SIEMENS

SIMATIC

S7-200 Programmable Controller
System Manual

6ES7 298-8FA22-8BHO

Release 3

Preface, Contents

Product Overview

Getting Started

Installing the S7-200

PLC Concepts

Programming Concepts,
Conventions and Features

S7-200 Instruction Set

Communicating over a Network

Hardware Troubleshooting Guide
and Software Debugging Tools

Creating a Program for the
Position Module

Creating a Program for the
Modem Module

Using the USS Protocol Library to
Control a MicroMaster Drive

Using the Modbus Protocol
Library

Technical Specifications

Calculating a Power Budget

Error Codes

Special Memory (SM) Bits

S7-200 Order Numbers

Execution Times for STL
Instructions

S7-200 Quick Reference
Information

Index

© 00 N O O A WO NN =

O M m oo O W

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

Danger
' Danger indicates an imminently hazardous situation which, if not avoided, will result in death or serious
* injury.

Warning
' Warning indicates a potentially hazardous situation which, if not avoided, could result in death or serious
* injury.

Caution

' Caution used with the safety alert symbol indicates a potentially hazardous situation which, if not
avoided, may result in minor or moderate injury.

Caution

Caution used without the safety alert symbol indicates a potentially hazardous situation which, if not
avoided, may result in property damage.

Notice
Notice indicates a potential situation which, if not avoided, may result in an undesirable result or state.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Correct Usage
Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the
technical descriptions, and only in connection with devices or components from other manufacturers
which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks
SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights may be violated
if they are used by third parties for their own purposes.

Copyright Siemens AG 2002 All rights reserved Disclaimer of Liability

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of a utility model
or design, are reserved.

Siemens AG

Automation and Drives (A&D)
Industrial Automation Systems (AS)
Postfach 4848, D- 90327 Nurnberg

We have checked the contents of this manual for agreement with the hardware and
software described. Since deviations cannot be precluded entirely, we cannot gua-
rantee full agreement. However, the data in this manual are reviewed regularly and
any necessary corrections included in subsequent editions. Suggestions for impro-
vement are welcomed.

© Siemens AG 2002
Technical data subject to change.

Siemens Aktiengesellschaft

Preface

The S7-200 series is a line of micro-programmable logic controllers (Micro PLCs) that can control a variety
of automation applications. Compact design, low cost, and a powerful instruction set make the S7-200 a
perfect solution for controlling small applications. The wide variety of S7-200 models and the
Windows-based programming tool give you the flexibility you need to solve your automation problems.

Audience

This manual provides information about installing and programming the S7-200 Micro PLCs and is
designed for engineers, programmers, installers, and electricians who have a general knowledge of
programmable logic controllers.

Scope of the Manual
The information contained in this manual pertains in particular to the following products:
[$S7-200 CPU models: CPU 221, CPU 222, CPU 224, CPU 226, and CPU 226XM
S7-200 EM 22x expansion modules
STEP 7-Micro/WIN, version 3.2, a 32-bit programming software package for the S7-200

STEP 7-Micro/WIN Instruction Libraries and TP-Designer for TP070, Version 1.0, a set of software
tools for customers who use an S7-200 with other components, such as the TP070 Touch Panel,
Modbus, or a MicroMaster drive

O 0o

Standards Compliance
The SIMATIC S7-200 series meets the following standards:

1 European Community (CE) Low Voltage Directive 73/23/EEC
EN 61131-2: Programmable Controllers - Equipment requirements

[European Community (CE) EMC Directive 89/336/EEC

Electromagnetic emissions standard
EN 50081-1: residential, commercial, and light industry
EN 50081-2: industrial environment

Electromagnetic immunity standards
EN 61000-6-2: industrial environment

(1 Underwriters Laboratories, Inc.
UL 508 Listed (Industrial Control Equipment) Registration number E75310

1 Canadian Standards Association: CSA C22.2 Number 142 Certified (Process Control Equipment)

(O Factory Mutual Research: FM Class |, Division 2, Groups A, B, C, & D Hazardous Locations, T4A
and Class |, Zone 2, IIC, T4

Refer to Appendix A for compliance information.

S7-200 Programmable Controller System Manual

Maritime Approvals

At the time this manual was printed, the SIMATIC S7-200 series met the maritime agencies identifed
below. For the latest product approvals, contact your local Siemens distributor or sales office.

Agency Certificate Number
Lloyds Register of Shipping (LRS) 99 /20018(E1)
American Bureau of Shipping (ABS) 01-HG20020-PDA
Germanischer Lloyd (GL) 12 045 - 98 HH

Det Norske Veritas (DNV) A-8071

Bureau Veritas (BV) 09051 / A2 BV
Nippon Kaiji Kyokai (NK) A-534

How to Use This Manual

If you are a first-time (novice) user of S7-200 Micro PLCs, you should read the entire S7-200
Programmable Controller System Manual. If you are an experienced user, refer to the table of contents or
index to find specific information.

The S7-200 Programmable Controller System Manual is organized according to the following topics:

a

a

a

a

Chapter 1 (Product Overview) provides an overview of some of the features of the S7-200 family of
Micro PLC products.

Chapter 2 (Getting Started) provides a tutorial for creating and downloading a sample control
program to an S7-200.

Chapter 3 (Installing the S7-200) provides the dimensions and basic guidelines for installing the
S7-200 CPU modules and expansion 1/O modules.

Chapter 4 (PLC Concepts) provides information about the operation of the S7-200.

Chapter 5 (Programming Concepts, Conventions, and Features) provides information about the
features of STEP 7-Micro/WIN, the program editors and types of instructions (IEC 1131-3 or
SIMATIC), S7-200 data types, and guidelines for creating programs.

Chapter 6 (S7-200 Instruction Set) provides descriptions and examples of programming instructions
supported by the S7-200.

Chapter 7 (Communicating over a Network) provides information for setting up the different network
configurations supported by the S7-200.

Chapter 8 (Hardware Troubleshooting Guide and Software Debugging Tools) provides information
for troubleshooting problems with the S7-200 hardware and about the STEP 7-Micro/WIN features
that help you debug your program.

Chapter 9 (Creating a Program for the Position Module) provides information about the instructions
and wizard used to create a program for the EM 253 Position module.

Chapter 10 (Creating a Program for the Modem Module) provides information about the instructions
and wizard used to create a program for the EM 241 Modem module.

Chapter 11 (Using the USS Protocol Library to Control a MicroMaster Drive) provides information
about the instructions used to create a control program for a MicroMaster drive. It also provides
information about how to configure the MicroMaster 3 and MicroMaster 4 drives.

Chapter 12 (Using the Modbus Protocol Library) provides information about the instructions used to
create a program that uses the Modbus protocol for communications.

Appendix A (Technical Specifications) provides the technical information and data sheets about the
S7-200 hardware.

The other appendices provide additional reference information, such as descriptions of the error codes,
descriptions of the Special Memory (SM) area, part numbers for ordering S7-200 equipment, and STL
instruction execution times.

Preface

Additional Information and Assistance

Information about the S7-200 and STEP 7-Micro/WIN

In addition to this manual, STEP 7-Micro/WIN provides extensive online help for getting started with
programming the S7-200. Included with the purchase of the STEP 7-Micro/WIN software is a free
documentation CD. On this CD you can find application tips, an electronic version of this manual and other
information.

Online Help

Help is only a keystroke away! Pressing F1 accesses the extensive online help for STEP 7-Micro/WIN.
The online help includes useful information about getting started with programming the S7-200, as well as
many other topics.

Electronic Manual

An electronic version of this S7-200 System Manual is available on the documentation CD. You can install
the electronic manual onto your computer so that you can easily access the information in the manual
while you are working with the STEP 7-Micro/WIN software.

Tips and Tricks

The documentation CD includes Tips and Tricks, a set of application examples with sample programs.
Reviewing or modifying these examples can help you find efficient or innovative solutions for your own
application. You can also find the most current version of Tips and Tricks on the S7-200 Internet site.

Internet: www.siemens.com/S7-200

For additional information about Siemens products and services, technical support, frequently asked
questions (FAQs), product updates, or application tips, refer to the following Internet addresses:

O www.ad.siemens.de for general Siemens information

This Siemens Automation & Drives Internet site includes information about the SIMATIC product line
and other products available from Siemens.

O www.siemens.com/S7-200 for S7-200 product information

The S7-200 Internet site includes frequently asked questions (FAQs), Tips and Tricks (application
examples and sample programs), information about newly released products, and product updates
or downloads.

S7-200 Programmable Controller System Manual

Technical Assistance and Purchasing S$7-200 Products

Local Siemens Sales Office or Distributor

For assistance in answering any technical questions, for training on the S7-200 products, or for ordering
S7-200 products, contact your Siemens distributor or sales office. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process and industry, as
well as about the individual Siemens products that you are using, they can provide the fastest and most
efficient answers to any problems that you might encounter.

Technical Services
The highly trained staff of the S7-200 Technical Services center is also available to help you solve any
problems that you might encounter. You can call on them 24 hours a day, 7 days a week:

(4 For calls originating from within the United States of America
Local time: Monday to Friday 0800 to 1900 Eastern time
Telephone: +1 800 241-4453
Fax: +1 (0) 770 740-3699
E-Mail: drives.support@sea.siemens.com

(4 For calls originating from the Americas outside of the USA
Local time: Monday to Friday 0800 to 1900 Eastern time
Telephone: +1 (0) 770 740-3505
Fax: +1 (0) 770 740-3699
E-Mail: drives.support@sea.siemens.com

[For calls originating from Europe and Africa
Local time (Nuremberg): Monday to Friday 0700 to 1700
Telephone: +49 (0) 180 5050-222
Fax: +49 (0) 180 5050-223
E-Mail: techsupport@ad.siemens.de

[Q For calls originating from Asia and Australia
Local time (Singapore): Monday to Friday 0830 to 1730
Telephone: +65 (0) 740-7000
Fax: +65 (0) 740-7001
E-Mail: drives.support@sae.siemens.com.sg

Vi

Contents

5

Product Overview

S7-200CPU
S7-200 Expansion Modules

STEP 7-Micro/WIN Programming Package e

Communications Options
Display Panels

Getting Started

Connecting the S7-200CPU
Creating a Sample Program
Downloading the Sample Program ..
Placing the S7-200 in RUN Mode ...

Installing the S7-200

Guidelines for Installing S7-200 DeVICESttt e

Installing and Removing the S7-200 M
Guidelines for Grounding and Wiring

PLCConcepts

OdUIES .. e

Understanding How the S7-200 Executes Your Control Logic ...,
Accessing the Data of the S7-200 e
Understanding How the S7-200 Saves and RestoresData i,
Storing Your Program on a Memory Cartridget
Selecting the Operating Mode forthe S7-200 CPU e
Using Your Program to Save V Memory to the EEPROM
Features of the S7-200 o i
Programming Concepts, Conventions, and Featuresc.coociintn,
Guidelines for Designing a Micro PLC System
Basic Elements of a Program e
Using STEP 7-Micro/WIN to Create Your Programs ..o,
Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets
Understanding the Conventions Used by the Program Editors
Using Wizards To Help You Create Your Control Program
Handling Errors inthe S7-200 o e
Assigning Addresses and Initial Values in the Data Block Editor
Using the Symbol Table for Symbolic Addressing of Variables
Using Local Variables e
Using the Status Chart to Monitor Your Program i
Creating an Instruction Library

Features for Debugging Your Program

= =2 [o® 0 AR ORIIN] -

=] ==
w

alali=
(o RRES; RRF

N
e

W W W W W N
O 0N AN

=Y
~

[IR N RS RRE S RRN S RRES RRE S, RRK S, DRI R
O O OV W O o~ W = 0©

Vii

S7-200 Programmable Controller System Manual

6

viii

S7-200 Instruction Set i i i i i e e e i e,
Conventions Used to Describe the Instructions i i
S7-200 Memory Ranges and Features
Bit Logic InStruCtions e

(070} g1 - T -
C0lS o e e
Logic Stack InStruCtions o
Set and Reset Dominant Bistable Instructions
CloCK INSHrUCHIONS . . . oo ot e e e e e e e e,
Communications INStrUCHiONS e
Network Read and Network Write Instructions i
Transmit and Receive Instructions (Freeport)
Get Port Address and Set Port Address Instructions L.
Compare INSIIUCHIONS o . e e e
Comparing Numerical Values
ComMPare SHNg . oot
Conversion INStrUCHONSo e e
Standard Conversion Instructions i
ASCII Conversion Instructions i e
String Conversion INStruCtioNS
Encode and Decode Instructions i e
CoUNEEr INSHIUCHIONS . . . oo e e e e e e,
SIMATIC Counter InStructions i e e e e
IEC Counter InStructions e
High-Speed Counter INStrUCtONS o e
Pulse Output INStrUCtioN o e
Math INStrUCHONS . .. o e e
Add, Subtract, Multiply, and Divide Instructions
Multiply Integer to Double Integer and Divide Integer with Remainder
Numeric Functions InStructions i e e e
Increment and Decrement Instructions i e
Proportional/Integral/Derivative (PID) Loop Instruction i
Interrupt INStruCtions
Logical Operations InStruCtions
INnvert INStrUCHiONS e e
AND, OR, and Exclusive OR InStructions e
MOVE INSHIUCHIONS o et e e e e e
Move Byte, Word, Double Word, or Real it
Move Byte Immediate (Read and Write) i
Block Move INStruCtions e
Program Control INStructions
Conditional ENd e e e
o] o
Watchdog Reset
For-Next Loop INStruCtioNnSo
JUMP INSIIUCHIONSo

Sequence Control Relay (SCR) Instructions

61

63
64
66
66
68
70
72
73
74
74
79
88
89
89
91
92
92
96
100
105
106
106
109
111
125
140
140
142
143
144
145
155
162
162
163
165
165
166
167
168
168
168
168
170
172
173

Contents

Shift and Rotate INStructions 179
Shift Right and Shift Left Instructions 179
Rotate Right and Rotate Left Instructions 179
Shift Register Bit InStruction 181
Swap Bytes Instruction 183

StriNg INSIrUCHONS e 184

Table InStrUCiONS o e 189
Add To Table . ..o s 189
First-In-First-Out and Last-In-First-Out s 190
Memory Fill ... 192
Table FiNd ... e 193

TiMer INStrUCHONS o e 196
SIMATIC Timer INStruCtionS i et 196
IEC Timer InStruCtions o s 201

Subroutine INSTrUCHIONS 203

7 Communicating overa Networkcciiiiiii ittt ianinenenns 207

Understanding the Basics of S7-200 Network Communications 208

Selecting the Communications Protocol for Your Network 211

Installing and Removing Communications Interfaces 216

Building Your Networko 218

Creating User-Defined Protocols with Freeport Mode 222

Using Modems and STEP 7-Micro/WIN with Your Network 224

AdVaNCed TOPICS . ..ottt e e 228

8 Hardware Troubleshooting Guide and Software Debugging Tools 235

Features for Debugging Your Program it 236

Displaying the Program Status e 238

Using a Status Chart to Monitor and Modify the Datainthe S7-200............................ 239

Forcing Specific Values 240

Running Your Program for a Specified Numberof Scans 240

Hardware Troubleshooting Guide i e et 241

9 Creating a Program for the Position Modulec.coiiiiiiiiiiinonn. 243

Features of the Position Module e 244

Configuring the Position Module 246

Position Instructions Created by the Motion Control Wizard 257

Sample Programs for the Position Module 269

Monitoring the Position Module with the EM 253 Control Panel 274

Error Codes for the Position Module and the Position Instructions 276

AdVanCed TOPICS . .. oottt 278

S7-200 Programmable Controller System Manual

10

"

12

A

Creating a Program for the Modem Modulecciiiiiiiiiiinnnnn.

Features ofthe Modem Module
Using the Modem Expansion Wizard to Configure the Modem Module
Overview of Modem Instructions and Restrictions i
Instructions for the Modem Module
Sample Program for the Modem Module
S7-200 CPUs that Support Intelligent Modules it
Special Memory Location for the Modem Module
AdVanCed TOPICS . ..ottt e e
Messaging Telephone Number Format
Text Message Format e
CPU Data Transfer Message Format et

Using the USS Protocol Library to Control a MicroMaster Drive

Requirements for Using the USS Protocol s
Calculating the Time Required for Communicating withthe Drive
Using the USS INStrUCtioNS o . et e
Instructions for the USS Protocol
Sample Programs for the USS Protocol
USS Execution Error COAesttt e e e e e e
Connecting and Setting Up the MicroMaster Series 3Drive
Connecting and Setting Up the MicroMaster Series 4 Drive

Using the Modbus Protocol Libraryccciiriiiiiii i e as

Requirements for Using the Modbus Protocol
Initialization and Execution Time for the Modbus Protocol
MOdbus AdAresSiNgottt e
Using the Modbus Slave Protocol Instructions
Instructions for the Modbus Slave Protocol

Technical Specificationscciiiiiiiiii i i i i i e

General Technical Specifications e
CPU Specifications e
Digital Expansion Modules Specifications i
Analog Expansion Modules Specifications
Thermocouple and RTD Expansion Modules Specifications
EM 277 PROFIBUS-DP Module Specifications
EM 241 Modem Module Specifications
EM 253 Position Module Specifications
AS-Interface (CP 243-2) Module Specifications i
Optional Cantridges
/O Expansion Cable e
PC/PPI Cable ...
INpUt SIMUIATOrS . .. e

Calculatinga PowerBudgetot it a s

Contents

C 0T 0o T [403
Fatal Error Codes and MeSSagesottt e e e 404
Run-Time Programming Problems 405
Compile Rule Violations oo 406

D Special Memory (SM) Bitsc.coiiiiiiii i i i it ian s 407
SMBO: Status Bitst 408
SMBH: Status Bits o e 408
SMB2: Freeport Receive Character i e 409
SMB3: Freeport Parity Error o 409
SMB4: Queue OVerflow 409
SMBS: /O StatUS . . . oottt et e e e e 410
SMBGB: CPU ID Register e e 410
SMB7: RESEIVEA . . o 410
SMB8 to SMB21: 1/0 Module ID and Error Registers ... 411
SMW22 10 SMW26: Scan TiMesSttt 412
SMB28 and SMB29: Analog Adjustment 412
SMB30 and SMB130: Freeport Control Registers 412
SMB31 and SMW32: Permanent Memory (EEPROM) Write Control 413
SMB34 and SMB35: Time Interval Registers for Timed Interrupts 413
SMB36 to SMB65: HSCO, HSC1, and HSC2 Register i 413
SMB66 to SMB85: PTO/PWM Registerso e 415
SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control 416
SMW98: Errors on the Expansion I/O BUS 417
SMB130: Freeport Control Register (see SMB30)ttt 417
SMB131 to SMB165: HSC3, HSC4, and HSC5 Register 417
SMB166 to SMB185: PTOO0, PTO1 Profile Definition Tableii.t. 418
SMB186 to SMB194: Receive Message Control (see SMB86to SMB94) 418
SMB200 to SMB549: Intelligent Module Status i 419

E S7-200 Order NUMDEISciii i it i e ia i esin i anansannnnennnns 421

F Execution Times for STL Instructionsttt iaieaens 425

G $7-200 Quick Reference Information 431

3T - 437

Xi

Product Overview

The S7-200 series of micro-programmable logic controllers (Micro PLCs) can control a wide variety of
devices to support your automation needs.

The S7-200 monitors inputs and changes outputs as controlled by the user program, which can include
Boolean logic, counting, timing, complex math operations, and communications with other intelligent
devices. The compact design, flexible configuration, and powerful instruction set combine to make the
S7-200 a perfect solution for controlling a wide variety of applications.

In This Chapter

S7-200 CPU . .o
S7-200 Expansion Modules
STEP 7-Micro/WIN Programming Packagettt
Communications OpPlioNS
Display Panels

AN

S7-200 Programmable Controller System Manual

S$7-200 CPU

The S7-200 CPU combines a microprocessor, an integrated power supply, input circuits, and output
circuits in a compact housing to create a powerful Micro PLC. See Figure 1-1. After you have downloaded
your program, the S7-200 contains the logic required to monitor and control the input and output devices
in your application.

1/0 LEDs Access door:

/ Mode selector switch (RUN/STOP)

Analog adjustment potentiometer(s)
Expansion port (for most CPUs)

Status LEDs:
System Fault
RUN
STOP
Optional cartridg% A Terminal connector
EEPROM \ (removable on CPU 224, CPU 226
R and CPU 226XM)

Real-time Clock
Battery

Communications port Clip for installation on a standard (DIN) rail

Figure 1-1 S7-200 Micro PLC

Siemens provides different S7-200 CPU models with a diversity of features and capabilities that help you
create effective solutions for your varied applications. Table 1-1 briefly compares some of the features of
the CPU. For detailed information about a specific CPU, see Appendix A.

Digital I/O image size

Boolean execution
speed

256 (128 in, 128 out)

0.37 microseconds/instruction

Table 1-1 Comparison of the S7-200 CPU Models
Feature CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM
Physical size (mm) 90 x 80 x 62 90 x 80 x 62 120.5x 80 x 62 190 x 80 x 62 190 x 80 x 62
Program memory 2048 words 2048 words 4096 words 4096 words 8192 words
Data memory 1024 words 1024 words 2560 words 2560 words 5120 words
Memory backup 50 hours typical | 50 hours typical | 190 hours typical | 190 hours typical | 190 hours typical
Local on-board I/O 6 In/4 Out 8 In/6 Out 14 In/10 Out 24 In/16 Out 24 In/16 Out
Expansion modules | 0 2 7 7 7
High-speed counters
Single phase 4 at 30 kHz 4 at 30 kHz 6 at 30 kHz 6 at 30 kHz 6 at 30 kHz
Two phase 2 at 20 kHz 2 at 20 kHz 4 at 20 kHz 4 at 20 kHz 4 at 20 kHz
Pulse outputs (DC) 2 at20 kHz 2 at20 kHz 2at20 kHz 2 at20 kHz 2 at20 kHz
Analog adjustments 1 1 2 2 2
Real-time clock Cartridge Cartridge Built-in Built-in Built-in
Communications 1 RS-485 1 RS-485 1 RS-485 2 RS-485 2 RS-485
ports
Floating-point math Yes

Chapter Title Chapter 1

S$7-200 Expansion Modules

To better solve your application requirements, the S7-200 family includes a wide variety of expansion
modules. You can use these expansion modules to add additional functionality to the S7-200 CPU.
Table 1-2 provides a list of the expansion modules that are currently available. For detailed information
about a specific module, see Appendix A.

Table 1-2 S7-200 Expansion Modules

Expansion Modules Types
Discrete modules Input 8 xDC In 8 x AC In
Output 8 x DC Out 8 x AC Out 8 x Relay

Combination | 4xDCIn/4xDCOut 8xDCIn/8xDC Out 16 x DC In/16 x DC Out
4 x DC In/ 4 x Relay 8 x DC In/ 8 x Relay 16 x DC In/ 16 x Relay

Analog modules Input | 4 x Analog In 4 x Thermocouple In 2xRTDIn
Output ' 2 x Analog Out
Combination | 4 x Analog In/ 1 Analog Out
Intelligent modules Position Modem PROFIBUS-DP
Other modules AS-Interface

STEP 7-Micro/WIN Programming Package

The STEP 7-Micro/WIN programming package provides a user-friendly environment to develop, edit, and
monitor the logic needed to control your application. STEP 7-Micro/WIN provides three program editors
for convenience and efficiency in developing the control program for your application. To help you find the
information you need, STEP 7-Micro/WIN provides an extensive online help system and a documentation
CD that contains an electronic version of this manual, application tips, and other useful information.

Computer Requirements

STEP 7-Micro/WIN runs on either a personal computer or a Siemens programming device, such as a
PG 760. Your computer or programming device should meet the following minimum requirements:

1 Operating system:
Windows 95, Windows 98, Windows 2000,
Windows Me (Millennium Edition), or
Windows NT 4.0 (or later version)

Fle Edt View PLC Debug Tooks Windows Help

[ozaen|snel-sRp|s=z|eu|B] =@mrrles]sass |

TEWe
L

|
[[TEMP [[-
Rl I >

(1 Atleast 50M bytes of free hard disk space

(1 Mouse (recommended)

Netwark 3

3]\ e ASBROAINTD (KT —’r/fl

Ready etrerk 1 Raw 1, Col 1 s

Figure 1-2 STEP 7-Micro/WIN

S7-200 Programmable Controller System Manual

Installing STEP 7-Micro/WIN

Insert the STEP 7-Micro/WIN CD into the CD-ROM drive of your computer. The installation wizard starts

automatically and prompts you through the installation process. Refer to the Readme file for more
information about installing STEP 7-Micro/WIN.

Tip
@ To install STEP 7-Micro/WIN on a Windows NT or Windows 2000 operating system, you must log in
with Administrator privileges.

Communications Options

Siemens provides two programming options for connecting your computer to your S7-200: a direct
connection with a PC/PPI cable, or a Communications Processor (CP) card with an MPI cable for MPI and
PROFIBUS-DP networks.

The PC/PPI programming cable is the most common and economical method of connecting your
computer to the S7-200. This cable connects the communications port of the S7-200 to the serial

communications of your computer. The PC/PPI programming cable can also be used to connect other
communications devices to the S7-200.

To use the MPI cable, you must also install a CP card in your computer. The CP card provides the extra
hardware required to connect at higher baud rates and to handle high-speed network communications.

Display Panels

TD 200 Text Display Unit

The TD 200 is a 2-line, 20-character, text display device that can be connected to the S7-200. Using the

TD 200 wizard, you can easily program your S7-200 to display text messages and other data pertaining to
your application.

The TD 200 provides a low cost interface to your
application by allowing you to view, monitor, and

change the process variables pertaining to your

application.

A separate manual describes the detailed
functionality and specifications of the TD 200.

TP070 Touch Panel Display

The TP070 is a touch panel display device that
can be connected to the S7-200. This touch
panel provides you with a means to customize
your operator interface.

The TP070 can display custom graphics, slider
bars, application variables, custom user buttons,
and so forth, by means of a user-friendly touch
panel.

The optional TP-Designer for TP070, Version 1.0
CD provides the TP Designer software, which is
required for programming your TP070.

Figure 1-4 TP070 Touch Panel Unit

Getting Started

STEP 7-Micro/WIN makes it easy for you to program your S7-200. In just a few short steps using a simple
example, you can learn how to connect, program, and run your S7-200.

All you need for this example is a PC/PPI cable, an S7-200 CPU, and a programming device running the
STEP 7-Micro/WIN programming software.

In This Chapter

Connecting the S7-200 CPU e 6
Creating a Sample Program e 8
Downloading the Sample Program 11
Placing the S7-200in RUN Mode et 11

S7-200 Programmable Controller System Manual

Connecting the S7-200 CPU

Connecting your S7-200 is easy. For this example, you only need to connect power to your S7-200 CPU
and then connect the communications cable between your programming device and the S7-200 CPU.

Connecting Power to the S7-200 CPU

The first step is to connect the S7-200 to a power source. Figure 2-1 shows the wiring connections for
either a DC or an AC model of the S7-200 CPU.

Before you install or remove any electrical device, ensure that the power to that equipment has been
turned off. Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled
before attempting to install or remove the S7-200.

Warning

' E Attempts to install or wire the S7-200 or related equipment with power applied could cause electric

* shock or faulty operation of equipment. Failure to disable all power to the S7-200 and related equipment
during installation or removal procedures could result in death or serious injury to personnel, and/or
damage to equipment.
Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove the S7-200 or related equipment.

i
<

24 VDC 85 to 265 VAC
-+

T :
DC Installation AC Installation
C Installatio @@@@ stallatio

CPU 2XX]
AC/DC/RLY -l

Figure 2-1 Connecting Power to the S7-200 CPU

Connecting the PC/PPI Cable

Figure 2-2 shows a PC/PPI cable connecting the
S7-200 to the programming device. To connect
the PC/PPI cable:

Programming
Device

1. Connect the RS-232 connector (marked
“PC”) of the PC/PPI cable to the
communications port of the programming
device. (For this example, connect to
COM 1))

2. Connect the RS-485 connector (marked
“PPI”) of the PC/PPI cable to Port 0 or
Port 1 of the S7-200.

3. Ensure that the dipswitches of the PC/PPI UHU
3

cable are set as shown in Figure 2-2.

BE | oo
56

Figure 2-2 Connecting the PC/PPI Cable

Chapter Title Chapter 2

Starting STEP 7-Micro/WIN

Click on the STEP 7-Micro/WIN icon to open a
new project. Figure 2-3 shows a new project.

Navigation bar
Notice the navigation bar. You can use the icons
on the navigation bar to open elements of the
STEP 7-Micro/WIN project.

aaaaaaaaaaaaaaaa

Click on the Communications icon in the
navigation bar to display the Communications
dialog box. You use this dialog box to set up the
communications for STEP 7-Micro/WIN.

Communications icon

Natwork 3
[

T i ATl of
) [TR T

Figure 2-3 New STEP 7-Micro/WIN Project

Verifying the Communications Parameters for STEP 7-Micro/WIN

The example project uses the default settings for (EEmmmEmm,

STEP 7-Micro/WIN and the PC/PPI cable. To e) Torr

verify these settings: Reneie I iiifs;l.gm 1.
to Refresh

PLC Type:

1. Verify that the address of the PC/PPI cable
in the Communications dialog box is set

V¥ Save settings with project

[~ Metwork Parameter

to 0. [rterface: PLIPP! cablelCOM 1) < 2.
2. Verify that the interface for the network e e
parameter is set for PC/PPI cable(COM1). Hokest tofion (454 51
. . . . [~ Interface supports multiple masters
3. \Verify that the transmission rate is set to e
9.6 kbps. Boud Rete: 95kbs g 3.
I~ Search all baud rates prm—
If you need to change your communications
parameter settings, see Chapter 7. Figure 2-4 Verifying the Communications Parameters

Establishing Communications with the S7-200

Use the Communications dialog box to connect with your S7-200 CPU:

1. Double-click the refresh icon in the communications
Communications dlalog box. :;ca‘ 7 -EPE/PF’\ cable(PFI)
Address: 0
STEP 7-Micro/WIN searches for the g : I 0 Doct——————— 1.
S7-200 station and displays a CPU icon
for the connected S7-200 station. @ S
2. Select the S7-200 and click OK. [e Ramets
Interface: PC/PPI cable(COM 1)
Pratocol PPI
If STEP 7-Micro/WIN does not find your S7-200 Mds
CPU, check the settings for the communications e v
parameters and repeat these steps. e
Baud Rate: 9.6 kbps
After you have established communications with I~ Sowtch i st ==
the S7-200, you are ready to create and
download the example program. Figure 2-5 Establishing Communications to the S7-200

S7-200 Programmable Controller System Manual

Creating a Sample Program

Entering this example of a control program will help you understand how easy it is to use
STEP 7-Micro/WIN. This program uses six instructions in three networks to create a very simple,
self-starting timer that resets itself.

For this example, you use the Ladder (LAD) editor to enter the instructions for the program. The following
example shows the complete program in both LAD and Statement List (STL). The network comments in
the STL program explain the logic for each network. The timing diagram shows the operation of the
program.

Example: Sample Program for getting started with STEP 7-Micro/WIN

Network 1 Network 1 //10 ms timer T33 times out after (100 x 10 ms = 1's)
(Ll Ta3 //IMO0.0 pulse is too fast to monitor with Status view.
— s b———n 7o LDN MO.0
+1004PT TON T33, +100
Network 2 //Comparison becomes true at a rate that is visible with
//Status view. Turn on Q0.0 after (40 x 10 ms = 0.4 s),
/ffor a 40% OFF/60% ON waveform.
Network 2
T33 Q0.0 LDW>= T33, +40
— =) = Q0.0
i Network 3 /[T33 (bit) pulse too fast to monitor with Status view.
Network 3 //Reset the timer through MO0.0 after the
T33 MO0 //(100 x 10 ms =1 s) period.
—) LD T33
= Mo0.0

Timing Diagram current = 100----=-=------

current =40 -----

T33 (current) 0.4si 0.6s
. »

T33 (bit)
MO.0

200 —] I N

Getting Started Chapter 2

Opening the Program Editor

Click on the Program Block icon to open the
program editor. See Figure 2-6.

Notice the instruction tree and the program
editor. You use the instruction tree to insert the
LAD instructions into the networks of the program
editor by dragging and dropping the instructions
from the instruction tree to the networks.

The toolbar icons provide shortcuts to the menu
commands.

After you enter and save the program, you can
download the program to the S7-200.

Entering Network 1: Starting the Timer

G2 STEP 7-Micro/WIN 32 - Project]

Fle Edt View PLC Debug Tooks Windows Help

|EEE I IR I A =
% R 401
[l B3
<2 N (051)) PR R =
23 5BR_0(5BRO] T Synbal T VarType | Datatwpe | TComnent_<|
L= 0 [TEMP [I |
TEMP [I
I TEMP I T _';‘
< | >
FOIC Ny ﬂ
Hetwork 1 Nt Tt
[Network Conm

Hetwork 3

Program editor

Instruction tree

[CT5 T\l ASEROAINT 07

Netork Raw 1, Col1

s

Figure 2-6

STEP 7-Micro/WIN Window

When M0.0 is off (0), this contact turns on and provides power flow to start the timer. To enter the contact

for M0.0:

1. Either double-click the Bit Logic icon or
click on the plus sign (+) to display the bit
logic instructions.

2. Select the Normally Closed contact.

3. Hold down the left mouse button and drag
the contact onto the first network.

4. Click on the “???” above the contact and
enter the following address: M0.0

5. Press the Return key to enter the address

for the contact.

To enter the timer instruction for T33:

7% STEP 7-Micro/WIN 32 - Project 1 - [SIMATIC LAD]
B} Fle Edt view PLC Debug Tooks ufindows Help

ETEY

oe@an|imeo BB = EEelssssss |

hobo |[EI R AF IR [Fome || >[0T

View -[£8 Program Black 2 [T 3o I 5 -
A MAIN (OB1)
it 14} 5BR_0 (SBRO) Network 1 ﬂ
AT INT_O(NTO) MOg [E)
(0 Symbol Table
(@) Status —| / IN TON|
| " s
Network 2
Counters
hd (28 Floating Point Math =
Tool (z1) Integer Math =| [EN\MAIN (SR 0 AT = 5P
Ready fetoks e @B 4
Figure 2-7 Network 1

1. Double-click the Timers icon to display the timer instructions.

2. Selectthe TON (On-Delay Timer).

3. Hold down the left mouse button and drag the timer onto the first network.

4. Click on the “??7?” above the timer box and enter the following timer number: T33
5.

parameter.

Enter the following value for the preset time: 100

Press the Return key to enter the value.

Press the Return key to enter the timer number and to move the focus to the preset time (PT)

S7-200 Programmable Controller System Manual

10

Entering Network 2: Turning the Output On

When the timer value for T33 is greater than or equal to 40 (40 times 10 milliseconds, or 0.4 seconds), the
contact provides power flow to turn on output Q0.0 of the S7-200. To enter the Compare instruction:

1.

Double-click the Compare icon to display the compare instructions. Select the >=I instruction
(Greater-Than-Or-Equal-To-Integer).

Hold down the left mouse button and drag T2 STEP 7-Micro/WIN 32 - Praject 1 - [SIMATIC LAD]

. . EY Fle Edt Wiew PLC Debug Took Windows Help =181x|
the compare instruction onto the second @Bs\gmw R R L
network. \IFFM%M\W«»HP:leﬂ\

. “ » View 5-{g Instuctions 5 R A 3 R 5
Click on the “???” above the contact and B s Fw— 3
enter the address for the timer value: T33 M iH, I
Press the Return key to enter the timer S et
number and to move the focus to the other am
value to be compared with the timer value. b Notwork 2

. 2 :[5" 133 oo
Enter the following value to be compared 5,{23] —)

. . = SR *
with the timer value: 40 - Ors
P h R k h I Tools (50 Clock. = [FTTmam fseRoAmro/ el | > v/

ress the Return key to enter the value. ety [T TR

Figure 2-8 Network 2

To enter the instruction for turning on output Q0.0:

—_

LD

Double-click the Bit Logic icon to display the bit logic instructions and select the output coil.
Hold down the left mouse button and drag the coil onto the second network.
Click on the “???” above the coil and enter the following address: Q0.0

Press the Return key to enter the address for the coil.

Entering Network 3: Resetting the Timer

When the timer reaches the preset value (100) and turns the timer bit on, the contact for T33 turns on.
Power flow from this contact turns on the M0.0 memory location. Because the timer is enabled by a
Normally Closed contact for M0.0, changing the state of M0.0 from off (0) to on (1) resets the timer.

To enter the contact for the timer bit of T33:

1.

Select the Normally Open contact from the EEEETEEETrEETTEL)

. L. . EY Fle Edt Wiew PLC Debug Took Windows Help =181x|
bit logic instructions. *ﬁuﬁ\ém\éﬂ melopEs=uy B[[mEEvs]ssss]
2. Hold down the left mouse button and drag SlERa PR ‘E?W_*:“Ljfffl*ff’.? L — —
the contact onto the third network. B =
[
3. Click on the “???” above the contact and
enter the address of the timer bit: T33 "
—)
4. Press the Return key to enter the address
for the contact. Network 3
. . _| T3)
To enter the coil for turning on M0.0: -
Tools () Clock =] [FTT\mam £58R_0 AINT 0/ Ju | ’7_>|;I
1. Select the output coil from the bit logic = - =
instructions. Figure 2-9 Network 3

Eal

Hold down the left mouse button and drag the output coil onto the third network.
Double-click the “???” above the coil and enter the following address: M0.0

Press the Return key to enter the address for the coil.

Getting Started Chapter 2

Saving the Sample Project

After entering the three networks of instructions, you have finished entering the program. When you save
the program, you create a project that includes the S7-200 CPU type and other parameters. To save the

project:
1. Select the File > Save As menu command Save As
from the menu bar. Savein | 23 Frojects -] « &E cf B
2. Enter a name for the project in the Save As
dialog box.

3. Click OKto save the project.

After saving the project, you can download the

program to the S7-200 File name: [GettingStarted Save |
Save as type: [Projsct Fie (rwip) =l Cancel y
A

Figure 2-10 Saving the Example Program

Downloading the Sample Program

Tip

@ Each STEP 7-Micro/WIN project is associated with a CPU type (CPU 221, CPU 222, CPU 224, CPU
226, or CPU 226XM). If the project type does not match the CPU to which you are connected,
STEP 7-Micro/WIN indicates a mismatch and prompts you to take an action. If this occurs, choose
“Continue Download” for this example.

1. Click the Download icon on the toolbar or x|
. w
select the File > Download menu — Remate Address 5
command to download the program. See Remats PLC Typs CPU 226%M REL 01.20
Flgure 2-1. Blacks to Download
2. Click OK to download the elements of the ¥ Program Block
program to the S7-200. [+ Data Block
V' Spstem Black
If your S7-200 is in RUN mode, a dialog box
prompts you to place the $7-200 in STOP mode. ok | Cooe

Click Yes to place the S7-200 into STOP mode.
Figure 2-11 Downloading the Program

Placing the S7-200 in RUN Mode

For STEP 7-Micro/WIN to place the S7-200 CPU in RUN mode, the mode switch of the S7-200 must be
setto TERM or RUN. When you place the S7-200 in RUN mode, the S7-200 executes the program:

po| x|

1. Click the RUN icon on the toolbar or select
the PLC > RUN menu command.

2. Click OK to change the operating mode of @ Flace the FLL in RUN mod=?
the S7-200.
= Mo I
When the S7-200 goes to RUN mode, the output
LED for Q0.0 turns on and off as the S7-200
executes the program. Figure 2-12 Placing the S7-200 in RUN Mode

Congratulations! You have just completed your first S7-200 program.

You can monitor the program by selecting the Debug > Program Status menu command.
STEP 7-Micro/WIN displays the values for the instructions. To stop the program, place the S7-200 in
STOP mode by clicking the STOP icon or by selecting the PLC > STOP menu command.

11

S7-200 Programmable Controller System Manual

Installing the S7-200

The S7-200 equipment is designed to be easy to install. You can use the mounting holes to attach the
modules to a panel, or you can use the built-in clips to mount the modules onto a standard (DIN) rail. The
small size of the S7-200 allows you to make efficient use of space.

This chapter provides guidelines for installing and wiring your S7-200 system.

In This Chapter

Guidelines for Installing S7-200 DeVICESttt e e 14
Installing and Removing the S7-200 Modules s 15
Guidelines for Grounding and Wiring i e 18

13

S7-200 Programmable Controller System Manual

Guidelines for Installing S7-200 Devices

You can install an S7-200 either on a panel or on a standard rail, and you can orient the S7-200 either
horizontally or vertically.

Separate the S7-200 Devices from Heat, High Voltage, and Electrical Noise

As a general rule for laying out the devices of your system, always separate the devices that generate
high voltage and high electrical noise from the low-voltage, logic-type devices such as the S7-200.

When configuring the layout of the S7-200 inside your panel, consider the heat-generating devices and
locate the electronic-type devices in the cooler areas of your cabinet. Operating any electronic device in a
high-temperature environment will reduce the time to failure.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low voltage signal wires
and communications cables in the same tray with AC power wiring and high-energy, rapidly-switched DC
wiring.

Provide Adequate Clearance for Cooling and Wiring

S7-200 devices are designed for natural convection cooling. For proper cooling, you must provide a
clearance of at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

Tip
For vertical mounting, the maximum allowable ambient temperature is reduced by 10° C. Mount the
S7-200 CPU below any expansion modules.

When planning your layout for the S7-200 system, allow enough clearance for the wiring and
communications cable connections. For additional flexibility in configuring the layout of the S7-200 system,
use the 1/0O expansion cable.

S / Clearance |<35$>| _L .
n 7.5 mm j r T

i

} u by } DIN Rail

|] |

I P I 1 75 mm

.y

T

R BRI Coui Front of the Mounting
e A A AT AR LA T j enclosure surface
nnnnnnnn IE IE IEE Vertical Panel Mounting
e R s S Side View

Horizontal DIN Rail Mounting with Optional
Expansion Cable (limit one per system)

Figure 3-1 Mounting Methods, Orientation, and Clearance

14

Installing the S7-200 Chapter 3

Power Budget

All S7-200 CPUs have an internal power supply that provides power for the CPU, the expansion modules,
and other 24 VDC user power requirements.

The S7-200 CPU provides the 5 VDC logic power needed for any expansion in your system. Pay careful
attention to your system configuration to ensure that your CPU can supply the 5V power required by your
selected expansion modules. If your configuration requires more power than the CPU can supply, you
must remove a module or select a CPU with more power capability. Refer to Appendix A for information
about the 5 VDC logic budget supplied by your S7-200 CPU and the 5 VDC power requirements of the
expansion modules. Use Appendix B as a guide for determining how much power (or current) the CPU
can provide for your configuration.

All S7-200 CPUs also provide a 24 VDC sensor supply that can supply 24 VDC for input points, for relay
coil power on the expansion modules, or for other requirements. If your power requirements exceed the
budget of the sensor supply, then you must add an external 24 VDC power supply to your system. Refer
to Appendix A for the 24 VDC sensor supply power budget for your particular S7-200 CPU.

If you require an external 24 VDC power supply, ensure that the power supply is not connected in parallel
with the sensor supply of the S7-200 CPU. For improved electrical noise protection, it is recommended
that the commons (M) of the different power supplies be connected.

Warning

' Connecting an external 24 VDC power supply in parallel with the S7-200 24 VDC sensor supply can

* result in a conflict between the two supplies as each seeks to establish its own preferred output voltage
level.

The result of this conflict can be shortened lifetime or immediate failure of one or both power supplies,
with consequent unpredictable operation of the PLC system. Unpredictable operation could result in
death or serious injury to personnel, and/or damage to equipment.

The S7-200 DC sensor supply and any external power supply should provide power to different points.

Installing and Removing the S7-200 Modules

The S7-200 can be easily installed on a standard DIN rail or on a panel.

Prerequisites

Before you install or remove any electrical device, ensure that the power to that equipment has been
turned off. Also, ensure that the power to any related equipment has been turned off.

shock or faulty operation of equipment.

Failure to disable all power to the S7-200 and related equipment during installation or removal
procedures could result in death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove S7-200 CPUs or related equipment.

Warning
' E Attempts to install or remove S7-200 or related equipment with the power applied could cause electric
L]

Always ensure that whenever you replace or install an S7-200 device you use the correct module or
equivalent device.

Warning
' E If you install an incorrect module, the program in the S7-200 could function unpredictably.
L]

Failure to replace an S7-200 device with the same model, orientation, or order could result in death or
serious injury to personnel, and/or damage to equipment.

Replace an S7-200 device with the same model, and be sure to orient and position it correctly.

15

S7-200 Programmable Controller System Manual

Mounting Dimensions
The S7-200 CPUs and expansion modules include mounting holes to facilitate installation on panels.
Refer to Table 3-1 for the mounting dimensions.

Table 3-1 Mounting Dimensions

_.I -— 9.5 mm* * Minimum spacing

between modules when

< A > hard-mounted
4 mm L. |
_L = B V|
N f & & Mounting holes
1 i i (M4 or No. 8)
E | oopooooo oooooooo It 4 ooooooon I
96 mm 88 mm 80 mm > 'S
1 [=]=]=]=]=[=]=[=]i=]=]=]=]=]=]=]=] i 1 _oooooooo f
]] 1}
Y |
S —— RGN i W
|<— B —*
4 mm J 4mm |<_ —— A ——>
S7-200 Module Width A Width B
CPU 221 and CPU 222 90 mm 82 mm
CPU 224 120.5 mm 112.5 mm
CPU 226 and CPU 226XM 196 mm 188 mm
Expansion modules: 8-point DC and Relay 1/O (8, 8Q, 41/4Q, 2 AQ) 46 mm 38 mm
Expansion modules: 16-point digital I/O (81/8Q), Analog I/O (4Al, 4Al/1AQ), 71.2mm 63.2 mm

RTD, Thermocouple, PROFIBUS, AS-Interface,
8-point AC (8l and 8Q), Position, and Modem

Expansion modules: 32-point digital 1/0 (161/16Q) 137.3mm | 129.3 mm

Installing a CPU or Expansion Module
Installing the S7-200 is easy! Just follow these steps.

Panel Mounting

1. Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the
dimensions in Table 3-1.

2. Secure the module(s) to the panel, using the appropriate screws.
3. If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

DIN Rail Mounting
1. Secure the rail to the mounting panel every 75 mm.

2. Snap open the DIN clip (located on the bottom of the module) and hook the back of the module onto
the DIN rail.

3. If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

4. Rotate the module down to the DIN rail and snap the clip closed. Carefully check that the clip has
fastened the module securely onto the rail. To avoid damage to the module, press on the tab of the
mounting hole instead of pressing directly on the front of the module.

16

Installing the S7-200 Chapter 3

Tip
@ Using DIN rail stops could be helpful if your S7-200 is in an environment with high vibration potential or if
the S7-200 has been installed vertically.

If your system is in a high-vibration environment, then panel-mounting the S7-200 will provide a greater
level of vibration protection.

Removing a CPU or Expansion Module
To remove an S7-200 CPU or expansion module, follow these steps:
1. Remove power from the S7-200.

2. Disconnect all the wiring and cabling that is attached to the module. Most S7-200 CPU and
expansion modules have removable connectors to make this job easier.

3. If you have expansion modules connected to the unit that you are removing, open the access cover
door and disconnect the expansion module ribbon cable from the adjacent modules.

4. Unscrew the mounting screws or snap open the DIN clip.

Remove the module.

Removing and Reinstalling the Terminal Block Connector

Most S7-200 modules have removable connectors to make installing and replacing the module easy.
Refer to Appendix A to determine whether your S7-200 module has removable connectors. You can order
an optional fan-out connector for modules that do not have removable connectors. See Appendix E for
order numbers.

To Remove the Connector
1. Open the connector door to gain access to the connector.

2. Insert a small screwdriver in the notch in the middle of the connector.

3. Remove the terminal connector by prying the screwdriver away from the S7-200 housing. See
Figure 3-2.

Figure 3-2 Removing the Connector

To Reinstall the Connector
1. Open the connector door.

2. Align the connector with the pins on the unit and align the wiring edge of the connector inside the
rim of the connector base.

