to \(p_A \), (iii) whether A and B are competitive, complementary, or neither. (10 Points)

Solution:

\[
\begin{align*}
(i) \quad \frac{\partial q_A}{\partial p_B} &= 12p_B > 0 \\
(ii) \quad \frac{\partial q_B}{\partial p_A} &= 10p_A^{-3/2}p_B^{-1} > 0
\end{align*}
\]

(iii) From (i) and (ii), the products A and B are competitive products.
4. Let \(\ln\sqrt{y(z+y)} - \frac{1}{2}x = z \). Use implicit differentiation to evaluate \(\frac{\partial z}{\partial x} \). (10 Points)

Solution:
\[
\ln\sqrt{y(z+y)} - \frac{1}{2}x = z
\]
\[
\frac{1}{2}\ln y + \frac{1}{2}\ln(z+y) - \frac{1}{2}x = z \quad \Rightarrow \quad \ln y + \ln(z+y) - x = 2z
\]
\[
\frac{\partial}{\partial x} (\ln y + \ln(z+y) - x = 2z)
\]
\[
\frac{\partial}{\partial x} \ln(z+y) - \frac{\partial x}{\partial x} = 2 \frac{\partial z}{\partial x}
\]
\[
\frac{\partial z}{\partial x} \left(\frac{1}{z+y} - 2 \right) = 1 \quad \Rightarrow \quad \frac{\partial z}{\partial x} = \frac{1}{z+y - 2} = \frac{z+y}{1-2(z+y)}
\]

5. If \(w = e^{x-y} + x^2 - y^2 \) where \(x = rs \), \(y = s^2 + r^2 \), evaluate \(\frac{\partial w}{\partial r} \) when \(r = 1 \) and \(s = 0 \). (10 Points)

Solution:
\[
\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial r}
\]
\[
= (e^{x-y} + 2x)s + (-e^{x-y} - 2y)2r
\]
\[
= (s - 2r)e^{x-y} + 2xs - 4yr
\]
when \(r = 1 \) and \(s = 0 \), \(x = 0 \) and \(y = 1 \).
\[
\left. \frac{\partial w}{\partial r} \right|_{r=1, s=0} = \left((s - 2r)e^{x-y} + 2xs - 4yr \right)_{r=1, s=0}
\]
\[
= -2e^{-1} - 4
\]
6. Examine the function \(f(x, y) = x^3 + 3y^2 - 3xy + 7 \) for relative extrema using the second derivative test. (15 Points)

Solution:
The first derivatives of \(f(x, y) \) function:

\[
\begin{align*}
 f_x &= \frac{\partial f}{\partial x} = 3x^2 - 3y = 0 \quad \Rightarrow \quad y = x^2 \\
 f_y &= \frac{\partial f}{\partial y} = 6y - 3x = 6x^2 - 3x = 3x(2x - 1) = 0 \quad \Rightarrow \quad x = 0 \text{ or } x = \frac{1}{2}
\end{align*}
\]

The critical points are at (0,0) and (1/2, 1/4). The second derivatives are as follows

\[
\begin{align*}
 f_{xx} &= 6x, \quad f_{xy} = -3, \quad f_{yy} = 6
\end{align*}
\]

The function \(D(x, y) \) for second-derivative test is given by

\[
D(x, y) = f_{xx}f_{yy} - f_{xy}^2 = 36x - 9 = 9(4x - 1)
\]

The (0, 0) point: \(D(0,0) = 9(4 \times 0 - 1) = -9 < 0 \), saddle point

The (1/2, 1/4) point: \(D(\frac{1}{2}, \frac{1}{4}) = 9\left(4 \times \frac{1}{2} - 1\right) = 9 > 0 \), \(f_{xx} = 0 > 0 \) relative minimum
7. By using matrix reduction, solve the given system and determine whether it has unique solution or infinitely many solutions. (15 Points)

\[
\begin{align*}
2y + z &= 0 \\
x - 2z &= 0 \\
-y + z &= 0
\end{align*}
\]

Solution:

\[
\begin{bmatrix}
0 & 2 & 1 \\
1 & 0 & -2 \\
0 & -1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & -2 \\
0 & 2 & 1 \\
0 & -1 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & -2 \\
0 & -1 & 1 \\
0 & 2 & 1
\end{bmatrix}
\]

The number of equation is the same as the unknowns; therefore it has unique solutions as \(x = 0, \ y = 0, \ z = 0\).
8. Solve the given system by using the inverse of its coefficient matrix. (20 Points)

\[
\begin{align*}
 x - 3y &= -4 \\
 x - y &= 2
\end{align*}
\]

Solution:

The equation can be written in matrix form as:

\[
AX = B \quad \text{with} \quad A = \begin{bmatrix} 1 & -3 \\ 1 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} -4 \\ 2 \end{bmatrix}
\]

The inverse of the coefficient matrix \(A \) can be found as follows:

\[
\begin{bmatrix} A | I \end{bmatrix} =
\begin{bmatrix} 1 & -3 | 1 & 0 \\ 1 & -1 | 0 & 1 \end{bmatrix}
\overset{-R_1 + R_2}{\rightarrow}
\begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{bmatrix}
\overset{-\frac{3}{2}R_2}{\rightarrow}
\begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}
\]

Hence we may solve the system of equations using the inverse of \(A \) matrix by

\[
X = A^{-1}B = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}
\]