3. Press down firmly to rotate the connector until it snaps into place. Check carefully to ensure that the
connector is properly aligned and fully engaged.

17

S7-200 Programmable Controller System Manual

Guidelines for Grounding and Wiring

Proper grounding and wiring of all electrical equipment is important to help ensure the optimum operation
of your system and to provide additional electrical noise protection for your application and the S7-200.

Prerequisites

N

N

Gu

N

18

Before you ground or install wiring to any electrical device, ensure that the power to that equipment has
been turned off. Also, ensure that the power to any related equipment has been turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-200 and related equipment.
Install and operate all equipment according to all applicable national and local standards. Contact your
local authorities to determine which codes and standards apply to your specific case.

Warning

Attempts to install or wire the S7-200 or related equipment with power applied could cause electric
shock or faulty operation of equipment. Failure to disable all power to the S7-200 and related equipment
during installation or removal procedures could result in death or serious injury to personnel, and/or
damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled before
attempting to install or remove the S7-200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-200 system.
Electronic control devices, such as the S7-200, can fail and can cause unexpected operation of the
equipment that is being controlled or monitored. For this reason, you should implement safeguards that
are independent of the S7-200 to protect against possible personal injury or equipment damage.

Warning

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled
equipment. Such unexpected operations could result in death or serious injury to personnel, and/or
damage to equipment.

Use an emergency stop function, electromechanical overrides, or other redundant safeguards that are
independent of the S7-200.

idelines for Isolation

S7-200 AC power supply boundaries and I/O boundaries to AC circuits are rated 1500 VAC. These
isolation boundaries have been examined and approved as providing safe separation between AC line
and low voltage circuits.

All low voltage circuits connected to an S7-200, such as 24V power, must be supplied from an approved
source that provides safe isolation from AC line and other high voltages. Such sources include double
insulation as defined in international electrical safety standards and have outputs that are rated as SELV,
PELV, Class 2, or Limited Voltage according to various standards.

Warning

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line can result
in hazardous voltages appearing on circuits that are expected to be touch safe, such as
communications circuits and low voltage sensor wiring.

Such unexpected high voltages could result in death or serious injury to personnel, and/or damage to
equipment.

Only use high voltage to low voltage power converters that are approved as sources of touch safe,
limited voltage circuits.

Installing the S7-200 Chapter 3

Guidelines for Grounding the S7-200

The best way to ground your application is to ensure that all the common connections of your S7-200 and
related equipment are grounded to a single point. This single point should be connected directly to the
earth ground for your system.

For improved electrical noise protection, it is recommended that all DC common returns be connected to
the same single-point earth ground. Connect the 24 VDC sensor supply common (M) to earth ground.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm?2
(14 AWG).

When locating grounds, remember to consider safety grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for Wiring the S7-200

When designing the wiring for your S7-200, provide a single disconnect switch that simultaneously
removes power from the S7-200 CPU power supply, from all input circuits, and from all output circuits.
Provide overcurrent protection, such as a fuse or circuit breaker, to limit fault currents on supply wiring.
You might want to provide additional protection by placing a fuse or other current limit in each output
circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires
and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire
paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required current. The
connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG). Use shielded wires for
optimum protection against electrical noise. Typically, grounding the shield at the S7-200 gives the best
results.

When wiring input circuits that are powered by an external power supply, include an overcurrent protection
device in that circuit. External protection is not necessary for circuits that are powered by the 24 VDC
sensor supply from the S7-200 because the sensor supply is already current-limited.

Most S7-200 modules have removable connectors for user wiring. (Refer to Appendix A to determine if
your module has removable connectors.) To prevent loose connections, ensure that the connector is
seated securely and that the wire is installed securely into the connector. To avoid damaging the
connector, be careful to not over-tighten the screws. The maximum torque for the connector screw is
0.56 N-m (5 inch-pounds).

To help prevent unwanted current flows in your installation, the S7-200 provides isolation boundaries at
certain points. When you plan the wiring for your system, you should consider these isolation boundaries.
Refer to Appendix A for the amount of isolation provided and the location of the isolation boundaries.
Isolation boundaries rated less than 1500VAC must not be depended on as safety boundaries.

Tip
@ For a communications network, the maximum length of the communications cable is 50 m without using
a repeater. The communications port on the S7-200 is non-isolated. Refer to Chapter 7 for more
information.

19

S7-200 Programmable Controller System Manual

20

Guidelines for Suppression Circuits

You should equip inductive loads with suppression circuits to limit voltage rise when the control output
turns off. Suppression circuits protect your outputs from premature failure due to high inductive switching
currents. In addition, suppression circuits limit the electrical noise generated when switching inductive
loads.

Tip
The effectiveness of a given suppression circuit depends on the application, and you must verify it for

your particular use. Always ensure that all components used in your suppression circuit are rated for
use in the application.

DC Outputs and Relays That Control DC Loads

The DC outputs have internal protection that is adequate for most applications. Since the relays can be
used for either a DC or an AC load, internal protection is not provided.

Figure 3-3 shows a sample suppression circuit A B (optional)
for a DC load. In most applications, the addition

. . . . A - 11N4001 diod ivalent
of a diode (A) across the inductive load is oce or equivaten

suitable, but if your application requires faster Output B- 52y Zzeen’fr'fg’r'ge‘fa%zﬁgits
turn-off times, then the addition of a Zener diode Point

(B) is recommended. Be sure to size your Zener DC Inductive Load

diode properly for the amount of current in your

output circuit. Figure 3-3 Suppression Circuit for a DC Load

AC Outputs and Relays That Control AC Loads

The AC outputs have internal protection that is adequate for most applications. Since the relays can be
used for either a DC or an AC load, internal protection is not provided.

Figure 3-4 shows a sample suppression circuit MOV
for an AC load. In most applications, the addition {i}
of a metal oxide varistor (MOV) will limit the peak
voltage and provide protection for the internal
S7-200 circuits. Ensure that the working voltage Pt Lo
of the MOV is at least 20% greater than the AC Inductive Load
nominal line voltage.

Figure 3-4 Suppression Circuit for a AC Load

PLC Concepts

The basic function of the S7-200 is to monitor field inputs and, based on your control logic, turn on or off

field output devices. This chapter explains the concepts used to execute your program, the various types
of memory used, and how that memory is retained.

In This Chapter

Understanding How the S7-200 Executes Your Control Logic ...,
Accessing the Data of the S7-200 e
Understanding How the S7-200 Saves and RestoresData oL,
Storing Your Program on a Memory Cartridget
Selecting the Operating Mode forthe S7-200 CPU i
Using Your Program to Save V Memory to the EEPROM i,

Features of the S7-200

22
24
34
36
37
38
39

21

S7-200 Programmable Controller System Manual

Understanding How the S7-200 Executes Your Control Logic

The S7-200 continuously cycles through the control logic in your program, reading and writing data.

The S7-200 Relates Your Program to the Physical Inputs and Outputs

The basic operation of the S7-200 is very simple: Start_PB E_Stop M_Starter
O The S7-200 reads the status of the inputs. yI { s = ()
[The program that is stored in the S7-200 uses these - M_Starter id Motor
inputs to evaluate the control logic. As the program || P
runs, the S7-200 updates the data. | I _

(1 The S7-200 writes the data to the outputs.

Figure 4-1 shows a simple diagram of how an electrical Motor Starter
relay diagram relates to the S7-200. In this example, the J

state of the switch for starting the motor is combined with the T Start/ Stop Switch
states of other inputs. The calculations of these states then

determine the state for the output that goes to the actuator

which starts the motor. Figure 4-1 Controlling Inputs and Outputs

The S7-200 Executes Its Tasks in a Scan Cycle

The S7-200 executes a series of tasks repetitively. This cyclical execution of tasks is called the scan
cycle. As shown in Figure 4-2, the S7-200 performs most or all of the following tasks during a scan cycle:

(1 Reading the inputs: The S7-200 copies the state of
the physical inputs to the process-image input register. Writes to the outputs
1 Executing the control logic in the program: The N SRR

S7-200 executes the instructions of the program and

stores the values in the various memory areas. / \
[Processing any communications requests: The
S7-200 performs any tasks required for Communications Requests K }

communications.
N

O Executing the CPU self-test diagnostics: The S7-200 Exacutemeloora: Scan Cycle

ensures that the firmware, the program memory, and SOV

any expansion modules are working properly.
O Writing to the outputs: The values stored in the | Reads the Inputs | %\]I ajl

process-image output register are written to the

physical outputs. Figure 4-2 S7-200 Scan Cycle

The execution of the scan cycle is dependent upon whether the S7-200 is in STOP mode or in RUN
mode. In RUN mode, your program is executed; in STOP mode, your program is not executed.

22

PLC Concepts Chapter 4

Reading the Inputs

Digital inputs: Each scan cycle begins by reading the current value of the digital inputs and then writing
these values to the process-image input register.

Analog inputs: The S7-200 does not update analog inputs as part of the normal scan cycle unless filtering
of analog inputs is enabled. An analog filter is provided to allow you to have a more stable signal. You can
enable the analog filter for each analog input point.

When analog input filtering is enabled for an analog input, the S7-200 updates that analog input once per
scan cycle, performs the filtering function, and stores the filtered value internally. The filtered value is then
supplied each time your program accesses the analog input.

When analog filtering is not enabled, the S7-200 reads the value of the analog input from the physical
module each time your program accesses the analog input.

Tip
Analog input filtering is provided to allow you to have a more stable analog value. Use the analog input

filter for applications where the input signal varies slowly with time. If the signal is a high-speed signal,
then you should not enable the analog filter.

Do not use the analog filter with modules that pass digital information or alarm indications in the analog
words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master modules.

Executing the Program

During the execution phase of the scan cycle, the S7-200 executes your program, starting with the first
instruction and proceeding to the end instruction. The immediate 1/O instructions give you immediate
access to inputs and outputs during the execution of either the program or an interrupt routine.

If you use interrupts in your program, the interrupt routines that are associated with the interrupt events are
stored as part of the program. The interrupt routines are not executed as part of the normal scan cycle, but
are executed when the interrupt event occurs (which could be at any point in the scan cycle).

Processing Any Communications Requests

During the message-processing phase of the scan cycle, the S7-200 processes any messages that were
received from the communications port or intelligent /O modules.

Executing the CPU Self-test Diagnostics

During this phase of the scan cycle, the S7-200 checks for proper operation of the CPU, for memory
areas, and for the status of any expansion modules.

Writing to the Digital Outputs

At the end of every scan cycle, the S7-200 writes the values stored in the process-image output register to
the digital outputs. (Analog outputs are updated immediately, independently from the scan cycle.)

23

S7-200 Programmable Controller System Manual

Accessing the Data of the S7-200

24

The S7-200 stores information in different memory locations that have unique addresses. You can
explicitly identify the memory address that you want to access. This allows your program to have direct
access to the information. Table 4-1 shows the range of integer values that can be represented by the
different sizes of data.

Table 4-1 Decimal and Hexadecimal Ranges for the Different Sizes of Data

Representation Byte (B) Word (W) Double Word (D)
Unsigned Integer 0to 255 0 to 65,535 0 to 4,294,967,295
Oto FF 0 to FFFF 0 to FFFF FFFF
Signed Integer -128to +127 -32,768 to +32,767 = -2,147,483,648 to +2,147,483,647
80to 7F 8000 to 7FFF 8000 0000 to 7FFF FFFF
Real Not applicable Not applicable +1.175495E-38 to +3.402823E+38 (positive)
IEEE 32-bit Floating Point -1.175495E-38 to -3.402823E+38 (negative)

To access a bit in a memory area, you specify the address, which includes the memory area identifier, the
byte address, and the bit number. Figure 4-3 shows an example of accessing a bit (which is also called
“byte.bit” addressing). In this example, the memory area and byte address (I = input, and 3 = byte 3) are

followed by a period (“.”) to separate the bit address (bit 4).

1 3 .4

Process-image Input (I) Memory Area
L_ Bitof byte, or bit number: ge Input () y
bit 4 of 8 (0 to 7) 76543210
Period separates the Byte 0
byte address from the bit Byte 1
number Byte 2
Byte address: byte 3 (the Byte 3 .
fourth byte) Byte 4
Byte 5

Memory area identifier

Figure 4-3 Byte.Bit Addressing

You can access data in most memory areas (V, I, Q, M, S, L, and SM) as bytes, words, or double words by
using the byte-address format. To access a byte, word, or double word of data in the memory, you must
specify the address in a way similar to specifying the address for a bit. This includes an area identifier,
data size designation, and the starting byte address of the byte, word, or double-word value, as shown in
Figure 4-4.

Data in other memory areas (such as T, C, HC, and the accumulators) are accessed by using an address
format that includes an area identifier and a device number.

PLC Concepts Chapter 4

V B 100 V w100 V D 100
L— Byte address L— Byte address L— Byte address
Access to a byte size Access to a word size Access to a double word size
Area identifier Area identifier Area identifier
MSB LSB

VB100 |7 vB100 O

MSB = most significant bit
LSB = least significant bit
Most significant byte Least significant byte
MSB LSB
vwio0 [15 vB1o0 8|7 vBiot _ ©]
Most significant byte Least significant byte
MSB LSB

VD100 (3 VB100 24[2 vB101 16[15 vBio2 8|7 vB103 ©

Figure 4-4 Comparing Byte, Word, and Double-Word Access to the Same Address

Accessing Data in the Memory Areas

Process-Image Input Register: |

The S7-200 samples the physical input points at the beginning of each scan cycle and writes these values
to the process-image input register. You can access the process-image input register in bits, bytes, words,
or double words:

Bit: I[byte address].[bit address] 10.1
Byte, Word, or Double Word: |[size][starting byte address] B4

Process-Image Output Register: Q

At the end of the scan cycle, the S7-200 copies the values stored in the process-image output register to
the physical output points. You can access the process-image output register in bits, bytes, words, or
double words:

Bit: Q/byte address].[bit address] Q1.1
Byte, Word, or Double Word: Qfsize][starting byte address] QB5

Variable Memory Area: V

You can use V memory to store intermediate results of operations being performed by the control logic in
your program. You can also use V memory to store other data pertaining to your process or task. You can
access the V. memory area in bits, bytes, words, or double words:

Bit: V[byte address].[bit address] V10.2
Byte, Word, or Double Word: V[size][starting byte address] VW100

Bit Memory Area: M

You can use the bit memory area (M memory) as control relays to store the intermediate status of an
operation or other control information. You can access the bit memory area in bits, bytes, words, or double
words:

Bit: M[byte address].[bit address] M26.7
Byte, Word, or Double Word: M[size][starting byte address] MD20

25

S7-200 Programmable Controller System Manual

26

Timer Memory Area: T

The S7-200 provides timers that count increments of time in resolutions (time-base increments) of 1 ms,
10 ms, or 100 ms. Two variables are associated with a timer:

[Current value: this 16-bit signed integer stores the amount of time counted by the timer.

(O Timer bit: this bit is set or cleared as a result of comparing the current and the preset value. The
preset value is entered as part of the timer instruction.

You access both of these variables by using the timer address (T + timer number). Access to either the
timer bit or the current value is dependent on the instruction used: instructions with bit operands access
the timer bit, while instructions with word operands access the current value. As shown in Figure 4-5, the
Normally Open Contact instruction accesses the timer bit, while the Move Word instruction accesses the
current value of the timer.

Format: T[timer number] T24
21 E’Z"OV—W Current Value Timer Bits | ITal
T0 T0 ‘ b
T3 —{IN OUT |— Vw200 T T
| T2 T2
15 (MSB) T3 0 (LSB) T3
Accesses the current value Accesses the timer bit

Figure 4-5 Accessing the Timer Bit or the Current Value of a Timer

Counter Memory Area: C

The S7-200 provides three types of counters that count each low-to-high transition event on the counter
input(s): one type counts up only, one type counts down only, and one type counts both up and down. Two
variables are associated with a counter:

1 Current value: this 16-bit signed integer stores the accumulated count.

1 Counter bit: this bit is set or cleared as a result of comparing the current and the preset value. The
preset value is entered as part of the counter instruction.

You access both of these variables by using the counter address (C + counter number). Access to either
the counter bit or the current value is dependent on the instruction used: instructions with bit operands
access the counter bit, while instructions with word operands access the current value. As shown in
Figure 4-6, the Normally Open Contact instruction accesses the counter bit, while the Move Word
instruction accesses the current value of the counter.

Format: Clcounter number] C24
12.1
E’Z"OV—W Current Value Counter Bits | Ical
co co ‘ b
c3 —IN OUT [— VW200 c1 c1
| C2 C2
15 (MSB) C3 0 (LSB) C3
Accesses the current value Accesses the counter bit

Figure 4-6 Accessing the Counter Bit or the Current Value of a Counter

PLC Concepts Chapter 4

High-Speed Counters: HC

The high-speed counters count high-speed events independent of the CPU scan. High-speed counters
have a signed, 32-bit integer counting value (or current value). To access the count value for the
high-speed counter, you specify the address of the high-speed counter, using the memory type (HC) and
the counter number (such as HCO). The current value of the high-speed counter is a read-only value and
can be addressed only as a double word (32 bits).

Format: HC[high-speed counter number] HC1

Accumulators: AC

The accumulators are read/write devices that can be used like memory. For example, you can use
accumulators to pass parameters to and from subroutines and to store intermediate values used in a
calculation. The S7-200 provides four 32-bit accumulators (AC0, AC1, AC2, and AC3). You can access
the data in the accumulators as bytes, words, or double words.

The size of the data being accessed is determined by the instruction that is used to access the
accumulator. As shown in Figure 4-7, you use the least significant 8 or 16 bits of the value that is stored in
the accumulator to access the accumulator as bytes or words. To access the accumulator as a double
word, you use all 32 bits.

For information about how to use the accumulators within interrupt subroutines, refer to the Interrupt
Instructions in Chapter 6.

Format: AC[accumulator number] ACO
Network 1
M0.0 MOY_E AC2 (accessed as a byte) mMSB LSB

— b——fn Eeno— | ! g

ACZ24qIN OUTFvE200

Metwork 2
AC1 (accessed as a word) MSB LSB
M0 1 DEC_W 15 5 7 o
_| | BN ENO)I | | Most significant Least significant
ac1dn outhvwioo Byte 1 Byte 0
Network 3 ACS3 (accessed as a double word)
MSB LSB
MO.2 IN_Dw 31 24 23 16 15 8 7 0
_| | BN ENO >| | Most significant | Least significant
acadn outhvposo Byte 3 Byte 2 Byte 1 Byte 0

Figure 4-7 Accessing the Accumulators

27

S7-200 Programmable Controller System Manual

28

Special Memory: SM

The SM bits provide a means for communicating information between the CPU and your program. You
can use these bits to select and control some of the special functions of the S7-200 CPU, such as: a bit
that turns on for the first scan cycle, a bit that toggles at a fixed rate, or a bit that shows the status of math
or operational instructions. (For more information about the SM bits, see Appendix D.) You can access the
SM bits as bits, bytes, words, or double words:

Bit: SM/byte address].[bit address] SMO0.1
Byte, Word, or Double Word: SM[size][starting byte address] SMB86

Local Memory Area: L

The S7-200 provides 64 bytes of local memory of which 60 can be used as scratchpad memory or for
passing formal parameters to subroutines.

Tip
If you are programming in either LAD or FBD, STEP 7-Micro/WIN reserves the last four bytes of local

memory for its own use. If you program in STL, all 64 bytes of L memory are accessible, but it is
recommended that you do not use the last four bytes of L memory.

Local memory is similar to V memory with one major exception. V memory has a global scope while L
memory has a local scope. The term global scope means that the same memory location can be
accessed from any program entity (main program, subroutines, or interrupt routines). The term local scope
means that the memory allocation is associated with a particular program entity. The S7-200 allocates

64 bytes of L memory for the main program, 64 bytes for each subroutine nesting level, and 64 bytes for
interrupt routines.

The allocation of L memory for the main program cannot be accessed from subroutines or from interrupt
routines. A subroutine cannot access the L memory allocation of the main program, an interrupt routine, or
another subroutine. Likewise, an interrupt routine cannot access the L memory allocation of the main
program or of a subroutine.

The allocation of L memory is made by the S7-200 on an as-needed basis. This means that while the
main portion of the program is being executed, the L memory allocations for subroutines and interrupt
routines do not exist. At the time that an interrupt occurs or a subroutine is called, local memory is
allocated as required. The new allocation of L memory might reuse the same L memory locations of a
different subroutine or interrupt routine.

The L memory is not initialized by the S7-200 at the time of allocation and might contain any value. When
you pass formal parameters in a subroutine call, the values of the parameters being passed are placed by
the S7-200 in the appropriate L memory locations of the called subroutine. L memory locations, which do
not receive a value as a result of the formal parameter passing step, will not be initialized and might
contain any value at the time of allocation.

Bit: L/byte address].[bit address] L0.0
Byte, Word, or Double Word: L/size] [starting byte address] LB33

PLC Concepts Chapter 4

Analog Inputs: Al

The S7-200 converts an analog value (such as temperature or voltage) into a word-length (16-bit) digital
value. You access these values by the area identifier (Al), size of the data (W), and the starting byte
address. Since analog inputs are words and always start on even-number bytes (such as 0, 2, or 4), you
access them with even-number byte addresses (such as AIWO, AIW2, or AIW4). Analog input values are
read-only values.

Format: AlW[starting byte address] Alw4

Analog Outputs: AQ

The S7-200 converts a word-length (16-bit) digital value into a current or voltage, proportional to the digital
value (such as for a current or voltage). You write these values by the area identifier (AQ), size of the data
(W), and the starting byte address. Since analog outputs are words and always start on even-number
bytes (such as 0, 2, or 4), you write them with even-number byte addresses (such as AQWO0, AQW?2, or
AQWa4). Analog output values are write-only values.

Format: AQW([starting byte address] AQW4

Sequence Control Relay (SCR) Memory Area: S

SCRs or S bits are used to organize machine operations or steps into equivalent program segments.
SCRs allow logical segmentation of the control program. You can access the S bits as bits, bytes, words,
or double words.

Bit: S[byte address].[bit address] S3.1
Byte, Word, or Double Word: S[size][starting byte address] SB4

Format for Real Numbers

Real (or floating-point) numbers are represented as 32-bit, single-precision numbers, whose format is
described in the ANSI/IEEE 754-1985 standard. See Figure 4-8. Real numbers are accessed in
double-word lengths.

For the S7-200, floating point numbers are vSB LSB
accurate up to 6 decimal places. Therefore, you 31 %0 23 22 . 0
can specify a maximum of 6 decimal places [S] Exponent Mantissa

when entering a floating-point constant. Sign

Figure 4-8 Format of a Real Number

Accuracy when Calculating Real Numbers

Calculations that involve a long series of values including very large and very small numbers can produce
inaccurate results. This can occur if the numbers differ by 10 to the power of x, where x > 6.

For example: 100 000 000 + 1 = 100 000 000

29

S7-200 Programmable Controller System Manual

30

Format for Strings

A string is a sequence of characters, with each character being stored as a byte. The first byte of the string
defines the length of the string, which is the number of characters. Figure 4-9 shows the format for a
string. A string can have a length of 0 to 254 characters, plus the length byte, so the maximum length for a
string is 255 bytes.

| Length | Character 1 Character 2 Character 3 Character 4 Character 254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 254

Figure 4-9 Format for Strings

Specifying a Constant Value for S7-200 Instructions

You can use a constant value in many of the S7-200 instructions. Constants can be bytes, words, or
double words. The S7-200 stores all constants as binary numbers, which can then be represented in
decimal, hexadecimal, ASCII, or real number (floating point) formats. See Table 4-2.

Table 4-2 Representation of Constant Values

Representation Format Sample

Decimal [decimal value] 20047

Hexadecimal 16#[hexadecimal value] 16#4E4F

Binary 2#[binary number] 2#1010_0101_1010_0101

ASCII '[ASCII text] "Text goes between single quotes.’

Real ANSI/IEEE 754-1985 +1.175495E-38 (positive) -1.175495E-38 (negative)
Tip

The S7-200 CPU does not support “data typing” or data checking (such as specifying that the constant
is stored as an integer, a signed integer, or a double integer). For example, an Add instruction can use
the value in VW100 as a signed integer value, while an Exclusive Or instruction can use the same value
in VW100 as an unsigned binary value.

PLC Concepts Chapter 4

Addressing the Local and Expansion 1/O

The local I/O provided by the CPU provides a fixed set of I/O addresses. You can add 1/O points to the
S7-200 CPU by connecting expansion 1/0O modules to the right side of the CPU, forming an I/O chain. The
addresses of the points of the module are determined by the type of /O and the position of the module in
the chain, with respect to the preceding input or output module of the same type. For example, an output
module does not affect the addresses of the points on an input module, and vice versa. Likewise, analog
modules do not affect the addressing of digital modules, and vice versa.

Tip
@ Digital expansion modules always reserve process-image register space in increments of eight bits (one
byte). If a module does not provide a physical point for each bit of each reserved byte, these unused bits
cannot be assigned to subsequent modules in the I/O chain. For input modules, the unused bits in
reserved bytes are set to zero with each input update cycle.

Analog expansion modules are always allocated in increments of two points. If a module does not
provide physical I/O for each of these points, these I/O points are lost and are not available for
assignment to subsequent modules in the 1/O chain.

Figure 4-10 provides an example of the 1/0O numbering for a particular hardware configuration. The gaps in
the addressing (shown as gray italic text) cannot be used by your program.

4 Analog In 4 Analog In
CPU 224 41In/4 Out 81In
/ 1 Analog Out 1 Analog Out

10.0 Q0.0 Module 0 Module 1 Module 2 Module 3 Module 4
10.1 Q0.1 20 Q20 13.0 AIWO AQWO Q3.0 AIWS AQW4
10.2 Q0.2 21 Q21 13.1 AIW2 AQW2 Q3.1 AIW10 AQWE
10.3 Q0.3 22 Q22 13.2 AlWa Q3.2 AIW12
10.4 Q0.4 123 Q23 13.3 AIW6 Q3.3 AlW14
10.5 Q0.5 124 Q24 13.4 Q3.4
10.6 Q0.6 125 Q25 13.5 Q3.5
:2-; 3‘1’-; 126 Q2.6 13.6 Q3.6

. . 127 Q27 13.7 7
1.1 at.1 @ 3 as
1.2 Q1.2 ;
1 o1 Expansion |/O
1.4 Q14
"5 al.s
1.6 Q1.6
n.z Q1.7

Local I/0

Figure 4-10 Sample I/0O Addresses for Local and Expansion I/O (CPU 224)

31

S7-200 Programmable Controller System Manual

Using Pointers for Indirect Addressing of the S7-200 Memory Areas

¥

32

Indirect addressing uses a pointer to access the data in memory. Pointers are double word memory
locations that contain the address of another memory location. You can only use V memory locations,

L memory locations, or accumulator registers (AC1, AC2, AC3) as pointers. To create a pointer, you must
use the Move Double Word instruction to move the address of the indirectly addressed memory location to
the pointer location. Pointers can also be passed to a subroutine as a parameter.

The S7-200 allows pointers to access the following memory areas: |, Q, V, M, S, T (current value only),
and C (current value only). You cannot use indirect addressing to access an individual bit or to access Al,
AQ, HC, SM, or L memory areas.

To indirectly access the data in a memory address, you create a pointer to that location by entering an
ampersand (&) and the memory location to be addressed. The input operand of the instruction must be
preceded with an ampersand (&) to signify that the address of a memory location, instead of its contents,
is to be moved into the location identified in the output operand of the instruction (the pointer).

Entering an asterisk (*) in front of an operand for an instruction specifies that the operand is a pointer. As
shown in Figure 4-11, entering *AC1 specifies that AC1 is a pointer to the word-length value being
referenced by the Move Word (MOVW) instruction. In this example, the values stored in both VB200 and
VB201 are moved to accumulator ACO.

ACH
V199 | address of VW200 |<—— MOVD &VW200, ACT
V200 12 Bl Creates the pointer by moving the address of VB200 (address of the initial
L] byte for VW200) to AC1.
V201 34 l
V202 56 ACO
veos |78 | | 1234 |<— MoOvw *AC1, ACO

Moves the word value pointed to by AC1 to ACO.

Figure 4-11 Creating and Using a Pointer

As shown in Figure 4-12, you can change the value of a pointer. Since pointers are 32-bit values, use
double-word instructions to modify pointer values. Simple mathematical operations, such as adding or
incrementing, can be used to modify pointer values.

AC1

V199

| address of VW200 |«—— MOVD &VW200, AC1

V200 12 1 Creates the pointer by moving the address of VB200 (address of
| VW200’s initial byte) to AC1.

V201 34 ACO
V202 56 | | 1234 | MOVW *AC1, ACO
V203 78 Moves the word value pointed to by AC1 (VW200) to ACO.
V199 ACT

| address of VW202 fe«—— +D +2, ACT
V200 12 ACO Adds 2 to the accumulator to point to the next word location.
Vot 34 | [5678 | MOVW *AC1, ACO
V202 56 ml T Moves the word value pointed to by AC1 (VW202) to ACO.
V203 78

Figure 4-12 Modifying a Pointer

Tip
Remember to adjust for the size of the data that you are accessing: to access a byte, increment the

pointer value by 1; to access a word or a current value for a timer or counter, add or increment the
pointer value by 2; and to access a double word, add or increment the pointer value by 4.

PLC Concepts Chapter 4

Sample Program for Using an Offset to Access Data in V Memory

This example uses LD10 as a pointer to the address VBO. You then increment the pointer by an offset stored in VD1004. LD10
then points to another address in V. memory (VBO + offset). The value stored in the V memory address pointed to by LD10 is then
copied to VB1900. By changing the value in VD1004, you can access any V memory location.

Network 1

5hi0.0 RO _ D

— | EN ENO

EVBO4IM QuT

%l

FLD10

ADD_DI
EM EMNO

YD10044iM1 ouT
LOT04IM2

FLD10

MOV_B
EN ENO

%l

*LO104IM QuT

F/E1900

Network 1 //How to use an offset to read the value of any VB location:
1

/1. Load the starting address of the V memory to a pointer.
//2. Add the offset value to the pointer.

//3. Copy the value from the V memory location (offset) to VB1900.

LD SMo0.0

MOVD &VBO, LD10
+D VD1004, LD10
MOVB *LD10, VB1900

Sample Program for Using a Pointer to Access Data in a Table

This example uses LD14 as a pointer to a recipe stored in a table of recipes that begins at VB100. In this example, VW1008
stores the index to a specific recipe in the table. If each recipe in the table is 50 bytes long, you multiply the index by 50 to obtain
the offset for the starting address of a specific recipe. By adding the offset to the pointer, you can access the individual recipe
from the table. In this example, the recipe is copied to the 50 bytes that start at VB1500.

Network 1

Smo.0 MOV _DW

— | EN ENO

EB1004IM ouT

-

FLO14

1_D1
EMN EMO

VN1 0084 1M ouT

FLD13

FLD1S

FLO14

MUL_DI
EM EMNO
+a0+ 1M1 ouT
LD134IM2
ADD_DI
EM EMNO
LD184IM1 ouT
LD144IM2
BLEMOY_B
EM EMNO

*LO144IM ouT
04N

4

FvB1500

Network 1 //How to transfer a recipe from a table of recipes:

/| - Each recipe is 50 bytes long.

// - The index parameter (VW1008) identifies the recipe

/| to be loaded.

I

/1. Create a pointer to the starting address of the recipe table.
//2. Convert the index of the recipe to a double-word value.

//3. Multiply the offset to accommodate the size of each recipe.
//4. Add the adjusted offset to the pointer.

/5. Transfer the selected recipe to VB1500 through VB1549.

LD SMo0.0

MOVD &VB100, LD14
ITD VW1008, LD18

*D +50, LD18

+D LD18, LD14

BMB *LD14, VB1500, 50

33

S7-200 Programmable Controller System Manual

Understanding How the S7-200 Saves and Restores Data

The S7-200 provides a variety of safeguards to ensure that your program, the program data, and the
configuration data for your S7-200 are properly retained.

The S7-200 provides a super capacitor that
maintains the integrity of the RAM after power
has been removed. Depending on the model of
the S7-200, the super capacitor can maintain the
RAM for several days.

The S7-200 provides an EEPROM to store
permanently all of your program, user-selected
data areas, and the configuration data.

The S7-200 also supports an optional battery
cartridge that extends the amount of time that the
RAM can be maintained after power has been
removed from the S7-200. The battery cartridge
provides power only after the super capacitor has
been drained.

Your project consists of three elements: the
program block, the data block (optional), and the
system block (optional).

Figure 4-14 shows how a project is downloaded
to the S7-200.

When you download a project, the elements of a
downloaded project are stored in the the RAM
area. The S7-200 also automatically copies the
user program, data block, and the system block
to the EEPROM for permanent storage.

Figure 4-15 shows how a project is uploaded
from the S7-200.

When you upload a project to your computer, the
S7-200 uploads the system block from the RAM
and uploads the program block and the data
block from the EEPROM.

§7-200 CPU

RAM:
maintained by the super capacitor
and the optional battery cartridge

Program block]
System block

V memory

M memory

Timer and Counter
current values

| Sy N N [N) S [

Forced values

A

EEPROM:
permanent storage

Program block
System block

Data block

M memory
(permanent area)

Forced values

S NN S N S |

Figure 4-13 Storage Areas of the S7-200 CPU

Downloading and Uploading the Elements of Your Project

Program block
System block
Data block: up to the maximum

V memory range

Program block

System block :l

V memory

Program block
System block
Data block

M memory

Timer and Counter
current values

Ll

Forced values

RAM

§7-200 CPU

Program block

ystem block

Data block

M memory
(permanent area)

Forced values

S N S N S [-

EEPROM

Figure 4-14 Downloading a Project to the S7-200

System block T

Program block
Data block

Program block
System block

V memory
M memory

Timer and Counter
current values

| ES [y N [N S [S [

W

Forced values

RAM

§7-200 CPU

Program block
System block
Data block

M memory
(permanent area)

Forced values

S N S N S |

EEPROM

Figure 4-15 Uploading a Project from the S7-200

PLC Concepts Chapter 4

Saving the Retentive M Memory Area on Power Loss
If you configured the first 14 bytes of bit memory S7-200 CPU

(MBO to MB13) to be retentive, these bytes are
Program block]

permanently saved to the EEPROM in the event
that the S7-200 loses power.

System block
V memory

Program block
System block
Data block

M memory
(permanent area)

Forced values

RAM EEPROM

As shown in Figure 4-16, the S7-200 moves
these retentive areas of M memory to the

EEPROM. MBO to MB13

:] (if configured as
retentive)

M memory

S N S N S I |

The default setting for the first 14 bytes of

M memory is to be non-retentive. The default
disables the save that normally occurs when you
power off the S7-200.

Timer and Counter
current values

W

Forced values]

Figure 4-16 Saving the M Memory on Power Loss

Restoring Data After Power On

At power on, the S7-200 restores the program block and the system block from the EEPROM memory, as
shown in Figure 4-17. Also at power on, the S7-200 checks the RAM to verify that the super capacitor
successfully maintained the data stored in RAM memory. If the RAM was successfully maintained, the
retentive areas of RAM are left unchanged.

The retentive and non-retentive areas of V memory are restored from the corresponding data block in the
EEPROM. If the contents of the RAM were not maintained (such as after an extended power failure), the
S7-200 clears the RAM (including both the retentive and non-retentive ranges) and sets the Retentive
Data Lost memory bit (SMO0.2) for the first scan cycle following power on, and then copies the data stored
in the EEPROM to the RAM.

§7-200 CPU

Program block
System block
Program block
V memory System block
Data block
M memory
Forced values

| Program block

System block
Data block

M memory
(permanent area)

Forced values

If the program data was successfully
maintained, copies the data block to the
non-retentive areas of V. memory in RAM.

M memory If the program data was NOT maintained,

copies the data block and M memory
(MBO to MB13), if defined as retentive.

S N S N S [-

Timer and Counter
current values

i

Sets all other
non-retentive areas
of memory to 0

Forced values

RAM EEPROM

Figure 4-17 Restoring Data after Power On

35

S7-200 Programmable Controller System Manual

Storing Your Program on a Memory Cartridge

36

The S7-200 supports an optional memory cartridge that provides a portable EEPROM storage for your
program. The S7-200 stores the following elements on the memory cartridge: the program block, the data
block, the system block, and the forced values.

You can copy your program to the memory cartridge from the RAM only when the S7-200 is powered on
and in STOP mode and the memory cartridge is installed. You can install or remove the memory cartridge
while the S7-200 is powered on.

Caution
Electrostatic discharge can damage the memory cartridge or the receptacle on the S7-200 CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when you handle the
cartridge. Store the cartridge in a conductive container.

To install the memory cartridge, remove the plastic slot cover from the S7-200 CPU and insert the memory
cartridge in the slot. The memory cartridge is keyed for proper installation.

Copying Your Program to the Memory Cartridge

After installing the memory cartridge, use the
following procedure to copy the program:

Memory
Cartridge

Program block
Data block
Forced values

System block

1. Putthe S7-200 CPU in STOP mode.

2. Ifthe program has not already been
downloaded to the S7-200, download the
program.

Program block
System block

Program block
System block
Data block

M memory
(permanent area)

Forced values

EEPROM

3. Selectthe PLC > Program Memory
Cartridge menu command to copy the
program to the memory cartridge.
Figure 4-18 shows the elements of the
CPU memory that are stored on the
memory cartridge.

4. Optional: Remove the memory cartridge
and replace the cover on the S7-200.

V memory

M memory

Timer and Counter
current values

Forced values

e

Figure 4-18 Copying to a Memory Cartridge

Restoring the Program from a Memory Cartridge

To transfer the program from a memory cartridge to the S7-200, you must cycle the power to the S7-200
with the memory cartridge installed.

Notice

Powering on an S7-200 CPU with a blank memory cartridge or a memory cartridge that was
programmed by a different model of S7-200 CPU could cause an error. Memory cartridges that were
programmed by a lower model number CPU can be read by a higher model number CPU. However, the
opposite is not true. For example, memory cartridges that were programmed by a CPU 221 or CPU 222
can be read by a CPU 224, but memory cartridges that were programmed by a CPU 224 are rejected by
a CPU 221 or CPU 222.

Remove the memory cartridge and turn the power on for the S7-200. After power on, the memory
cartridge can then be inserted and reprogrammed, if required.

PLC Concepts Chapter 4

As shown in Figure 4-19, the S7-200 performs
the following tasks after you cycle power with the 2;‘;%;;1?;‘;? K,\;mory
memory cartridge installed: Data block Cartridge
Forced values
1. Ifthe contents of the memory cartridge C
differ from the contents of the EEPROM, $7-200 CPU
the S7-200 clears the RAM. Program block 1

Program block

System block

| Systemblock |
Program block
V memory :] System block
Data block
Forced values
M memory :]

All other areas
of memory are
setto 0.

2. The S7-200 copies the contents of the
memory cartridge to the RAM.

3. The S7-200 copies the program block, the
system block, and the data block to the
EEPROM.

ata block

M memory
(permanent area)

Forced values

S I S N S N |

Timer and Co
current value

Forced values

EEPROM

Figure 4-19 Restoring from a Memory Cartridge

Selecting the Operating Mode for the S7-200 CPU

The S7-200 has two modes of operation: STOP mode and RUN mode. The status LED on the front of the
CPU indicates the current mode of operation. In STOP mode, the S7-200 is not executing the program,
and you can download a program or the CPU configuration. In RUN mode, the S7-200 is running the
program.

[The S7-200 provides a mode switch for changing the mode of operation. You can use the mode
switch (located under the front access door of the S7-200) to manually select the operating mode:
setting the mode switch to STOP mode stops the execution of the program; setting the mode switch
to RUN mode starts the execution of the program; and setting the mode switch to TERM (terminal)
mode does not change the operating mode.

If a power cycle occurs when the mode switch is set to either STOP or TERM, the S7-200 goes
automatically to STOP mode when power is restored. If a power cycle occurs when the mode switch
is set to RUN, the S7-200 goes to RUN mode when power is restored.

1 STEP 7-Micro/WIN allows you to change the operating mode of the online S7-200. To enable the
software to change the operating mode, you must manually set the mode switch on the S7-200 to
either TERM or RUN. You can use the PLC > STOP or PLC > RUN menu commands or the
associated buttons on the toolbar to change the operating mode.

1 You can insert the STOP instruction in your program to change the S7-200 to STOP mode. This
allows you to halt the execution of your program based on the program logic. For more information
about the STOP instruction, see Chapter 6.

37

S7-200 Programmable Controller System Manual

Using Your Program to Save V Memory to the EEPROM

You can save a value (byte, word, or double word) stored in any location of the V memory area to the
EEPROM. A Save-to-EEPROM operation typically increases the scan time by a maximum of 5 ms. The
value written by the Save operation overwrites any previous value stored in the V memory area of the
EEPROM.

The Save-to-EEPROM operation does not update the data in the memory cartridge.

Tip
Since the number of Save operations to the EEPROM is limited (100,000 minimum, and 1,000,000
typical), you should ensure that only necessary values are saved. Otherwise, the EEPROM can wear

out and the CPU can fail. Typically, you should perform Save operations at the occurrence of specific
events that occur rather infrequently.

For example, if the scan time of the S7-200 is 50 ms and a value was saved once per scan, the
EEPROM would last a minimum of 5,000 seconds, which is less than an hour and a half. On the other
hand, if a value were saved once an hour, the EEPROM would last a minimum of 11 years.

Copying V Memory to the EEPROM

Special Memory Byte 31 (SMB31) commands the S7-200 to copy a value in V memory to the V memory
area of the EEPROM. Special Memory Word 32 (SMW32) stores the address location of the value that is
to be copied. Figure 4-20 shows the format of SMB31 and SMW32.

Use the following steps to program the S7-200 to save or SMB31 ,
. ip . 7 o Size of value to be
write a specific value in V. memory: saved:
[sv]o]o] o] of ost]so| oo-byte
01 - byte

1. Load the V memory address of the value to be saved

10 - word
in SMW32. Save to EEPROM: 11 - double word
0=No
2. Load the size of the data in SM31.0 and SM31.1, as 1=Yes ™ TheCPUresets
shown in Figure 4-20. SM31.7 after each
save operation.
3. SetSM31.7to 1.
SMW32
At the end of every scan cycle, the S7-200 checks SM31.7; 15 V memory address 0|
if SM31.7 equals 1, the specified value is saved to the ,
EEPROM. The operation is complete when the S7-200 Specily the \V memory address as an offset from V0.

resets SM31.7 to 0. Figure 420 SMB31 and SMW32

Do not change the value in V memory until the save operation is complete.

Sample Program: Copying V Memory to the EEPROM

This example transfers VB100 to the EEPROM. On a rising edge of 10.0, if another transfer is not in progress, it loads the address
of the V. memory location to be transferred to SMW32. It selects the amount of V memory to transfer (1=Byte; 2=Word; 3=Double
Word or Real). It then sets SM31.7 to have the S7-200 transfer the data at the end of the scan.

The S7-200 automatically resets SM31.7 when the transfer is complete.

Hetwork 1
0.0

Network 1 /[Transfer a V. memory location (VB100)

38

: L ?mml? WOV_W //to the EEPROM
| | ¢ | | 1} EN ENO——) LD 10.0
ELLE ouT} stiviaz EU
AN SM31.7
MOVW +100, SMW32
MOv_B MOVB 1, SMB31
wewe—3 g SM31.7, 1
14 ouTh sme3t
SM31 7
()

PLC Concepts Chapter 4

Features of the S7-200

The S7-200 provides several special features that allow you to customize how the S7-200 functions to
better fit your application.

The S7-200 Allows Your Program to Immediately Read or Write the 1/O

The S7-200 instruction set provides instructions that immediately read from or write to the physical I/O.
These immediate I/O instructions allow direct access to the actual input or output point, even though the
image registers are normally used as either the source or the destination for I/O accesses.

The corresponding process-image input register location is not modified when you use an immediate
instruction to access an input point. The corresponding process-image output register location is updated
simultaneously when you use an immediate instruction to access an output point.

Tip
@ The S7-200 handles reads of analog inputs as immediate data, unless you enable analog input filtering.
When you write a value to an analog output, the output is updated immediately.

It is usually advantageous to use the process-image register rather than to directly access inputs or
outputs during the execution of your program. There are three reasons for using the image registers:

1 The sampling of all inputs at the start of the scan synchronizes and freezes the values of the inputs
for the program execution phase of the scan cycle. The outputs are updated from the image register
after the execution of the program is complete. This provides a stabilizing effect on the system.

(O Your program can access the image register much more quickly than it can access 1/O points,
allowing faster execution of the program.

(O /O points are bit entities and must be accessed as bits or bytes, but you can access the image
register as bits, bytes, words, or double words. Thus, the image registers provide additional
flexibility.

The S7-200 Allows Your Program to Interrupt the Scan Cycle

If you use interrupts, the routines associated with each interrupt event are stored as part of the program.
The interrupt routines are not executed as part of the normal scan cycle, but are executed when the
interrupt event occurs (which could be at any point in the scan cycle).

Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective priority
assignments. See the Interrupt instructions in Chapter 6 for more information.

39

S7-200 Programmable Controller System Manual

The S7-200 Allows You to Allocate Processing Time for Communications
Tasks

You can configure a percentage of the scan cycle to be dedicated for processing the communications
requests that are associated with a RUN mode edit compilation or execution status. (Run mode edit and
execution status are options provided by STEP 7-Micro/WIN to make debugging your program easier.) As
you increase the percentage of time that is dedicated to processing communications requests, you
increase the scan time, which makes your control process run more slowly.

The default percentage of the scan dedicated to =y
proceSSIng Communlcatlons requeStS IS Set to Part[z] I Retentive Ranges | Pazsword | Output Table | Input Filters |
10%. This setting was chosen to provide a Analoglrput Fiters | Pulse Catch Bits | Background Time & eompmrsroms—y

reasonable compromise for processing the
compilation and status operations while
minimizing the impact to your control process.
You can adjust this value by 5% increments up to Defaul =10%
a maximum of 50%. To set the scan cycle

time-slice for background communications:

Select Communications Background Time [5 - 50%)

[E = =< 2.

1. Select the View > Component >
System Block menu command and click
on the Background Time tab.

Configuration parameters must be downloaded before they take effect. Mot all PLC types
support every System Block option. Press F1 to see which options are supported by each
PLC.

2. Edit the properties for the communications
background time and click OK.

3. Download the modified system block to the Cancel
S7-200.

Figure 4-21 Communications Background Time

The S7-200 Allows You to Set the States of Digital Outputs for Stop Mode

The output table of the S7-200 allows you to determine whether to set the state of the digital output points
to known values upon a transition to the STOP mode, or to leave the outputs in the state they were in
before the transition to the STOP mode. The output table is part of the system block that is downloaded
and stored in the S7-200 and applies only to the digital outputs.

1. Select the View > Component > System Block
SVStem BIOCK menu Command and CIICk Analog Input Filkers | Pulze Catch Bits I Background Time | EM Configurations |
on the Output Table tab Port(s) I FRetentive Ranges | Pasaward Output Table |<W— 1.
2. To freeze the outputs in their last state, I Freeze Dutputs inlas s _Detouts | 2.
select the Freeze Outputs check box. Zii il Zii il
o [CCCCCrre ex (CCCCCCCT
3. To copy the table values to the outputs, Qs ;FFFF;;F GEM EFFpFEFF < 3.
s L 02 Q10.
enter the output table values by clicking the e Wl e ol
i s |[COCCCCET mezx|CCCCCETT
checkbox for each output bit you war.1t. to el rrrrrrrr IR
set to On (1) after a run-to-stop transition. @y [CCCCCCOC gax|CCECCECC
o |- Qs |
(The default values of the table are all
ZeroeS) Marked outputs will be ON when the PLC transitions from RUM to STOP made.
4. C||Ck OK to save your Select|0ns Canfiguration parameters must be downloaded befare they take effect. Mot all PLE types
suppoit every System Block option. Press F1 to see which options are supported by each
5. Download the modified system block to the Pt
S7-200.
Cancel

Figure 4-22 Configuring the Output Table

40

PLC Concepts Chapter 4

The S7-200 Allows You to Define Memory to Be Retained on Loss of Power

You can define up to six retentive ranges to select the areas of memory you want to retain through power
cycles. You can define ranges of addresses in the following memory areas to be retentive: V, M, C,and T.
For timers, only the retentive timers (TONR) can be retained. The default setting for the first 14 bytes of
M Memory is to be non-retentive.

Only the current values for timers and counters can be retained: the timer and counter bits are not
retentive.

Tip
@ Changing the range MBO to MB13 to be retentive enables a special feature that automatically saves
these locations to the EEPROM on power down.

To define the retentive memory: system Black
Analog Input Filkers | Pulse Catch Bits I Background Time | EM Configurations |
1. Select the View > Component > Pors) Relerkive Rangss & oammon | DupmTeme RS 1.
System Block menu command and click Defaults
on the Retentive Ranges tab. Dsshes Difet Eemen

2. Select the ranges of memory to be retained . NN RGN

. . Fange1 [vB = o = fo = Clear 2.
following loss of power and click OK. N EE = 2 & ces
3. Download the modified system block to the o3 [T S| = 2 = Cew |
S7-200 Ranged |[C =l = S = Clear
’ Fange5 [me x| [1¢ = [= Clear

Configuration parameters must be downloaded befare they take effect. Nat all PLC twpes
suppoit every System Block option. Press F1 to see which options are supported by each
PLC.

[=1

Cancel

Figure 4-23 Retentive Memory

The S7-200 Allows You to Filter the Digital Inputs

The S7-200 allows you to select an input filter that defines a delay time (selectable from 0.2 ms to
12.8 ms) for some or all of the local digital input points. This delay helps to filter noise on the input wiring
that could cause inadvertent changes to the states of the inputs.

The input filter is part of the system block thatis =TS
downloaded and Stored |n the S7'200 The Analag Input Filters I Pulse Catch Bits I Backaround Time I EM Configurations |

default filter time is 6.4 ms. As shown in Poils) | RetentiveRanges | Passwod | OutputTable InputFiers 1.
Figure 4-24, each delay specification applies to Defauls

groups of input points. [[03 —— o
To configure the delay times for the input filter: :?;:?; IE:E—_I ;I :j

1.4-15 |40 'I ms
1. Select the View > Component >

System Block menu command and click
on the Input Filters tab.

2. Enter the amount of delay for each group
of inputs and click OK. Configuration parameters must be dowrlnaded before they Lake effect, Not ol PLC lynes

support every System Block option. Press F1 to see which options are supported by each

3. Download the modified system block to the PLL.
S7-200.

Cancel |
Figure 4-24 Configuring the Input Filters

Tip
@ The digital input filter affects the input value as seen by instruction reads, input interrupts, and pulse
catches. Depending on your filter selection, your program could miss an interrupt event or pulse catch.
The high speed counters count the events on the unfiltered inputs.

41

S7-200 Programmable Controller System Manual

42

The S7-200 Allows You to Filter the Analog Inputs

¥

The S7-200 allows you to select software filtering on individual analog inputs. The filtered value is the
average value of a preselected number of samples of the analog input. The filter specification (number of
samples and deadband) is the same for all analog inputs for which filtering is enabled.

The filter has a fast response feature to allow large changes to be quickly reflected in the filter value. The
filter makes a step function change to the latest analog input value when the input exceeds a specified
change from the current value. This change, called the deadband, is specified in counts of the digital value
of the analog input.

The default configuration is to enable filtering for FEETT"
all analog inputs. Patisl | Reteniive Ranges | Password | OuputTable | InputFiters |
Analog Input Fikers ; TURE CAGTDTS | DeChguiG e | TR O 1.
1. Select the View > Component > s
SVStem Block menu Command and CI|Ck Select which Analog Inputs ta filter
on the Analog Input Filters tab. I - L < B
. awzl 10k 18 2V M £V BV BV 2.
2. Select the analog inputs that you want to HwsF 12F W BF ®BF #F 2F 0F
filter, the number of samples, and the vt Wi e wE ™ e wd e
d ead band) Mumber of samples Deadband (16 - 4080
\ 64 v =]
3. Click OK. 0 = Deadband Disabled
4. Download the modified system block to the
S7-200. Configuration parameters must be downloaded before they take effect, Not ol FLC tpes
suppoit every System Block option. Press F1 to see which options are supported by each
FLC.
Figure 4-25 Analog Input Filter
Tip

Do not use the analog filter with modules that pass digital information or alarm indications in the analog
words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master modules.

The S7-200 Allows You to Catch Pulses of Short Duration

The S7-200 provides a pulse catch feature which can be used for some or all of the local digital input
points. The pulse catch feature allows you to capture high-going pulses or low-going pulses that are of
such a short duration that they would not always be seen when the S7-200 reads the digital inputs at the
beginning of the scan cycle. When pulse catch is enabled for an input, a change in state of the input is
latched and held until the next input cycle update. This ensures that a pulse which lasts for a short period
of time is caught and held until the S7-200 reads the inputs.

You can individually enable the pulse catch 5ystem Block
Operatlon for eaCh Of the |OCaI dlgltal InpUtS Part[z] I Retentive Ranges | Pazsword | Output Table | Input Filters |
Analog Input Filkers Fulse Catch Bits |<3uu\g|uunu e i o | 1.
To access the pulse catch configuration screen:
p g Select desired inputs ﬂl

1. Select the View > Component > LEEAE AT

System Block menu command and click (] LnL
on the Pulse Catch Bits tab.

2. Click the corresponding check box and
click OK.

3. Download the modified system block to the
S7-200.

Configuration parameters must be downloaded befare they take effect. Nat all PLC twpes
suppoit every System Block option. Press F1 to see which options are supported by each
PLC.

Cancel

Figure 4-26 Pulse Catch

PLC Concepts Chapter 4

Figure 4-27 shows the basic operation of the S7-200 with and without pulse catch enabled.

Scan cycle ‘ Next scan cycle

Physical Input

\ . . .

The S7-200 misses this pulse because the input turned
Output from pulse catch)

utpu pu | on and off before the S7-200 updated the process-image

[
\ input register

Disabled

T Input update T Input update
\ \

\ \

\

\

\

\

\

Enabled The S7-200 catches the pulse on the physical input

Figure 4-27 Operation of the S7-200 with the Pulse Catch Feature Enabled and Disabled

Because the pulse catch function operates on the input after it passes through the input filter, you must
adjust the input filter time so that the pulse is not removed by the filter. Figure 4-28 shows a block diagram
of the digital input circuit.

- — r— l
Optical Digital Input Pulse
® Isolation Filter Catch Llnput to 87'200J|
External #
Digital Input Pulse Catch Enable

Figure 4-28 Digital Input Circuit

Figure 4-29 shows the response of an enabled pulse catch function to various input conditions. If you
have more than one pulse in a given scan, only the first pulse is read. If you have multiple pulses in a
given scan, you should use the rising/falling edge interrupt events. (For a listing of interrupt events, see
Table 6-44.)

Scan cycle Next scan cycle
Input update Input update
Input to pulse catch J I
\
Output from pulse catch
|
Input to pulse catch LI ‘

i

\ \

Outputfrompulsecatch 1 |
\

Input to pulse catch ‘ I_;_l
i

Output from pulse catch

Figure 4-29 Responses of the Pulse Catch Function to Various Input Conditions

43

S7-200 Programmable Controller System Manual

The S7-200 Provides Password Protection

All models of the S7-200 provide password Table 4-3 Restricting Access to the S7-200
rotection for restrictin t ifi
?ur?c?i%n% orrestricling access fo spectiic CPU Function Level1 Level2 Level3
Read and write user data Access Access Access
A password authorizes access to the functions - o e [
and memory: without a password, the S7-200 » S1OP,
. - o CPU
provides unrestricted access. When it is
password protected, the S7-200 limits all Read and write the
restricted operations according to the time-of-day clock
configuration provided when the password was ypjoad the user program, Access Access Password
installed. data, and the CPU Allowed Allowed required
. . configuration
The password is not case sensitive.
Download to the CPU ﬁﬁcessd PaSS:WC;rd
. . owe! require
As shown in Table 4-3, the _87-200 provides Get the execution status
three levels of access restriction. Each level
allows certain functions to be accessible Delete the program block,
without a password. For all three levels of data block, or system block
access, entering the correct password provides | Force data or execute the
access to all of the functions. The default single/multiple scan
condition for the S7-200 is level 1 (no Copy to the memor
restriction). opy o the memory

cartridge

Entering the password over a network does not | Write outputs in STOP mode
compromise the password protection for the
S7-200.

Having one user authorized to access restricted functions does not authorize other users to access those
functions. Only one user is allowed unrestricted access to the S7-200 at a time.

Tip

@ After you enter the password, the authorization level for that password remains effective for up to one
minute after the programming device has been disconnected from the S7-200. Always exit
STEP 7-Micro/WIN before disconnecting the cable to prevent another user from accessing the privileges
of the programming device.

Configuring a Password for the S7-200

The System Block dialog box (Figure 4-30) System Block
allows you to configure a password for the fnzkalnput Fters | Puke Calch Bile | Backgraund Time | EM Configurations |
S7_200 Port[s] | Fetentive Ranges Passwod <€ e : e 1.
. & Full Frivileges [Level 1]
1. Select the View > Component >
System Block menu command to display ® Pt lend 2.
. K © Mirirnum Privileges [Level 3]
the System Block dialog box and click on
the Password tab. P - 3,
. Vamlyl—
2. Select the appropriate level of access for
the S7-200.
3. Enter and verify the password.
4. C||Ck OK Configuration parameters must be downloaded befare they take effect. Not all PLC types
. support every System Block option. Press F1 to see which options are supported by each
5. Download the modified system block to the P
S7-200.

Cancel |

Figure 4-30 Creating a Password

44

PLC Concepts Chapter 4

N

Recovering from a Lost Password

If you forget the password, you must clear the memory of the S7-200 and reload your program. Clearing
the memory puts the S7-200 in STOP mode and resets the S7-200 to the factory-set defaults, except for
the network address, baud rate, and the time-of-day clock. To clear your program in the S7-200:

1. Select the PLC > Clear menu command to display the Clear dialog box.
2. Select all three blocks and confirm your action by clicking OK.

3. Ifapassword had been configured, STEP 7-Micro/WIN displays a password-authorization dialog
box. To clear the password, enter CLEARPLC in the password-authorization dialog box to continue
the Clear All operation. (The CLEARPLC password is not case sensitive.)

The Clear All operation does not remove the program from a memory cartridge. Since the memory
cartridge stores the password along with the program, you must also reprogram the memory cartridge to
remove the lost password.

Warning

Clearing the S7-200 memory causes the outputs to turn off (or in the case of an analog output, to be
frozen at a specific value).

If the S7-200 is connected to equipment when you clear the memory, changes in the state of the outputs
can be transmitted to the equipment. If you had configured the “safe state” for the outputs to be different
from the factory settings, changes in the outputs could cause unpredictable operation of your

equipment, which in turn could cause death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that your process is in a safe state before
clearing the S7-200 memory.

The S7-200 Provides Analog Adjustment Potentiometers

The analog adjustment potentiometers are located under the front access cover of the module. You can
adjust these potentiometers to increase or decrease values that are stored in bytes of Special Memory
(SMB). These read-only values can be used by the program for a variety of functions, such as updating
the current value for a timer or a counter, entering or changing the preset values, or setting limits. Use a
small screwdriver to make the adjustments: turn the potentiometer clockwise (to the right) to increase the
value, and counterclockwise (to the left) to decrease the value.

SMB28 holds the digital value that represents the position of analog adjustment 0. SMB29 holds the digital
value that represents the position of analog adjustment 1. The analog adjustment has a nominal range of
0 to 255 and a repeatability of +2 counts.

Sample Program for Referencing the Value Entered with the Analog Adjustment Potentiometers

Network 1 Network 1 //Read analog adjustment 0 (SMB28).
0.0 B_I //Save the value as an integer in VW100.
— b————{en enol—y) LD 10.0
BTI SMB28, VW100
SME2E4IN__ OUTFV1 00
Network 2 //Use the integer value (VW100) as a preset for a timer.
LDN Qo.0
Network 2 TON T33, VW100
Q00 T33
—| ! } ™ TON Network 3 //Turn on Q0.0 when T33 reaches the preset value.
LD T33
Wiw1004PT _ Q0.0
MNetwork 3
T33 Q0.0
—)

45

S7-200 Programmable Controller System Manual

46

The S7-200 Provides High-speed 1/O

High-Speed Counters

The S7-200 provides integrated high-speed counter functions that count high speed external events
without degrading the performance of the S7-200. See Appendix A for the rates supported by your CPU
model. Each counter has dedicated inputs for clocks, direction control, reset, and start, where these
functions are supported. You can select different quadrature modes for varying the counting rate. For more
information on high-speed counters, see Chapter 6.

High-Speed Pulse Output

The S7-200 supports high-speed pulse outputs, with outputs Q0.0 and Q0.1 generating either a
high-speed pulse train output (PTO) or pulse width modulation (PWM).

The PTO function provides a square wave (50% duty cycle) output for a specified number of pulses (from
1 to 4,294,967,295 pulses) and a specified cycle time (in either microsecond or millisecond increments
either from 50 us to 65,535 us or from 2 ms to 65,535 ms). You can program the PTO function to produce
either one train of pulses or a pulse profile consisting of multiple trains of pulses. For example, you can
use a pulse profile to control a stepper motor through a simple ramp up, run, and ramp down sequence or
more complicated sequences. The pulse profile can consist of up to 255 segments with a segment
corresponding to the ramp up or run or ramp down operation.

The PWM function provides a fixed cycle time with a variable duty cycle output, with the cycle time and the
pulse width specified in either microsecond or millisecond increments. The cycle time has a range either
from 50 us to 65,535 us or from 2 ms to 65,535 ms. The pulse width time has a range either from 0 us to
65,535 us or from 0 ms to 65,535 ms. When the pulse width is equal to the cycle time, the duty cycle is
100 percent and the output is turned on continuously. When the pulse width is zero, the duty cycle is 0
percent and the output is turned off.

For more information on the high-speed pulse output instruction, see Chapter 6.

Programming Concepts, Conventions,
and Features

The S7-200 continuously executes your program to control a task or process. You use STEP 7=Micro/WIN
to create this program and download it to the S7-200. STEP 7-Micro/WIN provides a variety of tools and
features for designing, implementing, and debugging your program.

In This Chapter

Guidelines for Designing a Micro PLC System e 48
Basic Elements of a Program e 49
Using STEP 7-Micro/WIN to Create Your Programs ..o, 51
Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets 53
Understanding the Conventions Used by the Program Editors 54
Using Wizards To Help You Create Your Control Program 56
Handling Errors inthe S7-200 o e e 56
Assigning Addresses and Initial Values in the Data Block Editor 58
Using the Symbol Table for Symbolic Addressing of Variables 58
Using Local Variables 59
Using the Status Chart to Monitor Your Program e 59
Creating an Instruction Library 60
Features for Debugging Your Program it e 60

47

S7-200 Programmable Controller System Manual

Guidelines for Designing a Micro PLC System

There are many methods for designing a Micro PLC system. The following general guidelines can apply to
many design projects. Of course, you must follow the directives of your own company’s procedures and
the accepted practices of your own training and location.

Partition Your Process or Machine

Divide your process or machine into sections that have a level of independence from each other. These
partitions determine the boundaries between controllers and influence the functional description
specifications and the assignment of resources.

Create the Functional Specifications

Write the descriptions of operation for each section of the process or machine. Include the following topics:
1/0 points, functional description of the operation, states that must be achieved before allowing action for
each actuator (such as solenoids, motors, and drives), description of the operator interface, and any
interfaces with other sections of the process or machine.

Design the Safety Circuits

Identify equipment requiring hard-wired logic for safety. Control devices can fail in an unsafe manner,
producing unexpected startup or change in the operation of machinery. Where unexpected or incorrect
operation of the machinery could result in physical injury to people or significant property damage,
consideration should be given to the use of electro-mechanical overrides which operate independently of
the S7-200 to prevent unsafe operations. The following tasks should be included in the design of safety
circuits:

1 Identify improper or unexpected operation of actuators that could be hazardous.

1 Identify the conditions that would assure the operation is not hazardous, and determine how to
detect these conditions independently of the S7-200.

(1 Identify how the S7-200 CPU and I/O affect the process when power is applied and removed, and
when errors are detected. This information should only be used for designing for the normal and
expected abnormal operation, and should not be relied on for safety purposes.

1 Design manual or electro-mechanical safety overrides that block the hazardous operation
independent of the S7-200.

(O Provide appropriate status information from the independent circuits to the S7-200 so that the
program and any operator interfaces have necessary information.

1 Identify any other safety-related requirements for safe operation of the process.

Specify the Operator Stations

Based on the requirements of the functional specifications, create drawings of the operator stations.
Include the following items:

1 Overview showing the location of each operator station in relation to the process or machine
(1 Mechanical layout of the devices, such as display, switches, and lights, for the operator station

(O Electrical drawings with the associated 1/O of the S7-200 CPU or expansion module

48

Programming Concepts, Conventions, and Features Chapter 5

Create the Configuration Drawings

Based on the requirements of the functional specification, create configuration drawings of the control

equipment. Include the following items:

(1 Overview showing the location of each S7-200 in relation to the process or machine

(1 Mechanical layout of the S7-200 and expansion I/O modules (including cabinets and other

equipment)

(1 Electrical drawings for each S7-200 and expansion I/O module (including the device model
numbers, communications addresses, and 1/0O addresses)

Create a List of Symbolic Names (optional)

If you choose to use symbolic names for addressing, create a list of symbolic names for the absolute
addresses. Include not only the physical I/O signals, but also the other elements to be used in your

program.

Basic Elements of a Program

A program block is composed of executable code and comments. The executable code consists of a main
program and any subroutines or interrupt routines. The code is compiled and downloaded to the S7-200;
the program comments are not. You can use the organizational elements (main program, subroutines, and

interrupt routines) to structure your control program.

The following example shows a program that includes a subroutine and an interrupt routine. This sample
program uses a timed interrupt for reading the value of an analog input every 100 ms.

Example:Basic Elements of a Program

M || network 1
A SMO 1 EET
| —| |— EN
N
S Network 1
B SM0.0 MOV_B
l
g — | EN END %
1004IK QUTFSMBI4
ATCH
EN END %
NT_0qinT
104EVNT
—(eni)
| Network 1
N 5M0.0 MOV_W
T H B——An enop—y
0
Al 1IN QUTEY 100

Network 1 //On first scan, call subroutine 0.

LD SMO.1
CALL SBR_0

Network 1 //Set the interval to 100 ms
/[for the timed interrupt.
//[Enable interrupt 0.

LD SMo0.0
MOVB 100, SMB34
ATCH INT_O, 10
ENI

Network 1 //Sample the Analog Input 4.

LD SMo0.0
MOVW AlW4,VW100

49

S7-200 Programmable Controller System Manual

Main Program

The main body of the program contains the instructions that control your application. The S7-200 executes
these instructions sequentially, once per scan cycle. The main program is also referred to as OB1.

Subroutines

These optional elements of your program are executed only when called: by the main program, by an
interrupt routine, or by another subroutine. Subroutines are useful in cases where you want to execute a
function repeatedly. Rather than rewriting the logic for each place in the main program where you want the
function to occur, you can write the logic once in a subroutine and call the subroutine as many times as
needed during the main program. Subroutines provide several benefits:

(1 Using subroutines reduces the overall size of your program.

(1 Using subroutines decreases your scan time because you have moved the code out of the main
program. The S7-200 evaluates the code in the main program every scan cycle, whether the code
is executed or not, but the S7-200 evaluates the code in the subroutine only when you call the
subroutine, and does not evaluate the code during the scans in which the subroutine is not called.

(O Using subroutines creates code that is portable. You can isolate the code for a function in a
subroutine, and then copy that subroutine into other programs with little or no rework.

Tip

@ Using V memory addresses can limit the portability of your subroutine, because it is possible for V
memory address assignment from one program to conflict with an assignment in another program.
Subroutines that use the local variable table (L memory) for all address assignments, by contrast, are
highly portable because there is no concern about address conflicts between the subroutine and
another part of the program when using local variables.

Interrupt Routines

These optional elements of your program react to specific interrupt events. You design an interrupt routine
to handle a pre-defined interrupt event. Whenever the specified event occurs, the S7-200 executes the
interrupt routine.

The interrupt routines are not called by your main program. You associate an interrupt routine with an
interrupt event, and the S7-200 executes the instructions in the interrupt routine only on each occurrence
of the interrupt event.

Tip
@ Because it is not possible to predict when the S7-200 might generate an interrupt, it is desirable to limit
the number of variables that are used both by the interrupt routine and elsewhere in the program.

Use the local variable table of the interrupt routine to ensure that your interrupt routine uses only the
temporary memory and does not overwrite data used somewhere else in your program.

There are a number of programming techniques you can use to ensure that data is correctly shared
between your main program and the interrupt routines. These techniques are described in Chapter 6
with the Interrupt instructions.

Other Elements of the Program

Other blocks contain information for the S7-200. You can choose to download these blocks when you
download your program.

System Block
The system block allows you to configure different hardware options for the S7-200.

Data Block

The data block stores the values for different variables (V memory) used by your program. You can use
the data block to enter initial values for the data.

50

Programming Concepts, Conventions, and Features Chapter 5

Using STEP 7-Micro/WIN to Create Your Programs

Program
Editor

To open STEP 7-Micro/WIN, double-click on the STEP 7-Micro/WIN icon, or select the Start > SIMATIC >
STEP 7 MicroWIN 3.2 menu command. As shown in Figure 5-1, the STEP 7-Micro/WIN project window
provides a convenient working space for creating your control program.

The toolbars provide buttons for shortcuts to frequently used menu commands. You can view or hide any
of the toolbars.

GF STEP 7-Micro/ WIN 32 - Project1

The navigation bar presents groups of icons for
accessing different programming features of
STEP 7-Micro/WIN.

Tle e Vien PLC Debug Toss Widons. e
[osaen|imals|pp|s=va|B]|r = [Braessess |
ot [4 A% [Bme 3 2«5 4r00]

= G Proect1(CPU 221 REL 01.10)
Program Block

i B SIMATIC LAD

The instruction tree displays all of the project S —c |UEVMAP,WSQ i 1 v e

objects and the instructions for creating your = L | | .

control program. You can drag and drop e 2
Metwork 1 Network Title

individual instructions from the tree into your
program, or you can double-click an instruction to
insert it at the current location of the cursor in the
program editor.

Metwork 2 |
Program Editor I
N

Instruction tree !

Navigation bar i o

The program editor contains the program logic
and a local variable table where you can assign
symbolic names for temporary local variables.
Subroutines and interrupt routines appear as
tabs at the bottom of the program editor window.
Click on the tabs to move between the
subroutines, interrupts, and the main program. Figure 5-1

Jetwork 1 Rowi,coi s

STEP 7-Micro/WIN

STEP 7-Micro/WIN provides three editors for creating your program: Ladder Logic (LAD), Statement List
(STL), and Function Block Diagram (FBD). With some restrictions, programs written in any of these
program editors can be viewed and edited with the other program editors.

Features of the STL Editor

The STL editor displays the program as a text-based language. The STL editor allows you to create
control programs by entering the instruction mnemonics. The STL editor also allows you to create
programs that you could not otherwise create with the LAD or FBD editors. This is because you are
programming in the native language of the S7-200, rather than in a graphical editor where some
restrictions must be applied in order to draw the diagrams correctly. As shown in Figure 5-2, this
text-based concept is very similar to assembly language programming.

The S7-200 executes each instruction in the
order dictated by the program, from top to

bottom, and then restarts at the top. kD :8'? Ziﬁ%dv%ﬁ ;':]%‘:;er input
STL uses a logic stack to resolve the control = Q1.0 /MWrite value to output 1
logic. You insert the STL instructions for handling

the stack operations. Figure 5-2 Sample STL Program

Consider these main points when you select the STL editor:

(1 STL is most appropriate for experienced programmers.

(1O STL sometimes allows you to solve problems that you cannot solve very easily with the LAD or FBD
editor.

(1 You can only use the STL editor with the SIMATIC instruction set.

(1 While you can always use the STL editor to view or edit a program that was created with the LAD or
FBD editors, the reverse is not always true. You cannot always use the LAD or FBD editors to
display a program that was written with the STL editor.

51

S7-200 Programmable Controller System Manual

52

Features of the LAD Editor

The LAD editor displays the program as a graphical representation similar to electrical wiring diagrams.
Ladder programs allow the program to emulate the flow of electric current from a power source through a
series of logical input conditions that in turn enable logical output conditions. A LAD program includes a
left power rail that is energized. Contacts that are closed allow energy to flow through them to the next
element, and contacts that are open block that energy flow.

The logic is separated into networks. The Network 1

program is executed one network at a time, from 0.0 0.1 Q5.0
left to right and then top to bottom as dictated by - | |} ()
the program. Figure 5-3 shows an example of a
LAD program. The various instructions are 2.0 12.1
represented by graphic symbols and include —
three basic forms.

Contacts represent logic input conditions such as

itch b R | e Network 2

switches, buttons, or internal conditions. 1 WOV E =F

Coils usually represent logic output results such — ey Eno EN Eno—)
as lamps, motor starters, interposing relays, or

internal output conditions. VBSOAIN _ OUTFACD ACD N

Boxes represent additional instructions, such as

timers, counters, or math instructions. Figure 5-3 Sample LAD Program

Consider these main points when you select the LAD editor:
(1 Ladder logic is easy for beginning programmers to use.
(O Graphical representation is easy to understand and is popular around the world.
[The LAD editor can be used with both the SIMATIC and IEC 1131-3 instruction sets.
(O You can always use the STL editor to display a program created with the SIMATIC LAD editor.

Features of the FBD Editor

The FBD editor displays the program as a graphical representation that resembles common logic gate
diagrams. There are no contacts and coils as found in the LAD editor, but there are equivalent instructions
that appear as box instructions.

Figure 5-4 shows an example of an FBD

733
program. 21 A0 N Ton
FBD does not use the concept of left and right Va0.0

power rails; therefore, the term “power flow” is ACOET

used to express the analogous concept of control
flow through the FBD logic blocks.

Figure 5-4 Sample FBD Program

The logic “1” path through FBD elements is called power flow. The origin of a power flow input and the
destination of a power flow output can be assigned directly to an operand.

The program logic is derived from the connections between these box instructions. That is, the output from
one instruction (such as an AND box) can be used to enable another instruction (such as a timer) to
create the necessary control logic. This connection concept allows you to solve a wide variety of logic
problems.

Consider these main points when you select the FBD editor:

[The graphical logic gate style of representation is good for following program flow.
[The FBD editor can be used with both the SIMATIC and IEC 1131-3 instruction sets.
(1 You can always use the STL editor to display a program created with the SIMATIC FBD editor.

Programming Concepts, Conventions, and Features Chapter 5

Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets

Most PLCs offer similar basic instructions, but there are usually small differences from vendor to vendor in
appearance, operation, and so forth. Over the last several years, the International Electrotechnical
Commission (IEC) has developed an emerging global standard that specifically relates to many aspects of
PLC programming. This standard encourages different PLC manufacturers to offer instructions that are the
same in both appearance and operation.

Your S7-200 offers two instruction sets that allow you to solve a wide variety of automation tasks. The IEC
instruction set complies with the IEC 1131-3 standard for PLC programming, and the SIMATIC instruction
set is designed specifically for the S7-200.

Tip
@ When STEP 7-Micro/WIN is set to the IEC mode, it displays a red diamond #) in the Instruction Tree
beside the instructions that are not defined by the IEC 1131-3 standard.

There are a few key differences between the SIMATIC instruction set and the IEC instruction set:

[The IEC instruction set is restricted to those instructions that are standard among PLC vendors.
Some instructions that are normally included in the SIMATIC set are not standard instructions in the
IEC 1131-3 specification. These are still available for use as non-standard instructions, but if you
use them, the program is no longer strictly IEC 1131-3 compatible.

O Some IEC box instructions accept multiple data formats. This practice is often referred to as
overloading. For example, rather than have separate ADD_| (Add Integer) and ADD_R (Add Real),
math boxes, the IEC ADD instruction examines the format of the data being added and
automatically chooses the correct instruction in the S7-200. This can save valuable program design
time.

1 When you use the IEC instructions, the instruction parameters are automatically checked for the
proper data format, such as a signed integer versus an unsigned integer. For example, an error
results if you try to enter an integer value for an instruction that expected a bit value (on/off). This
feature helps to minimize programming syntax errors.

Consider these points when you select either the SIMATIC or the IEC instruction set:

(1 SIMATIC instructions usually have the shortest execution times. Some IEC instructions might have
longer execution times.

1 Some IEC instructions, such as timers, counters, multiply, and divide, operate differently than their
SIMATIC counterparts.

[You can use all three program editors (LAD, STL, FBD) with the SIMATIC instruction set. You can
use only the LAD and FBD program editors for IEC instructions.

[The operation of the IEC instructions is standard for different brands of PLCs, and the knowledge
about creating an IEC-compliant program can be leveraged across PLC platforms.

(O While the IEC standard defines fewer instructions than are available in the SIMATIC instruction set,
you can always include SIMATIC instructions in your IEC program.

(O IEC 1131-3 specifies that variables must be declared with a type, and supports system checking of
data type.

53

S7-200 Programmable Controller System Manual

Understanding the Conventions Used by the Program Editors

STEP 7-Micro/WIN uses the following conventions in all of the program editors:

1 A#infront of a symbol name (#var1) indicates that the symbol is of local scope.
(1 ForIEC instructions, the % symbol indicates a direct address.
(1 The operand symbol “?.?” or “????” indicates that an operand configuration is required.

LAD programs are divided into segments called networks. A network is an ordered arrangement of
contacts, coils, and boxes that are all connected to form a complete circuit: no short circuits, no open
circuits, and no reverse power flow conditions exist. STEP 7-Micro/WIN allows you to create comments
for your LAD program on a network-by-network basis. FBD programming uses the network concept for
segmenting and commenting your program.

STL programs do not use networks; however, you can use the NETWORK keyword to segment your
program.

Conventions Specific to the LAD Editor

In the LAD editor, you can use the F4, F6, and F9 keys on your keyboard to access contact, box, and coil
instructions. The LAD editor uses the following conventions:

(1 The symbol “--->>"is an open circuit or a required power flow connection.

[The symbol “—¥” indicates that the output is an optional power flow for an instruction that can be
cascaded or connected in series.

[The symbol “>>” indicates that you can use power flow.

Conventions Specific to the FBD Editor

In the FBD editor, you can use the F4, F6, and F9 keys on your keyboard to access AND, OR, and box
instructions. The FBD editor uses the following conventions:

(1 The symbol “--->>" on an EN operand is a power flow or operand indicator. It can also depict an
open circuit or a required power flow connection.

[The symbol “—}” indicates that the output is an optional power flow for an instruction that can be
cascaded or connected in series.

1 The symbols “<<” and “>>" indicate that you can use

either a value or power flow. é%%gﬁ:oﬂOT :ng AND =000
(1 Negation bubbles: The logical NOT condition or

inverted condition of the operand or power flow is Immediate woH &HD aoo

shown by the small circle on the input. In Figure 5-5, Condition 01—

Q0.0 is equal to the NOT of 10.0 AND 10.1. Negation ’

bubbles are only valid for Boolean signals, which can _

be specified as parameters or power flow. Figure 5-5 FBD Conventions

(O Immediate indicators: As shown in Figure 5-5, the FBD editor displays an immediate condition of a
Boolean operand with a vertical line on the input to an FBD instruction. The immediate indicator
causes an immediate read from the specified physical input. Inmediate operators are only valid for
physical inputs.

1 Box with no input or output: A box with no input indicates an instruction that is independent of power
flow.

Tip
The number of operands can be expanded up to 32 inputs for AND and OR instructions. To add or
subtract operand tics, use the “+” and “-” keys on your keyboard.

54

Programming Concepts, Conventions, and Features Chapter 5

General Conventions of Programming for an S7-200

EN/ENO Definition

EN (Enable IN) is a Boolean input for boxes in LAD and FBD. Power flow must be present at this input for
the box instruction to be executed. In STL, the instructions do not have an EN input, but the top of stack
value must be a logic “1” for the corresponding STL instruction to be executed.

ENO (Enable Out) is a Boolean output for boxes in LAD and FBD. If the box has power flow at the EN
input and the box executes its function without error, then the ENO output passes power flow to the next
element. If an error is detected in the execution of the box, then power flow is terminated at the box that
generated the error.

In STL, there is no ENO output, but the STL instructions that correspond to the LAD and FBD instructions
with ENO outputs do set a special ENO bit. This bit is accessible with the AND ENO (AENO) instruction
and can be used to generate the same effect as the ENO bit of a box.

Tip
@ The EN/ENO operands and data types are not shown in the valid operands table for each instruction
because the operands are the same for all LAD and FBD instructions. Table 5-1 lists these operands
and data types for LAD and FBD. These operands apply to all LAD and FBD instructions shown in this
manual.

Table 5-1 EN/ENO Operands and Data Types for LAD and FBD

Program Editor Inputs/Outputs Operands Data Types
LAD EN, ENO Power Flow BOOL
FBD EN, ENO ,Q,V,M,SM,S, T,C, L BOOL

Conditional/Unconditional Inputs
In LAD and FBD, a box or a coil that is dependent upon power flow is shown with a connection to any

element on the left side. A coil or box that is independent of power flow is shown with a connection directly
to the left power rail. Table 5-2 shows an example of both a conditional and an unconditional input.
Table 5-2 Representation of Conditional and Unconditional Inputs

Power Flow LAD FBD

Instruction that is dependent on power flow (conditional) 1 TE
—{ Jwr)

Instruction that is independent of power flow (unconditional
P P () I—(NE)ﬂj NERT

Instructions without Outputs

Boxes that cannot cascade are drawn with no Boolean outputs. These include the Subroutine Call, Jump,
and Conditional Return instructions. There are also ladder coils that can only be placed on the left power
rail. These include the Label, Next, Load SCR, Conditional SCR End, and SCR End instructions. These
are shown in FBD as boxes and are distinguished with unlabeled power inputs and no outputs.

Compare Instructions

The compare instruction is executed regardless of the state of power flow. If power flow is false, the output
is false. If power flow is true, the output is set depending upon the result of the compare. SIMATIC FBD,
IEC Ladder, and IEC FBD compare instructions are shown as boxes, although the operation is performed
as a contact.

55

S7-200 Programmable Controller System Manual

Using Wizards To Help You Create Your Control Program

STEP 7-Micro/WIN provides wizards to make aspects of your programming easier and more automatic. In
Chapter 6, instructions that have an associated wizard are identified by the following Instruction Wizard
icon:

Instruction
Wizard

Handling Errors in the S7-200

The S7-200 classifies errors as either fatal errors or non-fatal errors. You can view the error codes that
were generated by an error by selecting the PLC > Information menu command.

Figure 5-6 shows the PLC Information dialog box s x|
that displays the error code and the description AT e
Of the error. ~ Wersion Scan Rates (ms]
PLE | CPUZEMAELOLZ0 | Last [o
The Last Fatal field shows the previous fatal error | g I o& | | Mo o
code generated by the S7-200. This value is BEIC [mm | | Mainm o
retained over power cycles if the RAM is
retained. This location is cleared either whenever _:;; nl e
all memory of the §7-200 is cleared or if the RAM | [T Foronfasioros pesen
is not retained after a prolonged power outage.
The Total Fatal field is the count of fatal errors Lt [0 Motata enors present
generated by the S7-200 since the last time the Total el fo
S7-200 had all memory areas cleared. This value = e
is retained over power cycles if the RAM is Nurber of Enrors: o
retained. This location is cleared whenever all Ennois Reported: Mo 170 enors present =
memory of the S7-200 is cleared, or when the
RAM is not retained after a prolonged power Modde_| Type In_| Start [Out] Sta | Status
ou tage. 0 C 24 100 16 000 et

Mot present
Mot present

;
Appendix C lists the S7-200 error codes, and : iy
Appendix D describes the special memory (SM) p EEE'JZ?E?E
bits, which can be used for monitoring errors. 6

Mot present

ER | farmatior.... | Reset Scan Rates |

Figure 5-6 PLC Information Dialog Box

Non-Fatal Errors

Non-fatal errors are those indicating problems with the construction of the user program, with the
execution of an instruction in the user program, and with expansion I/O modules. You can use

STEP 7-Micro/WIN to view the error codes that were generated by the non-fatal error. There are three
basic categories of non-fatal errors.

Program-compile errors

The S7-200 compiles the program as it downloads. If the S7-200 detects that the program violates a
compilation rule, the download is aborted and an error code is generated. (A program that was already
downloaded to the S7-200 would still exist in the EEPROM and would not be lost.) After you correct your
program, you can download it again. Refer to Appendix C for a list of compile rule violations.

56

Programming Concepts, Conventions, and Features Chapter 5

1/O errors

At startup, the S7-200 reads the I/O configuration from each module. During normal operation, the S7-200
periodically checks the status of each module and compares it against the configuration obtained during
startup. If the S7-200 detects a difference, the S7-200 sets the configuration error bit in the module error
register. The S7-200 does not read input data from or write output data to that module until the module
configuration again matches the one obtained at startup.

The module status information is stored in special memory (SM) bits. Your program can monitor and
evaluate these bits. Refer to Appendix D for more information about the SM bits used for reporting 1/0
errors. SM5.0 is the global I/O error bit and remains set while an error condition exists on an expansion
module.

Program execution errors

Your program can create error conditions while being executed. These errors can result from improper use
of an instruction or from the processing of invalid data by an instruction. For example, an indirect-address
pointer that was valid when the program compiled could be modified during the execution of the program
to point to an out-of-range address. This is an example of a run-time programming problem. SM4.3 is set
upon the occurrence of a run-time programming problem and remains set while the S7-200 is in RUN
mode. (Refer to Appendix C for the list of run-time programming problems). Program execution error
information is stored in special memory (SM) bits. Your program can monitor and evaluate these bits.
Refer to Appendix D for more information about the SM bits used for reporting program execution errors.

The S7-200 does not change to STOP mode when it detects a non-fatal error. It only logs the eventin SM
memory and continues with the execution of your program. However, you can design your program to
force the S7-200 to STOP mode when a non-fatal error is detected. The following sample program shows
a network of a program that is monitoring two of the global non-fatal error bits and changes the S7-200 to
STOP whenever either of these bits turns on.

Sample Program: Logic for Detecting a Non-Fatal Error Condition

Network 1 Network 1 //When an 1/O error or a run-time error occurs, go to STOP mode
SM5.0 LD SM5.0
STOR) 0] SM4.3
STOP
Shid .3

Fatal Errors

Fatal errors cause the S7-200 to stop the execution of your program. Depending upon the severity of the
fatal error, it can render the S7-200 incapable of performing any or all functions. The objective for handling
fatal errors is to bring the S7-200 to a safe state from which the S7-200 can respond to interrogations
about the existing error conditions. When a fatal error is detected, the S7-200 changes to STOP mode,
turns on the System Fault LED and the STOP LED, overrides the output table, and turns off the outputs.
The S7-200 remains in this condition until the fatal error condition is corrected.

Once you have made the changes to correct the fatal error condition, use one of the following methods to
restart the S7-200:

[Turn the power off and then on.
1 Change the mode switch from RUN or TERM to STOP.

(1 Selectthe PLC > Power-Up Reset menu command from STEP 7-Micro/WIN to restart the S7-200.
This forces the S7-200 to restart and clear any fatal errors.

Restarting the S7-200 clears the fatal error condition and performs power-up diagnostic testing to verify
that the fatal error has been corrected. If another fatal error condition is found, the S7-200 again sets the
fault LED, indicating that an error still exists. Otherwise, the S7-200 begins normal operation.

Some error conditions can render the S7-200 incapable of communication. In these cases, you cannot
view the error code from the S7-200. These types of errors indicate hardware failures that require the
S7-200 to be repaired; they cannot be fixed by changes to the program or clearing the memory of the
S7-200.

57

S7-200 Programmable Controller System Manual

Assigning Addresses and Initial Values in the Data Block Editor

The data block editor allows you to make initial data assignments to V memory (variable memory) only.
You can make assignments to bytes, words, or double words of V. memory. Comments are optional.

The data block editor is a free-form text editor;
that is, no specific fields are defined for particular =
types of information. After you finish typing a line || s o =

vEz 1sf10 //$et Lenguage to English, set Update to as fast as possible

and press the Enter key, the data block editor wB3 16#70 =t the isiley o 20 chsracter mode; Up ey V2.2; Dawn key U3.3:

VE4 1

formats the line (aligns columns of addresses, Vol - e e s’ ™7

data, comments; capitalizes V memory e o o e 930z Loy mesoeae enable bito o YWIE
addresses) and redisplays it. The data block /e B i viz 7

editor assigns an appropriate amount of V e T o ne i

memory based on your previous address VD 00 /[Ssheaded peie Vaiue: Beve dava £or disvies bare il

//END TD200_BLOCK ===========m === —mm oo 5

allocations and the size (byte, word, or double J
word) of the data value(s).

Figure 5-7 Data Block Editor

The first line of the data block must have an explicit address assignment. Subsequent lines can have
explicit or implicit address assignments. An implicit address assignment is made by the editor when you
type multiple data values after a single address assignment, or type a line that contains only data values.

The data block editor accepts uppercase or lowercase letters and allows commas, tabs, or spaces to
serve as separators between addresses and data values.

Using the Symbol Table for Symbolic Addressing of Variables

=
‘\-"’

Symbol
Table

58

The symbol table allows you to define and edit the symbols that can be accessed by the symbolic name
anywhere in your program. You can create multiple symbol tables. There is also a tab in the symbol table
for system-defined symbols that you can use in your program. The symbol table is also referred to as the
global variable table.

You can identify the operands of the instructions in your program absolutely or symbolically. An absolute
reference uses the memory area and bit or byte location to identify the address. A symbolic reference
uses a combination of alphanumeric characters to identify the address.

For SIMATIC programs, you make global symbol —_—
assignments by using the symbol table._ For IEC ala Sombal Py E——"
programs, you make global symbol assignments |3 3 [BlwaysOn SMO0 |Ahways on contact
by using the global variable table. 2 M Fumc 423 Purnp 1 on/off
3 Q Pump1 Limit 1.1 Pump 1 pressure limit switch
. . 4 Q PumplPressue VD100 Pump 1 current pressure [real)
To assign a symbol to an address: 5 <) [FumpiFpm VW00 |Pumpl PRMs (mteger]
E
1. Click on the Symbol Table icon in the .
navigation bar to open the symbol table. Figure 5-8 Symbol Table

2. Enter the symbol name (for example, Input1) in the Symbol Name column. The maximum symbol
length is 23 characters.

Enter the address (for example, 10.0) in the Address column.

For an IEC global variable table, enter a value in the Data Type column or select one from the
listbox.

You can create multiple symbol tables; however, you cannot use the same string more than once as a
global symbol assignment, neither within a single table nor among several tables.

Status
Chart

Programming Concepts, Conventions, and Features Chapter 5
Using Local Variables
You can use the local variable table of the AT o]
program editor to assign variables that are S B S R S RIS S R SR
unique to an individual subroutine or interrupt Name e | DT ST =
routine. See Figure 5-9. EN IN EIL :
Lo.o FirstPass IN BOOL First pass flag
. LE1 Addr 1N BYTE Address of slave device
Local variables can be used as parameters that w2 Data N INT Datatowiteto slave ||
i i i LE4 Status IN_0OUT BYTE Status of wite
are passeq. in to a subroutine and they increase = e s s e
the portability or reuse of a subroutine. Lw Enor auT WORD Error number fif anyl d|
[T T% M&IN), SBR_0 A INT_0 / el 1 '

Figure 5-9

Using the Status Chart to Monitor Your Program

Local Variable Table

A status chart allows you to monitor or modify the values of the process variables as your S7-200 runs the
control program. You can track the status of program inputs, outputs, or variables by displaying the current
values. The status chart also allows you to force or change the values of the process variables.

You can create multiple status charts in order to view elements from different portions of your program.

To access the status chart, select the View > Component > Status Chart menu command or click the

Status Chart icon in the navigation bar.

When you create a status chart, you enter
addresses of process variables for monitoring.
You cannot view the status of constants,
accumulators, or local variables. You can display
a timer or counter value either as a bit or as a
word. Displaying the value as a bit shows the
status of the timer or counter bit; displaying the
value as a word shows the timer or counter
value.

To build a status chart and monitor the variables:

s Status Chart

=] E3

R O

T4

R

Addiess [Fomat

Cunent Yalus

New Yalue

Pump1 Bt

20

Pump1 Limit |E"
Purmp1 Pressure Signed

20

+0

Pump1RpM Signed

+1

M3.7 Bit

20

WE100 Hexadecimal

1600

D200 Floating Poirt

0o

|Signed
\CHT1 /

DR E R

JLed

Figure 5-10 Status Chart

1. Enter the address for each desired value in the Address field.

2. Select the data type in the Format column.
3.

command.
4.

toolbar. The Status Chart also allows you to modify or force values for the different process

variables.

To view the status of the process variables in your S7-200, select the Debug > Chart Status menu

To continuously sample the values, or to perform a single read of the status, click the button on the

You can insert additional rows in your Status Chart by selecting the Edit > Insert > Row menu command.

Tip

¥

You can create multiple status charts to divide the variables into logical groups so that each group can
be viewed in a shorter and separate status chart.

59

S7-200 Programmable Controller System Manual

Creating an Instruction Library

STEP 7-Micro/WIN allows you either to create a custom library of instructions, or to use a library created
by someone else. See Figure 5-11.

To create a library of instructions, you create standard STEP 7-Micro/WIN subroutine and interrupt
routines and group them together. You can hide the code in these routines to prevent accidental changes
or to protect the technology (know-how) of the author.

To create an instruction library, perform the following tasks: E-{Eg Instruchions
[—|_T| Bit Logic
1. Write the program as a standard STEP 7-Micro/WIN B Bock
. . . . o @ Comrunications
project and put the function to be included in the &1 Compary
library into subroutines or interrupt routines. &l Converl |nstruction Library
2. Ensure that all V memory locations in the subroutines Counter
Flasting-Pom

or interrupt routines have been assigned a symbolic
name. To minimize the amount of V memory that the
library requires, use sequential V. memory locations.

3. Rename the subroutines or interrupt routines to the
names that you want to appear in the instruction
library.

4. Select the File > Create Library menu command to
compile the new instruction library.

[+-[x] Integer Math
[(il Interrupt

For more information about creating libraries, refer to the g srarLte-f
online help for STEP 7-Micro/WIN. AT Seale R
. . . . m Cal Subrautircs
Use the following procedure to access an instruction in an

instruction library: Figure 5-11 Instruction Tree with Libraries

1. Add the Libraries directory to the instruction tree by selecting the File > Add Libraries menu
command.

2. Select the specific instruction and insert it into your program (as you would any standard
instruction).

If the library routine requires any V memory, STEP 7-Micro/WIN prompts you when the project is
compiled to assign a block of memory. Use the Library Memory Allocation dialog box to assign
blocks of memory.

Features for Debugging Your Program

60

STEP 7-Micro/WIN provides the following features to help you debug your program:

(1 Bookmarks in your program to make it easy to move back and forth between lines of a long
program.

1 Cross Reference table allow you to check the references used in your program.

1 RUN-mode editing allows you to make small changes to your program with minimal disturbance to
the process controlled by the program. You can also download the program block when you are
editing in RUN mode.

For more information about debugging your program, refer to Chapter 8.

S7-200 Instruction Set

This chapter describes the SIMATIC and IEC 1131 instruction set for the S7-200 Micro PLCs.

In This Chapter

Conventions Used to Describe the Instructions e

S7-200 Memory Ranges and Features

Bit Logic Instructions
Contacts

Logic Stack Instructions

Set and Reset Dominant Bistable Instructions

Clock Instructions

Communications Instructions

Network Read and Network Write Instructions
Transmit and Receive Instructions (Freeport) i
Get Port Address and Set Port Address Instructions

Compare Instructions

Comparing Numerical Values

Compare String
Conversion Instructions

Standard Conversion Instructions i
ASCII Conversion Instructions i e
String Conversion INStruCtionsS
Encode and Decode Instructions i e

Counter Instructions

SIMATIC Counter InStruCtions i e e et

IEC Counter Instructions

High-Speed Counter INStrUCtiONS i

Pulse Output Instruction
Math Instructions

Add, Subtract, Multiply, and Divide Instructions i
Multiply Integer to Double Integer and Divide Integer with Remainder
Numeric Functions InStructions
Increment and Decrement Instructions
Proportional/Integral/Derivative (PID) Loop Instruction o i,

Interrupt Instructions

Logical Operations InStruCtions

Invert Instructions

AND, OR, and Exclusive OR InStructions i e

Move Instructions

Move Byte, Word, Double Word, or Real et
Move Byte Immediate (Read and Write) i

Block Move Instructions

63
64
66
66
68
70
72
73
74
74
79
88
89
89
91
92
92
96
100
105
106
106
109
111
125
140
140
142
143
144
145
155
162
162
163
165
165
166
167

61

S7-200 Programmable Controller System Manual

62

Program Control INStruCtions e

Conditional End .
Stop
Watchdog Reset .

For-Next Loop INStruCtioNSo

Jump Instructions
Sequence Control

Relay (SCR) Instructions i

Shift and Rotate INStructions
Shift Right and Shift Left Instructions
Rotate Right and Rotate Left Instructions
Shift Register Bit InStruction e
Swap Bytes Instruction e

String Instructions . ..
Table Instructions
Add To Table

First-In-First-Out and Last-In-First-Out i

Memory Fill
Table Find
Timer Instructions

SIMATIC Timer InStructions e et
IEC Timer INStruCtioNSo e e e e

Subroutine Instructions

168
168
168
168
170
172
173
179
179
179
181
183
184
189
189
190
192
193
196
196
201
203

S7-200 Instruction Set Chapter 6

Conventions Used to Describe the Instructions

Figure 6-1 shows a typical description for an instruction and points to the different areas used to describe
the instruction and its operation. The illustration of the instruction shows the format in LAD, FBD, and STL.
The operand table lists the operands for the instruction and shows the valid data types, memory areas
and sizes for each operand.

EN/ENO operands and data types are not shown in the instruction operand table because the operands
are the same for all LAD and FBD instructions.

(1 ForLAD: EN and ENO are power flow and are BOOL data types.
[ForFBD:ENand ENO arel, Q, V, M, SM, S, T, C, L, or power flow and are BOOL data types.

Description of the instruction

STL instruction LAD and FBD instructions
and operands

Transmit and Receive Instructions

\The Transtnit instuction CXMIT) is used in Freepor mode \ transmit

data by means of the corntmuni cation pors) . AMKIL £ BT]
List of the error conditions The Reseive insruction (RCY) inifiates of tenvinztes the Rec\ive Liz e

Message cerice. You rust specify o start and an end condiic\y for T
that affect ENO and any SM the Receive boy to operste. Messages recaivad trough the ELl W

. specified port (PORT) are stored in the dats buffer (TEL). The fin\ 1 &
bits affected &ritry in the dats bulfier specifies the nurmber of bybes received. FRT
i SELEND = 0
m SMEES OF SMTGR.6 error kil et (ROW parameter etror) e L5
u 0006 (indirect address) \‘
) MH I]

Q003 (simultaneous BMTIRCW on pott 01

= O00E [SiMuitanecus KMTIRCY an port 1) L o TH Fee

w S7-I00 CPU Mot in Fragpor mode E7 TEL FUR™

Table 6=11 Valid Opserands for the Transmit and Receive Instructions

INpuUREDUtp uts Data Type opeiands

TEL EYTE B IE, QE, ME, FE SME, ™Dy "AC, LD

/PDFET Y TE Con-gnt for CRFAAY SRNAAL LB AN]
SO DG 208 a0 DGR KA [T

Operands for the [
instruction Using Bzéeport Mede to Control/he Serial Communication Port

Yo Zan select the Fresport rode toZortrol the serisl cormmunicadion port of the S7-200 by rmeans of the
L veacwgrn). When you select Fre/aport rmode, your program cortrols the operstion of the com municaton
the wse of the receive Anterpts, the tran seit inte mupts, the Transmit instruction, and te

F ruction. The commy/ication protocol is entirely controlled by the ladder program while in
Valid data types iz 'swigz0 ar por/a end SMETF0 Gor part 1| your $7-200 has tro pans) ave weed o
bl rade aned prarty,

The Ereeport trode is disabl/d and monmal jcatior i

ished (for exarmple, programming

Valid memory areas and sizes for g only the Tran st OWITS

the operands 2k, & weighing soale, apd & walder. Ik
is Wsed by the device with which the

Freepert commmunicaton is possible only when the S7-200 is in the RN moede, Enakle the Fregport mods
by setiing a walue of 01 in the protocol select field of SMB30 (Fort 1) or SWIB130 (FPort 1. While in Freeport
rode, comrmunicstion with the prograrmming device is ot possible.

Tip

@ Ertsting Freeport mode can be controlled using special memorg bit SMI0.T, which reflects the cumrent
position of the opersting mode switch, When SM0.7 is egual to O, the switch is in TERM position; when
SMO.7 = 1, the operating rode switch is in FUM position. K you enable Freeport mose only when the
switch is in AWM pesition, you can wse the programming device te meniter or contrel the $7-200
operation by changing the switch to any other position,

Figure 6-1 Instruction Descriptions

63

S7-200 Programmable Controller System Manual

S$7-200 Memory Ranges and Features

Table 6-1 Memory Ranges and Features for the S7-200 CPUs
Description CPU 221 CPU 222 CPU 224 CPU 226 CPU 226XM
User program size 2 Kwords 2 Kwords 4 Kwords 4 Kwords 8 Kwords
User data size 1 Kwords 1 Kwords 2.5 Kwords 2.5 Kwords 5 Kwords
Process-image input register 10.0to 115.7 10.0to 115.7 10.0to 115.7 10.0to 115.7 10.0to 115.7
Process-image output register Q0.0to Q15.7 Q0.0to Q15.7 Q0.0to Q15.7 Q0.0to Q15.7 Q0.0t0o Q15.7
Analog inputs (read only) - AIWO0 to AIW30 AIWO0 to AIW62 AIWO0 to AIW62 AIWO0 to AIW62
Analog outputs (write only) - AQWO to AQW30 AQWO to AQW62 AQWO to AQW62 AQWO to AQW62
Variable memory (V) VBO to VB2047 VBO to VB2047 VBO to VB5119 VBO to VB5119 VBO to VB10239
Local memory (L)1 LBO to LB63 LBO to LB63 LBO to LB63 LBO to LB63 LBO to LB63
Bit memory (M) MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7

Special Memory (SM)

Read only

Timers

Retentive on-delay 1ms
10 ms
100 ms

On/Off delay 1ms
10 ms
100 ms

Counters

High-speed counters

Sequential control relays (S)
Accumulator registers
Jumps/Labels
Call/Subroutine

Interrupt routines
Positive/negative transitions
PID loops

Ports

SMO0.0 to SM179.7
SMO0.0 to SM29.7
256 (TO to T255)
T0, T64

T1 to T4, and
T65 to T68

T5to0 T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

CO0 to C255

HCO, HC3, HC4,
and HC5

S0.0 to S31.7
ACO to AC3
0to 255

0to 63

Oto 127

256

Oto7

Port 0

SMO0.0 to SM299.7
SMO0.0 to SM29.7
256 (TO to T255)
T0, T64

T1 to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

CO0 to C255

HCO, HC3, HC4,
and HC5

S0.0 to S31.7
ACO to AC3
0to 255

0to 63

Oto 127

256

Oto7

Port 0

1 LB60 to LB63 are reserved by STEP 7-Micro/WIN, version 3.0 or later.

64

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
T0, T64

T1 to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

CO0 to C255
HCO to HC5

S0.0 to S31.7
ACO to AC3
0to 255

0to 63

Oto 127

256

Oto7

Port 0

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
T0, T64

T1 to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

CO0 to C255
HCO to HC5

S0.0 to S31.7
ACO to AC3
0to 255

0to 63

Oto 127

256

Oto7

Port 0, Port 1

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
T0, T64

T1 to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33 to T36, and
T97 to T100

T37 to T63, and
T101 to T255

CO0 to C255
HCO to HC5

S0.0 to S31.7
ACO to AC3
0to 255

Oto 127

Oto 127

256

Oto7

Port 0, Port 1

S7-200 Instruction Set Chapter 6
Table 6-2 Operand Ranges for the S7-200 CPUs
Access Method CPU 221 CPU 222 CPU 224, CPU 226 CPU 226XM
Bit access (byte.bit) | 0.0t0 15.7 0.0t0 15.7 0.0t0 15.7 0.0t0 15.7
Q 0.0to 15.7 0.0to 15.7 0.0to 15.7 0.0to 15.7
\Y 0.0 to 2047.7 0.0 to 2047.7 0.0t0 5119.7 0.0 to 10239.7
M 0.0t0 31.7 0.0t0 31.7 0.0t0 31.7 0.0t0 31.7
SM 0.0to 179.7 0.0 t0 299.7 0.0 to 549.7 0.0 to 549.7
S 0.0t0 31.7 0.0t0 31.7 0.0t0 31.7 0.0t0 31.7
T 0 to 255 0to 255 0to 255 0to 255
C 0to 255 0to 255 0to 255 0to 255
L 0.0t0 59.7 0.0t0 59.7 0.0t0 59.7 0.0t0 59.7
Byte access 1B Oto 15 Oto 15 Oto 15 Oto 15
QB Oto 15 Oto 15 Oto 15 Oto 15
VB 0 to 2047 0 to 2047 0to 5119 0to 10239
MB 0 to 31 0 to 31 0 to 31 0to 31
SMB 0to 179 0 to 299 0to 549 0to 549
SB 0 to 31 0 to 31 0 to 31 0 to 31
L 0to 63 0to 63 0to 63 0to 255
AC 0to3 Oto3 0to3 0to 255
Word access W Oto 14 Oto 14 Oto 14 Oto 14
Qw Oto 14 Oto 14 Oto 14 Oto 14
VW 0 to 2046 0 to 2046 0to 5118 0to 10238
MW 0to 30 0to 30 0to 30 0to 30
SMW 0to 178 0 to 298 0to 548 0to 548
SW 0to 30 0to 30 0to 30 0to 30
T 0 to 255 0to 255 0to 255 0to 255
C 0to 255 0to 255 0to 255 0to 255
LW Oto 58 Oto 58 Oto 58 Oto 58
AC 0to3 0to3 0to3 0to3
AW None 0to 30 0to 62 0to 62
AQW None 0to 30 0to 62 0to 62
Double word access ID Oto 12 Oto 12 Oto 12 Oto 12
QD Oto12 Oto12 Oto12 Oto12
VD 0 to 2044 0 to 2044 Oto 5116 0to 10236
MD Oto 28 Oto 28 Oto 28 Oto 28
SMD 0to 176 0 to 296 0to 546 0to 546
SD Oto 28 Oto 28 Oto 28 Oto 28
LD 0to 56 0to 56 0to 56 0to 56
AC 0to3 0to3 0to3 0to3
HC 0,345 0,345 Oto5 Oto5

65

S7-200 Programmable Controller System Manual

Bit Logic Instructions

Contacts
Standard Contacts p— |Ec1131]
The Normally Open contact instructions (LD, A, and O) and
Normally Closed contact instructions (LDN, AN, ON) obtain the Ll L

referenced value from the memory or from the process-image
register. The standard contact instructions obtain the referenced
value from the memory (or process-image register if the data type is
I or Q).

=
=

=
=

The Normally Open contact is closed (on) when the bit is equal to 1,
and the Normally Closed contact is closed (on) when the bit is equal
to 0. In FBD, inputs to both the And and Or boxes can be expanded
to a maximum of 32 inputs. In STL, the Normally Open instructions

1 F
17k
1F
Load, AND, or OR the bit value of the address bit to the top of the 1
~porf
4k
Huk

=
=

0000000,

stack, and the Normally Closed instructions Load, AND, or OR the
logical NOT of the bit value to the top of the stack.

Immediate Contacts

An immediate contact does not rely on the S7-200 scan cycle to
update; it updates immediately. The Normally Open Immediate
contact instructions (LDI, Al, and Ol) and Normally Closed
Immediate contact instructions (LDNI, ANI, and ONI) obtain the
physical input value when the instruction is executed, but the

process-image register is not updated.

The Normally Open Immediate contact is closed (on) when the SIMATIC l

physical input point (bit) is 1, and the Normally Closed Immediate oTL

contact is closed (on) when the physical input point (bit) is 0. The LD Bit Lol Eit
Normally Open instructions immediately Load, AND, or OR the A Eit Al Eit
physical input value to the top of the stack, and the Normally Closed © Er ol Bt
instructions immediately Load, AND, or OR the logical NOT of the o cLil B
value of the physical input point to the top of the stack. oM Bit oMl Bit

HoT
NOT Instruction Eg

The Not instruction (NOT) changes the state of power flow input

(that is, it changes the value on the top of the stack from O to 1 or
from 1 to 0).

Positive and Negative Transition Instructions

The Positive Transition contact instruction (EU) allows power to flow for one scan for each off-to-on
transition. The Negative Transition contact instruction (ED) allows power to flow for one scan for each
on-to-off transition. For the Positive Transition instruction, detection of a 0-to-1 transition in the value on
the top of the stack sets the top of the stack value to 1; otherwise, it is set to 0. For a Negative Transition
instruction, detection of a 1-to-0 transition in the value on the top of the stack sets the top of the stack
value to 1; otherwise, it is set to 0.

For run-time editing (when you edit your program in RUN mode), you must enter a parameter for the
Positive Transition and Negative Transition instructions. Refer to Chapter 5 for more information about
editing in RUN mode.

Table 6-3 Valid Operands for the Bit Logic Input Instructions

Inputs/Outputs Data Type Operands
Bit BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow
Bit (immediate) BOOL |

66

S7-200 Instruction Set

Chapter 6

Tip
@ Because the Positive Transition and Negative Transition instructions require an on-to-off or an off-to-on
transition, you cannot detect an edge-up or edge-down transition on the first scan. During the first scan,

the S7-200 sets the state of the bit specified by these instructions. On subsequent scans, these

instructions can then detect transitions for the specified bit.

Example: Contact Instructions

Network 3 //Q0.5 are too fast to be visible in program status view.
104 Q0.3 /[The Set and Reset outputs latch the pulse in Q0.3 and
_| I I P I__(5) //make the state change visible in program status view.
1 LD 10.4
Q0.4 LPS
EU
—) S Q0.3, 1
@n.3 EPP Q0.4
o L ED
! R Q0.3, 1
Q0.5 = Q0.5
=)
Timing Diagram Network 1
10,0 _l—\—l—l
01 | | |) S
Q0.0 ;
Q0.1 ‘
Network 2

oz L

10.3 ! oo J
Qo2 | ‘ ‘ |
Network 3

10.4 —l—|

3 __ 1

: <«---On for One scan
Qo4] i

Q0.5

h(---On for One scan

Network 1 Network 1 //N.O. contacts 10.0 AND 10.1 must be on (closed) to activate
0.0 104 an.o //Q0.0. The NOT instruction acts as an inverter.
_| ' | | ' ') //In RUN mode, Q0.0 and Q0.1 have opposite logic states.
LD 10.0
Q0.1 '_A 8010
ot—C) Nor
= Q0.1
Network 2 //N.O. contact 10.2 must be on or N.C. contact 10.3 must be off
Netuork 2 /to activate Q0.2. One or more parallel LAD branches
0.2 @02 //(OR logic inputs) must be true to make the output active.
_|) LD 10.2
ON 10.3
10.3 = Qo0.2
_| / Network 3 //A positive Edge Up input on a P contact or a negative Edge

//Down input on a N contact outputs a pulse with a 1 scan cycle
/[duration. In RUN mode, the pulsed state changes of Q0.4 and

67

S7-200 Programmable Controller System Manual

Coils
Output SIMATIC / [EC 1131]
The Output instruction (=) writes the new value for the output bit to
the process-image register. When the Output instruction is LAD G _ FED
executed, the S7-200 turns the output bit in the process-image it it
register on or off. For LAD and FBD, the specified bit is set equal to _(:I —|I|
power flow. For STL, the value on the top of the stack is copied to it it
the specified bit. _(
1) | L]
Output Immediate it Eit
1

The Output Immediate instruction (=I) writes the new value to both _(p :| 7 3
the physical output and the corresponding process-image register M g Li :
location when the instruction is executed. Eit Eit

. 51
When the Output Immediate instruction is executed, the physical _(Bl :I o
output point (Bit) is immediately set equal to power flow. For STL, N Bit
the instruction immediately copies the value on the top of the stack Bit _ P
to the specified physical output bit (STL). The “I” indicates an _(i :| A
immediate reference; the new value is written to both the physical N Eit
output and the corresponding process-image register location when Eit | RI
the instruction is executed. This differs from the non-immediate —(RI :l du
references, which write the new value to the process-image register M
only.
Set and Reset SIMATIC]
The Set (S) and Reset (R) instructions set (turn on) or reset (turn off) =
the specified number of points (N), starting at the specified address = Bit =1 GEit
(Bit). You can set or reset from 1 to 255 points. g g::m g% g::m
If the Reset instruction specifies either a timer bit (T) or counter bit

(C), the instruction resets the timer or counter bit and clears the
current value of the timer or counter.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)

Set Immediate and Reset Immediate

The Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately reset (turn
off) the number of points (N), starting at specified address (Bit). You can set or reset from 1 to 128 points
immediately.

The “I” indicates an immediate reference; when the instruction is executed, the new value is written to
both the physical output point and the corresponding process-image register location. This differs from
the non-immediate references, which write the new value to the process-image register only.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)

Table 6-4 Valid Operands for the Bit Logic Output Instructions

Inputs/Outputs Data Type Operands

Bit BOOL ,Q,V,M,SM, S, T,C, L

Bit (immediate) BOOL Q

N BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

68

S7-200 Instruction Set Chapter 6

Example: Coil Instructions

Network 1
0.0 Q0.0
—)
Qo
)
0.0

Network 2
0.1 Qo2

— =)

Network 3
0.2 Qo2

— (")

Network 4
0.3 0.4 Q
‘ 0.5 o]
Network 5
08 Q1.0
—)
Timing Diagram

Network 1 //Output instructions assign bit values to external I/O (I, Q)
/fand internal memory (M, SM, T, C, V, S, L).
LD 10.0
= Q0.0
= Q0.1
V0.0
Network 2 //Set a sequential group of 6 bits to a value of 1.
//Specify a starting bit address and how many bits to set.
/[The program status indicator for Set is ON when the value
//of the first bit (Q0.2) is 1.
LD 10.1
S Q0.2,6
Network 3 //Reset a sequential group of 6 bits to a value of 0.
//Specify a starting bit address and how many bits to reset.
/[The program status indicator for Reset is ON when the value
/lof the first bit (Q0.2) is 0.
LD 10.2
R Q0.2,6
Network 4 //Sets and resets 8 output bits (Q1.0 to Q1.7) as a group.
LD 10.3
LPS
A 10.4
S Q1.0, 8
1.0 LPP
5) A 10.5
g R Q1.0, 8
1.0 Network 5 //The Set and Reset instructions perform the function of a latched relay.
R /[To isolate the Set/Reset bits, make sure they are not overwritten by
8 /lanother assignment instruction. In this example, Network 4 sets and
/Iresets eight output bits (Q1.0 to Q1.7) as a group.
//In RUN mode, Network 5 can overwrite the Q1.0 bit value and
/[control the Set/Reset program status indicators in Network 4.
LD 10.6
= Q1.0
Network 1
10.0
Q0.0, Q0.1, V0.0 1
Networks 2 and 3
10.1 (Set)]
10.2 (Reset) ‘
I
Reset to 0 overwrites Set to 1, because the program ~ ___________ »
scan executes the Network 3 Reset after the Network 2
Set
Networks 4 and 5
10.3
10.4 (Set) .l 1
10.5 (Reset) 1 1
10.6 ‘ 1
Q1.0 ‘ M
\ \ A/ vV

Network 5 Output bit (=) instruction overwrites the first bit (Q1.0)
Set/Reset in Network 4, because the program scan executes the
Network 5 assignment last

69

S7-200 Programmable Controller System Manual

70

Logic Stack Instructions

AND Load

SIMATIC

The AND Load instruction (ALD) combines the values in the first and
second levels of the stack using a logical AND operation. The result STL
is loaded in the top of stack. After the ALD is executed, the stack HO']_%
depth is decreased by one. LFS

LR
OR Load LPP
The OR Load instruction (OLD) combines the values in the first and EEEO M
second levels of the stack, using a logical OR operation. The result

is loaded in the top of the stack. After the OLD is executed, the stack
depth is decreased by one.

Logic Push

The Logic Push instruction (LPS) duplicates the top value on the stack and pushes this value onto the
stack. The bottom of the stack is pushed off and lost.

Logic Read

The Logic Read instruction (LRD) copies the second stack value to the top of stack. The stack is not
pushed or popped, but the old top-of-stack value is destroyed by the copy.

Logic Pop
The Logic Pop instruction (LPP) pops one value off of the stack. The second stack value becomes the
new top of stack value.

AND ENO

The AND ENO instruction (AENO) performs a logical AND of the ENO bit with the top of the stack to
generate the same effect as the ENO bit of a box in LAD or FBD. The result of the AND operation is the
new top of stack.

ENO is a Boolean output for boxes in LAD and FBD. If a box has power flow at the EN input and is
executed without error, the ENO output passes power flow to the next element. You can use the ENO as
an enable bit that indicates the successful completion of an instruction. The ENO bit is used with the top of
stack to affect power flow for execution of subsequent instructions. STL instructions do not have an EN
input. The top of the stack must be a logic 1 for conditional instructions to be executed. In STL there is
also no ENO output. However, the STL instructions that correspond to LAD and FBD instructions with
ENO outputs set a special ENO bit. This bit is accessible with the AENO instruction.

Load Stack

The Load Stack instruction (LDS) duplicates the stack bit (N) on the stack and places this value on top of
the stack. The bottom of the stack is pushed off and lost.

Table 6-5 Valid Operands for the Load Stack Instruction

Inputs/Outputs Data Type Operands

N BYTE Constant (0 to 8)

S7-200 Instruction Set

Chapter 6

As shown in Figure 6-2, the S7-200 uses a logic stack to resolve the control logic. In these examples, “iv0
to “iv7” identify the initial values of the logic stack, “nv” identifies a new value provided by the instruction,
and “S0” identifies the calculated value that is stored in the logic stack.

ALD Before After OoLD Before After LDS Before After
AND the top ivo S0 OR the top two ivo S0 Load Stack | o iv3
two stack v w2 | | stack values ivi v2 ivi \ VO
values iv2 / iv3 iv2 / iv3 iv2 \ iv1
iv3 / iva iv3 / iva iv3 \ iv2
iva / iv5 iva / iv5 iva \ iv3
iv5 / iv6 iv5 / iv6 iv5 \ iva
v6 / v7 v6 / v7 v6 a 5
v7 / iv8 v7 / v8 v7 \ iv6
S0 = iv0 AND iv1 iv8 / x1 S0 =ivO OR iv1 iv8 / x1 ive2 \ iv7
LPS Before Atter | LRD Before Atter | LPP Before After
Logic Push VO ivo | |Logic Read VO iv1 Logic Pop [ivo iv1
iv1 \ ivO iv1 / iv1 iv1 / iv2
iv2 \ iv1 iv2 iv2 iv2 / iv3
iv3 \ iv2 iv3 iv3 iv3 / iva
iva \ iv3 iva iva iva / iv5
iv \ ivd iv iv iv5 / ive
iv6 \ iv5 iv6 iv6 iv6 / v7
iv7 \ iv6 iv7 iv7 iv7 / iv8
ive2 \ iv7 iv8 iv8 iv8 / x1

1 The value is unknown (it could be either a 0 or a 1).

2 After the execution of a Logic Push or a Load Stack instruction, value iv8 is lost.

Figure 6-2

Example: Logic Stack Instructions

Operations of the Logic Stack Instructions

Metwork 1
0.0 0.1
] | | |
1 I 1 |
120 121
| | | |
1 | 1 I
Metwork 2
0.0 0.5 Q7.0
| | | | {)
I 1 | .
0.6
| |
1 |
121 6.0
| | {
1 | N)
1.3

Network 1
LD 10.0
LD 10.1
LD 12.0
A 12.1
OoLD

ALD

= Q5.0
Network 2
LD 10.0
LPS

LD 10.5
(0] 10.6
ALD

= Q7.0
LRD

LD 12.1
(0] 1.3
ALD

= Q6.0
LPP

A 11.0
= Q3.0

71

S7-200 Programmable Controller System Manual

72

Set and Reset Dominant Bistable Instructions

The Set Dominant Bistable is a latch where the set dominates. If the

set (S1) and reset (R) signals are both true, the output (OUT) is true.

The Reset Dominant Bistable is a latch where the reset dominates.
If the set (S) and reset (R1) signals are both true, the output (OUT)
is false.

The Bit parameter specifies the Boolean parameter that is set or
reset. The optional output reflects the signal state of the Bit
parameter.

Table 6-7 shows the truth tables for the sample program.

SIMATIC / IEC1131
LA FED:
Bit Bit
=1 auTh | =1 ouT |

SR R 5
R

Bit Bit
= auTh | = ouT |

RS R RS
k1

Table 6-6 Valid Operands for the Set Dominant Bistable and Reset Dominant Bistable Instructions
Inputs/Outputs Data Types Operands

S1,R BOOL 1,Q,V,M, SM, S, T, C, Power Flow

S, R1, OUT BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Bit BOOL ,Q,V,M, S

Example: Set and Reset Dominant Bistable Instructions

Network 1 Timing Diagram
0.0 Q0.0
— b——Js7 ou— Set 0.0
SR
_|'D-1 . Reset 10.1 _|
SR Q0.0
Network 2
0.0 Q0.1 RS Qo.1 4
— —J ou—
RS
0.1
- —F

Table 6-7 Truth Table for the Set and Reset Dominant Bistable Instructions
Instruction S1 R Out (Bit)
Set Dominant Bistable instruction (SR) 0 0 Previous state
1 0
1 0 1
1 1 1
Instruction S R1 Out (Bit)
Reset Dominant Bistable instruction (RS) 0 0 Previous state
0 1 0
1 0 1
1 1 0

S7-200 Instruction Set Chapter 6

Clock Instructions

Read ReaI'Time ClOCk and set ReaI'Time Clock SIMATIC & IEC1131

¥

The Read Real-Time Clock (TODR) instruction reads the current

time and date from the hardware clock and loads it in an 8-byte LAD FED
Time buffer starting at address T. The Set Real-Time Clock (TODW) READ_RTC READ_RTC
instruction writes the current time and date to the hardware clock, - EM EMO = | —{EM EMZ =
beginning at the 8-byte Time buffer address specified by T. At alll
You must code all date and time values in BCD format (for example,
16#97 for the year 1997). Figure 6-3 shows the format of the Time (IR AU SV
buffer (T).
The time-of-day (TOD) clock initializes the following date and time SIMATIC
after extended power outages or when memory has been lost: =
Date: 01-Jan-90 Tobm 1
Time: 00:00:00
Day of Week: Sunday
Error conditions that set ENO = 0
m 0006 (indirect address)
m 0007 (TOD data error) Set Real-Time Clock only
m 000C (clock not present)
Table 6-8 Valid Operands for the Clock Instructions
Inputs/Outputs Data Types Operands
T BYTE 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
T T+1 T+2 T+3 T+4 T+5 T+6 T+7
Year: Month: Day: Hours: Minutes: Seconds: 0 Day of Week:
00 to 99 01to012 01 to 31 00 to 23 00 to 59 00 to 59 0to 7*

*T+7 1=Sunday, 7=Saturday
0 disables the day of week.

Figure 6-3 Format of the 8-Byte Time Buffer (T)

Tip
The S7-200 CPU does not perform a check to verify that the day of week is correct based upon the

date. Invalid dates, such as February 30, could be accepted. You should ensure that the date you enter
is correct.

Do not use the TODR/TODW instruction in both the main program and in an interrupt routine. A
TODR/TODW instruction in an interrupt routine that attempts to execute while another TODR/TODW
instruction is in process cannot be executed. SM4.3 is set indicating that two simultaneous accesses to
the clock were attempted (non-fatal error 0007).

The time-of-day clock in the S7-200 uses only the least significant two digits for the year, so for the year
2000, the year is represented as 00. The S7-200 PLC does not use the year information in any way.
However, user programs that use arithmetic or compares with the year’s value must take into account
the two-digit representation and the change in century.

Leap year is correctly handled through year 2096.

73

S7-200 Programmable Controller System Manual

Communications Instructions

Network Read and Network Write Instructions

Instruction
Wizard

74

The Network Read instruction (NETR) initiates a communications

; : I SIMATIC ¢ [EC 1131
operation to gather data from a remote device through the specified

port (PORT), as defined by the table (TBL). The Network Write LAD FED
instruction (NETW) initiates a communications operation to write

data to a remote device through the specified port (PORT), as den NETRENO | gy NETRENO |
defined by the table (TBL). o
Error conditions that set ENO = 0: : :glﬁT | PERT
m 0006 (indirect address)
m If the function returns an error and sets the E bit of table status byte (see METR MET!
Figure 6-4)
SIMATIE

The Network Read instruction can read up to 16 bytes of information
from a remote station, and the Network Write instruction can write up | [zp

to 16 bytes of information to a remote station. METR TEL,PORT
MET' TEL,PORT

You can have any number of Network Read and Network Write

instructions in the program, but only a maximum of eight Network
Read and Network Write instructions can be activated at any one
time. For example, you can have 4 Network Read and 4 Network
Write instructions, or 2 Network Read and 6 Network Write
instructions, active at the same time in a given S7-200.

You can use the Network Read/Network Write Instruction Wizard to configure the counter. To start the
Network Read/Network Write Instruction Wizard, select the Tools > Instruction Wizard menu command
and then select Network Read/Network Write from the Instruction Wizard window.

Table 6-9 Valid Operands for the Network Read and Network Write Instructions

Inputs/Outputs Data Type Operands
TBL BYTE VB, MB, *VD, *LD, *AC
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 226 and CPU 226XM: Oori

S7-200 Instruction Set Chapter 6

Figure 6-4 describes the table that is referenced by the TBL parameter, and Table 6-10 lists the error

codes.
Byte D Done (function has been completed): 0 = not done 1 =done
Offset 7 0 A Active (function has been queued): 0=notactive 1 = active
0 D|A|E]| 0] Erorcode| E Error (function returned an error): 0 = no error 1 = error
1 Remote station address Remote station address: the address of the PLC whose data is to be accessed.
2 Pointer to the data . . . - .
- Pointer to the data area in the remote station: an indirect pointer to the data that
3 area in the is to be accessed.
4 remote station
5 (I, Q, M, or V) Data length: the number of bytes of data that are to be accessed in the remote
6 Data length station (1 to 16 bytes).
7 Data byte 0 Receive or transmit data area. 1 to 16 bytes reserved for the data.
8 Data byte 1 For a Network Read instruction, stores the values that were read from the
: remote station when the instruction was executed.
22 Data byte 15 For a Network Write instruction, stores the values to be sent to the remote

station when the instruction is executed.

Figure 6-4 TBL Parameter for the Network Read and Network Write Instructions

Table 6-10 Error Codes for the TBL Parameter

Code

Definition

0
1

a »~» ODN

o N O

9

No error.

Time-out error: Remote station not responding.

Receive error: Parity, framing, or checksum error in the response.

Offline error: Collisions caused by duplicate station addresses or failed hardware.

Queue overflow error: More than 8 Network Read or Network Write instructions have been activated.

Protocol violation: Attempt to execute a Network Read or Network Write instruction without enabling the PPI
Master Mode in SMB30 or SMB130.

llegal parameter: TBL parameter contains an illegal or invalid value.

No resource: Remote station is busy. (An upload or a download sequence is in process.)
Layer 7 error: Application protocol violation

Message error: Wrong data address or incorrect data length

AtoF Notused. (Reserved)

Figure 6-5 shows an example to illustrate the utility of the Network Read and Network Write instructions.
For this example, consider a production line where tubs of butter are being filled and sent to one of four
boxing machines (case packers). The case packer packs eight tubs of butter into a single cardboard box.
A diverter machine controls the flow of butter tubs to each of the case packers. Four S7-200s control the
case packers, and an S7-200 with a TD 200 operator interface controls the diverter.

75

S7-200 Programmable Controller System Manual

Case Packer #1 Case Packer #2 Case Packer #3 Case Packer #4 Diverter
Station 2 Station 3 Station 4 Station 5 Station 6 TD 200 Station 1
— — — = — —
= 7 = a7 [= £25640
=l
VB100 | Control VB100 | Control VB100 | Control VB100 | Control VB200 | Rev VB300 | Xmt
VW101 | Status VW101 | Status VW101 | Status VW101 | Status Buffers Buffers
VB100 | f | e | e | e | 0 | g | b | t | Control VB200 Receive buffer VB300 Transmit buffer
Setus VEE Station 2 Station 2
atus
VB101 Number of VB210 Receive buffer VB310 Transmit buffer
------------ Station 3 Station
VB102 cases packed e VB220 Receive buffer VB320 Transmit buffer
Station 4 Station 4
VB230 Receive buffer VB330 Transmit buffer
t Out of butter tubs to pack; t=1, out of butter tubs Station 5 Station

b Box supply is low; b=1, must add boxes in the
next 30 minutes

g Glue supply is low; g=1, must add glue in the next 30 minutes
eee error code identifying the type of fault experienced
f Fault indicator; f=1, the case packer has detected an error

Figure 6-5 Example of the Network Read and Network Write Instructions

Figure 6-6 shows the receive buffer (VB200) and transmit buffer (VB300) for accessing the data in
station 2. The S7-200 uses a Network Read instruction to read the control and status information on a
continuous basis from each of the case packers. Each time a case packer has packed 100 cases, the
diverter notes this and sends a message to clear the status word using a Network Write instruction.

Receive Buffer for reading from Case Packer #1 Transmit Buffer for clearing the count of Case Packer #1
7 0 7 0

ve2oo [D [A [E [0 [Error Code vesoo | D [A [E [0 | ErrorCode
VB201 Remote station address = 2 VB301 Remote station address = 2
VB202 Pointer to the VB302 Pointer to the
VB203 data area VB303 data area
VB204 in the VB304 in the
VB205 Remote station = (&VB100) VB305 Remote station = (&VB101)
VB206 Data length = 3 bytes VB306 Data length = 2 bytes
VB207 Control VB307 0
VB208 Status (MSB) VB308 0
VB209 Status (LSB)

Figure 6-6 Sample TBL Data for the Network Read/Write Example

76

S7-200 Instruction Set Chapter 6

Example: Network Read and Network Write Instructions

Network 1
SMo MOW_B

— | e Enof—

241N OUTESMB30

FILL_M

BN ENof—)

+04IM

OUTEWAZO0

Network 2
w2007 wMOY_B

_| I I::|= EN ENOH

OUTFYB3M

MOV_Difd

BN ENo[—Y

LvB1014IM

QUTYD302

MOV_B

BN ENo—

OUTHYB306

MOV _iA

EM EMNO H

+04IM

QUTEFYW3I07

METW

EN ENO %

WB3004THL
04PORT

Network 3
w2007 MOY_B

— I B

WBEZ0TAIM QUTEYB400

Network 1 //On the first scan, enable the PPl master mode
/and clear all receive and transmit buffers.

LD SMO0.1

MOVB 2, SMB30

FILL +0, VW200, 68

Network 2 //When the NETR Done bit (V200.7) is set
/fand 100 cases have been packed:
/1. Load the station address of case packer #1.
//2. Load a pointer to the data in the remote station.
//3. Load the length of data to be transmitted.
//4. Load the data to transmit.
//5. Reset the number of cases packed
/| by case packer #1

LD V200.7

AW= VW208, +100

MOVB 2, VB301

MOVD &VB101, VD302

MOVB 2, VB306

MOVW +0, VW307

NETW VB300, 0

Network 3 //When the NETR Done bit is set, save the control
//data from case packer #1.

LD V200.7

MOVB VB207, VB400

77

S7-200 Programmable Controller System Manual

Example: Network Read and Network Write Instructions , continued

Network 4 //If not the first scan and there are no errors:
Network 4 /1. Load the station address of case packer #1.
501 Y2006 v200.5 WMoY B //2. Load a pointer to the data in the remote station.
=Kz | 7} | 1} N enof—Y //3. Load the length of data to be received.
//4. Read the control and status data
4N ouThvezo1 /| in case packer #1.
LDN SMO.1
— AN V200.6
- AN

V200.5
e =o—3 Vove 2, VB201
MOVD &VB100, VD202
MOVB 3, VB206
NETR VB200, 0

SVB100IN QUTEFYDZ202

MOV_B

N

3N OUTEYB206

MNETR

BN ENof—)

YB2004TBL
04FORT

78

S7-200 Instruction Set Chapter 6

Transmit and Receive Instructions (Freeport)

The Transmit instruction (XMT) is used in Freeport mode to transmit

- SIMATI
data by means of the communications port(s). © o IECTTS
The Receive instruction (RCV) initiates or terminates the receive LAD FED
message function. You must specify a start and an end condition for HMT HMT
the Receive box to operate. Messages received through the | EM EMC = | —EM EMG =
specified port (PORT) are stored in the data buffer (TBL). The first 7 TEL

i e ; 7 TeL ~{FORT
entry in the data buffer specifies the number of bytes received. dpoRT
Error conditions that set ENO = 0
m 0006 (indirect address) AMT REY
m 0009 (simultaneous Transmit/Receive on port 0)

SIMATIC
m 000B (simultaneous Transmit/Receive on port 1)
i STL

m Receive parameter error sets SM86.6 or SM186.6 WMT TEL, PORT
m S7-200 CPU is not in Freeport mode Ry TEL.PORT

Table 6-11 Valid Operands for the Transmit and Receive Instructions

Inputs/Outputs Data Type Operands
TBL BYTE IB, QB, VB, MB, SMB, SB, *VD, *LD, *AC
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 226 and CPU 226XM: Oori

For more information about using Freeport mode, see the section Creating User-Defined Protocols with
Freeport Mode on page 222 in Chapter 7.

Using Freeport Mode to Control the Serial Communications Port

You can select the Freeport mode to control the serial communications port of the S7-200 by means of the
user program. When you select Freeport mode, your program controls the operation of the
communications port through the use of the receive interrupts, the transmit interrupts, the Transmit
instruction, and the Receive instruction. The communications protocol is entirely controlled by the ladder
program while in Freeport mode. SMB30 (for port 0) and SMB130 (for port 1 if your S7-200 has two ports)
are used to select the baud rate and parity.

The Freeport mode is disabled and normal communications are re-established (for example, programming
device access) when the S7-200 is in STOP mode.

In the simplest case, you can send a message to a printer or a display using only the Transmit (XMT)
instruction. Other examples include a connection to a bar code reader, a weighing scale, and a welder. In
each case, you must write your program to support the protocol that is used by the device with which the
S7-200 communicates while in Freeport mode.

Freeport communications are possible only when the S7-200 is in RUN mode. Enable the Freeport mode
by setting a value of 01 in the protocol select field of SMB30 (Port 0) or SMB130 (Port 1). While in Freeport
mode, communications with the programming device are not possible.

Tip
@ Freeport mode can be controlled using special memory bit SM0.7, which reflects the current position of
the operating mode switch. When SMO0.7 is equal to 0, the switch is in TERM position; when SM0.7 = 1,
the operating mode switch is in RUN position. If you enable Freeport mode only when the switch is in
RUN position, you can use the programming device to monitor or control the S7-200 operation by
changing the switch to any other position.

79

S7-200 Programmable Controller System Manual

Changing PPl Communications to Freeport Mode

SMB30 and SMB130 configure the communications ports, 0 and 1 respectively, for Freeport operation and
provide selection of baud rate, parity, and number of data bits. Figure 6-7 describes the Freeport control
byte. One stop bit is generated for all configurations.

MSB LsB
! 0 bbb: Freeport baud rate
|P|P|d|b|b|b|m|m| 000= 38,400 baud
SMB30 = Port 0 0?1 i 19,200bbagd
SMB130 = Port 1 010= 9,600 bau
011 = 4,800 baud
100 = 2,400 baud
pp: Parity select 101 = 1,200 baud .
00 = no parity 110= 115.2 kbaud! 1 §7-200 CPUs version 1.2 or later
01= even parity 111= 57.6 kbaud' support the 57.6 kbaud and
10= no parity mm: Protocol selection 115.2 kbaud rates.
1= odd parity 00 = PPI/slave mode
d: Data bits per character 01= Freeport protocol
0= 8 bits per character 10= PPIl/master mode
1= 7 bits per character 1= Reserved (defaults to PPl/slave mode)

Figure 6-7 SM Control Byte for Freeport Mode (SMB30 or SMB130)

Transmitting Data
The Transmit instruction lets you send a buffer of one or more characters, up to a maximum of 255.

Figure 6-8 shows the format of the Transmit
buffer.

CountM|E|S|S|A|G|E
' | Characters of the message \
If an interrupt routine is attached to the transmit C g
complete event, the S7-200 generates an

interrupt (interrupt event 9 for port 0 and interrupt
event 26 for port 1) after the last character of the

buffer is sent. Figure 6-8 Format for the Transmit Buffer

Number of bytes to transmit (byte field)

You can make transmissions without using interrupts (for example, sending a message to a printer) by
monitoring SM4.5 or SM4.6 to signal when transmission is complete.

You can use the Transmit instruction to generate a BREAK condition by setting the number of characters
to zero and then executing the Transmit instruction. This generates a BREAK condition on the line for
16-bit times at the current baud rate. Transmitting a BREAK is handled in the same manner as transmitting
any other message, in that a Transmit interrupt is generated when the BREAK is complete and SM4.5 or
SM4.6 signals the current status of the Transmit operation.

Receiving Data
The Receive instruction lets you receive a buffer of one or more characters, up to a maximum of 255.

End

Figure 6-9 shows the format of the Receive Count | Start
Char

buffer. Char

[
. L . \ Characters of the message |
If an interrupt routine is attached to the receive e - T °

message complete event, the S7-200 generates
an interrupt (interrupt event 23 for port 0 and
interrupt event 24 for port 1) after the last
character of the buffer is received. Figure 6-9 Format for the Receive Buffer

[vlefefs]ale]e]

Number of bytes received (byte field)

You can receive messages without using interrupts by monitoring SMB86 (port 0) or SMB186 (port 1). This
byte is non-zero when the Receive instruction is inactive or has been terminated. It is zero when a receive
is in progress.

80

S7-200 Instruction Set Chapter 6

%

As shown in Table 6-12, the Receive instruction allows you to select the message start and message end
conditions, using SMB86 through SMB94 for port 0 and SMB186 through SMB194 for port 1.

Tip

The receive message function is automatically terminated in case of an overrun or a parity error. You
must define a start condition and an end condition (maximum character count) for the receive message
function to operate.

Table 6-12 Bytes of the Receive Buffer (SMB86 to SMB94, and SM1B86 to SMB194)
Port 0 Port 1 Description
SMB86 SMB186 Receive message status byte MgB LgB
[nfrfefofolefecle]
n: 1= Receive message function terminated: user issued disable command.
r 1= Receive message function terminated: error in input parameters
or missing start or end condition.
e 1= End character received.
t: 1= Receive message function terminated: timer expired.
c 1= Receive message function terminated: maximum character count achieved.
p 1= Receive message function terminated: a parity error.
SMB87 SMB187 Receive message control byte MgB LSOB
|en |sc |ec | il |c/m|tmr| bk| 0 |
en: 0 =Receive message function is disabled.
1 =Receive message function is enabled.
The enable/disable receive message bit is checked each time
the RCV instruction is executed.
sc: 0 =Ignore SMB88 or SMB188.
1 =Use the value of SMB88 or SMB188 to detect start of message.
ec: 0 =Ignore SMB89 or SMB189.
1 =Use the value of SMB89 or SMB189 to detect end of message.
il.: ~ 0=Ignore SMW90 or SMW190.
1 =Use the value of SMW90 or SMW190 to detect an idle line condition.
¢/m: 0 =Timer is an inter-character timer.
1 =Timer is a message timer.
tmr: 0 =Ignore SMW92 or SMW192.
1 =Terminate receive if the time period in SMW92 or SMW192 is exceeded.
bk: 0 =Ignore break conditions.
1 =Use break condition as start of message detection.
SMB88 SMB188 Start of message character.
SMB89 SMB189 End of message character.
SMW90 SMW190 Idle line time period given in milliseconds. The first character received after idle line time
has expired is the start of a new message.
SMwW92 SMwW192 Inter-character/message timer time-out value given in milliseconds. If the time period is
exceeded, the receive message function is terminated.
SMB94 SMB194 Maximum number of characters to be received (1 to 255 bytes). This range must be set to

the expected maximum buffer size, even if the character count message termination is not
used.

81

S7-200 Programmable Controller System Manual

82

%

Start and End Conditions for the Receive Instruction

The Receive instruction uses the bits of the receive message control byte (SMB87 or SMB187) to define
the message start and end conditions.

Tip

If there is traffic present on the communications port from other devices when the Receive instruction is
executed, the receive message function could begin receiving a character in the middle of that
character, resulting in a possible parity error and termination of the receive message function. If parity is
not enabled the received message could contain incorrect characters. This situation can occur when the
start condition is specified to be a specific start character or any character, as described in item 2. and
item 6. below.

The Receive instruction supports several message start conditions. Specifying a start condition
involving a break or an idle line detection avoids this problem by forcing the receive message function to
synchronize the start of the message with the start of a character before placing characters into the
message buffer.

The Receive instruction supports several start conditions:

1. Idle line detection: The idle line condition is defined as a quiet or idle time on the transmission line.
A receive is started when the communications line has been quiet or idle for the number of
milliseconds specified in SMW90 or SMW190. When the Receive instruction in your program is
executed, the receive message function initiates a search for an idle line condition. If any characters
are received before the idle line time expires, the receive message function ignores those
characters and restarts the idle line timer with the time from SMW90 or SMW190. See Figure 6-10.
After the idle line time expires, the receive message function stores all subsequent characters
received in the message buffer.

The idle line time should always be greater than the time to transmit one character (start bit, data
bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time is three
character times at the specified baud rate.

You use idle line detection as a start condition for binary protocols, protocols where there is not a
particular start character, or when the protocol specifies a minimum time between messages.

Setup: il=1,sc =0, bk =0, SMW90/SMW190 = idle line timeout in milliseconds

Characters Characters

] N S A

A

Restarts the idle time First character placed in the

message buffer
Receive instruction is executed: Idle time is detected:

starts the idle time starts the Receive Message function

Figure 6-10 Using Idle Time Detection to Start the Receive Instruction

2. Start character detection: The start character is any character which is used as the first character of
a message. A message is started when the start character specified in SMB88 or SMB188 is
received. The receive message function stores the start character in the receive buffer as the first
character of the message. The receive message function ignores any characters that are received
before the start character. The start character and all characters received after the start character
are stored in the message buffer.

Typically, you use start character detection for ASCII protocols in which all messages start with the
same character.

Setup: il=0,sc =1, bk=0, SMW90/SMW190 = don’t care, SMB88/SMB188 = start
character

S7-200 Instruction Set Chapter 6

Idle line and start character: The Receive instruction can start a message with the combination of an
idle line and a start character. When the Receive instruction is executed, the receive message
function searches for an idle line condition. After finding the idle line condition, the receive message
function looks for the specified start character. If any character but the start character is received,
the receive message function restarts the search for an idle line condition. All characters received
before the idle line condition has been satisfied and before the start character has been received
are ignored. The start character is placed in the message buffer along with all subsequent
characters.

The idle line time should always be greater than the time to transmit one character (start bit, data
bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time is three
character times at the specified baud rate.

Typically, you use this type of start condition when there is a protocol that specifies a minimum time
between messages, and the first character of the message is an address or something which
specifies a particular device. This is most useful when implementing a protocol where there are
multiple devices on the communications link. In this case the Receive instruction triggers an
interrupt only when a message is received for the specific address or devices specified by the start
character.

Setup: il=1,sc =1, bk=0, SMW90/SMW190 > 0, SMB88/SMB188 = start character

Break detection: A break is indicated when the received data is held to a zero value for a time
greater than a full character transmission time. A full character transmission time is defined as the
total time of the start, data, parity and stop bits. If the Receive instruction is configured to start a
message on receiving a break condition, any characters received after the break condition are
placed in the message buffer. Any characters received before the break condition are ignored.

Typically, you use break detection as a start condition only when a protocol requires it.
Setup: i1=0,sc=0,bk=1, SMW90/SMW190 = don’t care, SMB88/SMB188 = don’t care

Break and a start character: The Receive instruction can be configured to start receiving characters
after receiving a break condition, and then a specific start character, in that sequence. After the
break condition, the receive message function looks for the specified start character. If any
character but the start character is received, the receive message function restarts the search for an
break condition. All characters received before the break condition has been satisfied and before
the start character has been received are ignored. The start character is placed in the message
buffer along with all subsequent characters.

Setup: il=0,sc=1, bk=1, SMW90/SMW190 = don’t care,
SMB88/SMB188 = start character

Any character: The Receive instruction can be configured to immediately start receiving any and all
characters and placing them in the message buffer. This is a special case of the idle line detection.
In this case the idle line time (SMW90 or SMW190) is set to zero. This forces the Receive
instruction to begin receiving characters immediately upon execution.

Setup: il=1,sc =0, bk =0, SMW90/SMW190 = 0, SMB88/SMB188 = don’t care

Starting a message on any character allows the message timer to be used to time out the receiving
of a message. This is useful in cases where Freeport is used to implement the master or host
portion of a protocol and there is a need to time out if no response is received from a slave device
within a specified amount of time. The message timer starts when the Receive instruction executes
because the idle line time was set to zero. The message timer times out and terminates the receive
message function if no other end condition is satisfied.

Setup: il=1,sc =0, bk =0, SMW90/SMW190 = 0, SMB88/SMB188 = don’t care
c¢/m =1, tmr =1, SMW92 = message timeout in milliseconds

83

S7-200 Programmable Controller System Manual

84

The Receive instruction supports several ways to terminate a message. The message can be terminated
on one or a combination of the following:

1.

End character detection: The end character is any character which is used to denote the end of the
message. After finding the start condition, the Receive instruction checks each character received
to see if it matches the end character. When the end character is received, it is placed in the
message buffer and the receive is terminated.

Typically, you use end character detection with ASCII protocols where every message ends with a
specific character. You can use end character detection in combination with the intercharacter timer,
the message timer or the maximum character count to terminate a message.

Setup: ec =1, SMB89/SMB189 = end character

Intercharacter timer: The intercharacter time is the time measured from the end of one character
(the stop bit) to the end of the next character (the stop bit). If the time between characters (including
the second character) exceeds the number of milliseconds specified in SMW92 or SMW192, the
receive message function is terminated. The intercharacter timer is restarted on each character
received. See Figure 6-11.

You can use the intercharacter timer to terminate a message for protocols which do not have a
specific end-of-message character. This timer must be set to a value greater than one character
time at the selected baud rate since this timer always includes the time to receive one entire
character (start bit, data bits, parity and stop bits).

You can use the intercharacter timer in combination with the end character detection and the
maximum character count to terminate a message.

Setup: c¢/m =0, tmr =1, SMW92/SMW192 = timeout in milliseconds

Characters Characters

A A f

Restarts the intercharacter The intercharacter timer expires:

timer Terminates the message and generates the
Receive Message interrupt

Figure 6-11 Using the Intercharacter Timer to Terminate the Receive Instruction

Message timer: The message timer terminates a message at a specified time after the start of the
message. The message timer starts as soon as the start condition(s) for the receive message
function have been met. The message timer expires when the number of milliseconds specified in
SMW92 or SMW192 have passed. See Figure 6-12.

Typically, you use a message timer when the communications devices cannot guarantee that there
will not be time gaps between characters or when operating over modems. For modems, you can
use a message timer to specify a maximum time allowed to receive the message after the message
has started. A typical value for a message timer would be about 1.5 times the time required to
receive the longest possible message at the selected baud rate.

You can use the message timer in combination with the end character detection and the maximum
character count to terminate a message.

Setup: c¢/m =1, tmr =1, SMW92/SMW192 = timeout in milliseconds

S7-200 Instruction Set Chapter 6

Characters Characters

‘ 1

Start of the message: The message timer expires:

Starts the message timer Terminates the message and generates the
Receive Message interrupt

Figure 6-12 Using the Message Timer to Terminate the Receive Instruction

4. Maximum character count: The Receive instruction must be told the maximum number of
characters to receive (SMB94 or SMB194). When this value is met or exceeded, the receive
message function is terminated. The Receive instruction requires that the user specify a maximum
character count even if this is not specifically used as a terminating condition. This is because the
Receive instruction needs to know the maximum size of the receive message so that user data
placed after the message buffer is not overwritten.

The maximum character count can be used to terminate messages for protocols where the
message length is known and always the same. The maximum character count is always used in
combination with the end character detection, intercharacter timer, or message timer.

5. Parity errors: The Receive instruction is automatically terminated when the hardware signals a
parity error on a received character. Parity errors are only possible if parity is enabled in SMB30 or
SMB130. There is no way to disable this function.

6. User termination: The user program can terminate a receive message function by executing another
Receive instruction with the enable bit (EN) in SMB87 or SMB187 set to zero. This immediately
terminates the receive message function.

Using Character Interrupt Control to Receive Data

To allow complete flexibility in protocol support, you can also receive data using character interrupt control.
Each character received generates an interrupt. The received character is placed in SMB2, and the parity
status (if enabled) is placed in SM3.0 just prior to execution of the interrupt routine attached to the receive
character event. SMB2 is the Freeport receive character buffer. Each character received while in Freeport
mode is placed in this location for easy access from the user program. SMB3 is used for Freeport mode
and contains a parity error bit that is turned on when a parity error is detected on a received character. All
other bits of the byte are reserved. Use the parity bit either to discard the message or to generate a
negative acknowledgement to the message.

When the character interrupt is used at high baud rates (38.4 kbaud to 115.2 kbaud), the time between
interrupts is very short. For example, the character interrupt for 38.4 kbaud is 260 microseconds, for
57.6 kbaud is 173 microseconds, and for 115.2 kbaud is 86 microseconds. Ensure that you keep the
interrupt routines very short to avoid missing characters, or else use the Receive instruction.

Tip

SMB2 and SMB3 are shared between Port 0 and Port 1. When the reception of a character on Port 0
results in the execution of the interrupt routine attached to that event (interrupt event 8), SMB2 contains
the character received on Port 0, and SMBS3 contains the parity status of that character. When the
reception of a character on Port 1 results in the execution of the interrupt routine attached to that event
(interrupt event 25), SMB2 contains the character received on Port 1 and SMBS3 contains the parity
status of that character.

85

S7-200 Programmable Controller System Manual

Example: Transmit and Receive Instructions

LD

16#094IN___ OUT[SMB30 MOVB

MOY_B

EM ENOD % MOVB

il OUTFSMBET

16#B0 4

WOV B MOVB
EN Eno—)
MOVW
te0adiN___ ouThswess
MOVB
WOV
EN Enof—) ATCH
ATCH
w5 outhswwan
ENI
RCV

MOY_B

EN Eno—)

il OUTFSMBA4

100

ATCH

EN ENO—)

INT_O4IMNT
234EVNT

ATCH

EN ENO—)

INT_24
G4EVNT

=
5

==

RCY

EN ENO—)

WB1004TEL
04qFPORT

86

M | Network 1 Network 1
'T‘ SMO.1 MOV_B

l
N — | EN ENO—

/[This program receives a string of characters until
/la line feed character is received.
/[The message is then transmitted back to the sender.

//On the first scan:

SMO.1

16#09, SMB30

16#B0, SMB87

16#0A, SMB89
+5, SMW90

100, SMB94

INT 0, 23

INT 2,9

VB100, 0

n.
I
I
I
2.

113.
I
4.

Initialize Freeport:

- Select 9600 baud.

- Select 8 data bits.

- Select no parity.

Initialize RCV message control byte:

- RCV enabled.

- Detect end of message character.

- Detect idle line condition as the message
start condition.

Set end of message character

to hex OA (line feed).

Set idle line timeout

to 5 ms.

Set maximum number of characters

to 100.

Attach interrupt O

to the Receive Complete event.

Attach interrupt 2

to the Transmit Complete event.

Enable user interrupts.

Enable receive box with buffer at VB100.

S7-200 Instruction Set Chapter 6

Example: Transmit and Receive Instructions, continued

I Network 1 Network 1
'I‘ SMBES MOv_D
=8| N ENO—)
0 16420
104N ouThSME34
LDB=
MOVB
ETCH ATCH
v Eeno—){ CRETI
NOT
IMT_1 it RCV
104EVNT
—(RET))
RCY
L {not—en enol—)
vB1004TEL
0{rorT
I Network 1 Network 1
N SMO.0 oTeH
I
-1|- — | EN Enof—Y)
LD
104EVNT DTCH
XMT
T
EN ENO—)
vB1004TEL
04rorT
I Network 1 Network 1
N SMO.0 ROV
T _| |7 EM EMO ﬁ LD
2 RCV
VB1004TBL
0{rorT

//Receive complete interrupt routine:
/1. If receive status shows receive of end character,
/| then attach a 10 ms timer to trigger a transmit and return.
/2. If the receive completed for any other reason,
/l then start a new receive.
SMB86, 16#20
10, SMB34
INT_1, 10

VB100, 0

/[10-ms Timer interrupt:
/[1. Detach timer interrupt.
//2. Transmit message back to user on port.

SMo0.0
10
VB100, 0

/[Transmit Complete interrupt:
//[Enable another receive.

SMo0.0
VB100, 0

87

88

S7-200 Programmable Controller System Manual

Get Port Address and Set Port Address Instructions

The Get Port Address instruction (GPA) reads the station address of

the S7-200 CPU port specified in PORT and places the value in the | - e « ECH1EE

address specified in ADDR.

LA FED
The Set Port Address instruction (SPA) sets the port station address GET_ADDR GET_ADDR
(PORT) to the value specified in ADDR. The new address is not —EM EMO = | —{EM EMO =
saved permanently. After a power cycle, the affected port returns to dioor] Egﬂ
the last address (the one that was downloaded with the system 4 PoRT
block).

Error conditions that set ENO = 0: ET TP SJE G
m 0006 (indirect address)
= 0004 (attempted to perform a Set Port Address instruction in an interrupt S
routine)
STL
GPA ADDR, PORT
SPA ADDR, PORT

Table 6-13 Valid Operands for the Get Port Address and Set Port Address Instructions

Inputs/Outputs Data Type Operands
ADDR BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

(A constant value is valid only for the Set Port Address instruction.)
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 226 and CPU 226XM:

Oor1

S7-200 Instruction Set Chapter 6
Compare Instructions
Comparing Numerical Values SmATIC | e 1121 |
The compare instructions are used to compare two values: LD —
(]
IN1 = IN2 INT>=1IN2 IN1<=1IN2 _|==B|_ Sl — -
IN1 > IN2 IN1 < IN2 IN1 <> IN2 iz N
Compare Byte operations are unsigned. r o _
Compare Integer operations are signed.. B w2] =D <=R
Compare Double Word operations are signed. »=F == »=p ==R
Compare Real operations are signed. <=k ==l <=h ==R
=B =| =0 =R
For LAD and FBD: When the comparison is true, the Compare % < < <R
instruction turns on the contact (LAD) or output (FBD).
For STL: When the comparison is true, the Compare instruction SMATIC B 1131
Loads, ANDs, or ORs a 1 with the value on the top of the stack LAD FED:
(STL).
EC b EC »
When you use the IEC compare instructions, you can use various - EM ouUTE |
data types for the inputs. However, both input values must be of the i
same data type. i
EQ ME GE LE aT LT
Notice
The following conditions are fatal errors and cause your S7-200 to SIMATIC
immediately stop the execution of your program:
m lllegal indirect address is encountered (any Compare ST LDE= INTLINZ
instruction) AB= IM1,IM2
. OB= M1, IM2
m |llegal real number (for example, NAN) is encountered
(Compare Real instruction) LDE= LDW= LDD= LDR=
n . LbB< LDW= LDD< LDR<
To prevent these conditions from occurring, ensure that you LDE= LDW= LDD> LDR=
properly initialize pointers and values that contain real numbers LDE= LDW== LDD=> LDR=-
X ; ; LDB<= LDW== LDD<= LDR<=
before executing compare instructions that use these values. LDE== LDWs= LOD== LDR==
Compare instructions are executed regardless of the state of AE= A= AD= AR=
power flow. AE= A=< AD-< AR~
AE:= A= ALCx= AR=
AB<= AWe= AD<= AR<:
AB<= AWe= AD<= AR<=
AB== AW== AD== AR==
OB= OW= oD= OR=
OB< O« oD< OR<
QB Lol QL= OR=
OB<= Ofx ODer ORas
OB<= OlW<= OD<= OR<=
OB== Q== OD:= OR=
Table 6-14 Valid Operands for the Compare Instructions
Inputs/Outputs Type Operands
IN1, IN2 BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
Output (or OUT) BOOL 1,Q,V, M, SM, S, T, C, L, Power Flow

89

S7-200 Programmable Controller System Manual

Example: Compare Instructions

Network 1 Network 1 /[Turn analog adjustment potentiometer 0 to vary
oo SMB28 Qoo //the SMB28 byte value.
| (//Q0.0 is active when the SMB28 value is less than
_| <5_DB) /lor equal to 50.
//Q0.1 is active when the SMB28 value is greater than
F an /lor equal to 150.
==El () /[The status indicator is on when the comparison is true.
190 LD 10.0
LPS
Network 2 AB<= SMB28, 50
0.1 MO _W Q0.0

— | EN ENO— Lpp

AB>= SMB28, 150

-300004IN___ OUT Wi = Q0.1
Network 2 //Load V memory addresses with low values
MO _DHA /fthat make the comparisons false and that turn
EN ENO %l /[the status indicators off.
LD 10.1
-20000000041M QUT VD2 MOVW -30000, VWO

MOVD -200000000, VD2
MOVR 1.012E-006, VD6

MOv_R

EN ENO >| Network 3 //Load V memory addresses with high values
/[that make the comparisons true and that turn

1.0128-006IN___ OUTFYDE //the status indicators on.
Hetwork 3 LD 10.2
'°-2| MIOY_ MOVW +30000, VWO
— | EN ENO— MOVD -100000000, VD2
MOVR 3.141593, VD6
+300004IM__ ouThwwin
Network 4 /[The Integer Word comparison tests to find if
//NWO > +10000 is true.
MOV_Dind //Uses program constants to show the different
EM EMNO H //data types. You can also compare two values
/[stored in programmable memory like:
-10000000041M OUTHYD2 /IVWO > VW100
LD 10.3
LPS
MOY_R AW> VWO, +10000
EN ENO % = Q0.2
LRD
3.14158934IN QUTFYDE AD< -150000000, VD2
= Q0.3
LPP
AR> VD6, 5.001E-006
Network 4 = Q0.4
0.3 WD Q0.2
| ()
+10000

-150000000 Qo3

o—()

vD2
YD Q0.4

)

5.001E-006

90

S7-200 Instruction Set Chapter 6

Compare String SATIC | e 1131

The Compare String instruction compares two strings of ASCII
characters: LDy FED

INT=IN2 IN1<>IN2 sk |1 T

When the comparison is true, the Compare instruction turns the
contact (LAD) or output (FBD) on, or the compare instruction Loads,
ANDs or ORs a 1 with the value on the top of the stack (STL).

== ==5

sIATH. [EC 1131]

Notice LAD FEL:

The following conditions are fatal errors and cause your S7-200 to EQS 4 Es
immediately stop the execution of your program: — EM ouT

m |llegal indirect address is encountered (any compare
instruction)

1M1
M2

m A string with a length greater than 254 characters is
encountered (Compare String instruction) B2 i

m A string whose starting address and length are such that it will
not fit in the specified memory area (Compare String SIMATIC
instruction)

" . 5TL
To prevent these conditions from occurring, ensure that you LDS= M1, M2

properly initialize pointers and memory locations that are intended gfé; :m :mg
to hold ASCII strings prior to executing compare instructions that i’

use these values. Ensure that the buffer reserved for an ASCII L
string can reside completely within the specified memory area. o5 (M1, N2

Compare instructions are executed regardless of the state of
power flow.

Table 6-15 Valid Operands for the Compare String Instructions

Inputs/Outputs Type Operands
IN1, IN2 BYTE (String) | VB, LB, *VD, *LD, *AC
Output (OUT) BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

91

S7-200 Programmable Controller System Manual

Conversion Instructions

Standard Conversion Instructions stonmic | ec 1131
Numerical Conversions e =
The Byte to Integer (BTI), Integer to Byte (ITB), Integer to Double E_I E_I
Integer (ITD), Double Integer to Integer (DTI), Double Integer to Real || Jgy o - | e e
(DTR), BCD to Integer (BCDI) and Integer to BCD (IBCD) =M ouT
instructions convert an input value IN to the specified format and o L ouT =
stores the output value in the memory location specified by OUT. For
example, you can convert a double integer value to a real number. B_I BD_|
You can also convert between integer and BCD formats. I_E SE
I_Cl ROUMD
Round and Truncate DI TRUMNG
. . LI_R SEG
The Round instruction (ROUND) converts a real value IN to a -
double integer value and places the rounded result into the variable
specified by OUT. cATIc [EC 1131
The Truncate instruction (TRUNC) converts a real number IN into a LAD FED
double integer and places the whole-number portion of the result ETo] ETo
into the variable specified by OUT. den tne b | den Ee
M ouT
Segment I QT
The Segment instruction (SEG) allows you to generate a bit pattern
that illuminates the segments of a seven-segment display. BTo| DTS
I_To_B I_To_BCD
I_Te_Dl TRUNC
LI_To_| SEG
LI_TO_R
R_To_DI
SIMATIC
STL
BTl N, 2UT BDI QUT
ITE IN,2UT Bcp OUT
Ime 1N, UT TRUMC [N, ©UT
CTI N, 2UT ROUMD IM, OUT
CTR N, 2UT SEG M, CUT

Table 6-16 Valid Operands for the Standard Conversion Instructions

Inputs/Outputs Data Type Operands

IN BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD, INT | IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, AC, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

ouT BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

WORD, INT | IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
DINT, REAL | ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

92

S7-200 Instruction Set Chapter 6

Operation of the BCD to Integer and Integer to BCD Instructions

The BCD to Integer instruction (BCDI) converts the binary-coded
decimal value IN to an integer value and loads the result into the
variable specified by OUT. The valid range for IN is 0 to 9999 BCD.

The Integer to BCD instruction (IBCD) converts the input integer
value IN to a binary-coded decimal and loads the result into the
variable specified by OUT. The valid range for IN is 0 to 9999
integer.

Operation of the Double Integer to Real Instruction

The Double Integer to Real instruction (DTR) converts a 32-bit,
signed integer IN into a 32-bit real number and places the result into
the variable specified by OUT.

Operation of the Double Integer to Integer Instruction

The Double Integer to Integer instruction (DTI) converts the double
integer value IN to an integer value and places the result into the
variable specified by OUT.

If the value that you are converting is too large to be represented in
the output, then the overflow bit is set and the output is not affected.

Operation of the Integer to Double Integer Instruction

The Integer to Double Integer instruction (ITD) converts the integer
value IN to a double integer value and places the result into the
variable specified by OUT. The sign is extended.

Operation of the Byte to Integer Instruction

The Byte to Integer instruction (BTI) converts the byte value IN to an
integer value and places the result into the variable specified by
OUT. The byte is unsigned, therefore there is no sign extension.

Operation of the Integer to Byte Instruction

The Integer to Byte instruction (ITB) converts the word value IN to a
byte value and places the result into the variable specified by OUT.
Values 0 to 255 are converted. All other values result in overflow
and the output is not affected.

Tip

Error conditions that set ENO =0
m SM1.6 (invalid BCD)

m 0006 (indirect address)

SM bits affected:
m SM1.6 (invalid BCD)

Error conditions that set ENO =0
m 0006 (indirect address)

Error conditions that set ENO =0
= SM1.1 (overflow)

m 0006 (indirect address)

SM bits affected:
= SM1.1 (overflow)

Error conditions that set ENO =0
m 0006 (indirect address)

Error conditions that set ENO =0
m 0006 (indirect address)

Error conditions that set ENO =0
= SM1.1 (overflow)

m 0006 (indirect address)

SM bits affected:
= SM1.1 (overflow)

To change an integer to a real number, use the Integer to Double Integer instruction and then use the

Double Integer to Real instruction.

93

S7-200 Programmable Controller System Manual

Operation of the Round and Truncate Instructions

The Round instruction (ROUND) converts the real-number value IN Error conditions that set ENO =0
to a double integer value and places the result into the variable m SM1.1 (overflow)
specified by OUT. If the fraction portion is 0.5 or greater, the number

is rounded up. = 0006 (indirect address)

The Truncate instruction (TRUNC) converts a real-number value IN ~ SM bits affected:
into a double integer and places the result into the variable specified = SM1.1 (overflow)
by OUT. Only the whole number portion of the real number is

converted, and the fraction is discarded.

If the value that you are converting is not a valid real number or is too large to be represented in the
output, then the overflow bit is set and the output is not affected.

Example: Standard Conversion Instructions

Metwork 1 Network 1 //Convert inches to centimeters:
00 oI /1. Load a counter value (inches) into AC1.
1 EN - END /[2. Convert the value to a real number.
| >| //3. Multiply by 2.54 (convert to centimeters).
//4. Convert the value back to an integer.
C104IM OUTEACT LD 10.0
ITD C10, AC1
DTR AC1, VDO
DI_R MOVR VDO, VD8
EM EMND ﬁ *R VD4, VD8
ROUND VD8, VD12
ACTHIN OUTEDO
Network 2 //Convert a BCD value to an integer
LD 10.3
MUL_R BCDI ACO
EN ENO ﬁ
WOO4IN1T OUTEYDE
WA N2
ROUND
EN ENOF—)
WDEAIN QUTEFD12
Network 2
10.3 BCD_I
_| |7 EN EMNO %
ACOAIM OUTFACD
Double Word Integer to Real and Round BCD to Integer
Cc10 101 Count = 101 inches ACO
VDO 101.0 | Count (as a real number) BCDI
VD4 2.54 constant (inches to centimeters) ACO
VD8 256.54 | 256.54 centimeters as real number
VD12 257 | 257 centimeters as double integer

94

S7-200 Instruction Set Chapter 6

Operation of the Segment Instruction

To illuminate the segments of a seven-segment display, the Segment instruction (SEG) converts the
character (byte) specified by IN to generate a bit pattern (byte) at the location specified by OUT.

The illuminated segments represent the character in the least Error conditions that set ENO =0
significant digit of the input byte. Figure 6-13 shows the m 0006 (indirect address)
seven-segment display coding used by the Segment instruction.

(IN) Segment (OUT) (IN) Segment (OUT)

LSD | Display -gfe dcba LSD Display | -gfe dcba
0 o 0011 1111 8 - 0111 1111
1 | 0000 0110 @ 9 o 0110 0111
2 2 0101 1011 flglb A = 0111 0111
3 - 0100 1111 el—lc B :E' 0111 1100
4 - 0110 0110 —_ c L 0011 1001
5 o 0110 1101 g D o 0101 1110
6 - 0111 1101 E - 0111 1001
7 N 0000 0111 F - 0111 0001

Figure 6-13 Coding for a Seven-Segment Display

Example: Segment Instruction

Network 1 Network 1 SEG
11.0 SEG LD -0 VB48 AC1

—{en enol—y ~ SEG VB48 ACH

I:u (display character)

WEB484IN OUTFACH

95

S7-200 Programmable Controller System Manual

ASCII Conversion Instructions
Valid ASCII characters are the hexadecimal values 30 to 39, and 41 to 46.

Converting between ASCIlI and Hexadecimal Values SRR O
The ASCII to Hexadecimal instruction (ATH) converts a number LEN
of ASCII characters, starting at IN, to hexadecimal digits starting at LAD FED
OUT. The Hexadecimal to ASCI!I instruction (HTA) converts the ITA ITA
hexadecimal digits, starting with the input byte IN, to ASCII —EN Mo - | HEn M =
characters starting at OUT. The number of hexadecimal digits to be —IH ouT
converted is specified by length LEN.] 'F':M CUTE - T
The maximum number of ASCII characters or hexadecimal digits
that can be converted is 255. ATH ATH
—{EM EMO [| —ENM EMO [
Error conditions that set ENO = 0 =M ouT =
=M QUT - - LEM
m SM1.7 (illegal ASCIl) ASCII to Hexadecimal only — LEM

m 0006 (indirect address)

m 0091 (operand out of range) ::ITTHH m RTH
SM bits affected:

m SM1.7 (illegal ASCII)

SIMATIC
Converting Numerical Values to ASCII —
The Integer to ASCII (ITA), Double Integer to ASCII (DTA), and Reall TR N, QUT, FMT
to ASCII (RTA) instructions convert integer, double integer, or real E;S :m SH% Em
number values to ASCII characters. ATH 1N, OUT, LEN
HTA IM. QUT, LEM
Table 6-17 Valid Operands for the ASCII Conversion Instructions
Inputs/Outputs Data Type Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
LEN, FMT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

Operation of the Integer to ASCII Instruction

The Integer to ASCII instruction (ITA) converts an integer word INto Error conditions that set ENO =0
an array of ASCII characters. The format FMT specifies the m 0006 (indirect address)
conversion precision to the right of the decimal, and whether the
decimal point is to be shown as a comma or a period. The resulting
conversion is placed in 8 consecutive bytes beginning with OUT. = nnn>5

m |llegal format

The array of ASCII characters is always 8 characters.

Figure 6-14 describes the format operand for the Integer to ASCII instruction. The size of the output buffer
is always 8 bytes. The number of digits to the right of the decimal point in the output buffer is specified by
the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point
causes the value to be displayed without a decimal point. For values of nnn bigger than 5, the output
buffer is filled with ASCII spaces. The ¢ bit specifies the use of either a comma (c=1) or a decimal point
(c=0) as the separator between the whole number and the fraction. The upper 4 bits must be zero.

96

S7-200 Instruction Set Chapter 6

Figure 6-14 shows examples of values that are formatted using a decimal point (c=0) with three digits to
the right of the decimal point (nnn=011). The output buffer is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
(1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

[Values are right-justified in the output buffer.

FMT
Out [Out [Out |Out [Out| Out | Out [Out
MSB LsB +1 [+2 [+3 [+4 | 45| +6 | +7
7 6 5 4 3 2 10 in=12 0 . 0| 1 2
ololololclnlnln] in=-123 “ o 123
¢ = comma (1) or decimal point (0) in=1234 1 2 3 4
nnn = digits to right of decimal point in=-12345 - 1 2 3 4 5

Figure 6-14 FMT Operand for the Integer to ASCII (ITA) Instruction

Operation of the Double Integer to ASCII Instruction

The Double Integer to ASCII (DTA) instruction converts a double Error conditions that set ENO =0
word IN to an array of ASCII characters. The format operand FMT m 0006 (indirect address)

specifies the conversion precision to the right of the decimal. The
resulting conversion is placed in 12 consecutive bytes beginning
with OUT. = nnn>5

The size of the output buffer is always 12 bytes.

m |llegal format

Figure 6-15 describes the format operand for the Double Integer to ASCII instruction. The number of digits
to the right of the decimal point in the output buffer is specified by the nnn field. The valid range of the nnn
field is 0 to 5. Specifying 0 digits to the right of the decimal point causes the value to be displayed without
a decimal point. For values of nnn bigger than 5, the output buffer is filled with ASCII spaces. The ¢ bit
specifies the use of either a comma (c=1) or a decimal point (c=0) as the separator between the whole
number and the fraction. The upper 4 bits must be zero.

Figure 6-15 shows examples of values that are formatted using a decimal point (c=0) with four digits to the
right of the decimal point (nnn=100). The output buffer is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

(1 Values are right-justified in the output buffer.

FMT
MSB LsB Out| Out| Out | Out| Out| Out| Out| Out| Out| Out| Out | Out
+1[+2 | +3| +4 | +5| +6| +7| +8| +9| +10 | +11
‘O‘O‘O‘O‘C‘n‘n‘n‘ . in=-12 - 0 . 0 0 1 2
in=1234567 1 21 3] . 4/ 5| 6 7

¢ = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 6-15 FMT Operand for the Double Integer to ASCII (DTA) Instruction

97

S7-200 Programmable Controller System Manual

98

Operation of the Real to ASCII Instruction

The Real to ASCII instruction (RTA) converts a real-number value IN Error conditions that set ENO =0
to ASCII characters. The format FMT specifies the conversion m 0006 (indirect address)
precision to the right of the decimal, whether the decimal point is

shown as a comma or a period, and the output buffer size. " nnn>5
Th Iti ion is placed i tput buffer beginni h " sess<d
e resulting conversion is placed in an output buffer beginning wit
OUT. g P P 9 9 m ssss< number of characters in OUT

The number (or length) of the resulting ASCII characters is the size of the output buffer and can be
specified to a size ranging from 3 to 15 bytes or characters.

The real-number format used by the S7-200 supports a maximum of 7 significant digits. Attempting to
display more than 7 significant digits produces a rounding error.

Figure 6-16 describes the format operand (FMT) for the RTA instruction. The size of the output buffer is
specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of digits to the right of the
decimal point in the output buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5.
Specifying 0 digits to the right of the decimal point causes the value to be displayed without a decimal
point. The output buffer is filled with ASCII spaces for values of nnn bigger than 5 or when the specified
output buffer is too small to store the converted value. The c bit specifies the use of either a comma (c=1)
or a decimal point (c=0) as the separator between the whole number and the fraction.

Figure 6-16 also shows examples of values that are formatted using a decimal point (c=0) with one digit to
the right of the decimal point (nnn=001) and a buffer size of six bytes (ssss=0110). The output buffer is
formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

[Values to the right of the decimal point are rounded to fit in the specified number of digits to the right
of the decimal point.

1 The size of the output buffer must be a minimum of three bytes more than the number of digits to
the right of the decimal point.

[Values are right-justified in the output buffer.

FMT
mMSB LsB

Out| Out| Out| Out| Out| Out
+1| +2| +3| +4| +5

in=1234.5 1 2 3| 4 5
‘S‘S‘S‘S‘C‘”‘”‘”‘ in = -0.0004 0 0
ssss = size af)outzut buﬂler 0 in = -3.67526 -1 3 7
¢ = comma (1) or decimal point (0 .
nnn = digits to right of decimal point in=1.95 2 0

Figure 6-16 FMT Operand for the Real to ASCII (RTA) Instruction

S7-200 Instruction Set Chapter 6

Example: ASCII to Hexadecimal Instruction

Network 1 Network 1
3.2 ATH LD 132
p——fen Eno— |ATH VB30,VB40,3
WB304IM QUTEVE40
I{LEN
5 B W

ATH Note: The X indicates that the “nibble” (half of a byte) is
VB30 VB40 unchanged.

Example: Integer to ASCII Instruction

Network 1 /[Convert the integer value at VW2

/[to 8 ASCII characters starting at VB10,
/lusing a format of 16#0B

//(a comma for the decimal point,

/ffollowed by 3 digits).

LD
ITA

12.3
VW2, VB10, 16#0B

o P 2 1 ‘5

32] [2c][33][34 |[35 |

Network 1
123 A
—Fn Eno—3)
wwadiv outhveto
1640BAFMT
o o e
ma 20 | [20 |[31]
VW2 VB10 VB11

Example: Real to ASCII Instruction

Network 1 Network 1 //Convert the real value at VD2

2.3 RTA /fto 10 ASCII characters starting at VB10,
|7 EN ENO %' /lusing a format of 16#A3
//(a period for the decimal point,
wvozdin auTLva1o /[followed by 3 digits).
16#A3{FMT LD 12.3
RTA VD2, VB10, 16#A3
o o o e i 3 @ 5 o
123.45 RTa [20 | [20 |[20 |[31 |[32 |[3 ||[2E||[34|[35 |[30]
VD2 VB10 VB11

99

S7-200 Programmable Controller System Manual

100

String Conversion Instructions

Converting Numerical Values to String

The Integer to String (ITS), Double Integer to String (DTS), and Real
to String (RTS) instructions convert integers, double integers, or real
number values (IN) to an ASCII string (OUT).

Operation of the Integer to String

The Integer to String instruction (ITS) converts an integer word IN to
an ASCII string with a length of 8 characters. The format (FMT)
specifies the conversion precision to the right of the decimal, and
whether the decimal point is to be shown as a comma or a period.
The resulting string is written to 9 consecutive bytes starting at OUT.
See the section, format for strings in Chapter 4 for more information.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)
m |llegal format (nnn > 5)

Figure 6-17 describes the format operand for the Integer to String
instruction. The length of the output string is always 8 characters.
The number of digits to the right of the decimal point in the output
buffer is specified by the nnn field. The valid range of the nnn field is
0 to 5. Specifying 0 digits to the right of the decimal point causes the
value to be displayed without a decimal point. For values of nnn
greater than 5, the output is a string of 8 ASCII space characters.
The c bit specifies the use of either a comma (c=1) or a decimal
point (c=0) as the separator between the whole number and the
fraction. The upper 4 bits of the format must be zero.

Figure 6-17 also shows examples of values that are formatted using
a decimal point (c= 0) with three digits to the right of the decimal
point (hnnn = 011).The value at OUT is the length of the string.

The output string is formatted according to the following rules:

(1 Positive values are written to the output buffer without a sign.

SIMATIC l IEC 1121]
LAC FEL:
I_5 I_5
— EM EMC | | o EM EMC -
= IM CUT -
= I OUT ArmaT
— FMIT
I_5 DI_% R_5
siAT. [EC 113
LAC FEL:
1_To_5 1T 5
— EM EMC | | o EM EMC -
= IM CUT -
= I OUT ArmaT
— FMIT
I_T 5 DI_To.S R_To.S
SIMATIC
STL
ITS IM_ FMT, QUT
DTS IMLFMT, QUT
RTS IMLFMT, QUT

1 Negative values are written to the output buffer with a leading minus sign (-).

(1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are

suppressed.

(1 Values are right-justified in the output string.

Table 6-18 Valid Operands for the Instructions That Convert Numerical Values to Strings

Inputs/Outputs Data Type Operands

IN BYTE (String) | VB, LB, *VD, *LD, *AC
INT IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

INDX, FMT BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

ouT BYTE (String) | VB, LB, *VD, *LD, *AC
INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

S7-200 Instruction Set Chapter 6

FMT
Out [Out [Out |Out |Out | Out| Out |Out [Out
MSB LSB +1 | +2 | +3| +4| +5] +6| +7| +8
7 6 5 4 3 2 10 in=12 | 8 0 0] 1] 2
[ofofofofc|n[n[n] in=-123 | 8 0 1 2] 3
¢ = comma (1) or decimal point (0) in=1234 8 1 2 3 4
nnn = digits to right of decimal point in=-12345 8 - 1 2 3 4 5
Figure 6-17 FMT Operand for the Integer to String Instruction
Operation of the Double Integer to String
The Double Integer to String instruction (DTS) converts a double Error conditions that set ENO =0
integer IN to an ASCII string with a length of 12 characters. The m 0006 (indirect address)

format (FMT) specifies the conversion precision to the right of the
decimal, and whether the decimal point is to be shown as a comma
or a period. The resulting string is written to 13 consecutive bytes m lllegal format (nnn > 5)
starting at OUT. For more information, see the section that describes

the format for strings in Chapter 4.

= 0091 (operand out of range)

Figure 6-18 describes the format operand for the Integer to String instruction. The length of the output
string is always 8 characters. The number of digits to the right of the decimal point in the output buffer is
specified by the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0 digits to the right of the
decimal point causes the value to be displayed without a decimal point. For values of nnn greater than 5,
the output is a string of 12 ASCII space characters. The c bit specifies the use of either a comma (c=1) or
a decimal point (c=0) as the separator between the whole number and the fraction. The upper 4 bits of the
format must be zero.

Figure 6-18 also shows examples of values that are formatted using a decimal point (c= 0) with four digits
to the right of the decimal point (nnn = 100). The value at OUT is the length of the string. The output string
is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
(1 Negative values are written to the output buffer with a leading minus sign (-).

(1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

(1 Values are right-justified in the output string.

FMT

Out |Out [Out |Out [Out | Out | Out {Out|Out | Out| Out| Out| Out
MSB LsB +1[+2 | 43| +4| +5| +6| +7| +8 | +9|+10]|+11 [+12
7.6 5 43 2 10 in=12 | 12 .l -1 0o .| Oof 0o 1] 2
[0JoJoJoJc[n[n]n]| in=-1234567 | 12 1| 2] 8] .| 4| s| 6| 7

¢ = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 6-18 FMT Operand for the Double Integer to String Instruction

101

S7-200 Programmable Controller System Manual

102

Operation of the Real to String

The Real to String instruction (RTS) converts a real value IN to an Error conditions that set ENO =0
ASCI!I string. The format (FMT) specifies the conversion precision to m 0006 (indirect address)
the right of the decimal, whether the decimal point is to be shown as

a comma or a period and the length of the output string. = 0091 (operand out of range)

m |llegal format:

The resulting conversion is placed in a string beginning with OUT. nnn>5

The length of the resulting string is specified in the format and can ssss <3

be 3 to 15 characters. For more information, see the section that ssss < number of characters
describes the format for strings in Chapter 4. required

The real-number format used by the S7-200 supports a maximum of 7 significant digits. Attempting to
display more than the 7 significant digits produces a rounding error.

Figure 6-19 describes the format operand for the Real to String instruction. The length of the output string
is specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of digits to the right of the
decimal point in the output buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5.
Specifying 0 digits to the right of the decimal point causes the value to be displayed without a decimal
point. The output string is filled with ASCII space characters when nnn is greater than 5 or when the
specified length of the output string is too small to store the converted value. The ¢ bit specifies the use of
either a comma (c=1) or a decimal point (c=0) as the separator between the whole number and the
fraction.

Figure 6-19 also shows examples of values that are formatted using a decimal point (c= 0) with one digit
to the right of the decimal point (nnn = 001) and a output string length of 6 characters (ssss = 0110). The
value at OUT is the length of the string. The output string is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point) are
suppressed.

(1O Values to the right of the decimal point are rounded to fit in the specified number of digits to the right
of the decimal point.

[The size of the output string must be a minimum of three bytes more than the number of digits to the
right of the decimal point.

(1 Values are right-justified in the output string.

FMT
Out [Out |Out |Out [Out| Out | Out
MSB LsB +1| 42 | 43| +4| +5| +6
in=1234.5 6] 1 2 3 4 5
|s|s[s|s[c|n[n]|n] in=-0.0004 | 6 0 0
ssss = length of output string in= -3.67526 6 -1 3 7
¢ = comma (1) or decimal point (0) in=1.95 6 2 0

nnn = digits to right of decimal point

Figure 6-19 FMT Operand for the Real to String Instruction

S7-200 Instruction Set Chapter 6

Converting Substrings to Numerical Values

SIMATIC l IEC 1121]

The Substring to Integer (STI), Substring to Double Integer (STD),
and Substring to Real (STR) instructions convert a string value IN, LAD FED
starting at the offset INDX, to an integer, double integer or real 5 sl
number value OUT. — EM EMCG | | HEM EMO |

—IH Ut |-
Error conditions that set ENO =0 =M SUTE | o
m 0006 (indirect address) MO
= 0091 (operand out of range) 5 5 bl SR

m 009B (index = 0)
= SM1.1 (overflow)

siAT. [EC 113
The Substring to Integer and Substring to Double Integer convert T =
strings with the following form: [spaces] [+ or -] [digits O - 9]
5 To 5 TO
The Substring to Real instruction converts strings with the following —EM EM | | EM EMGC |
form: [spaces] [+ or -] [digits O - 9] [. or ,] [digits O - 9] =1 QUT (=
=M QUT - - IND
The INDX value is normally set to 1, which starts the conversion with | | 7™M

the first character of the string. The INDX value can be set to other
values to start the conversion at different points within the string. ETol s Tob S TOR
This can be used when the input string contains text that is not part
of the number to be converted. For example, if the input string is

“Temperature: 77.8”, you set INDX to a value of 13 to skip over the SIMATIC
word “Temperature: ” at the start of the string.

STL
The Substring to Real instruction does not convert strings using g'D :m :mgi g%
scientific notation or exponential forms of real numbers. The STR M. IMDS. OUT

instruction does not produce an overflow error (SM1.1) but converts
the string to a real number up to the exponential and then terminates
the conversion. For example, the string ‘1.234E6’ converts without
errors to a real value of 1.234.

The conversion is terminated when the end of the string is reached or when the first invalid character is
found. An invalid character is any character which is not a digit (0 - 9).

The overflow error (SM1.1) is set whenever the conversion produces an integer value that is too large for
the output value. For example, the Substring to Integer instruction sets the overflow error if the input string
produces a value greater than 32767 or less than -32768.

The overflow error (SM1.1) is also set if no conversion is possible when the input string does not contain a
valid value. For example, if the input string contains ‘A123’, the conversion instruction sets SM1.1
(overflow) and the output value remains unchanged.

Table 6-19 Valid Operands for the Instructions That Convert Substrings to Numerical Values

Inputs/Outputs Data Type Operands

IN BYTE (string) | 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC, Constant
INDX BYTE VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT BYTE (string) | VB, IB, QB, MB, SMB, SB, LB, *VD, *LD, *AC, Constant

INT VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

DINT, REAL | VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

103

S7-200 Programmable Controller System Manual

104

Valid Input Strings
for Integer and Double Integer

Valid Input Strings
for Real Numbers

Invalid Input Strings

Input String Output Integer Input String Output Real Input String
123’ 123 123’ 123.0 ‘A123’
‘-00456' -456 -00456' -456.0 I
123.45’ 123 123.45' 123.45 ‘++123'
42345’ 2345 42345’ 2345.0 +-123
'000000123ABCD' 123 00.000000123' [0.000000123 + 123

Figure 6-20 Examples of Valid and Invalid Input Strings

Example: String Conversion: Substring to Integer, Double Integer and Real

Network 1

Network 1 /[Converts the numeric string to an integer.
0.0 S| /[Converts the numeric string to a double integer.
} EN ENO H /[Converts the numeric string to a real.
LD 10.0
VBON - QUTEMWIBD STl VB0,7,VW100
e STD VBO0,7,VD200
= STR VBO0,7,VD300
BN Eno—)
wBOIN ouTvD2Z00
7{IMox
SR
EN ENO——)
WBO{IN QuT VD300
74{nox
VB0 VB11
|11|T|e|m|p|||9|8||6|F|

After executing the network:
VW100 (integer) = 98
VD200 (double integer) = 98
VD300 (real) = 98.6

S7-200 Instruction Set Chapter 6

Encode and Decode Instructions

Encode SIMATIC ¢ [EC 1131

The Encode instruction (ENCO) writes the bit number of the least
significant bit set of the input word IN into the least significant LAD FED
“nibble” (4 bits) of the output byte OUT. MO MO

—{EM EMO = EM EMO
1M ouT

Decode

The Decode instruction (DECO) sets the bit in the output word OUT
that corresponds to the bit number represented by the least
significant “nibble” (4 bits) of the input byte IN. All other bits of the
output word are set to 0.

SM Bits and ENO
5TL

For both the Encode and Decode instructions, the following ENCO 1M, OUT
conditions affect ENO. DECO M, UT

=M CUT -

EMCO DECO

SIMATIC

Error conditions that set ENO =0
m 0006 (indirect address)

Table 6-20 Valid Operands for the Encode and Decode Instructions

Inputs/Outputs Data Types Operands

IN BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

ouT BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Example: Decode and Encode Instructions

Network 1 Network 1 //AC2 contains error bits.
171 DECO /1. The DECO instruction sets the bit in VW40
_| 1 EN ENO >| /| that corresponds to this error code.
! //2. The ENCO instruction converts
/I the least significant bit set to an error code
QUTFVWAD /| thatis stored in VB50.

LD 13.1
DECO AC2, VW40
; | ENCO ACS, VB50

AC2H

=

ENCO
En ENO

AC3A

N OUTFvES0

15 9 0

AC2 AC3 [1000 0010 0000 0000]

s DECO _ | ENCO

VW40 [0000 0000 0000 1000] VB50 [9]

105

S7-200 Programmable Controller System Manual

Counter Instructions

106

SIMATIC Counter Instructions SmATIC | e 1121 |
Count Up Counter I F
The Count Up instruction (CTU) counts up from the current value i i
each time the count up (CU) input makes the transition from off to 1 e i ;U n
on. When the current value Cxx is greater than or equal to the R e
preset value PV, the counter bit Cxx turns on. The counter is reset 1p
when the Reset (R) input turns on, or when the Reset instruction is
executed. The counter stops counting when it reaches the Ca Ca
maximum value (32,767). ok o =<0 <o
- LD
STL operation : LD e
m Reset input: Top of stack - FY
= Count Up input: Value loaded in the second stack location o g
—cU o CTUD -l CTUD
Count Down Counter de 1
The Count Down instruction (CTD) counts down from the current 4 o i
value of that counter each time the count down (CD) input makes
the transition from off to on. When the current value Cxx is equal to 1
0, the counter bit Cxx turns on. The counter resets the counter bit
Cxx and loads the current value with the preset value PV when the
load input LD turns on. The counter stops upon reaching zero, and CIMATIC
the counter bit Cxx turns on.
STL operation: =Tk CTU e, PY
inout: CTD O, PY
m | oad input: Top of stack STUD o P
= Count Down input: Value loaded in the second stack location.

Count Up/Down Counter

The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes the
transition from off to on, and counts down each time the count down (CD) input makes the transition from
off to on. The current value Cxx of the counter maintains the current count. The preset value PV is
compared to the current value each time the counter instruction is executed.

Upon reaching maximum value (32,767), the next rising edge at the count up input causes the current
count to wrap around to the minimum value (-32,768). On reaching the minimum value (-32,768), the
next rising edge at the count down input causes the current count to wrap around to the maximum value
(32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns on.
Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns on, or when the
Reset instruction is executed. The CTUD counter stops counting when it reaches PV.

STL operation:

m Reset input: Top of stack

= Count Down input: Value loaded in the second stack location
= Count Up input: Value loaded in the third stack location

Table 6-21 Valid Operands for the SIMATIC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx WORD Constant (CO to C255)

CU,CD, LD, R BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

PV INT W, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC, Constant

S7-200 Instruction Set Chapter 6

Tip

Since there is one current value for each counter, do not assign the same number to more than one
counter. (Up Counters, Up/Down Counters, and Down counters with the same number access the same

current value.)

When you reset a counter using the Reset instruction, the counter bit is reset and the counter current
value is set to zero. Use the counter number to reference both the current value and the counter bit of

that counter.

Table 6-22 Operations of the Counter Instructions

Type Operation Counter Bit Power Cycle/First Scan
CTU CU increments the current value. The counter bit turns on when: | Counter bit is off.
Current value continues to increment Current value >= Preset Current value can be retained.!

until it reaches 32,767.

CTUD | CU increments the current value. The counter bit turns on when:

CD decrements the current value. Current value >= Preset

Current value continues to increment or
decrement until the counter is reset.

CTD CD decrements the current value until The counter bit turns on when:

the current value reaches 0. Current value = 0

1
for the S7-200 CPU.

Example: SIMATIC Count Down Counter Instruction

Counter bit is off.
Current value can be retained.!

Counter bit is off.
Current value can be retained.!

You can select that the current value for the counter be retentive. See Chapter 4 for information about memory retention

Network 2 LD C1
B = Q0.0

_|C1 CJD)

Timing Diagram

10.0 Down

10.1 Load —,_I

t 3

C1 (current)

C1 (bit) Q0.0 —\—,—\—

Network 1 Network 1 //Count down counter C1 current value counts from 3 to 0
0.0 c1 //with 10.1 off,
— |——Jc® oo //10.0 Off-on decrements C1 current value
//10.1 On loads countdown preset value 3
| 'D“l o LD 10.0
LD 10.1
sadpy CTD C1, +3

Network 2 //C1 bit is on when counter C1 current value = 0

107

S7-200 Programmable Controller System Manual

Example: SIMATIC Count Up/Down Counter Instruction

Network 1 Network 1 /N10.0 counts up
0.0 C48 //10.1 counts down
— p———cu cto //10.2 resets current value to 0
0.1 tg IIO'O
— e 01
LD 10.2
02 CTUD C48, +4
—
Network 2 //[Count Up/Down counter C48 turns on C48 bit
R //when current value >= 4
LD C48
= Q0.0
Network 2
C48 Qoo
—)
Timing Diagram 100 (up) _l_l_l__l__l__l_l |_|_l_|
101 (down) | i i i i Mo ;
0.2 (resety i i i i 5 P i M
{5 i {g
4 [14 4 []
L3]
1
48 (current)_9 0
C48 (bit) Q0.0 L] :

108

S7-200 Instruction Set Chapter 6

IEC Counter Instructions

Up Counter Tl IEC 1131
The Count Up instruction (CTU) counts up from the current value to
the preset value (PV) on the rising edges of the Count Up (CU) L e D
input. When the current value (CV) is greater than or equal to the
; LR oTu LR LT
preset value, the counter output bit (Q) turns on. The counter resets 4r
when the reset input (R) is enabled. The Up Counter stops counting -k —py ak
when it reaches the preset value. oy ok o
ah
Down Counter
The Count Down instruction (CTD) counts down from the preset 40 S s 40 S D
value (PV) on the rising edges of the Count Down (CD) input. When dip
the current value (CV) is equal to zero, the counter output bit (Q) LD - py ol
turns on. The counter resets and loads the current value with the dpy ak o [
preset value when the load input (LD) is enabled. The Down v B
Counter stops counting when it reaches zero.
i i
Up/Down Counter AU <TUD j Eg £
The Count Up/Down instruction (CTUD) counts up or down from the A (D 4
current value (CV) on the rising edges of the Count Up (CU) or i LD
Count Down (CD) input. When the current value is equal to preset, =Py QU
the up output (QU) turns on. When the current value is equal to zero, LD Qb=
the down output (QD) turns on. The counter loads the current value Jpy ol iy
with the preset value (PV) when the load (LD) input is enabled. an -
Similarly, the counter resets and loads the current value with 0 when vl
the reset (R) is enabled. The counter stops counting when it reaches
preset or 0.
Table 6-23 Valid Operands for the IEC Counter Instructions
Inputs/Outputs Data Types Operands
Cxx CTU, CTD, CTUD | Constant (CO to C255)
CU,CD, LD, R BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow
PV INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, Constant
Q, Qu, QD BOOL ,Q,V,M, SM, S, L
cv INT IW, QW, VW, MW, SW, LW, AC, *VD, *LD, *AC

Tip
@ Since there is one current value for each counter, do not assign the same number to more than one
counter. (Up Counters, Down Counters, and Up/Down Counters access the same current value.)

109

S7-200 Programmable Controller System Manual

Example: IEC Counter Instructions

Network 1 Timing Diagram
%14 0 %C48 14.0
—| |— =CU CTUD CU-Up
13.0
%I13.0 CD - Down
|_ >CD 12.0
R - Reset
%I2.0 o
—| |— R LD - Load
%I11.0

o e

Current Value

+4 4P QUF%Q0.0
QDF%Q0.1
[os¥l] Q0.0
QuU - Up
Q0.1
QD - Down

110

S7-200 Instruction Set Chapter 6

High-Speed Counter Instructions

High-Speed Counter Definition

operating mode of a specific high-speed counter (HSCx). The mode | | HP FED
selection defines the clock, direction, start, and reset functions of the HOEF HOEF
high-speed counter. —EM EMC |- | —EM EMO
—{ H&(¢
You use one High-Speed Counter Definition instruction for each] :%DE - MaDE
high-speed counter.
Error conditions that set ENO = 0 HSc HSc
)) i —{EM MO | | —EM EMO [
m 0003 (input point conflict) dn
m 0004 (illegal instruction in interrupt) gL
m 000A (HSC redefinition)
SIMATIC
High-Speed Counter —
The High-Speed Counter (HSC) instruction configures and controls EE'EF HSQ MODE
the high-speed counter, based on the state of the HSC special
memory bits. The parameter N specifies the high-speed counter

Tips and Tricks

¥

SIMATIC £ IEC 1131

The High-Speed Counter Definition instruction (HDEF) selects the

number.

The high-speed counters can be configured for up to twelve different modes of operation. See Table
6-25.

Each counter has dedicated inputs for clocks, direction control, reset, and start, where these functions
are supported. For the two-phase counters, both clocks can run at their maximum rates. In quadrature
modes, you can select one times (1x) or four times (4x) the maximum counting rates. All counters run at
maximum rates without interfering with one another.

Error conditions that set ENO = 0

m 0001 (HSC before HDEF)

m 0005 (simultaneous HSC/PLS)

Table 6-24 Valid Operands for the High-Speed Counter Instructions

Inputs/Outputs Data Types Operands
HSC, MODE BYTE Constant
N WORD Constant

Refer to the Tips and Tricks on the documentation CD for programs that use high-speed counters. See
Tip 4 and Tip 29.

High-speed counters count high-speed events that cannot be controlled at S7-200 scan rates. The
maximum counting frequency of a high-speed counter depends upon your S7-200 CPU model. Refer to
Appendix A for more information.

Tip

CPU 221 and CPU 222 support four high-speed counters: HSCO, HSC3, HSC4, and HSC5. These

CPUs do not support HSC1 and HSC2.

CPU 224, CPU 226, and CPU 226XM support six high-speed counters: HSCO to HSCS5.

111

S7-200 Programmable Controller System Manual

Instruction
Wizard

112

Typically, a high-speed counter is used as the drive for a drum timer, where a shaft rotating at a constant
speed is fitted with an incremental shaft encoder. The shaft encoder provides a specified number of
counts per revolution and a reset pulse that occurs once per revolution. The clock(s) and the reset pulse
from the shaft encoder provide the inputs to the high-speed counter.

The high-speed counter is loaded with the first of several presets, and the desired outputs are activated
for the time period where the current count is less than the current preset. The counter is set up to provide
an interrupt when the current count is equal to preset and also when reset occurs.

As each current-count-value-equals-preset-value interrupt event occurs, a new preset is loaded and the
next state for the outputs is set. When the reset interrupt event occurs, the first preset and the first output
states are set, and the cycle is repeated.

Since the interrupts occur at a much lower rate than the counting rates of the high-speed counters, precise
control of high-speed operations can be implemented with relatively minor impact to the overall PLC scan
cycle. The method of interrupt attachment allows each load of a new preset to be performed in a separate
interrupt routine for easy state control. (Alternatively, all interrupt events can be processed in a single
interrupt routine.)

Understanding the Different High-Speed Counters

All counters function the same way for the same counter mode of operation. There are four basic types of
counters: single-phase counter with internal direction control, single-phase counter with external direction
control, two-phase counter with 2 clock inputs, and A/B phase quadrature counter. Note that every mode
is not supported by every counter. You can use each type: without reset or start inputs, with reset and
without start, or with both start and reset inputs.

1 When you activate the reset input, it clears the current value and holds it clear until you deactivate
reset.

1 When you activate the start input, it allows the counter to count. While start is deactivated, the
current value of the counter is held constant and clocking events are ignored.

(O Ifresetis activated while start is inactive, the reset is ignored and the current value is not changed.
If the start input becomes active while the reset input is active, the current value is cleared.

Before you use a high-speed counter, you use the HDEF instruction (High-Speed Counter Definition) to
select a counter mode. Use the first scan memory bit, SMO0.1 (this bit is turned on for the first scan and is
then turned off), to call a subroutine that contains the HDEF instruction.

Programming a High-Speed Counter

You can use the HSC Instruction Wizard to configure the counter. The wizard uses the following
information: type and mode of counter, counter preset value, counter current value, and initial counting
direction. To start the HSC Instruction Wizard, select the Tools > Instruction Wizard menu command and
then select HSC from the Instruction Wizard window.

To program a high-speed counter, you must perform the following basic tasks:
(1 Define the counter and mode.

Set the control byte.

Set the current value (starting value).

Set the preset value (target value).

Assign and enable the interrupt routine.

U dJod

Activate the high-speed counter.

S7-200 Instruction Set Chapter 6

Defining Counter Modes and Inputs
Use the High-Speed Counter Definition instruction to define the counter modes and inputs.

Table 6-25 shows the inputs used for the clock, direction control, reset, and start functions associated with
the high-speed counters. The same input cannot be used for two different functions, but any input not
being used by the present mode of its high-speed counter can be used for another purpose. For example,
if HSCO is being used in mode 1, which uses 10.0 and 10.2, 10.1 can be used for edge interrupts or for
HSCS3.

Tip

Note that all modes of HSCO always use 10.0 and all modes of HSC4 always use 10.3, so these points
are never available for other uses when these counters are in use.

Table 6-25 Inputs for the High-Speed Counters

Mode Description Inputs

HSCO 10.0 10.1 10.2
HSC1 10.6 10.7 10.2 11.1
HSC2 11.2 11.3 1.1 11.2
HSC3 10.1
HSC4 10.3 10.4 10.5
HSC5 10.4

0 Single-phase counter with internal Clock

1 direction control Clock Reset

2 Clock Reset Start

3 Single-phase counter with external Clock Direction

4 direction control Clock Direction Reset

5 Clock Direction Reset Start

6 Two-phase counter with 2 clock inputs | Clock Up Clock Down

7 Clock Up Clock Down Reset

8 Clock Up Clock Down Reset Start

9 A/B phase quadrature counter Clock A Clock B

10 Clock A Clock B Reset

11 Clock A Clock B Reset Start

113

S7-200 Programmable Controller System Manual

Examples of HSC Modes

The timing diagrams in Figure 6-21 through Figure 6-25 show how each counter functions according to
mode.

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.

PV=CV interrupt generated
Direction changed within interrupt routine

cook o LI LTI LI LT L

Internal .|
Directon 0—
Control
(1=Up)

Counter
Current
Value

Figure 6-21 Operation Example of Modes 0, 1, or 2

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.
PV=CV interrupt generated

PV=CV interrupt generated and
Direction Changed interrupt generated

Clock

External
Direction
Control
(1=Up)

Counter
Current
Value

Figure 6-22 Operation Example of Modes 3, 4, or 5

114

S7-200 Instruction Set Chapter 6

When you use counting modes 6, 7, or 8, and rising edges on both the up clock and down clock inputs
occur within 0.3 microseconds of each other, the high-speed counter could see these events as
happening simultaneously. If this happens, the current value is unchanged and no change in counting
direction is indicated. As long as the separation between rising edges of the up and down clock inputs is
greater than this time period, the high-speed counter captures each event separately. In either case, no
error is generated and the counter maintains the correct count value.

Current value loaded to 0, preset loaded to 4, initial counting direction set to up.
Counter enable bit set to enabled.

PV=CV interrupt generated

Count 1 PV=CV interrupt generated and

Ugun - Direction Changed interrupt generated
Clock 70— —l |—I |—I |—I |—I

Count 1

Down

Clock 0—

Counter

Current

Value 0__

Figure 6-23 Operation Example of Modes 6, 7, or 8

Current value loaded to 0, preset loaded to 3, initial counting direction set to up.
Counter enable bit set to enabled.

PV=CV interrupt PV=CV interrupt generated and

generated Direction Changed interrupt generated
Phase A 1 _
Clock 0__
1 1 1 1 1 1
PhaseB 1 —
Clock
0— ! ' ! | | '
4 , ,
=,
2
Counter
Current
Value 0—

Figure 6-24 Operation Example of Modes 9, 10, or 11 (Quadrature 1x Mode)

115

S7-200 Programmable Controller System Manual

Current value loaded to 0, preset loaded to 9, initial counting direction set to up.
Counter enable bit set to enabled.

Phase A 1—
Clock R I
Phase B 1 Yo
Clock 0.

0_ 1 1

Counter Current
Value 0

PV=CV interrupt generated

Direction Changed
interrupt generated

PV=CV
interrupt generated

L

12

Figure 6-25 Operation Example of Modes 9, 10, or 11 (Quadrature 4x Mode)

Reset and Start Operation

The operation of the reset and start inputs shown in Figure 6-26 applies to all modes that use reset and
start inputs. In the diagrams for the reset and start inputs, both reset and start are shown with the active

state programmed to a high level.

Example with Reset
and without Start

Reset interrupt

| Reset interrupt Reset interrupt

Example with Reset

generated generated
and Start Counter | Counter Counter Counter
disabled | enabled disabled enabled
Start 1 —
(Active High) |

Reset 1 —
generated Active High
Reset 1 — (Active High) 0 —
(Active High)
0 —
+2,147,483,647 — +2,147,483,647 —
Current Current
Counter Counter
Current Value 0— CurrentValue 0~ value r VeI
frozen frozen
-2,147,483,648 — \ /‘ -2,147,483,648 — K /‘

Y 7
Counter value is somewhere in this range.

v 7
Counter value is somewhere in this range.

Figure 6-26 Operation Examples Using Reset with and without Start

116

S7-200 Instruction Set Chapter 6

Four counters have three control bits that are used to configure the active state of the reset and start
inputs and to select 1x or 4x counting modes (quadrature counters only). These bits are located in the
control byte for the respective counter and are only used when the HDEF instruction is executed. These
bits are defined in Table 6-26.

Tip
You must set these three control bits to the desired state before the HDEF instruction is executed.
Otherwise, the counter takes on the default configuration for the counter mode selected.

Once the HDEF instruction has been executed, you cannot change the counter setup unless you first
place the S7-200 in STOP mode.

Table 6-26 Active Level for Reset, Start, and 1x/4x Control Bits
HSCO HSC1 HSC2 HSC4 Description (used only when HDEF is executed)

Active level control bit for Reset!:
SM37.0 | SM47.0 | SM57.0 | SM147.0 0 = Reset is active high 1 = Reset is active low

Active level control bit for Start!:

--- | SM47.1 | SM5T T 0 = Start is active high 1 = Start is active low

Counting rate selection for quadrature counters:
SM37.2 | SM47.2 | SM57.2 | SM147.2 0 = 4X counting rate 1 = 1X counting rate

1 The default setting of the reset input and the start input are active high, and the quadrature counting rate is 4x (or four
times the input clock frequency).

Example: High-Speed Counter Definition Instruction

M Network 1 Network 1 //On the first scan:
'T\ SMO A MOY B Z1 tSetI)ect trtlg stsrt;nddresTt irtuiuts g
l 0 be active high and select 4x mode.
—| EN ENO H
N I //2. Configure HSC1 for quadrature mode
1earadin ouTkamsar /| with reset and start inputs
LD SMO0.1
MOVB 16#F8, SMB47
HDEF HDEF 1, 11
EN ENO—)
14HsC
114MODE

117

S7-200 Programmable Controller System Manual

118

Setting the Control Byte

After you define the counter and the counter mode, you can program the dynamic parameters of the
counter. Each high-speed counter has a control byte that allows the following actions:

1 Enabling or disabling the counter
1 Controlling the direction (modes 0, 1, and 2 only), or the initial counting direction for all other modes
(1 Loading the current value
[0 Loading the preset value
Examination of the control byte and associated current and preset values is invoked by the execution of
the HSC instruction. Table 6-27 describes each of these control bits.
Table 6-27 Control Bits for HSCO, HSC1, HSC2, HSC3, HSC4, and HSC5

HSCO HSC1 HSC2 HSC3 HSC4 HSC5 Description

Counting direction control bit:
0 = Count down 1 = Count up

SM37.3 SM47.3 SM57.3 SM137.3 SM147.3 | SM157.3

Write the counting direction to the HSC:

SM37.4 SM47.4 SM57.4 SM137.4 SM147.4 | SM157.4 0 = No update 1 = Update direction

Write the new preset value to the HSC:

SM37.5 SM47.5 SM57.5 SM137.5 SM147.5 SM157.5 0 = No update 1 = Update preset

Write the new current value to the HSC:
0 = No update 1 = Update current value

Enable the HSC:
0 = Disable the HSC 1 = Enable the HSC

SM37.6 SM47.6 SM57.6 SM137.6 SM147.6 SM157.6

SM37.7 SM47.7 SM57.7 SM137.7 SM147.7 | SM157.7

Setting Current Values and Preset Values

Each high-speed counter has a 32-bit current value and a 32-bit preset value. Both the current and the
preset values are signed integer values. To load a new current or preset value into the high-speed
counter, you must set up the control byte and the special memory bytes that hold the current and/or preset
values, and also execute the HSC instruction to cause the new values to be transferred to the high-speed
counter. Table 6-28 lists the special memory bytes used to hold the new current and preset values.

In addition to the control bytes and the new preset and current holding bytes, the current value of each
high-speed counter can only be read using the data type HC (High-Speed Counter Current) followed by
the number (0, 1, 2, 3, 4, or 5) of the counter. The current value is directly accessible for read operations,
but can only be written with the HSC instruction.

Table 6-28 Current and Preset Values of HSCO, HSC1, HSC2, HSC3, HSC4, and HSC5

Value to be Loaded HSCO0 HSC1 HSC2 HSC3 HSC4 HSC5
New current SMD38 SMD48 SMD58 SMD138 SMD148 SMD158
New preset SMD42 SMD52 SMD62 SMD142 SMD152 SMD162

S7-200 Instruction Set Chapter 6

Addressing the High-Speed Counters (HC)
To access the count value for the high-speed counter, specify the address of the high-speed counter,
using the memory type (HC) and the counter number (such as HCO0). The current value of the high-speed

counter is a read-only value that can be addressed only as a double word (32 bits), as shown in
Figure 6-27.

HC 2 MSB LSB
L 31 0
ngh Speed counter number | Most significant Least significant

Area identifier (high-speed counter)
Byte 3 Byte 2 Byte 1 Byte 0

Figure 6-27 Accessing the High-Speed Counter Current Values

Assigning Interrupts

All counter modes support an interrupt on current value equal to the preset value. Counter modes that use
an external reset input support an interrupt on activation of the external reset. All counter modes except
modes 0, 1, and 2 support an interrupt on a change in counting direction. Each of these interrupt
conditions can be enabled or disabled separately. For a complete discussion on the use of interrupts, see
the section on Communications and Interrupt instructions.

Notice

A fatal error can occur if you attempt either to load a new current value or to disable and then re-enable
the high-speed counter from within the external reset interrupt routine.

Status Byte

A status byte for each high-speed counter provides status memory bits that indicate the current counting
direction and whether the current value is greater or equal to the preset value. Table 6-29 defines these
status bits for each high-speed counter.

Tip
Status bits are valid only while the high-speed counter interrupt routine is being executed. The purpose

of monitoring the state of the high-speed counter is to enable interrupts for the events that are of
consequence to the operation being performed.

Table 6-29 Status Bits for HSCO, HSC1, HSC2, HSC3, HSC4, and HSC5
HSCO HSC1 HSC2 HSC3 HSC4 HSC5 Description

SM36.0 SM46.0 SM56.0 SM136.0 SM146.0 SM156.0 @ Not used
SM36.1 SM46.1 SM56.1 SM136.1 SM146.1 SM156.1 ' Not used
SM36.2 SM46.2 SM56.2 SM136.2 SM146.2 SM156.2 Not used
SM36.3 SM46.3 SM56.3 SM136.3 SM146.3 SM156.3 Not used
SM36.4 SM46.4 SM56.4 SM136.4 SM146.4 SM156.4 Not used

SM36.5 SM46.5 SM56.5 SM136.5 SM146.5 SM156.5 Current counting direction status bit:

0 = Counting down
1 = Counting up

SM36.6 SM46.6 SM56.6 SM136.6 SM146.6 SM156.6 Current value equals preset value status bit:

0 = Not equal
1 = Equal

SM36.7 SM46.7 SM56.7 SM136.7 SM146.7 SM156.7 @ Current value greater than preset value status bit:

0 = Less than or equal
1 = Greater than

119

S7-200 Programmable Controller System Manual

120

Sample Initialization Sequences for the High-Speed Counters

HSC1 is used as the model counter in the following descriptions of the initialization and operation
sequences. The initialization descriptions assume that the S7-200 has just been placed in RUN mode,
and for that reason, the first scan memory bit is true. If this is not the case, remember that the HDEF
instruction can be executed only one time for each high-speed counter after entering RUN mode.
Executing HDEF for a high-speed counter a second time generates a run-time error and does not change
the counter setup from the way it was set up on the first execution of HDEF for that counter.

Tip
Although the following sequences show how to change direction, current value, and preset value

individually, you can change all or any combination of them in the same sequence by setting the value
of SMB47 appropriately and then executing the HSC instruction.

Initialization Modes 0, 1, or 2

The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with Internal
Direction (Modes 0, 1, or 2).

1. Use the first scan memory bit to call a subroutine in which the initialization operation is performed.
Since you use a subroutine call, subsequent scans do not make the call to the subroutine, which
reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the direction to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: O for no external reset or start, 1 for external reset and no start, or 2 for both external reset
and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with O to clear it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current value equal to preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section that discusses the
Interrupt Instructions for complete details on interrupt processing.

7. Inorder to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

8. Execute the global interrupt enable instruction (ENI) to enable interrupts.
9. Execute the HSC instruction to cause the S7-200 to program HSC1.

10. Exit the subroutine.

S7-200 Instruction Set Chapter 6

Initialization Modes 3, 4, or 5

The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with External
Direction (Modes 3, 4, or 5):

1.

10.
11.

Use the first scan memory bit to call a subroutine in which the initialization operation is performed.
Since you use a subroutine call, subsequent scans do not make the call to the subroutine, which
reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: 3 for no external reset or start, 4 for external reset and no start, or 5 for both external reset
and start.

Load SMD48 (double-word-sized value) with the desired current value (load with O to clear it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section that discusses the
Interrupt Instructions for complete details on interrupt processing.

In order to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSCA1.

Exit the subroutine.

Initialization Modes 6, 7, or 8

The following steps describe how to initialize HSC1 for Two Phase Up/Down Counter with Up/Down
Clocks (Modes 6, 7, or 8):

1.

Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB47 according to the desired control operation. For example:

SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Execute the HDEF instruction with the HSC input set to 1 and the MODE set to one of the following:
6 for no external reset or start, 7 for external reset and no start, or 8 for both external reset and start.

Load SMD48 (double-word-sized value) with the desired current value (load with O to clear it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section on interrupts.

121

S7-200 Programmable Controller System Manual

7. Inorder to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.
10. Execute the HSC instruction to cause the S7-200 to program HSC1.

11. Exit the subroutine.

Initialization Modes 9, 10, or 11

The following steps describe how to initialize HSC1 for A/B Phase Quadrature Counter (for modes 9, 10,
or 11):

1. Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control operation.

Example (1x counting mode):
SMB47 = 16#FC Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Example (4x counting mode):
SMB47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of the
following: 9 for no external reset or start, 10 for external reset and no start, or 11 for both external
reset and start.

4. Load SMD48 (double-word-sized value) with the desired current value (load with O to clear it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by attaching the
CV = PV interrupt event (event 13) to an interrupt routine. See the section on enabling interrupts
(ENI) for complete details on interrupt processing.

7. Inorder to capture direction changes, program an interrupt by attaching the direction changed
interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching the external reset
interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.
10. Execute the HSC instruction to cause the S7-200 to program HSC1.

11. Exit the subroutine.

122

S7-200 Instruction Set Chapter 6

Change Direction in Modes 0, 1, or 2
The following steps describe how to configure HSC1 for Change Direction for Single Phase Counter with
Internal Direction (Modes 0, 1, or 2):

1.

2.

Load SMB47 to write the desired direction:

SMB47 = 16#90 Enables the counter
Sets the direction of the HSC to count down
SMB47 = 16#98 Enables the counter

Sets the direction of the HSC to count up
Execute the HSC instruction to cause the S7-200 to program HSCA1.

Loading a New Current Value (Any Mode)

Changing the current value forces the counter to be disabled while the change is made. While the counter
is disabled, it does not count or generate interrupts.

The following steps describe how to change the counter current value of HSC1 (any mode):

1.

Load SMB47 to write the desired current value:

SMB47 = 16#C0 Enables the counter
Writes the new current value

Load SMD48 (double-word-sized value) with the desired current value (load with O to clear it).

Execute the HSC instruction to cause the S7-200 to program HSCA1.

Loading a New Preset Value (Any Mode)
The following steps describe how to change the preset value of HSC1 (any mode):

1.

2.
3.

Load SMB47 to write the desired preset value:

SMB47 = 16#A0 Enables the counter
Writes the new preset value

Load SMD52 (double-word-sized value) with the desired preset value.

Execute the HSC instruction to cause the S7-200 to program HSC1.

Disabling a High-Speed Counter (Any Mode)
The following steps describe how to disable the HSC1 high-speed counter (any mode):

1.

2.

Load SMBA47 to disable the counter:
SMB47 = 16#00 Disables the counter

Execute the HSC instruction to disable the counter.

123

S7-200 Programmable Controller System Manual

Example: High-Speed Counter Instruction

M | Network 1 Network 1 //On the first scan, call SBR_O.
'?‘ SM0.1 SBR_O LD SMO.1
N o O s = CALL SBR.O
S Network 1 Network 1 //On the first scan, configure HSC1:
B SMO.1 MOV_B /1. Enable the counter.
R —] | BN ENO— /| - Write a new current value.
0 /| - Write a new preset value.
16#FB I QUTFSMB4T /| - Set the initial direction to count up.
/| - Select the start and reset inputs to be active high.
/I - Select 4x mode.
HDEF //2. Configure HSC1 for quadrature mode
BN Eno—) /I with reset and start inputs.
/3. Clear the current value of HSC1.
11::%& //4. Set the HSC1 preset value to 50.
//5. When HSC1 current value = preset value,
SRR /I attach event 13 to interrupt routine INT_O.
EN ENO > //6. Global interrupt enable.
/7. Program HSCH1.
+0{IM ouTFSMD4s | LD SMO.1
MOVB 16#F8, SMB47
HDEF 1, 11
MO _DW MOVD +0, SMD48
Bv Eno— MOVD +50, SMD52
ATCH INT_O, 13
+50IN outksmMos2 | gN
HSC 1
ATCH
EN ENO—)
INT_O4INT
13{EVNT
—(En)
HSC
EN ENO—
1N
I Network 1 Network 1 //Program HSC1:
_'I_l SMO 0 MO D /1. Clear the current value of HSC1.
| EN ENO %l //2. Select to write only a new current
0 _| ! /I and leave HSC1 enabled.
+04IN OUTFSMD4E | LD SMo0.0
MOVD +0, SMD48
MOVB 16#C0, SMB47
MOY_B HSC 1
EN ENOF—)
16#COIN___ OUTFSMBAT
HSC
en Eno—)
14n

124

S7-200 Instruction Set Chapter 6

Pulse Output Instruction

The Pulse Output instruction (PLS) is used to control the Pulse Train
Output (PTO) and Pulse Width Modulation (PWM) functions

posiion available on the high-speed outputs (Q0.0 and Q0.1).You can use LAD FED
Control the Position Control wizard to configure the pulse outputs.

SIMATIC £ IEC 1131

FLS FLS

EM EMO =
—Q0R

PTO provides a square wave (50% duty cycle) output with user | EM EMO =
control of the cycle time and the number of pulses. o

PWM provides a continuous, variable duty cycle output with user
control of the cycle time and the pulse width.

The S7-200 has two PTO/PWM generators that create either a SIMATIC

high-speed pulse train or a pulse width modulated waveform. One
generator is assigned to digital output point Q0.0, and the other
generator is assigned to digital output point Q0.1. A designated
special memory (SM) location stores the following data for each
generator: a control byte (8-bit value), a pulse count value (an
unsigned 32-bit value), and a cycle time and pulse width value (an
unsigned 16-bit value).

STL
FLS Q0K

The PTO/PWM generators and the process-image register share the use of Q0.0 and Q0.1. When a PTO
or PWM function is active on Q0.0 or Q0.1, the PTO/PWM generator has control of the output, and normal
use of the output point is inhibited. The output waveform is not affected by the state of the process-image
register, the forced value of the point, or the execution of immediate output instructions. When the
PTO/PWM generator is inactive, control of the output reverts to the process-image register. The
process-image register determines the initial and final state of the output waveform, causing the waveform
to start and end at a high or low level.

Table 6-30 Valid Operands for Pulse Output Instruction

Inputs/Outputs Data Types Operands
QO0.X WORD Constant: 0(=Q0.0) or 1(=Q0.1)

Tip
@ Before enabling PTO or PWM operation, set the value of the process-image register for Q0.0 and Q0.1
to 0.

Default values for all control bits, cycle time, pulse width, and pulse count values are 0.

The PTO/PWM outputs must have a minimum load of at least 10% of rated load to provide crisp
transitions from off to on, and from on to off.

Refer to the Tips and Tricks on the documentation CD for programs that use the PLS instruction for
PTO/PWM operation. See Tip 7, Tip 22, Tip 23, Tip 30, and Tip 50.

Tips and Tricks

125

S7-200 Programmable Controller System Manual

Pulse Train Operation (PTO)

PTO provides a square wave (50% duty cycle) output for a specified number of pulses and a specified
cycle time. (See Figure 6-28.) PTO can produce either a single train of pulses or multiple trains of pulses
(using a pulse profile). You specify the number of pulses and the cycle time (in either microsecond or
millisecond increments):

(d Number of pulses: 110 4,294,967,295 Cycle Time
B B —
 Cycle time: 50 us to 65,535 us or
2 ms to 65,535 ms. 50% 50% 50% 50%

" . - off On off On
Specifying an odd number of microseconds or milliseconds _
for the cycle time (such as 75 ms), causes some distortion in
the duty cycle. Figure 6-28 Pulse Train Output (PTO)

See Table 6-31 for pulse count and cycle time limitations.

Table 6-31 Pulse Count and Cycle Time in the PTO function

Pulse Count/Cycle Time Reaction
Cycle time < 2 time units Cycle time defaults to 2 time units.
Pulse count = 0 Pulse count defaults to 1 pulse.

The PTO function allows the “chaining” or “pipelining” of pulse trains. When the active pulse train is
complete, the output of a new pulse train begins immediately. This allows continuity between subsequent
output pulse trains.

Single-Segment Pipelining of PTO Pulses

In single-segment pipelining, you are responsible for updating the SM locations for the next pulse train.
After the initial PTO segment has been started, you must modify immediately the SM locations as required
for the second waveform and execute the PLS instruction again. The attributes of the second pulse train
are held in a pipeline until the first pulse train is completed. Only one entry at a time can be stored in the
pipeline. When the first pulse train completes, the output of the second waveform begins, and the pipeline
is made available for a new pulse train specification. You can then repeat this process to set up the
characteristics of the next pulse train.

Smooth transitions between pulse trains occur unless there is a change in the time base or the active
pulse train completes before a new pulse train setup is captured by the execution of the PLS instruction.

Multiple-Segment Pipelining of PTO Pulses

In multiple-segment pipelining, the S7-200 automatically reads the characteristics of each pulse train
segment from a profile table located in V memory. The SM locations used in this mode are the control
byte, the status byte, and the starting V memory offset of the profile table (SMW168 or SMW178). The
time base can be either microseconds or milliseconds, but the selection applies to all cycle time values in
the profile table, and cannot be changed while the profile is running. Execution on the PLS instruction
starts multiple segment operation.

Each segment entry is 8 bytes in length, and is composed of a 16-bit cycle time value, a 16-bit cycle time
delta value, and a 32-bit pulse count value. Table 6-32 shows the format of the profile table. You can
increase or decrease the cycle time automatically by programming a specified amount for each pulse. A
positive value in the cycle time delta field increases cycle time, a negative value in the cycle time delta
field decreases cycle time, and 0 results in an unchanging cycle time.

While the PTO profile is operating, the number of the currently active segment is available in SMB166 (or
SMB176).

126

S7-200 Instruction Set Chapter 6

Table 6-32 Profile Table Format for Multiple-Segment PTO Operation

Byte Offset Segment Description of Table Entries

0 Number of segments: 1 to 2551
1 #1 Initial cycle time (2 to 65,535 units of the time base)
3 Cycle time delta per pulse (signed value) (-32,768 to 32,767 units of the time base)
5 Pulse count (1 to 4,294,967,295)
9 #2 Initial cycle time (2 to 65,535 units of the time base)
11 Cycle time delta per pulse (signed value) (-32,768 to 32,767 units of the time base)
13 Pulse count (1 to 4,294,967,295)
(Continues) #3 (Continues)

1 Entering a value of 0 for the number of segments generates a non-fatal error. No PTO output is generated.

Pulse Width Modulation (PWM)

PWM provides a fixed cycle time output with a variable duty Cycle Time
cycle. (See Figure 6-29.) You can specify the cycle time and
the pulse width in either microsecond or millisecond Pulse Width Pulse Width
increments: Time Time
 Cycletime: 50 us to 65,535 us or B
2 ms to 65,535 ms Figure 6-29 Pulse Width Modulation (PWM)
[Pulse width time: 0 us to 65,535 us or

0 ms to 65,535 ms

As shown in Table 6-33, setting the pulse width equal to the cycle time (which makes the duty cycle
100 percent) turns the output on continuously. Setting the pulse width to 0 (which makes the duty cycle
0 percent) turns the output off.

Table 6-33 Pulse Width Time and Cycle Time and Reactions in the PWM Function

Pulse Width Time/ Cycle Time Reaction

Pulse width time >= Cycle time value The duty cycle is 100%: the output is turned on continuously.
Pulse width time = 0 The duty cycle is 0%: the output is turned off.

Cycle time < 2 time units The cycle time defaults to two time units.

There are two different ways to change the characteristics of a PWM waveform:

(1 Synchronous Update: If no time base changes are required, you can use a synchronous update.
With a synchronous update, the change in the waveform characteristics occurs on a cycle
boundary, providing a smooth transition.

1 Asynchronous Update: Typically with PWM operation, the pulse width is varied while the cycle time
remains constant so time base changes are not required. However, if a change in the time base of
the PTO/PWM generator is required, an asynchronous update is used. An asynchronous update
causes the PTO/PWM generator to be disabled momentarily, asynchronous to the PWM waveform.
This can cause undesirable jitter in the controlled device. For that reason, synchronous PWM
updates are recommended. Choose a time base that you expect to work for all of your anticipated
cycle time values.

127

S7-200 Programmable Controller System Manual

¥

Tip
The PWM Update Method bit (SM67.4 or SM77.4) in the control byte specifies the update type used
when the PLS instruction is executed to invoke changes.

If the time base is changed, an asynchronous update occurs regardless of the state of the PWM Update
Method bit.

Using SM Locations to Configure and Control the PTO/PWM Operation

128

The PLS instruction reads the data stored in the specified SM memory locations and programs the
PTO/PWM generator accordingly. SMB67 controls PTO 0 or PWM 0, and SMB77 controls PTO 1 or
PWM 1. Table 6-34 describes the registers used to control the PTO/PWM operation. You can use Table
6-35 as a quick reference to determine the value to place in the PTO/PWM control register to invoke the
desired operation.

You can change the characteristics of a PTO or PWM waveform by modifying the locations in the SM area
(including the control byte) and then executing the PLS instruction. You can disable the generation of a
PTO or PWM waveform at any time by writing 0 to the PTO/PWM enable bit of the control byte (SM67.7 or
SM77.7) and then executing the PLS instruction.

The PTO Idle bit in the status byte (SM66.7 or SM76.7) is provided to indicate the completion of the
programmed pulse train. In addition, an interrupt routine can be invoked upon the completion of a pulse
train. (Refer to the descriptions of the Interrupt instructions and the Communications instructions.) If you
are using the multiple segment operation, the interrupt routine is invoked upon completion of the profile
table.

The following conditions set SM66.4 (or SM76.4) and SM66.5 (or SM76.5):

O Specifying a cycle time delta value that results in an illegal cycle time after a number of pulses
generates a mathematical overflow condition that terminates the PTO function and sets the Delta
Calculation Error bit (SM66.4 or SM76.4) to 1. The output reverts to image register control.

1 Manually aborting (disabling) a PTO profile in progress sets the User Abort bit (SM66.5 or SM76.5)
to 1.

0 Attempting to load the pipeline while it is full sets the PTO overflow bit (SM66.6 or SM76.6) to 1. You
must clear this bit manually after an overflow is detected if you want to detect subsequent overflows.
The transition to RUN mode initializes this bit to 0.

Tip

When you load a new pulse count (SMD72 or SMD82), pulse width (SMW70 or SMW80), or cycle time
(SMW68 or SMW?78), also set the appropriate update bits in the control register before you execute the
PLS instruction. For a multiple segment pulse train operation, you must also load the starting offset
(SMW168 or SMW178) of the profile table and the profile table values before you execute the PLS
instruction.

S7-200 Instruction Set

Chapter 6

Table 6-34 SM Locations of the PTO / PWM Control Registers
Q0.0 Q0.1 Status Bits
SM66.4 SM76.4 PTO profile aborted (delta calculation error): 0 = no error 1 = aborted
SM66.5 SM76.5 PTO profile aborted due to user command: 0 = no abort 1 = aborted
SM66.6 SM76.6 PTO pipeline overflow/underflow: 0 = no overflow 1 = overflow/underflow
SM66.7 SM76.7 PTO idle: 0 = in progress 1 =PTO idle
Q0.0 Q0.1 Control Bits
SM67.0 SM77.0 PTO/PWM update the cycle time: 0 = no update 1 = update cycle time
SM67.1 SM77.1 PWM update the pulse width time: 0 = no update 1 = update pulse width
SM67.2 SM77.2 PTO update the pulse count value: 0 = no update 1 = update pulse count
SM67.3 SM77.3 PTO/PWM time base: 0 =1 us/tick 1 =1 msf/tick
SM67.4 SM77.4 PWM update method: 0 = asynchronous 1 = synchronous
SM67.5 SM77.5 PTO single/multiple segment operation: 0 = single 1 = multiple
SM67.6 SM77.6 PTO/PWM mode select: 0=PTO 1=PWM
SMe7.7 SM77.7 PTO/PWM enable: 0 = disable 1 =enable
Q0.0 Q0.1 Other PTO/PWM Registers
SMW68 SMW78 PTO/PWM cycle time value range: 2 to 65,535
SMW?70 SMW80 PWM pulse width value range: 0 to 65,535
SMD72 SMD82 PTO pulse count value range: 1 to 4,294,967,295
SMB166 SMB176 Number of the segment in progress Multiple-segment PTO operation only
SMW168 SMW178 | Starting location of the profile table Multiple-segment PTO operation only
(byte offset from VO)
Table 6-35 PTO/PWM Control Byte Reference
Control Result of Executing the PLS Instruction
Register PTO PWM
G, Emble pogg Segment . Update TmeBase il wam Time
16#81 Yes PTO Single 1 us/cycle Load
16#84 Yes PTO Single 1 us/cycle Load
16#85 Yes PTO Single 1 us/cycle Load Load
16#89 Yes PTO Single 1 ms/cycle Load
16#8C Yes PTO Single 1 ms/cycle | Load
16#8D Yes PTO Single 1 ms/cycle | Load Load
16#A0 Yes PTO | Multiple 1 us/cycle
16#A8 Yes PTO | Multiple 1 ms/cycle
16#D1 Yes PWM Synchronous 1 us/cycle Load
16#D2 Yes PWM Synchronous 1 us/cycle Load
16#D3 Yes PWM Synchronous 1 us/cycle Load Load
16#D9 Yes PWM Synchronous 1 ms/cycle Load
16#DA Yes PWM Synchronous 1 ms/cycle Load
164#DB Yes PWM Synchronous 1 ms/cycle Load Load

129

S7-200 Programmable Controller System Manual

Calculating Profile Table Values

The multiple-segment pipelining capability of the PTO/PWM Frequency
generators can be useful in many applications, particularly in 1
stepper motor control.

\ \
For example, you can use PTO with a pulse profile to control =~ 2kHz | |
a stepper motor through a simple ramp up, run, and ramp } r } >
down sequence or more complicated sequences by defining - i Time
a pulse profile that consists of up to 255 segments, with 1 2 3
each segment corresponding to a ramp up, run, or ramp - -
down operation. 4,000 pulses
Figure 6-30 illustrates sample profile table values required to 1 Segment #1 2 Segment#2 3 Segment#3
generate an output waveform that accelerates a stepper 200 pulses 8400 pulses 400 pulses
motor (segment 1), operates the motor at a constant speed
(segment 2), and then decelerates the motor (segment 3). Figure 6-30 Frequency/Time Diagram

For this example: The starting and final pulse frequency is 2 kHz, the maximum pulse frequency is 10 kHz,
and 4000 pulses are required to achieve the desired number of motor revolutions. Since the values for the
profile table are expressed in terms of period (cycle time) instead of frequency, you must convert the given
frequency values into cycle time values. Therefore, the starting (initial) and final (ending) cycle time is

500 us, and the cycle time corresponding to the maximum frequency is 100 us. During the acceleration
portion of the output profile, the maximum pulse frequency should be reached in approximately 200
pulses. The deceleration portion of the profile should be completed in approximately 400 pulses.

You can use the following formula to determine the delta cycle time value for a given segment that the
PTO/PWM generator uses to adjust the cycle time of each pulse:

Delta cycle time for a segment = | End_CTseq - Init_CTgeq | / Quantitygeq

where: End_CTgeq = Ending cycle time for this segment
Init_CTseq = Initial cycle time for this segment
Quantityseq = Quantity of pulses in this segment

Using this formula to calculate the delta cycle Table 6-36 Profile Table Values

time values for th mpl lication:
€ values for the sample applicatio Address Value Description

Segment 1 (accelgration): VB500 3 | Total number of segments
Delta cycle ime = -2 VW501 500 Initial cycle time
Segment 2 (constant speed): VW503 -2 | Initial delta cycle time Segment 1
Delt le time =
elta cycle e 0 VD505 200 Number of pulses
Segment 3 (deceleration): VW509 100 | Initial cycle time
Delta cycle time = 1 .
VW511 0 | Delta cycle time Segment 2
Table 6-36 lists the values for generating the VD513 3400 | Number of pulses

example waveform (assumes that the profile — -
table is located in V memory, starting at V500). YW517 100 | Initial cycle time

You can include instructions in your programto | VW519 1 | Delta cycle time Segment 3
load these values into V. memory, or you can

define the values of the profile in the data block. vbs2i 400 | Number of pulses

130

S7-200 Instruction Set Chapter 6

In order to determine if the transitions between waveform segments are acceptable, you need to
determine the cycle time of the last pulse in a segment. Unless the delta cycle time is 0, you must
calculate the cycle time of the last pulse of a segment, because this value is not specified in the profile.
Use the following formula to calculate the cycle time of the last pulse:

Cycle time of the last pulse for a segment = Init_CTgeq + (Deltageg * (Quantityseq - 1))
where: Init_CTseq = Initial cycle time for this segment
Deltageq = Delta cycle time for this segment
Quantityseq = Quantity of pulses in this segment

While the simplified example above is useful as an introduction, real applications can require more
complicated waveform profiles. Remember that the delta cycle time can be specified only as an integer
number of microseconds or milliseconds, and the cycle time modification is performed on each pulse.

The effect of these two items is that calculation of the delta cycle time value for a given segment could
require an iterative approach. Some flexibility in the value of the ending cycle time or the number of pulses
for a given segment might be required.

The duration of a given profile segment can be useful in the process of determining correct profile table
values. Use the following formula to calculate the length of time for completing a given profile segment:

Duration of segment = Quantityseq * (Init_CT + ((Deltageg/2) * (Quantitygeg - 1)))
where: Quantityseqg = Quantity of pulses in this segment
Init_CTseq = Initial cycle time for this segment

Deltageq = Delta cycle time for this segment

131

S7-200 Programmable Controller System Manual

Sample Operation of a PWM Output

¥

132

Tip

The following description of the PWM initialization and operation sequences recommends using the First
Scan bit (SMO0.1) to initialize the pulse output. Using the First Scan bit to call an initialization subroutine
reduces the scan time because subsequent scans do not call this subroutine. (The First Scan bit is set
only on the first scan following a transition to RUN mode.) However, your application could have other
constraints that require you to initialize (or re-initialize) the pulse output. In that case, you can use
another condition to call the initialization routine.

Initializing the PWM Output

Typically, you use a subroutine to initialize the PWM for the pulse output. You call the initialization
subroutine from the main program. Use the first scan memory bit (SMO0.1) to initialize the output used by
the PWM to 0, and call a subroutine to perform the initialization operations. When you use the subroutine
call, subsequent scans do not make the call to the subroutine, which reduces the scan time execution and
provides a more structured program.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values to SMB67: 16#D3 (to select
microsecond increments) or 16#DB (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PWM operation, set the update pulse
width and cycle time values, and select the time base (microseconds or milliseconds).

Load a word-sized value for the cycle time in SMW68.
Load a word-sized value for the pulse width in SMW70.
Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

o & DN

To preload a new control byte value for subsequent pulse width changes (optional), load one of the
following values in SMB67: 16#D2 (microseconds) or 16#DA (milliseconds).

6. Exit the subroutine.

Changing the Pulse Width for the PWM Output

If you preloaded SMB67 with 16#D2 or 16#DA (see step 5. above), you can use a subroutine that
changes the pulse width for the pulse output (Q0.0). After creating the call to this subroutine, use the
following steps to create the control logic for changing the pulse width:

1. Load a word-sized value for the new pulse width in SMW?70.
2. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).
3. Exit the subroutine.

S7-200 Instruction Set Chapter 6

Example: Pulse Width Modulation (PWM)

M || Hetwork 1
'T‘ SMO.1 Q0.1
L H
1
SER O
EN
Network 2
MO.0 SBR_1
[| o |
[1 P I EN
S Network 1
B SMO.0 MOV _B
R H | EN ENO—
0
164084 ouThsmer7
Mo W
En Eno—)
+100004in___ouTfsmwrs
MO W
EN ENO—
+10004I___ouT} smwan
FLS
En EnO—
14oox
MOY B
N ENOf—)
1e#0aqn__ ouTfsmer7
S Network 1
g SM0.0 MO _W
[
; — | EN ENOF—)
+50004IN__ OUTShiws0
PLS
EN ENO—)|
1{aox
Timing Diagram |_|
Q0.1

Network 1 //On the first scan,
/Iset the image register bit low and call SBR_0.
LD SMO0.1
R Q0.1,1
CALL SBR_0
Network 2 //Set M0.0 elsewhere in the program
/to change pulse width to 50% duty cycle.
LD MO0.0
EU
CALL SBR_1
Network 1 /[Start of subroutine 0:
/1. Set up the control byte.
/| - Select PWM operation.
/| - Select ms increments and
/I synchronous updates.
/| - Enable the loading of the pulse width
I and cycle time values.
/| - Enable the PWM function.
//2. Set the cycle time to 10,000 ms.
//3. Set pulse width to 1,000 ms.
//4. Invoke PWM operation: PLS1=>Q0.1.
/5. Preload the control byte for subsequent
/| pulse width changes
LD SMO0.0
MOVB 16#DB, SMB77

MOVW +10000, SMW78

MOVW +1000, SMW80

PLS 1

MOVB 16#DA, SMB77

Network 1 /[Start of subroutine 1:
//Set the pulse width to 5000 ms.
//Assert pulse width change.

LD SMo0.0

MOVW +5000, SMW80

PLS 1

[|

| 10% duty cycle |

Cycle time = 10,000 ms

110% duty cycle| 50% duty cycle | 50% duty cycle |

Subroutine 1 executed here

133

S7-200 Programmable Controller System Manual

Sample Operation of a PTO Output

¥

134

Tip

The following description of the PTO initialization and operation sequences recommends using the First
Scan memory bit (SM0.1) to initialize the pulse output. Using the First Scan bit to call an initialization
subroutine reduces the scan time because subsequent scans do not call this subroutine. (The First
Scan bit is set only on the first scan following a transition to RUN mode.) However, your application
could have other constraints that require you to initialize (or re-initialize) the pulse output. In that case,
you can use another condition to call the initialization routine.

Initializing the PTO Output for a Single-Segment Operation

Typically, you use a subroutine to configure and initialize the PTO for the pulse output. You call the
initialization subroutine from the main program. Use the first scan memory bit (SMO0.1) to initialize the
output used by the PTO to 0, and call a subroutine to perform the initialization operations. When you use
the subroutine call, subsequent scans do not make the call to the subroutine, which reduces the scan time
execution and provides a more structured program.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values in SMB67: 16#85 (to select
microsecond increments) or 16#8D (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PTO operation, set the update pulse
count and cycle time values, and select the time base (microseconds or milliseconds).

2. In SMW68, load a word-sized value for the cycle time.
In SMD72, load a double-word-sized value for the pulse count.

4. (Optional) To perform a related function as soon as the pulse train output is complete, you can
program an interrupt by attaching the pulse train complete event (interrupt event 19) to an interrupt
subroutine. Use the ATCH instruction and execute the global interrupt enable instruction ENI.

Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).

6. Exit the subroutine.

Changing the PTO Cycle Time (Single-Segment Operation)

For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the cycle
time. To change the PTO cycle time in an interrupt routine or subroutine when using a single-segment
PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update cycle time value) by loading one of the following values in SMB67:
16#81 (for microseconds) or 16#89 (for milliseconds).

2. In SMW68, load a word-sized value for the new cycle time.

3. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the PTO waveform with the
updated cycle time.

4. Exit the interrupt routine or the subroutine.

S7-200 Instruction Set Chapter 6

Changing the PTO Pulse Count (Single-Segment Operation)

For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the pulse
count. To change the PTO pulse count in an interrupt routine or a subroutine when using a single-segment
PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update pulse count value) by loading either of the following values in SMB67:
16#84 (for microseconds) or 16#8C (for milliseconds).

2. In SMD72, load a double-word-sized value for the new pulse count.

3. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the waveform with the updated
pulse count.

4. Exit the interrupt routine or the subroutine.

Changing the PTO Cycle Time and the Pulse Count (Single-Segment Operation)

For a single-segment PTO operation, you can use an interrupt routine or a subroutine to change the cycle
time and pulse count. To change the PTO cycle time and pulse count in an interrupt routine or a
subroutine when using a single-segment PTO operation, follow these steps:

1. Set the control byte (to enable the PTO/PWM function, to select PTO operation, to select the time
base, and to set the update cycle time and pulse count values) by loading either of the following
values in SMB67: 16#85 (for microseconds) or 16#8D (for milliseconds).

In SMW868, load a word-sized value for the new cycle time.
In SMC72, load a double-word-sized value for the new pulse count.

4. Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator). The S7-200
completes any PTO that is in process before starting to generate the waveform with the updated
pulse count and cycle time.

5. Exit the interrupt routine or the subroutine.

Initializing the PTO Output for a Multiple-Segment Operation

Typically, you use a subroutine to configure and initialize the PTO for the pulse output for multiple-segment
operation. You call the initialization subroutine from the main program. Use the first scan memory bit
(SM0.1) to initialize the output used by the PTO to 0, and call a subroutine to perform the initialization
operations. When you use the First Scan bit to call the initialization subroutine, the subsequent scans do
not make the call to the subroutine, which reduces scan time execution.

After creating the call to the initialization subroutine from the main program, use the following steps to
create the control logic for configuring pulse output Q0.0 within the initialization subroutine:

1. Configure the control byte by loading one of the following values in SMB67: 16#A0 (to select
microsecond increments) or 16#A8 (to select millisecond increments).

Both of these values enable the PTO/PWM function, select PTO operation, select multiple-segment
operation, and select the time base (microseconds or milliseconds).

2. In SMW168, load a word-sized value for the starting V memory offset of the profile table.

3. Use V memory to set up the segment values in the profile table. Ensure that the Number of
Segment field (the first byte of the table) is correct.

4. (Optional) To perform a related function as soon as the PTO profile is complete, you can program an
interrupt by attaching the pulse train complete event (interrupt event 19) to an interrupt subroutine.
Use the ATCH instruction and execute the global interrupt enable instruction ENI.

Execute the PLS instruction (so that the S7-200 programs the PTO/PWM generator).
Exit the subroutine.

135

S7-200 Programmable Controller System Manual

Example: Single-Segment Pulse Train Operation (PTO)

M
A
|
N

oW’

136

Network 1
S0

H

Qoo

—Cf)

Network 1
S0.0

— |

[SMBET

[ShVWeS

FSMD72

SBR_O
EM
MOV_B
EN ENO
164804 outT
WO WY
EN ENO
+5004IN ouT
WIOY_DW
EN ENO
+e{IN outT
ATCH
EN ENO
INT_O]INT
19{EVNT
— Eni)
PLS
EN ENO
o4{anx
MOV _B
EN ENG
16£89IN auT

FSMBe?

Network 1

LD
R
CALL

Network 1

LD
MOVB
MOvVwW
MOVD
ATCH
ENI
PLS
MOVB

//On the first scan,
//set the image register bit low and call subroutine 0.

SMO.1
Q0.0, 1
SBR_0

//Start of subroutine 0: Configure PTO
Set up the control byte:

n.
1l
1l
1l
1l
!
!
2.
113.
4.
If
/5.
/6.
n.

SM0.0

Select PTO operation.

Select single segment operation.
Select ms increments.

Enable the loading of the pulse count
and cycle time value.

Enable the PTO function.

Set cycle time to 500ms.

Set pulse count to 4 pulses.

Define interrupt routine 0 to be the interrupt

for processing PTO complete interrupts.

Global interrupt enable.

Invoke PTO operation, PLS0 => QO0.0.

Preload the control byte for subsequent cycle time
/[changes.

16#8D, SMB67
+500, SMW68

+4, SMD72

INT_0, 19

0

16#89, SMB67

S7-200 Instruction Set Chapter 6

Example: Single-Segment Pulse Train Operation (PTO), continued

| Network 1 Network 1 //If current cycle time is 500 ms:

N SMWER MO W /[Set the cycle time to 1000 ms and generate 4 pulses.

T = EN Enol— LDW= SMWes, +500

== | = ,
0 +500 MOVW +1000, SMW68
+oo04N___outksmwes | PLS 0
CRETI
PLS Network 2 //If current cycle time is 1000 ms:
EN ENO ﬁ //Set the cycle time to 500 ms and generate 4 pulses.
LDW= SMWe68, +1000
0qQox MOVW +500, SMW68
PLS 0
——(RETI)
Network 2
ShWES MO WY
== |
—] == | EN ENOF—)
+1000
+5004IN__ OUTFSMWES
PLS
EN ENOF—)
0qQox
Timing Diagram 1 cycle 1 cycle
500 ms 1000 ms
- -
SO e s e Y s N e S e B i e
4 cycles or 4 pulses : 4 cycles or 4 pulses :

T Interrupt 0 occurs ? Interrupt 0 occurs

137

S7-200 Programmable Controller System Manual

Example: Multiple-Segment Pulse Train Operation (PTO)

M || network 1 Network 1 //On the first scan,
A SMOA Qoo //set the image register bit low and call subroutine 0
L R LD SMO.1
N 1 R Q0.0, 1

SBR_D CALL SBRO

EM
S Network 1 Network 1 //Preload the PTO profile table:
B SMO.0 MO B //Set number of profile table segments to 3.
R 4 | EN END %l ZConfigure each of the 3 segments.
0
/1. Configure segment 1:
SN__OuTrvEso /I - Setthe initial cycle time = 500 ms.

/| - Setthe delta cycle time to -2 ms.
/| - Setthe number of pulses to 200.
MO WY //2. Configure segment 2:

EN ENO ﬁ /I - Setthe initial cycle time to 100 ms.
/| - Setthe delta cycle time to 0 ms.
004N ouThkvwsas /I - Setthe number of pulses to 3400.

//3. Configure segment 3:
/| - Setthe initial cycle time to 100 ms.
ST /| - Set the delta cycle time to 1 ms.

- /| - Setthe number of pulses to 400.

N ENOF—

-2 OUTFYWEDS

LD SMO0.0

MOVB 3, VB500

MOVW 4500, VW501 //Segment 1
MOVW -2, VW503

MO _DW MOVD +200, VD505

En EnOF—) MOVW +100, VW509 //Segment 2
MOVW +0, VW511

+2004IN__ QUTVD50S MOVD +3400, VD513

MOVW +100, VW517 //Segment 3
MOVW +1,VW519

MOVD +400, VD521

MOV _W

EN ENO—)

+10041M OUTFYW309

WOV

EN ENOF—)

+04IM OUT WS 11

WO _DW

EN ENO—)

+34004IN __ QUTFYDE13

MO _W

EN ENOF—

+1004IN___ OUTFYWS17

MOV _W

EN ENOF—

+14IM QUTFW319

138

S7-200 Instruction Set Chapter 6

Example: Multiple-Segment Pulse Train Operation (PTO) , continued

Set up the control byte:

- Select PTO operation

- Select multiple segment operation

- Select ms increments

- Enable the PTO function

Set the start address of the profile table to V500.
Define interrupt routine 0 to be the interrupt

for processing PTO complete interrupts.

Global interrupt enable

Invoke PTO operation, PLSO => Q0.0.

//When the PTO output profile is complete,
/[Turn on output Q0.5

S Network 2 /.
B I
R MO Dy 1
0 EM ENO ﬁ "
I
c /2.
[o] +40041M QUT 0521 //3.
n I
F Network 2 /4.
I SM0.0 MOV _B 15.
nob e enol— LD SM0.0
u MOVB 16#A8, SMB67
e T6#AS{IN QuTfSMBET | MOVW +500, SMW168
d ATCH INT_O, 19
ENI
MOV _W PLS 0
EN Eno—)
+5004IN ouTfSMwiEa
ATCH
BN EnO——
INT_04INT
194EVNT
—(En)
PLS
BN Eno—)
0q@0x

| Network 1 Network 1
N SMO.0 Qo5
T —| |—() LD SMO0.0
0 = Q0.5

139

S7-200 Programmable Controller System Manual

Math Instructions

Add, Subtract, Multiply, and Divide Instructions

Add Subtract

IN1 + IN2 = OUT IN1 - IN2 = OUT LAD and FBD
IN1 + OUT = OUT OUT - IN1 = OUT STL

The Add Integer (+) or Subtract Integer (-1) instructions add or
subtract two 16-bit integers to produce a 16-bit result. The Add
Double Integer (+D) or Subtract Double Integer (-D) instructions add
or subtract two 32-bit integers to produce a 32-bit result. The Add
Real (+R) and Subtract Real (-R) instructions add or subtract two
32-bit real numbers to produce a 32-bit real number result.

Multiply Divide

IN1 *IN2 = OUT IN1/IN2 = OUT LAD and FBD
IN1 *OUT = OUT OUT/IN1 = OUT STL

The Multiply Integer (*I) or Divide Integer (/I) instructions multiply or
divide two 16-bit integers to produce a 16-bit result. (For division, no
remainder is kept.) The Multiply Double Integer (*D) or Divide Double
Integer (/D) instructions multiply or divide two 32-bit integers to
produce a 32-bit result. (For division, no remainder is kept.) The
Multiply Real (*R) or Divide Real (/R) instructions multiply or divide
two 32-bit real numbers to produce a 32-bit real number result.

SM Bits and ENO

SM1.1 indicates overflow errors and illegal values. If SM1.1 is set,
then the status of SM1.0 and SM1.2 is not valid and the original
input operands are not altered. If SM1.1 and SM1.3 are not set, then
the math operation has completed with a valid result and SM1.0 and
SM1.2 contain valid status. If SM1.3 is set during a divide operation,
then the other math status bits are left unchanged.

Error conditions that set ENO =0 Special Memory bits affected
= SM1.1 (overflow) m SM1.0 (zero)

SIMATIC l IEC 1121]

LAD

FED

ADD_l
—{EM EMC =

1M1 ouT
M2

1M
I

EM EMCG

ADD_l

1 ouT
2

ADD_| ADD_D
SUE_I SUE_D
ML _1 MUL_D
DIV _I DN _Dl

ADD_R
SUE_R
MUL_R
DIN_E

sIATH. [EC 1131

LAD

FED

ADD
—{EM EMC |-

1M1 ouT
M2

1M

EM EMCG

M2

ADD

1 ouT

ADRD SLE

ML

(el

SIMATIC

STL
+

IM1, QUT

+
-
#|
/1

+0
-0
=D
/D

+R
-R
R
/R

m SM1.3 (divide by zero) m SM1.1 (overflow, illegal value generated during the operation, or illegal

input parameter found)
m SM1.2 (negative)
m SM1.3 (divide by zero)

m 0006 (indirect address)

Table 6-37 Valid Operands for Add, Subtract, Multiply, and Divide Instructions

Inputs/Outputs Data Types Operands

IN1, IN2 INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

ouT INT IW, QW, VW, MW, SMW, SW, LW, T, C, AC, *VD, *AC, *LD

DINT, REAL | ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754-1985 standard

(single-precision). Refer to that standard for more information.

S7-200 Instruction Set Chapter 6

Example: Integer Math Instructions

Metwork 1 Network 1
10.0 ADD_| LD 10.0
} En ENO— +l AC1, ACO
*| AC1, VW100
ACTHINT OUTFACO /l VW10, VW200
ACO4INZ
MUL_|
En ENO—
ACTHIMT QUT Y100
WA 00-IMN2
Div_|
En Eno—
W 2004IM1 QUT Y200
W02
Add Multiply Divide
40 |+ 60 |=] 100 40 | +| 20 |= L4000 | /| 40 |=[100
ACH1 ACO ACO ACH1 VW100 VW200 VW10 VW200
Example: Real Math Instructions
Network 1 Network 1
0.0 20D _R LD 10.0
1 R AC1, ACO
EN ENOf—) + ,
! *R AC1, VD100
act{mt outhaco R VD10, VD200
ACO{INZ
MUL_R
EN ENOf—)
ac1{mt outhvoioo
w1004z
DV R
EN ENOf—)
wo200{m1 ouThvozoo
wD104{IN2
Add Multiply Divide
4000.0 |+ | 6000.0 | = | 10000.0 400.0 | * | 200.0 |=| 80000.0 | | 4000.0 | /| 410 |=| 97.5609
AC1 ACO ACO AC1 VD100 VD200 VD10 VD200

141

S7-200 Programmable Controller System Manual

Multiply Integer to Double Integer and Divide Integer with Remainder

Multiply Integer to Double Integer

SIMATIC l IEC 1121]
IN1 *IN2 = OUT LAD and FBD e F
IN1*OUT =0UT STL

mLIL mLIL

The Multiply Integer to Double Integer instruction (MUL) multiplies —|EM EMO = || {EM EMO [
two 16-bit integers and produces a 32-bit product. In the STL MUL 1 outhk |] M1 oUT|E
instruction, the least-significant word (16 bits) of the 32-bit OUT is iz n2
used as one of the factors.
Divide Integer with Remainder ML e
IN1/IN2 = OUT LAD and FBD
OUT/IN1=0UT STL PIMATIC
The Divide Integer with Remainder instruction (DIV) divides two =ML MUL M9, OUT
16-bit integers and produces a 32-bit result consisting of a 16-bit DIY IM1,OUT
remainder (the most-significant word) and a 16-bit quotient (the

least-significant word).
In STL, the least-significant word (16 bits) of the 32-bit OUT is used as the dividend.

SM Bits and ENO

For both of the instructions on this page, Special Memory (SM) bits indicate errors and illegal values. If
SM1.3 (divide by zero) is set during a divide operation, then the other math status bits are left
unchanged. Otherwise, all supported math status bits contain valid status upon completion of the math

operation.

Error conditions that set ENO =0 Special Memory bits affected
= SM1.1 (overflow) m SM1.0 (zero)

m SM1.3 (divide by zero) = SM1.1 (overflow)

m 0006 (indirect address)

SM1.2 (negative)
SM1.3 (divide by zero)

Table 6-38 Valid Operands for Multiply Integer to Double Integer and Divide Integer with Remainder

Inputs/Outputs Data Types Operands

IN1, IN2 INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
ouT DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Multiply Integer to Double Integer Instruction and Divide Integer with Remainder Instruction

Network 1 Network 1
0.0 UL LD 10.0
I v Enof—) MUL AC1, VD100
DIV VW10, VD200
AC14INT OUTFvD100 :
Win1024IM2 Multiply Integer to 400 |*| 200 |=| 80000
Double Integer
Dl AC1 VW102 VD100
EN ENOH
rem. quot.
ww2024IN1 OUTVD200 Divide Integer | 4000 |/| 41 |= | 23 | 97 |
Y104 IN2 with Remainder

VW202 VW10 VW200 Vw202
VD200

Note: VD100 contains: VW100 and VW102, and VD200 contains: VW200 and VW202.

142

S7-200 Instruction Set Chapter 6

Numeric Functions Instructions

Sine, Cosine, and Tangent
The Sine (SIN), Cosine (COS), and Tangent (TAN) instructions

SIMATIC £ IEC 1131

evaluate the trigonometric function of the angle value IN and place the LAD FED
result in OUT. The input angle value is in radians. =M SIM

— EM MO | | —EM EMO
SIN (IN) = OUT COS (IN) = OUT TAN (IN) = OUT A1y auT =

=M CUT -

To convert an angle from degrees to radians: Use the MUL_R (*R)
instruction to multiply the angle in degrees by 1.745329E-2
(approximately by 7/180).

S <S5 TAWM LM EXP SQRT

Natural Logarithm and Natural Exponential SIMATIC

The Natural Logarithm instruction (LN) performs the natural logarithm

of the value in IN and places the result in OUT. Sl SN I, OUT
€os M ouT

The Natural Exponential instruction (EXP) performs the exponential TAM I, SUT

operation of e raised to the power of the value in IN and places the COR i

result in OUT. SORT IN, OUT

LN (IN) = OUT EXP (IN)= OUT

To obtain the base 10 logarithm from the natural logarithm: Divide the natural logarithm by 2.302585
(approximately the natural logarithm of 10).

To raise any real number to the power of another real number, including fractional exponents: Combine the
Natural Exponential instruction with the Natural Logarithm instruction. For example, to raise X to the Y
power, enter the following instruction: EXP (Y * LN (X)).

Square Root

The Square Root instruction (SQRT) takes the square root of a real number (IN) and produces a real
number result OUT.

SQRT (IN)= OUT

To obtain other roots: 5 cubed =5"3 = EXP(3*LN(5)) = 125
The cube root of 125 = 125"(1/3) = EXP((1/3)*LN(125))

)=E 5
The square root of 5 cubed = 5%(3/2) = EXP(3/2*LN(5)) = 1

1.18034

SM Bits and ENO for the Numeric Functions Instructions

For all of the instructions that are described on this page, SM1.1 is used to indicate overflow errors and
illegal values. If SM1.1 is set, then the status of SM1.0 and SM1.2 is not valid and the original input
operands are not altered. If SM1.1 is not set, then the math operation has completed with a valid result and
SM1.0 and SM1.2 contain valid status.

Error conditions that set ENO =0 Special Memory bits affected
= SM1.1 (overflow) m SM1.0 (zero)
m 0006 (indirect address) = SM1.1 (overflow)

m SM1.2 (negative)

Table 6-39 Valid Operands for Numeric Functions

Inputs/Outputs Data Types Operands
IN REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
ouT REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754-1985 standard
(single-precision). Refer to that standard for more information.

143

S7-200 Programmable Controller System Manual

144

Increment and Decrement Instructions

Increment IMATIC l i ”31]
IN+1=0UT LAD and FBD
OUT +1=0UT STL LAD FED
IMC_E IMC_E
Decrement M Mo | | e Em |
IN-1=0UT LAD and FBD dn ourp | U__SUTE
OUT -1=0UT STL
The Increment and Decrement instructions add or subtract 1 to or :HE—E\, EEE—E\,
from the input IN and place the result into the variable OUT. IME D DEC_ DY
Increment Byte (INCB) and Decrement Byte (DECB) operations are
unsigned. SiATIC TEC 1131
IncremenéWord (INCW) and Decrement Word (DECW) operations LAD FED
are signed. e e
Increment Double Word (INCD) and Decrement Double Word —EM EMO = | —EM ERe =
(DECD) operations are signed. dn outk | LM uTE
Error conditions that set ENO = 0:
= SM1.1 (overflow) e DEC
m 0006 (indirect address)
Special Memory bits affected: SIMATIC
m SM1.0 (zero) STL " our
= SM1.1 (overflow) Mew auT
m SM1.2 (negative) for Word and Double Word operations INCC: OUT
DECE 2UT
DECW oUT
LECD QuUT
Table 6-40 Valid Operands for the Increment and Decrement Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
INT W, QW, VW, MW, SMW, SW, T, C, LW, AC,*VD, *LD, *AC
DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
Example: Increment and Decrement Instructions
Network 1 Network 1
14.0 INC_W LD 14.0
I EN EnO—)| INCW ACO
DECD VD100
ACO{M_ OUTFACD
Increment Word 125| +1= 126
DEC_DW ACO ACO
EN ENO—)
vorood ourhvo oo Decrement Double Word 128000 -1 = 127999
VD100 VD100

S7-200 Instruction Set Chapter 6

Proportional/integral/Derivative (PID) Loop Instruction

Instruction
Wizard

The PID Loop instruction (PID) executes a PID loop calculation on

: ; g SIMATIC ¢ [EC 1131
the referenced LOOP based on the input and configuration l
information in Table (TBL). LAD FED
Error conditions that set ENO = 0: PIC: FIC:
m SM1.1 (overflow) [N EMO = :ET';L EMO =
m 0006 (indirect address) | TEL — LOOP
- Loop

Special Memory bits affected:
= SM1.1 (overflow)

SIMATIC
The PID loop instruction (Proportional, Integral, Derivative Loop) is
provided to perform the PID calculation. The top of the logic stack 5TL
(TOS) must be ON (power flow) to enable the PID calculation. The PO TEL, LOGP
instruction has two operands: a TABLE address which is the starting
address of the loop table and a LOOP number which is a constant

fromOto 7.

Eight PID instructions can be used in a program. If two or more PID instructions are used with the same
loop number (even if they have different table addresses), the PID calculations will interfere with one
another and the output will be unpredictable.

The loop table stores nine parameters used for controlling and monitoring the loop operation and includes
the current and previous value of the process variable, the setpoint, output, gain, sample time, integral
time (reset), derivative time (rate), and the integral sum (bias).

To perform the PID calculation at the desired sample rate, the PID instruction must be executed either
from within a timed interrupt routine or from within the main program at a rate controlled by a timer. The
sample time must be supplied as an input to the PID instruction via the loop table.

Table 6-41 Valid Operands for the PID Loop Instruction

Inputs/Outputs Data Types Operands
TBL BYTE VB
LOOP BYTE Constant (0 to 7)

STEP 7-Micro/WIN offers the PID Wizard to guide you in defining a PID algorithm for a closed-loop control
process. Select the Tools > Instruction Wizard menu command and then select PID from the Instruction
Wizard window.

145

S7-200 Programmable Controller System Manual

Understanding the PID Algorithm

In steady state operation, a PID controller regulates the value of the output so as to drive the error (e) to
zero. A measure of the error is given by the difference between the setpoint (SP) (the desired operating
point) and the process variable (PV) (the actual operating point). The principle of PID control is based
upon the following equation that expresses the output, M(t), as a function of a proportional term, an
integral term, and a differential term:

Output = Proportional term + Integral term + Differential term
t
M(t) = Kc*e + chedt + My igian + K¢ * de/dt
0
where: M is the loop output as a function of time
Kc is the loop gain
e is the loop error (the difference between setpoint and process variable)

Minitial is the initial value of the loop output

In order to implement this control function in a digital computer, the continuous function must be quantized
into periodic samples of the error value with subsequent calculation of the output. The corresponding
equation that is the basis for the digital computer solution is:

n

My = K: * e + K, * Z + Minitial + Kp * (en-€n-1)
1

output = proportional term + integral term + differential term
where: M, is the calculated value of the loop output at sample time n

Kc is the loop gain

en is the value of the loop error at sample time n

en-1 is the previous value of the loop error (at sample time n - 1)

K| is the proportional constant of the integral term

Minitial is the initial value of the loop output

Kp is the proportional constant of the differential term

From this equation, the integral term is shown to be a function of all the error terms from the first sample to
the current sample. The differential term is a function of the current sample and the previous sample, while
the proportional term is only a function of the current sample. In a digital computer, it is not practical to
store all samples of the error term, nor is it necessary.

Since the digital computer must calculate the output value each time the error is sampled beginning with
the first sample, it is only necessary to store the previous value of the error and the previous value of the
integral term. As a result of the repetitive nature of the digital computer solution, a simplification in the
equation that must be solved at any sample time can be made. The simplified equation is:

M, = Ke * e + K| * e, + MX + Kp * (en-€n-1)
output = proportional term + integral term + differential term
where: M, is the calculated value of the loop output at sample time n

Kc is the loop gain

en is the value of the loop error at sample time n

en-1 is the previous value of the loop error (at sample time n - 1)

K| is the proportional constant of the integral term

MX is the previous value of the integral term (at sample time n - 1)

Kp is the proportional constant of the differential term

146

S7-200 Instruction Set Chapter 6

The S7-200 uses a modified form of the above simplified equation when calculating the loop output value.
This modified equation is:

M, = MP, + Ml + MD,,
output = proportional term + integral term + differential term
where: Mn is the calculated value of the loop output at sample time n

MP, is the value of the proportional term of the loop output at sample time n

MIp is the value of the integral term of the loop output at sample time n

MDn is the value of the differential term of the loop output at sample time n

Understanding the Proportional Term of the PID Equation

The proportional term MP is the product of the gain (Kg), which controls the sensitivity of the output
calculation, and the error (e), which is the difference between the setpoint (SP) and the process variable
(PV) at a given sample time. The equation for the proportional term as solved by the S7-200 is:

MP,, = Kc & (SPh - PVy)

where: MPn is the value of the proportional term of the loop output at sample time n
Kc is the loop gain
SP, is the value of the setpoint at sample time n
PV, is the value of the process variable at sample time n

Understanding the Integral Term of the PID Equation

The integral term Ml is proportional to the sum of the error over time. The equation for the integral term as
solved by the S7-200 is:

Mi, = K¢ * Tg [T * (SP,-PV,) + MX
where: Ml is the value of the integral term of the loop output at sample time n
Kc is the loop gain
Ts is the loop sample time
T is the integration period of the loop (also called the integral time or reset)
SP, is the value of the setpoint at sample time n
PV, is the value of the process variable at sample time n
MX is the value of the integral term at sample time n - 1 (also called the integral sum or the bias)

The integral sum or bias (MX) is the running sum of all previous values of the integral term. After each
calculation of Ml,,, the bias is updated with the value of Ml,, which might be adjusted or clamped (see the
section “Variables and Ranges” for details). The initial value of the bias is typically set to the output value
(Minitia) just prior to the first loop output calculation. Several constants are also part of the integral term,
the gain (K¢), the sample time (Tg), which is the cycle time at which the PID loop recalculates the output
value, and the integral time or reset (T)), which is a time used to control the influence of the integral term in
the output calculation.

147

S7-200 Programmable Controller System Manual

148

Understanding the Differential Term of the PID Equation

The differential term MD is proportional to the change in the error. The S7-200 uses the following equation
for the differential term:

MD,, = K¢ * Tp I * ((SPn - PVp) - (SPn- 1 - PV . 1))
To avoid step changes or bumps in the output due to derivative action on setpoint changes, this equation

is modified to assume that the setpoint is a constant (SP, = SPy, _ 1). This results in the calculation of the
change in the process variable instead of the change in the error as shown:

MD, = K¢ * Tp /[Ts * (SP, - PV, -SP,+PV,_1)
or just:
MD, = K¢ * Tp /| Ts * (PVh.1-PVp)
where: MDy is the value of the differential term of the loop output at sample time n
Kc is the loop gain
Ts is the loop sample time
Tp is the differentiation period of the loop (also called the derivative time or rate)
SP, is the value of the setpoint at sample time n
SPn-1 is the value of the setpoint at sample time n-1
PV, is the value of the process variable at sample time n

PVn-1 is the value of the process variable at sample time n-1

The process variable rather than the error must be saved for use in the next calculation of the differential
term. At the time of the first sample, the value of PV, _ 1 is initialized to be equal to PV,,.

Selecting the Type of Loop Control

In many control systems, it might be necessary to employ only one or two methods of loop control. For
example, only proportional control or proportional and integral control might be required. The selection of
the type of loop control desired is made by setting the value of the constant parameters.

If you do not want integral action (no “I” in the PID calculation), then a value of infinity should be specified
for the integral time (reset). Even with no integral action, the value of the integral term might not be zero,
due to the initial value of the integral sum MX.

If you do not want derivative action (no “D” in the PID calculation), then a value of 0.0 should be specified
for the derivative time (rate).

If you do not want proportional action (no “P” in the PID calculation) and you want | or ID control, then a
value of 0.0 should be specified for the gain. Since the loop gain is a factor in the equations for calculating
the integral and differential terms, setting a value of 0.0 for the loop gain will result in a value of 1.0 being
used for the loop gain in the calculation of the integral and differential terms.

S7-200 Instruction Set Chapter 6

Converting and Normalizing the Loop Inputs

A loop has two input variables, the setpoint and the process variable. The setpoint is generally a fixed
value such as the speed setting on the cruise control in your automobile. The process variable is a value
that is related to loop output and therefore measures the effect that the loop output has on the controlled
system. In the example of the cruise control, the process variable would be a tachometer input that
measures the rotational speed of the tires.

Both the setpoint and the process variable are real world values whose magnitude, range, and
engineering units could be different. Before these real world values can be operated upon by the PID
instruction, the values must be converted to normalized, floating-point representations.

The first step is to convert the real world value from a 16-bit integer value to a floating-point or real number
value. The following instruction sequence is provided to show how to convert from an integer value to a

real number.
ITD AIW0, ACO //Convert an input value to a double word
DTR ACO0, ACO //Convert the 32-bit integer to a real number

The next step is to convert the real number value representation of the real world value to a normalized
value between 0.0 and 1.0. The following equation is used to normalize either the setpoint or process
variable value:

RNorm = ((RRaw / Span) + Offset)
where: Rnorm is the normalized, real number value representation of the real world value
RRaw is the un-normalized or raw, real number value representation of the real world value

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value:
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to normalize the bipolar value in ACO (whose span is
64,000) as a continuation of the previous instruction sequence:

/R 64000.0, ACO //Normalize the value in the accumulator
+R 0.5, ACO /[Offset the value to the range from 0.0 to 1.0
MOVR ACO, VD100 //Store the normalized value in the loop TABLE

149

S7-200 Programmable Controller System Manual

150

Converting the Loop Output to a Scaled Integer Value

The loop output is the control variable, such as the throttle setting of the cruise control on an automobile.
The loop output is a normalized, real number value between 0.0 and 1.0. Before the loop output can be

used to drive an analog output, the loop output must be converted to a 16-bit, scaled integer value. This
process is the reverse of converting the PV and SP to a normalized value. The first step is to convert the
loop output to a scaled, real number value using the formula given below:

Rscal = (M, - Offset) & Span
where: Rscal is the scaled, real number value of the loop output
Mn is the normalized, real number value of the loop output

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to scale the loop output:

MOVR VD108, ACO //Moves the loop output to the accumulator
-R 0.5, ACO //Include this statement only if the value is bipolar
*R 64000.0, ACO //Scales the value in the accumulator

Next, the scaled, real number value representing the loop output must be converted to a 16-bit integer.
The following instruction sequence shows how to do this conversion:

ROUND ACO, ACO /[Converts the real number to a 32-bit integer
DTI ACO, LWO /[Converts the value to a 16-bit integer
MOVW LWO0, AQWO //Writes the value to the analog output

Forward- or Reverse-Acting Loops

The loop is forward-acting if the gain is positive and reverse-acting if the gain is negative. (For | or ID
control, where the gain value is 0.0, specifying positive values for integral and derivative time will result in
a forward-acting loop, and specifying negative values will result in a reverse-acting loop.)

Variables and Ranges

The process variable and setpoint are inputs to the PID calculation. Therefore the loop table fields for
these variables are read but not altered by the PID instruction.

The output value is generated by the PID calculation, so the output value field in the loop table is updated
at the completion of each PID calculation. The output value is clamped between 0.0 and 1.0. The output
value field can be used as an input by the user to specify an initial output value when making the transition
from manual control to PID instruction (auto) control of the output. (See the discussion in the “Modes”
section below).

If integral control is being used, then the bias value is updated by the PID calculation and the updated
value is used as an input in the next PID calculation. When the calculated output value goes out of range
(output would be less than 0.0 or greater than 1.0), the bias is adjusted according to the following
formulas:

MX = 1.0 - (MP, + MD,) when the calculated output M, > 1.0
or
MX = - (MP,+ MD,) when the calculated output M, < 0.0
where: MX is the value of the adjusted bias
MP, is the value of the proportional term of the loop output at sample time n
MD,, is the value of the differential term of the loop output at sample time n
Mn is the value of the loop output at sample time n

S7-200 Instruction Set Chapter 6

By adjusting the bias as described, an improvement in system responsiveness is achieved once the
calculated output comes back into the proper range. The calculated bias is also clamped between 0.0 and
1.0 and then is written to the bias field of the loop table at the completion of each PID calculation. The
value stored in the loop table is used in the next PID calculation.

The bias value in the loop table can be modified by the user prior to execution of the PID instruction in
order to address bias value problems in certain application situations. Care must be taken when manually
adjusting the bias, and any bias value written into the loop table must be a real number between 0.0 and
1.0.

A comparison value of the process variable is maintained in the loop table for use in the derivative action
part of the PID calculation. You should not modify this value.

Modes

There is no built-in mode control for S7-200 PID loops. The PID calculation is performed only when power
flows to the PID box. Therefore, “automatic” or “auto” mode exists when the PID calculation is performed
cyclically. “Manual” mode exists when the PID calculation is not performed.

The PID instruction has a power-flow history bit, similar to a counter instruction. The instruction uses this
history bit to detect a 0-to-1 power-flow transition. When the power-flow transition is detected, it will cause
the instruction to perform a series of actions to provide a bumpless change from manual control to auto
control. In order for change to auto mode control to be bumpless, the value of the output as set by the
manual control must be supplied as an input to the PID instruction (written to the loop table entry for M)
before switching to auto control. The PID instruction performs the following actions to values in the loop
table to ensure a bumpless change from manual to auto control when a 0-to-1 power-flow transition is
detected:

(O Sets setpoint (SP,)) = process variable (PV,)
(O Sets old process variable (PV,_1) = process variable (PV,)
(1 Sets bias (MX) = output value (M;)

The default state of the PID history bits is “set” and that state is established at startup and on every
STOP-to-RUN mode transition of the controller. If power flows to the PID box the first time that it is
executed after entering RUN mode, then no power-flow transition is detected and the bumpless mode
change actions are not performed.

Alarm Checking and Special Operations

The PID instruction is a simple but powerful instruction that performs the PID calculation. If other
processing is required such as alarm checking or special calculations on loop variables, these must be
implemented using the basic instructions supported by the S7-200.

Error Conditions

When it is time to compile, the CPU will generate a compile error (range error) and the compilation will fail
if the loop table start address or PID loop number operands specified in the instruction are out of range.

Certain loop table input values are not range checked by the PID instruction. You must take care to ensure
that the process variable and setpoint (as well as the bias and previous process variable if used as inputs)
are real numbers between 0.0 and 1.0.

If any error is encountered while performing the mathematical operations of the PID calculation, then
SM1.1 (overflow or illegal value) is set and execution of the PID instruction is terminated. (Update of the
output values in the loop table could be incomplete, so you should disregard these values and correct the
input value causing the mathematical error before the next execution of the loop’s PID instruction.)

151

S7-200 Programmable Controller System Manual

152

Loop Table
The loop table is 36 bytes long and has the format shown in Table 6-42.
Table 6-42 Loop Table
Offset Field Format Type Description
0 Process variable Double word | In Contains the process variable, which must be scaled
(PVn) - REAL between 0.0 and 1.0.
4 Setpoint Double word | In Contains the setpoint, which must be scaled between
(SPp) - REAL 0.0 and 1.0.
8 Output Double word | In/Out | Contains the calculated output, scaled between 0.0
(Mp) - REAL and 1.0.
12 Gain Double word | In Contains the gain, which is a proportional constant.
(Kg) - REAL Can be a positive or negative number.
16 Sample time Double word | In Contains the sample time, in seconds. Must be a
(Ts) - REAL positive number.
20 Integral time or reset Double word | In Contains the integral time or reset, in minutes. Must be
(M) - REAL a positive number.
24 Derivative time or rate Double word In Contains the derivative time or rate, in minutes. Must
(Tp) - REAL be a positive number.
28 Bias Double word | In/Out Contains the bias or integral sum value between 0.0
(MX) - REAL and 1.0.
32 Previous process Double word | In/Out Contains the previous value of the process variable
variable (PVp_1) - REAL stored from the last execution of the PID instruction.

PID Program Example

In this example, a water tank is used to maintain a constant water pressure. Water is continuously being
taken from the water tank at a varying rate. A variable speed pump is used to add water to the tank at a
rate that will maintain adequate water pressure and also keep the tank from being emptied.

The setpoint for this system is a water level setting that is equivalent to the tank being 75% full. The
process variable is supplied by a float gauge that provides an equivalent reading of how full the tank is
and that can vary from 0% (or empty) to 100% (or completely full). The output is a value of pump speed
that allows the pump to run from 0% to 100% of maximum speed.

The setpoint is predetermined and is entered directly into the loop table. The process variable is supplied
as a unipolar, analog value from the float gauge. The loop output is written to a unipolar, analog output
which is used to control the pump speed. The span of both the analog input and analog output is 32,000.

Only proportional and integral control are employed in this example. The loop gain and time constants
have been determined from engineering calculations and can be adjusted as required to achieve optimum
control. The calculated values of the time constants are: Kg = 0.25, Tg - 0.1 seconds, and T| = 30

minutes.

The pump speed is controlled manually until the water tank is 75% full, then the valve is opened to allow
water to be drained from the tank. At the same time, the pump is switched from manual to auto control
mode. A digital input is used to switch the control from manual to auto. This input (10.0) is
manual/automatic control: 0 = manual and 1 = automatic. While in manual control mode, the pump speed
is written by the operator to VD108 as a real number value from 0.0 to 1.0.

S7-200 Instruction Set Chapter 6

Example: PID Loop Instruction

M Network 1 Network 1 //On the first scan,
A SMO.1 SBR O /ICall the initialization subroutine
i e LD SMo.1
N CALL SBR_O
S Network 1 Network 1 //Load PID parameters and
B SM0.0 MOV_R //attach the PID interrupt routine:
R ' EN ENO .Y /1. Load the loop setpoint = 75% full.
0 _| ! //2. Load the loop gain = 0.25.
075410 ouTkvD104 /3. Load the loop sample time = 0.1 seconds.

//4. Load the integral time = 30 minutes.
//5. Set no derivative action.
WMoY R //6. Set the timed interval (100ms)
EN ENO S /I for timed interrupt INT_O.
/[7. Set up atimed interrupt to invoke
/| the PID execution.
//8. Enable interrupts

LD SMO0.0

MOV R MOVR 0.75, VD104
EM ENO% MOVR 0.25, VD112
MOVR 0.1,VD116
0.14IN OUTFVD118 MOVR 30.0, VD120
MOVR 0.0,VvD124
MOVB 100, SMB34

ATCH INT_O, 10
MOY R ENI

EN ENO—)

30.041IN COUTFYD120

0.254IM OUTEYD112

MOV _R

EN ENO—)

0.04IN QUTFwD124

MOV _B

EN ENo—3)

10041 CUTFSMB34

ATCH

EN ENO—

INT_Q4INT
104{EVNT

—(ENI)

153

S7-200 Programmable Controller System Manual

Example: PID Loop Instruction, continued

I Network 1 Network 1 //Scale the PV to a normalized real number:
N sMo0 DI /[1. Convert the integer value to a doublle intiger.
T | - > //2. Convert the double integer to a real number.
0 — | ENENO //3. Normalize the value.
/4. Store the normalized PV in the loop table.
AWDA IR QUTHACO
LD SMo0.0
ITD AIW0, ACO
o R DTR ACO0, ACO

; /R 32000.0, ACO

EN ENO MOVR ACO, VD100

ACOqIN OUTFACD

Network 2 //[Execute the loop when placed in auto mode.

LD 10.0
DIV_R PID VB100, 0

EN ENO—)

Network 3 //Scale the Output Mn to an integer.

ACD{INT QUT}ACD //Mn is a unipolar value and cannot be negative.
32000.04IM2 /[1. Move the loop output to the accumulator.
//2. Scale the value in the accumulator.
MOV B /3. Convert the real number to a double integer.
= > //4. Convert the double integer to an integer.
ENEND /5. Write the value to the analog output.
ACO{IN __ouTpvoton | LD SMO.0
MOVR VD108, ACO
*R 32000.0, ACO
ROUND ACO0, ACO
DTI ACO, ACO
Network 2 MOVW ACO, AQWO
0.0 PID
— b———fen EnO—3)
VB100{TEL
0{LOCP
Network 3
SM0.0 MUL_R

— | EN ENO—)

YO10841M1 OUTEFACD
32000.0qIN2

ROUND

EN ENO—

ACOHIN QUTFACD

DL

EN ENO——

ACO4IN QUTFACD

MOV _W

EN ENO—)

ACOHIN OUTpAQWD

154

S7-200 Instruction Set Chapter 6

Interrupt Instructions

Enable Interrupt and Disable Interrupt

SIMATIC £ |Ec1131]
The Enable Interrupt instruction (ENI) globally enables processing of
all attached interrupt events. The Disable Interrupt instruction (DISI) LAD FED
globally disables processing of all interrupt events. _|: £l :| . EMI
When you make the transition to RUN mode, interrupts are initially
disabled. In RUN mode, you can enable interrupt processing by _|: D|5|:| q o
executing the Enable Interrupt instruction. Executing the Disable
Interrupt instruction inhibits the processing of interrupts; however, T
active interrupt events will continue to be queued. —|I RET']
Error conditions that set ENO = 0: ATeH ATeH
= 0004 (attempted execution of ENI, DISI, or HDEF instructions in an <N o | e Mo -
interrupt routine) —INT
| INT — EvNT
—{ EvHT
Conditional Return from Interrupt
L . . DTeH DTCH
The Conditional Return from Interrupt instruction (CRETI) can be
: . —{EM BN | —{EM EMO =
used to return from an interrupt, based upon the condition of the JevnT
preceding logic. — EYNT
Attach Interrupt
The Attach Interrupt instruction (ATCH) associates an interrupt event SIMATIC
EVNT with an interrupt routine number INT and enables the interrupt <TL
event. Rl
Disl
Error conditions that set ENO = 0: CRETI
m 0002 (conflicting assignment of inputs to an HSC) ATCH IMT, E¥MT
DTCH EWNT

Detach Interrupt

The Detach Interrupt instruction (DTCH) disassociates an interrupt event EVNT from all interrupt routines
and disables the interrupt event.

Table 6-43 Valid Operands for the Attach Interrupt and Detach Interrupt Instructions
Inputs/Outputs Data Types Operands

INT BYTE Constant (0 to 127)
EVNT BYTE Constant CPU 221 and CPU 222: 0to 12, 19to 23, and 27 to 33
CPU 224: 0to 23 and 27 to 33

CPU 226 and CPU 226XM: 0to 33

Operation of the Attach Interrupt and Detach Interrupt Instructions

Before an interrupt routine can be invoked, an association must be established between the interrupt
event and the program segment that you want to execute when the event occurs. Use the Attach Interrupt
instruction to associate an interrupt event (specified by the interrupt event number) and the program
segment (specified by an interrupt routine number). You can attach multiple interrupt events to one
interrupt routine, but one event cannot be concurrently attached to multiple interrupt routines.

When you attach an interrupt event to an interrupt routine, that interrupt is automatically enabled. If you
disable all interrupts using the global disable interrupt instruction, each occurrence of the interrupt event is
queued until interrupts are re-enabled, using the global enable interrupt instruction, or the interrupt queue
overflows.

155

S7-200 Programmable Controller System Manual

156

You can disable individual interrupt events by breaking the association between the interrupt event and
the interrupt routine with the Detach Interrupt instruction. The Detach Interrupt instruction returns the

interrupt to an inactive or ignored state. Table 6-44 lists the different types of interrupt events.

Table 6-44 Interrupt Events
Event Description gsg ::; CPU 224 gsg ::gXM

0 10.0 Rising edge Y Y Y

10.0 Falling edge Y Y Y
2 10.1 Rising edge Y Y Y
3 10.1 Falling edge Y Y Y
4 10.2 Rising edge Y Y Y
5 10.2 Falling edge Y Y Y
6 10.3 Rising edge Y Y Y
7 10.3 Falling edge Y Y Y
8 Port 0 Receive character Y Y Y
9 Port 0 Transmit complete Y Y Y
10 Timed interrupt0 SMB34 Y Y Y
11 Timed interrupt1 SMB35 Y Y Y
12 HSCO CV=PV (current value = preset value) Y Y Y
13 HSC1 CV=PV (current value = preset value) Y Y
14 HSCA1 Direction changed Y Y
15 HSC1 External reset Y Y
16 HSC2 CV=PV (current value = preset value) Y Y
17 HSC2 Direction changed Y Y
18 HSC2 External reset Y Y
19 PLSO PTO pulse count complete interrupt Y Y Y
20 PLS1 PTO pulse count complete interrupt Y Y Y
21 Timer T32 CT=PT interrupt Y Y Y
22 Timer T96 CT=PT interrupt Y Y Y
23 Port 0 Receive message complete Y Y Y
24 Port 1 Receive message complete Y
25 Port 1 Receive character Y
26 Port 1 Transmit complete Y
27 HSCO Direction changed Y Y Y
28 HSCO External reset Y Y Y
29 HSC4 CV=PV (current value = preset value) Y Y Y
30 HSC4 Direction changed Y Y Y
31 HSC4 External reset Y Y Y
32 HSC3 CV=PV (current value = preset value) Y Y Y
33 HSC5 CV=PV (current value = preset value) Y Y Y

S7-200 Instruction Set Chapter 6

Understanding How the S7-200 Processes Interrupt Routines

The interrupt routine is executed in response to an associated internal or external event. Once the last
instruction of the interrupt routine has been executed, control is returned to the main program. You can exit
the routine by executing a Conditional Return from Interrupt instruction (CRETI). Table 6-45 emphasizes
some guidelines and restrictions for using interrupt routines in your program.

Table 6-45 Guidelines and Restrictions for Using Interrupt Routines

Guidelines

Interrupt processing provides quick reaction to special internal or external events. You should optimize interrupt
routines to perform a specific task, and then return control to the main routine.

By keeping the interrupt routines short and to the point, execution is quick and other processes are not deferred for
long periods of time. If this is not done, unexpected conditions can cause abnormal operation of equipment controlled
by the main program. For interrupts, the axiom, “the shorter, the better,” is definitely true.

Restrictions

You cannot use the Disable Interrupt (DISI), Enable Interrupt (ENI), High-Speed Counter Definition (HDEF), and End
(END) instructions in an interrupt routine.

System Support for Interrupts

Because contact, coil, and accumulator logic can be affected by interrupts, the system saves and reloads
the logic stack, accumulator registers, and the special memory bits (SM) that indicate the status of
accumulator and instruction operations. This avoids disruption to the main user program caused by
branching to and from an interrupt routine.

Sharing Data Between the Main Program and Interrupt Routines

You can share data between the main program and one or more interrupt routines. Because it is not
possible to predict when the S7-200 might generate an interrupt, it is desirable to limit the number of
variables that are used by both the interrupt routine and elsewhere in the program. Problems with the
consistency of shared data can result due to the actions of interrupt routines when the execution of
instructions in your main program is interrupted by interrupt events. Use the local variable table of the
interrupt routine to ensure that your interrupt routine uses only the temporary memory and does not
overwrite data used somewhere else in your program.

There are a number of programming techniques you can use to ensure that data is correctly shared
between your main program and interrupt routines. These techniques either restrict the way access is
made to shared memory locations or prevent interruption of instruction sequences using shared memory
locations.

(1 Foran STL program that is sharing a single variable: If the shared data is a single byte, word, or
double word variable and your program is written in STL, then correct shared access can be
ensured by storing the intermediate values from operations on shared data only in non-shared
memory locations or accumulators.

(O Fora LAD program that is sharing a single variable: If the shared data is a single byte, word, or
double word variable and your program is written in LAD, then correct shared access can be
ensured by establishing the convention that access to shared memory locations be made using
only Move instructions (MOVB, MOVW, MOVD, MOVR). While many LAD instructions are
composed of interruptible sequences of STL instructions, these Move instructions are composed of
a single STL instruction whose execution cannot be affected by interrupt events.

(O Foran STL or LAD program that is sharing multiple variables: If the shared data is composed of a
number of related bytes, words, or double words, then the interrupt disable/enable instructions (DISI
and ENI) can be used to control interrupt routine execution. At the point in your main program where
operations on shared memory locations are to begin, disable the interrupts. Once all actions
affecting the shared locations are complete, re-enable the interrupts. During the time that interrupts
are disabled, interrupt routines cannot be executed and therefore cannot access shared memory
locations; however, this approach can result in delayed response to interrupt events.

157

S7-200 Programmable Controller System Manual

158

Calling Subroutines from Interrupt Routines

You can call one nesting level of subroutines from an interrupt routine. The accumulators and the logic
stack are shared between an interrupt routine and a subroutine that is called.

Types of Interrupts Supported by the S7-200

The S7-200 supports the following types of interrupt routines:

0 Communications port interrupts: The S7-200 generates events that allow your program to control
the communications port.

1 /O interrupts: The S7-200 generates events for different changes of state for various 1/0. These
events allow your program to respond to the high-speed counters, the pulse outputs, or to rising or
falling states of the inputs.

(O Time-based interrupts: The S7-200 generates events that allow your program to react at specific
intervals.

Communications Port Interrupts

The serial communications port of the S7-200 can be controlled by your program. This mode of operating
the communications port is called Freeport mode. In Freeport mode, your program defines the baud rate,
bits per character, parity, and protocol. The Receive and Transmit interrupts are available to facilitate your
program-controlled communications. Refer to the Transmit and Receive instructions for more information.

1/O Interrupts

1/0 interrupts include rising/falling edge interrupts, high-speed counter interrupts, and pulse train output
interrupts. The S7-200 can generate an interrupt on rising and/or falling edges of an input (either 10.0, 10.1,
10.2, or 10.3). The rising edge and the falling edge events can be captured for each of these input points.
These rising/falling edge events can be used to signify a condition that must receive immediate attention
when the event happens.

The high-speed counter interrupts allow you to respond to conditions such as the current value reaching
the preset value, a change in counting direction that might correspond to a reversal in the direction in
which a shaft is turning, or an external reset of the counter. Each of these high-speed counter events
allows action to be taken in real time in response to high-speed events that cannot be controlled at
programmable logic controller scan speeds.

The pulse train output interrupts provide immediate notification of completion of outputting the prescribed
number of pulses. A typical use of pulse train outputs is stepper motor control.

You can enable each of the above interrupts by attaching an interrupt routine to the related 1/O event.

Time-Based Interrupts

Time-based interrupts include timed interrupts and the timer T32/T96 interrupts. You can specify actions to
be taken on a cyclic basis using a timed interrupt. The cycle time is set in 1-ms increments from 1 ms to
255 ms. You must write the cycle time in SMB34 for timed interrupt 0, and in SMB35 for timed interrupt 1.

The timed interrupt event transfers control to the appropriate interrupt routine each time the timer expires.
Typically, you use timed interrupts to control the sampling of analog inputs or to execute a PID loop at
regular intervals.

A timed interrupt is enabled and timing begins when you attach an interrupt routine to a timed interrupt
event. During the attachment, the system captures the cycle time value, so subsequent changes to
SMB34 and SMB35 do not affect the cycle time. To change the cycle time, you must modify the cycle time
value, and then re-attach the interrupt routine to the timed interrupt event. When the re-attachment occurs,
the timed interrupt function clears any accumulated time from the previous attachment and begins timing
with the new value.

S7-200 Instruction Set Chapter 6

After being enabled, the timed interrupt runs continuously, executing the attached interrupt routine on each
expiration of the specified time interval. If you exit RUN mode or detach the timed interrupt, the timed
interrupt is disabled. If the global disable interrupt instruction is executed, timed interrupts continue to
occur. Each occurrence of the timed interrupt is queued (until either interrupts are enabled or the queue is
full).

The timer T32/T96 interrupts allow timely response to the completion of a specified time interval. These
interrupts are only supported for the 1-ms resolution on-delay (TON) and off-delay (TOF) timers T32 and
T96. The T32 and T96 timers otherwise behave normally. Once the interrupt is enabled, the attached
interrupt routine is executed when the active timer’s current value becomes equal to the preset time value
during the normal 1-ms timer update performed in the S7-200. You enable these interrupts by attaching an
interrupt routine to the T32/T96 interrupt events.

Interrupt Priority and Queuing

Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective priority
group. Only one user-interrupt routine is ever being executed at any point in time. Once the execution of
an interrupt routine begins, the routine is executed to completion. It cannot be pre-empted by another
interrupt routine, even by a higher priority routine. Interrupts that occur while another interrupt is being
processed are queued for later processing.

Table 6-46 shows the three interrupt queues and the maximum number of interrupts they can store.

Table 6-46 Maximum Number of Entries per Interrupt Queue

Queue CPU 221, CPU 222, CPU 224 CPU 226 and CPU 226XM
Communications queue 4 8
1/O Interrupt queue 16 16
Timed Interrupt queue 8 8

Potentially, more interrupts can occur than the queue can hold. Therefore, queue overflow memory bits
(identifying the type of interrupt events that have been lost) are maintained by the system. Table 6-47
shows the interrupt queue overflow bits. You should use these bits only in an interrupt routine because
they are reset when the queue is emptied, and control is returned to the main program.

Table 6-48 shows all interrupt events, with their priority and assigned event number.

Table 6-47 Interrupt Queue Overflow Bits

Description (0 = No Overflow, 1 = Overflow) SM Bit
Communications queue SM4.0
1/O Interrupt queue SM4.1
Timed Interrupt queue SM4.2

159

S7-200 Programmable Controller System Manual

Table 6-48 Priority Order for Interrupt Events

Event Description Priority Group Priority in Group
8 Port 0 Receive character Communications 0
9 Port 0 Transmit complete Highest Priority 0

23 Port 0 Receive message complete 0

24 Port 1 Receive message complete 1

25 Port 1 Receive character 1

26 Port 1 Transmit complete 1

19 PLSO PTO pulse count complete interrupt Discrete 0

20 PLS1 PTO pulse count complete interrupt Medium Priority 1

0 10.0 Rising edge 2

2 10.1 Rising edge 3

4 10.2 Rising edge 4

6 10.3 Rising edge 5

1 10.0 Falling edge 6

3 10.1 Falling edge 7

5 10.2 Falling edge 8

7 10.3 Falling edge 9

12 HSCO CV=PV (current value = preset value) 10
27 HSCO Direction changed 11
28 HSCO External reset 12
13 HSC1 CV=PV (current value = preset value) 13
14 HSCA1 Direction changed 14
15 HSC1 External reset 15
16 HSC2 CV=PV (current value = preset value) 16
17 HSC2 Direction changed 17
18 HSC2 External reset 18
32 HSC3 CV=PV (current value = preset value) 19
29 HSC4 CV=PV (current value = preset value) 20
30 HSC4 Direction changed 21
31 HSC4 External reset 22
33 HSC5 CV=PV (current value = preset value) 23
10 Timed interrupt0 SMB34 Timed 0
11 Timed interrupt1 SMB35 Lowest Priority 1

21 Timer T32 CT=PT interrupt

22 Timer T96 CT=PT interrupt 3

160

S7-200 Instruction Set Chapter 6

Example: Interrupt Instructions

M
A
|
N

o-Hz-—

H

14EYNT

Network 1
SMO 1 ATCH
EN ENO ﬁ
INT_0INT
1dewnT
ENI)
Network 2
SM5.0 DTCH

N EMNO

Network 3
M3.0

— —(os)

Network 1
SMa 0

— —(rem)

Network 1 //On the first scan:
/[1. Define interrupt routine INT_O to be a falling-edge interrupt for 10.0
//2. Globally enable interrupts.

LD SMO0.1

ATCH INT_O, 1

ENI

Network 2 //If an 1/O error is detected,
//disable the falling-edge interrupt for 10.0.
/[This network is optional.

LD SM5.0

DTCH 1

Network 3 //When M5.0 is on,
/[disable all interrupts.

LD M5.0

DISI

Network 1 /10.0 falling-edge interrupt routine:
//Conditional return based on an I/O error.

LD SM5.0

CRETI

Example: Timed Interrupt for Reading the Value of an Analog Input

Z—>=

oIV WwW

o-Hz-—

Network 1
S0 1 SER_D
By S
Network 1
SMO.0 MOV_B
|
— | S
1004n ouThsmBa4
ATCH
EM ENO %
INT_0iNT
104E¥NT
—(Eni)
Network 1
SM0.0 WOV_W
— A Enol—3
anvadn__ outhvwioo

Network 1 //On the first scan, call subroutine 0.

LD SMO.1

CALL SBR_0

Network 1 /1. Set the interval for the timed interrupt 0 to 100 ms.
/2. Attach timed interrupt 0 (Event 10) to INT_0.
//3. Global interrupt enable.

LD SMO0.0

MOVB 100, SMB34

ATCH INT_O, 10

ENI

Network 1 //Read the value of AIW4 every 100 ms

LD SMo0.0
MOVW Alw4, VW100

161

S7-200 Programmable Controller System Manual

Logical Operations Instructions

Invert Instructions

SIMATIC l IEC 11321]
Invert Byte, Word, and Double Word T FED
The Invert Byte (INVB), Invert Word (INVW), and Invert Double Word IHY_E IMY_E
(INVD) instructions form the one’s complement of the input IN and ey o b | < En B =
load the result into the memory location OUT. M QT -
I QUT -
Error conditions that set ENO =0
m 0006 (indirect address) IMY_E MY MY Dot
SM bits affected:
= SM1.0 (zero) sitATIc EC 113
LAL: FEL:
MOT MOT
— EM EMOE | {EM EMC
=M oUT -
=M oUT -
SIMATIC
5TL
INYE oUT
IV SUT
IMYD 2UT
Table 6-49 Valid Operands for the Invert Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC,*VD, *LD, *AC
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
Example: Invert Instruction
Network 1 Network 1
14.0 IR _t LD 14.0
| en enof— INVW ACO
Invert Word ACO | 110101111001 0101 |
ACO{IN__ oUTFACD complement

ACO | 00101000 01101010 |

162

Table 6-50 Valid Operands for the AND, OR, and Exclusive OR Instructions

S7-200 Instruction Set Chapter 6
AND, OR, and Exclusive OR Instructions
AND Byte, AND Word, and AND Double Word e — l i ”31]
The AND Byte (ANDB), AND Word (ANDW), and AND Double Word
(ANDD) instructions AND the corresponding bits of two input values LAD FED
IN1 and IN2 and load the result in a memory location OUT. VWAMD _E VRN _EB
—{EM BN | —{EM EMO =
OR Byte, OR Word and OR Double Word W ourk | M ouTE
The OR Byte (ORB), OR Word instruction (ORW), and OR Double N e i
Word (ORD) instructions OR the corresponding bits of two input
values IN1 and IN2 and load the result in a memory location OUT. WAND_E WAND_W WAND_DW
WOR_B WOR_W WOR_DW
Exclusive OR Byte, Exclusive OR Word, and WAORE WHORW WHOR_DIW
Exclusive OR Double Word
The Exclusive OR Byte (XROB), Exclusive OR Word (XORW), and SIMATIC EC 1131
Exclusive OR Double Word (XORD) instruction XOR the
corresponding bits of two input values IN1 and IN2 and load the LAC: FEE
result in a memory location OUT. AML» AN
—{EM BN | —{EM EMO =
1M1 ouT |-
SM Bits and ENO A L
For all of the instructions described on this page, the following
conditions affect SM bits and ENO. AMD OR HOR
Error conditions that set ENO = 0
= 0006 (indirect address) SIMATIC
SM bits affected: Sl AMDE M1, ©UT
ORE IN1, 2UT
" SM1.0 (zero) RORE IN1,OUT
AMDW 1M1, SUT
ORW N1, 2UT
HORW N1, oUT
AMDD 1M1, 2UT
ORD IM1, 2UT
HORD IM1, 2UT

Inputs/Outputs Data Types Operands
IN1, IN2 BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *AC, *LD
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

163

S7-200 Programmable Controller System Manual

Example: AND, OR, and Exclusive OR Instructions

Network 1 Network 1
1.0 WAND_W LD 14.0
| —3| ANDW ACt, ACO
EM EROC ,
! ORW AC1, VW100
Act{Nt - ouThaco XORW AC1, ACO
ACDAINZ AND Word OR Word
AC1[0001 1111 0110 1101 | AC1 [0001 1111 0110 1101 |
WOR_WY AND OR
En eno—o) AC0[1101 0011 1110 0110 VW100 [1101 0011 1010 0000 |
equals equals
actdmnt ouTpwwioo | | | |
o AC0[0001 0011 0110 0100 VW100 [1101 1111 1110 1101
WXOR_ W Exclusive OR Word
EN ENO—) AC1 [0001 1111 0110 1101 |
XOR
act{mt outhaco ACO [0001 0011 0110 0100 |
ACDAINZ equals

ACO [0000 1100 0000 1001 |

164

S7-200 Instruction Set Chapter 6

Move Instructions

Move Byte, Word, Double Word, or Real

SIMATIC l IEC 11321]

The Move Byte (MOVB), Move Word (MOVW), Move Double Word
(MOVD), and Move Real (MOVR) instructions move a value from a LAD FED
memory location IN to a new memory location OUT without MOY_E M _B
changing the original value. —|EM EMO | | {EM EMO -
=M oUT -
Use the Move Double Word instruction to create a pointer. For more || 1™ PUTE
information, refer to the section on pointers and indirect addressing
in Chapter 4. M _B RACH D
P S _R
For the IEC Move instruction, the input and output data types can
vary, but must be of the same size. amATIc | IEC 1131
Error conditions that set ENO = 0
.. LAL: FED
m 0006 (indirect address)
MCVE MOWE
— EM EMOE | {EM EMC
=M oUT -
=M oUT -
SIMATIC
5TL
MOVE M, OUT
MO M, QUT
MOVD M, QUT
MOVE M, QUT
Table 6-51 Valid Operands for the Move Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD, INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant
DWORD, DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, &IB, &QB, &VB, &MB, &SB, &T,
&C, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD, INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

DWORD, DINT, REAL | ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

165

S7-200 Programmable Controller System Manual

166

Move Byte Immediate (Read and Write)

The Move Byte Immediate instructions allow you to immediately
move a byte between the physical /O and a memory location.

The Move Byte Immediate Read (BIR) instruction reads physical
input (IN) and writes the result to the memory address (OUT), but
the process-image register is not updated.

The Move Byte Immediate Write instruction (BIW) reads the data
from the memory address (IN) and writes to physical output (OUT),
and the corresponding process image location.

Error conditions that set ENO =0
m 0006 (indirect address)

m Unable to access expansion module

Table 6-52 Valid Operands for the Move Byte Immediate Read Instruction

l IEC 1131]

SIMATIC
LAD: FED
MO _EIR WMoY _EIR
~EM BMNOE | BN EMOL
4N oUTE
N oUT
MOY_BIR MAGH_EI
SIMATIC
STL
EIR I, GUT
BIW N QUT

Inputs/Outputs Data Types Operands
IN BYTE IB, *VD, *LD, *AC
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-53 Valid Operands for the Move Byte Immediate Write Instruction
Inputs/Outputs Data Types Operands

IN BYTE
ouT BYTE QB, *VD, *LD, *AC

IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

S7-200 Instruction Set Chapter 6
Block Move Instructions
Block Move Byte, Word, or Double Word SIMATIC l EC1131]
The Block Move Byte (BMB), Block Move Word (BMW), and Block
Move Double Word (BMD) instructions move a specified amount of LAD FED
data to a new memory location by moving the number of bytes, BLKMOY B BLEMOV_E
words, or double words N starting at the input address IN to a new —EM emo bk | e MG
block starting at the output address OUT. —IH ouT
I ouTk | dy
N has a range of 1 to 255. N

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)

Table 6-54
Inputs/Outputs Data Types

ELEMONY_ B BLENMOW W BLEMOY_D

SIATIC B 1131
LAL FED
BLKMOYE BLKMOVE
— EM EMO | {EM EMO
=M QUT
=M SUTE |y
-
SIMATIC
5TL

EME M, QUT. M
BRI, QUT, M
ERD M, QUT. M

Valid Operands for the Block Move Instructions

Operands

IN BYTE
WORD, INT
DWORD, DINT
ouT BYTE
WORD, INT
DWORD, DINT
N BYTE

Example: Block Move Instruction

IB, @B, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

IB, @B, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC
ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

IB, QB, VB, MB, SMB, SB, LB, AC, Constant, *VD, *LD, *AC

Network 1
12.1 BLKMOV_B

Network 1 //Move array 1 (VB20 to VB23)

/fto array 2 (VB100 to VB103)

F——— ®=o— b 12.1

WB20qIN OUTFvEB100

44

BMB VB20, VB100, 4
VB20 VB21 VB22 VB23
Aray1 |80] [31] [s82] [33]
VB100 VB101 VB102 VB103
Aray2 |30]| |81] [32] [33]

S7-200 Programmable Controller System Manual

Program Control Instructions

168

Stop

Watchdog Reset

Conditional End SIMATIC ¢ |Ec1131]

The Conditional End instruction (END) terminates the current scan
based upon the condition of the preceding logic. You can use the LAD FED

Conditional End instruction in the main program, but you cannot use _(END]
it in either subroutines or interrupt routines.

STEP

e
=
o

-

1

The Stop instruction (STOP) terminates the execution of your —(WDR] - WDR
program by causing a transition of the S7-200 CPU from RUN to
STOP mode.

If the Stop instruction is executed in an interrupt routine, the interrupt

routine is terminated immediately, and all pending interrupts are SALTITE]

ignored. Remaining actions in the current scan cycle are completed,

including execution of the main user program, and the transition =ML EMD

from RUN to STOP mode is made at the end of the current scan. E\E};P

The Watchdog Reset instruction (WDR) retriggers the system watchdog timer of the S7-200 CPU to
extend the time that the scan is allowed to take without getting a watchdog error.

You should use the Watchdog Reset instruction carefully. If you use looping instructions either to prevent
scan completion or to delay excessively the completion of the scan, the following processes are inhibited
until the scan cycle is completed:

1 Communications (except Freeport Mode)

1/O updating (except Immediate 1/0)

Force updating

SM bit updating (SM0, SM5 to SM29 are not updated)

Run-time diagnostics

10-ms and 100-ms timers will not properly accumulate time for scans exceeding 25 seconds

STOP instruction, when used in an interrupt routine

OUdodod

Expansion modules with discrete outputs also include a watchdog timer that turns off outputs if the
module is not written by the S7-200. Use an immediate write to each expansion module with
discrete outputs to keep the correct outputs on during extended scan times. Refer to the example
that follows this description.

Tip
If you expect your scan time to exceed 500 ms, or if you expect a burst of interrupt activity that could

prevent returning to the main scan for more than 500 ms, you should use the Watchdog Reset
instruction to retrigger the watchdog timer.

Each time you use the Watchdog Reset instruction, you should also use an immediate write to one
output byte (QB) in each discrete expansion module to reset each expansion module watchdog.

If you use the Watchdog Reset instruction to allow the execution of a program that requires a long scan
time, changing the mode switch to the STOP position causes the S7-200 to transition to STOP mode
within 1.4 seconds.

S7-200 Instruction Set Chapter 6

Example: Stop, End, and Watchdog Reset Instructions

Network 1 Network 1 //When an |/O error is detected:
SM5.0 /[Force the transition to STOP mode.
— 709 LD SM5.0
STOP
Neftwark 2 Network 2 //When M5.6 is on, allow the scan to be extended:
M3 /1. Retrigger the Watchdog Reset for the S7-200.
_| |__<WDF") /2. Retrigger the watchdog for the first output module.
MDY B LD M5.6

WDR
en o g QB2, QB2

aB24iN QuUTFQB2

Network 3 //When 10.0 is on, terminate the current scan.

LD 10.0
Network 3 END

0.0

— |—{(eno)

169

S7-200 Programmable Controller System Manual

170

For-Next Loop Instructions

Use the For (FOR) and Next (NEXT) instructions to delineate a loop
that is repeated for the specified count. Each For instruction requires
a Next instruction. You can nest For-Next loops (place a For-Next
loop within a For-Next loop) to a depth of eight.

The For instruction executes the instructions between the For and
the Next instructions. You specify the index value or current loop
count INDX, the starting value INIT, and the ending value FINAL.

The Next instruction marks the end of the FOR loop.

Error conditions that set ENO =0
m 0006 (indirect address)

If you enable the For-Next loop, it continues the looping process
until it finishes the iterations, unless you change the final value from
within the loop itself. You can change the values while the For-Next
loop is in the looping process. When the loop is enabled again, it
copies the initial value into the index value (current loop number).

The For-Next instruction resets itself the next time it is enabled.

SIMRTIC ¢ [EC 1131
LA FED:
FOR FOR
~EN MG | N EMGC

— IND:¥
[ML T
T —{ FIMFL
~ FINAL
—(NEXT) NERT

SIMATIC l

STL

FOR MO, IMIT, FIMAL
MEXT

For example, given an INIT value of 1 and a FINAL value of 10, the instructions between the For
instruction and the Next instruction are executed 10 times with the INDX value being incremented:

1,2,3,..10.

If the starting value is greater than the final value, the loop is not executed. After each execution of the
instructions between the For instruction and the Next instruction, the INDX value is incremented and the
result is compared to the final value. If the INDX is greater than the final value, the loop is terminated.

If the top of stack is 1 when your program enters the For-Next loop, then the top of stack will be 1 when

your program exits the For-Next loop.

Table 6-55 Valid Operands for the For and Next Instructions

Inputs/Outputs Data Types Operands
INDX INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
INIT, FINAL INT VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

S7-200 Instruction Set Chapter 6

Example: For-Next Loop Instructions

Network 1 Network 1 //When 12.0 comes on, the outside loop
2.0 FOR 1 /[(arrow 1) is executed 100 times
— b————=n Eno— LD 12.0
FOR VW100, +1, +100
V100 INDX
AT Network 2 //The inside loop (arrow 2) is executed twice
+100-FiNAL /ffor each execution of the outside loop
- /lwhen 12.1 is on.
Network 2 2 LD 2.1
121 FOR FOR VW225, +1, +2
— bB———en Eno—
W25 4 IO Network 3 //End of Loop 2.
4T NEXT
+24{FIAL
Network 4 //End of Loop 1.
Network 3 NEXT
—(NEXT)

Network 4

—{MEXT) - |

171

S7-200 Programmable Controller System Manual

172

Jump Instructions

The Jump to Label instruction (JMP) performs a branch to the

specified label N within the program. SIMATIE £ |Ec1131]
The Label instruction (LBL) marks the location of the jump LAD M i FED
destination N. —(JMP] P
You can use the Jump instruction in the main program, in M M
subroutines, or in interrupt routines. The Jump and its corresponding o LEL
Label instruction must always be located within the same segment

of code (either the main program, a subroutine, or an interrupt

routine).
You cannot jump from the main program to a label in either a SIMATIC
subroutine or an interrupt routine. Likewise, you cannot jump from a oTL
subroutine or interrupt routine to a label outside that subroutine or ME M
interrupt routine. LEL M
You can use a Jump instruction within an SCR segment, but the

corresponding Label instruction must be located within the same

SCR segment.
Table 6-56 Valid Operands for the Jump Instructions

Inputs/Outputs Data Types Operands

N WORD Constant (0 to 255)

Example: Jump to Label Instruction

Network 1 Network 1 //If the retentive data has not been lost, Jump to LBL4
ShO 2 4 LDN SMO0.2
— + —(mr) JMP 4
Network 2
LBL 4
Network 2
4
H LBL

S7-200 Instruction Set Chapter 6

Sequence Control Relay (SCR) Instructions

SCR instructions provide you with a simple yet powerful state control

programming technique that fits naturally into a LAD, FBD, or STL IMATIE £ |Ec1131]

program. LAD FED:
5_bit 5_bit

Whenever your application consists of a sequence of operations that H— sk SR

must be performed repetitively, SCRs can be used to structure your

program so that it corresponds directly to your application. As a : S bit

result, you can program and debug your application more quickly ol i

and easily. —{scRT)

The Load SCR instruction (LSCR) loads the SCR and logic stacks o
with the value of the S bit referenced by the instruction N. _(SCREII

The SCR segment is energized or de-energized by the resulting rRE
value of the SCR stack. The value of the SCR stack is copied to the |_(5CRE:|

top of the logic stack so that boxes or output coils can be tied directly
to the left power rail without an intervening contact.

Restrictions SIMATIC]
When using SCRs, be aware of the following restrictions: oTL
- . LSCR 5_bit
1 You cannot use the same S bit in more than one routine. For SCRT 5_hit
example, if you use S0.1 in the main program, do not use it in EEEEE

a subroutine.

[You cannot jump into or out of an SCR segment; however, you
can use Jump and Label instructions to jump around SCR
segments or to jump within an SCR segment.

[You cannot use the END instruction in an SCR segment.

Table 6-57 Valid Operands for the Sequence Control Relay Instructions

Inputs/Outputs Data Types Operands

S_bit BOOL 3

173

S7-200 Programmable Controller System Manual

Figure 6-31 shows the S stack and the logic stack and the effect of executing the Load SCR instruction.
The following is true of Sequence Control Relay instructions:

(1 The Load SCR instruction (LSCR) marks the beginning of an SCR segment, and the SCR End
instruction (SCRE) marks the end of an SCR segment. All logic between the Load SCR and the
SCR End instructions are dependent upon the value of the S stack for its execution. Logic between
the SCR End and the next Load SCR instruction is not dependent on the value of the S stack.

(1 The SCR Transition instruction (SCRT) Load the value of Sx.y onto the SCR and logic stacks.
provides the means to transfer control from S stack ivS
an active SCR segment to another SCR : S bit
segment. iv0 Sx.y

ivi iv1

Execution of the SCR Transition instruct.ion Logic stack iv2 iv2

when it has power flow will reset the S bit iv3 iv3

of the currently active segment and will set va va

the S bit of the referenced segment. V5 V5

Resetting the S bit of the active segment V6 V6
does not affect the S stack at the time the - -

e) iv7 iv7

SCR Transition instruction executes. Before 8 After 8

Consequently, the SCR segment remains

energized until itis exited. Figure 6-31 Effect of LSCR on the Logic Stack

(1 The Conditional SCR End instruction (CSCRE) provides a means to exit an active SCR segment
without executing the instructions between the Conditional SCR End and the SCR End instructions.
The Conditional SCR End instruction does not affect any S bit nor does it affect the S stack.

In the following example, the first scan bit SM0.1 sets S0.1, which will be the active State 1 on the first
scan. After a 2-second delay, T37 causes a transition to State 2. This transition deactivates the State 1
SCR (S0.1) segment and activates the State 2 SCR (S0.2) segment.

174

S7-200 Instruction Set

Chapter 6

Example: Sequence Control Relay Instruction

Network 1
SO

50.1

—)

Network 8
T38

Network 9

—(sCRE)

Network 2
5041
SCR
Network 3
SM0.0 Qo4
— =)
Qos
—()
2
T37
1M TOM
+204PT
Network 4
T37 50.2
—] SCRT)
Network 5
—(scrE)
Network 6
50.2
SCR
Network 7
SM0.0 Q0.2
—)
T38
1M TOM
+2504PT

50.3

) —teor)

Network 1 //On the first scan enable State 1.
LD SMO0.1
S S0.1, 1

Network 2 //Beginning of State 1 control region.
LSCR S0.1

Network 3 /[Control the signals for Street 1:
/1. Set: Turn on the red light.
//2. Reset: Turn off the yellow and green lights.
//3. Start a 2-second timer.

LD SMo0.0
S Q0.4, 1
R Q05,2

TON T37, +20

Network 4 //After a 2 second delay, transition to State 2.

LD T37
SCRT S0.2

Network 5 //[End of SCR region for State 1.
SCRE

Network 6 //Beginning of State 2 control region.
LSCR S0.2

Network 7 /[Control the signals for Street 2:
/1. Set: Turn on the green light.
/[2. Start a 25-second timer.

LD SMo0.0
S Q0.2, 1
TON T38, +250

Network 8 //After a 25 second delay, transition to State 3.

LD T38
SCRT S0.3

Network 9 //[End of SCR region for State 2.
SCRE

175

S7-200 Programmable Controller System Manual

Divergence Control

In many applications, a single stream of sequential states must be split into two or more different streams.
When a control stream diverges into multiple streams, all outgoing streams must be activated
simultaneously. This is shown in Figure 6-32.

State L

— Transition Condition

\ \
State M State N

Figure 6-32 Divergence of a Control Stream

The divergence of control streams can be implemented in an SCR program by using multiple SCRT
instructions enabled by the same transition condition, as shown in the following example.

Example: Divergence of Control Streams

Network 1 Network 1 //Beginning of State L control region.
534 LSCR S34
SCR
Network 2
Network 2 LD M2.3
M2.3 12.1 53.5 A 2.1
— — SCRT) SCRT 835 /[Transition to State M
SCRT S6.5 /[Transition to State N
S8.5
SCRT) Network 3 //End of the State region for State L.
SCRE
Network 3
—(sCRE)

Convergence Control

A situation similar to divergence control arises when two or more streams of sequential states must be
merged into a single stream. When multiple streams merge into a single stream, they are said to
converge. When streams converge, all incoming streams must be complete before the next state is
executed. Figure 6-33 depicts the convergence of two control streams.

The convergence of control streams can be implemented in an SCR program by making the transition
from state L to state L’ and by making the transition from state M to state M’. When both SCR bits
representing L’ and M’ are true, state N can the enabled as shown in the following example.

176

S7-200 Instruction Set Chapter 6

State L

State M

—— Transition Condition

Y

State N
Figure 6-33 Convergence of a Control Stream
Example: Convergence of Control Streams
Network 1 Network 1 //Beginning of State L control region
534 LSCR S34
EEE
Network 2 /[Transition to State L’
Network 2 LD V100.5
SCRT S35
Y1005 535
|—(SCR
_| D Network 3 //[End of SCR region for State L
SCRE
Network 3
Network 4 //Beginning of State M control region
—(5CRD) LSCR S6.4
Network 5 /[Transition to State M’
Network 4 LD C50
564
—=r SCRT S6.5
Network 6 //[End of SCR region for State M
Network 5 SCRE
c&0 S6.5
— ——(cr) Network 7 //When both State L and State M’ are activated:
//1. Enable State N (S5.0)
//2. Reset State L’ (S3.5)
Network 6 //3. Reset State M’ (S6.5)
LD S3.5
—(sCRE) A S6.5
S S5.0, 1
R S3.5, 1
Network 7 R S6.5, 1
535 S6.5 55.0

— E :)
SZ.S)
1
56.9
2

177

S7-200 Programmable Controller System Manual

In other situations, a control stream might be directed into one of several possible control streams,
depending upon which transition condition comes true first. Such a situation is depicted in Figure 6-34,
which shows an equivalent SCR program.

State L

—+— Transition Condition —+— Transition Condition
Y Y

State M State N

Figure 6-34 Divergence of a Control Stream, Depending on the Transition Condition

Example: Conditional Transitions

Network 1 Network 1 //Beginning of State L control region
534 LSCR S3.4
H scr
Network 2 /[Transition to State M
Network 2 LD M2.3
SCRT S35
W23 535
|—(SCR
_| 1) Network 3 /[Transition to State N
LD 13.3
Network 3 SCRT S6.5
13.3 S6.5
— ——scr) Network 4 //End of SCR region for State L
SCRE
Metwork 4
—(sCRE)

178

S7-200 Instruction Set Chapter 6

Shift and Rotate Instructions

Shift Right and Shift Left Instructions SATIC | ic 1131
The Shift instructions shift the input value IN right or left by the shift T =
count N and load the result in the output OUT.
SHR_E SHR_E

The Shift instructions fill with zeros as each bit is shifted out. If the —EM EMO | | EM EMGC |
shift count (N) is greater than or equal to the maximum allowed (8 for outh |] I+ oUT -
byte operations, 16 for word operations, and 32 for double word] :? M
operations), the value is shifted the maximum number of times for
the operation. If the shift count is greater than 0, the overflow
memory bit (SM1.1) takes on the value of the last bit shifted out. The EEE-E gﬂﬁ-m gﬂf-gm
zero memory bit (SM1.0) is set if the result of the shift operation is ToF B . -
zero. ROL_B ROL_W ROL_DW
Byte operations are unsigned. For word and double word
operations, the sign bit is shifted when you use signed data types. SIMATIC JEC 1121
Error conditions that set ENO = 0 SM bits affected: LAD FED
m 0006 (indirect address) = SM1.0 (zero) SHR <HFR

= SM1.1 (overflow) — EM EMO - || —ENM EMO =

1M ouT
Rotate Right and Rotate Left Instructions S B L

The Rotate instructions rotate the input value (IN) right or left by the
shift count (N) and load the result in the memory location (OUT). The SHR SHL ROR ROL

rotate is circular.

If the shift count is greater than or equal to the maximum for the SIMATIC
operation (8 for a byte operation, 16 for a word operation, or 32 for a

double-word operation), the S7-200 performs a modulo operation on | | 3TL

the shift count to obtain a valid shift count before the rotation is il LN i
executed. This result is a shift count of 0 to 7 for byte operations, 0 e OUT' " - OUT' "
to 15 for word operations, and 0 to 31 for double-word operations. SLW OUT. M RLW QLT M
If the shift count is 0, a rotate operation is not performed. If the rotate EEE SH%H EEE gﬂ%m

operation is performed, the value of the last bit rotated is copied to

the overflow bit (SM1.1).

If the shift count is not an integer multiple of 8 (for byte operations), 16 (for word operations), or 32 (for

double-word operations), the last bit rotated out is copied to the overflow memory bit (SM1.1). The zero

memory bit (SM1.0) is set when the value to be rotated is zero.

Byte operations are unsigned. For word and double word operations, the sign bit is shifted when you use

signed data types.

Error conditions that set ENO =0 SM bits affected:
m 0006 (indirect address) m SM1.0 (zero)

= SM1.1 (overflow)

Table 6-58 Valid Operands for the Shift and Rotate Instructions
Inputs/Outputs Data Types Operands

IN BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE IB, @B, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

179

S7-200 Programmable Controller System Manual

Example: Shift and Rotate Instructions

Network 1 Network 1
14.0 ROR_W LD 14.0
|
I EN ENO % RRW ACOQ, 2
SLW Vw200, 3
ACOAIM OUTEACD
24
SHL W
EN ENO—)
YW200IN OUTHYW200
34N
Rotate Before rotate Overflow Shift Before shift Overflow
ACO [01000000 0000 0001 | Vw200 [11100010 1010 1101]
After first rotate Overflow After first shift Overflow
ACO L[10100000 0000 0000] 1] vW200-— 1100 0101 0101 1010]
After second rotate Overflow After second shift Overflow
ACO L= 01010000 0000 0000 |--»{ 0] VW200-—{ 1000 1010 1011 0100
Zero Memory Bit (SM1.0) =0
Overflow Memory Bit (SM1.1) = 0 After third shift Overflow
VW200-—[0001 0101 0110 1000]

Zero Memory Bit (SM1.0)
Overflow Memory Bit (SM1.1)

180

S7-200 Instruction Set Chapter 6

Shift Register Bit Instruction

The Shift Register Bit instruction shifts a value into the Shift Register.

i i . g SIMATIC f [EC 1121
This instruction provides an easy method for sequencing and

controlling product flow or data. Use this instruction to shift the entire | [4 FED
register one bit, once per scan. HFE HFE
The Shift Register Bit instruction shifts the value of DATA into the [En EMO = | —EM EMO =
Shift Register. S_BIT specifies the least significant bit of the Shift I | PATA
Register. N specifies the length of the Shift Register and the 4 it] a—B'T
direction of the shift (Shift Plus = N, Shift Minus = -N). M

Each bit shifted out by the SHRB instruction is placed in the overflow

memory bit (SM1.1).

. .) A . SIMATIC

This instruction is defined by both the least significant bit (S_BIT)

and the number of bits specified by the length (N). STL

Error conditions that set ENO =0 SHRE DATA, Z_EIT. M
m 0006 (indirect address)

= 0091 (operand out of range)

m 0092 (error in count field)

SM bits affected:

= SM1.1 (overflow)
Table 6-59 Valid Operands for the Shift Register Bit Instruction

Inputs/Outputs Data Types Operands

DATA, S_Bit BOOL ,Q,V,M,SM, S, T,C, L

N BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Use the following equation to compute the address of the most significant bit of the Shift Register (MSB.b):
MSB.b = [(Byte of S_BIT) + ([N] - 1 + (bit of S_BIT)) / 8].[remainder of the division by 8]

For example: if S_BIT is V33.4 and N is 14, the following Shift Minus, S_BIT
calculation shows that the MSB.b is V35.1. Length = -14 MSB Q LSB
Va3
MSB.b V33 + ([14] - 1 +4)/8 L7[—[4] [o]

=V33+17/8
= V33 + 2 with a remainder of 1 vas [7] ——] o}—l
=V35.1

On a Shift Minus, indicated by a negative value of length V35 | 7| | 1| o}_l

(N), the input data shifts into the most significant bit of the
Shift Register, and shifts out of the least significant bit

(S_BIT). The data shifted out is then placed in the overflow MSB of Shift Register
memory bit (SM1.1). Shift Plus, S_BIT

. . o Length = 14 pSD v —
On a Shift Plus, indicated by a positive value of length (N), Va3

; by e ot length EESE K
the input data (DATA) shifts into the least significant bit of the T

Shift Register, specified by the S_BIT, and out of the most
significant bit of the Shift Register. The data shifted out is
then placed in the overflow memory bit (SM1.1). vas | 7| | 1| OFJ

V34 | 7|<—| oqu

The maximum length of the shift register is 64 bits, positive
or negative. Figure 6-35 shows bit shifting for negative and MSB of Shift Register

positive values of N.

Figure 6-35 Shift Register Entry and Exit

181

S7-200 Programmable Controller System Manual

182

Example: Shift Register Bit Instruction

Timing Diagram

Network 1
0.2
| | |
— | 1 P 1
10.34
W100.04
+4-

EN

DATA
S_BIT

SHRE

ENO—)

o2 L[

Positive |_|

transition (P) ‘

10.3 |

First shift

ﬂ_
|
|

Second shift

Network 1

LD 10.2
EU
SHRB 10.3,V100.0, +4

7 (MSB) 0(SB) s BIT
[o[1]o]1]=—103

Before first shift V100 |

Overflow (SM1.1)
S_BIT

[1[o]1]1]e—103

After first shift V100 |

Overflow (SM1.1)
S_BIT

[o[1[1]0]=—103

After second shift V100 |

Overflow (SM1.1)

S7-200 Instruction Set Chapter 6
Swap Bytes Instruction
The Swap Bytes instruction exchanges the most significant byte with
I SIMATIC 4 IEC 1131
the least significant byte of the word IN.
Error conditions that set ENO = 0 LI EE
® 0006 (indirect address) SRR SRR
— EM EMO - | {EM EMO
=M
=M
SIMATIC
5TL
SWRP M
Table 6-60 Valid Operands for the Swap Bytes Instruction
Inputs/Outputs Data Types Operands
IN WORD W, QW, VW, MW, SMW, SW, T, C, LW,AC, *VD, *LD, *AC

Example: Swap Instructions

Network 1 Network 1
12.1 SHAP LD 12.1
—n eno H SWAP VW50
WWED 1N

S' - \wso VW50

183

S7-200 Programmable Controller System Manual

String Instructions

String Length
The String Length instruction (SLEN) returns the length of the string

SIMATIC £ IEC1131

specified by IN. LAD FED
STR_LEM STR_LEM
. — EM EMO - | {EM EMG |-
Copy String AR o 3
The Copy String instruction (SCPY) copies the string specified by IN
to the string specified by OUT. STRLLEN STRCPY STR.CAT
Concatenate String P
The Concatenate String instruction (SCAT) appends the string
specified by IN to the end of the string specified by OUT. STL
SLEM 1M, QUT
. SCPY M, QUT
SM Bits and ENO SCAT I, QUIT
For the String Length, Copy String, and Concatenate String
instructions, the following conditions affect ENO.
Error conditions that set ENO = 0
m 0006 (indirect address)
m 0091 (range error)
Table 6-61 Valid Operands for the String Length Instruction
Inputs/Outputs Data Types Operands
IN BYTE (String) VB, LB, *VD, *LD, *AC
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-62 Valid Operands for the Copy String and Concatenate String Instructions

Inputs/Outputs Data Types Operands

IN, OUT BYTE (String) VB, LB, *VD, *LD, *AC

184

S7-200 Instruction Set

Chapter 6

Example: Concatenate String, Copy String, and String Length Instructions

Metwork 1
0.0 STR_CAT
[
— | EN ENO—)
ve204in ouThven
STR_CPY
EN ENO—
veodin ouThvetoo
STR_LEN
EN ENO—)
ve1004m ouTkACD

Before executing the program
VB0 VB6

(e lwlelclolol]

After executing the program

Network 1 /1. Append the string at VB20
/I tothe string at VBO
/[2. Copy the string at VBO
/| to anew string at VB100
//3. Get the length of the string
/| that starts at VB100

LD 10.0

SCAT VB20, VBO
STRCPY VB0, VB100
STRLEN VB100, ACO

VB20 VB25
(s [wlolmltlo]

VB0 VB11
[wlwlelclvlol Iwlolwmlvlo]
VB100 VB111
(w[wlelclvlol Twlolalvlo]
ACO

185

S7-200 Programmable Controller System Manual

Copy Substring from String
The Copy Substring from String instruction (SSCPY) copies the

SIMATIC £ IEC1131

specified number of characters N from the string specified by IN, LAD FED
starting at the index INDX, to a new string specified by OUT. SETRCPY S5TR_CPY
— EM EMo - [—EM EMO |
Error conditions that set ENO =0 " - — M QuT -
indirect 7 s L
m 0006 (indirect address) D I

m 0091 (range error) —H
m 009B (index=0)

SIMATIC

STL
SSCPY 1M, IMDx, M, QUT

Table 6-63 Valid Operands for the Copy Substring from String Instructions

Inputs/Outputs Data Types Operands
IN, OUT BYTE (String) VB, LB, *VD, *LD, *AC
INDX, N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Example: Copy Substring Instruction

Hetwork 1 Network 1 /[Starting at the seventh character in the string at VBO,
0.0 SSTR_CPY /[copy 5 characters to a new string at VB20

|7 En BNO %l LD 10.0

SSCPY VB0, 7, 5, VB20

WEOqIN OUTFvE20
THINDH
BE i

Before executing the program
VB0 VB11
[(ulwlelvlcvlol [wlolw[v]o]

After executing the program
VB20 VB25

(s [wlolmlv]o]

186

S7-200 Instruction Set Chapter 6

Find String Within String
The Find String Within String instruction (SFND) searches for the

SIMATIC £ IEC1131

first occurrence of the string IN2 within the string IN1. The search LAD FED
begins at the starting position specified by OUT. If a sequence of STR_FINE: STR_FIMD
characters is found that matches exactly the string IN2, the position | EM EMO = | EM EMO =
of the first character in the sequence for the string is written to OUT. dnt ook | M SMTE
If the string IN2 was not found in the string IN1, the instruction OUT iz gL
is setto 0.
Error conditions that set ENO =0 STR_FIMD: CHR_FIML:
m 0006 (indirect address)
m 0091 (range error) SIMATIC
m 009B (index=0)
STL
Find First Character Within String B LLLRE
The Find First Character Within String instruction (CFND) searches B

the string IN1 for the first occurrence of any character from the
character set described in the string IN2. The search begins at
starting position OUT. If a matching character is found, the position
of the character is written to OUT. If no matching character is found,
OUT is setto 0.

Error conditions that set ENO =0
m 0006 (indirect address)

m 0091 (range error)
m 009B (index=0)

Table 6-64 Valid Operands for Find String Within String and Find First Character Within String Instructions

Inputs/Outputs Data Types Operands
IN1, IN2 BYTE (String) VB, LB, *VD, *LD, *AC
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

187

S7-200 Programmable Controller System Manual

Example: Find String Within String Instruction

The following example uses a string stored at VB0 as a command for turning a pump on or off. A string ’On’ is stored at
VB20, and a string 'Off’ is stored at VB30. The result of the Find String Within String instruction is stored in ACO (the
OUT parameter). If the result is not 0, then the string ’On’ was found in the command string (VB12).

Network 1 Network 1 /1. Set ACO to 1.
0.0 MOV B /| (ACO is used as the OUT parameter.)
. EM ENO — //2. Search the string at VBO for the string
! /l atVB20 (On’), starting at the first
141N QUTkACD I/ position (ACO=1).
LD 10.0
MOVB 1, ACO
STR_FIND SFND VBO, VB20, ACO
EN ENO—
VBO{INT OUTFACD
VBI04 M2
VB0 VB12
| 12 | T | o | - | " | Y | P | o | " | o | Y | o | " |
VB20 VB22 VB30 VB33
| 2 | o | " | | 3 | o | P | P |
If the string in VB20 ACO If the string in VB20 ACO

is found: [1 | is not found: [o]

Example: Find Character Within String Instruction

In the following example, a string stored at VBO contains the temperature. The string at VB20 stores all the numeric
characters (and the + and -) that can identify a temperature in a string. The sample program finds the starting position
for a number in that string and then converts the numeric characters into a real number. VD200 stores the real-number
value of the temperature.

Network 1 Network 1 /1. Set ACO to 1.
0o MOY_B /l (ACO is used as the OUT parameter
| EN ENO H /I and points to the first position of the string.)
//2. Find the numeric character
T QUTFACD // in the string at VBO.

//3. Convert the string to a real number.

CHR_FIND LD 10.0
BN ENO— MOVB 1, ACO
CFND VB0, VB20, ACO

VBOqIN OUTFACO STR VB0, AC0, VD200
vB20{IN2
SR
en Enol—)
vea{m ouTpvozao
Aco{NDx
VB0 VB11

T I T O R R R R
VB20 VB32

Celvlzelelelslelrlelololel-]

Starting position of the temperature Real-number value of the
stored in VBO: temperature:
ACO VD200

7 98.6

188

S7-200 Instruction Set Chapter 6

Table Instructions

Add To Table

The Add To Table instruction adds word values (DATA) to a table

(TBL). The first value of the table is the maximum table length (TL). | - e ¢ ST

The second value is the entry count (EC), which specifies the LAD FED
number of entries in the table. New data are added to the table after DT TEL RE]
the last entry. Each time new data are added to the table, the entry din el | di mel
count is incremented. oATH

. -|DATA - TEL
A table can have up to 100 data entries. dTeL
Error conditions that set ENO =0
m SM1.4 (table overflow)
m 0006 (indirect address) SIMATI
m 0091 (operand out of range) STL

ATT DATA. TEL

SM bits affected:
m SM1.4is setto 1 if you try to overfill the table

Table 6-65 Valid Operands for the Table Instructions
Inputs/Outputs Data Types Operands

DATA INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
TBL WORD IW, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC

Example: Add to Table Instruction

Network 1 Network 1 //Load maximum table length
SM0.1 MO LD SMO.1

— P o —3 MOVW +6, VW200

+641M OUT w200

Network 2

LD 10.0
ATT VW100, VW200
Network 2
0.0 AD_T_TEL

— b Eeno—3)

W T1004DATA
2004 TEL

Before execution of ATT After execution of ATT

VW200 0006 TL (max. no. of entries) VW200 0006 TL (max. no. of entries)
VW202 0002 EC (entry count) VW202 0003 EC (entry count)
VW204 5431 dO (data 0) VW204 5431 dO (data 0)

VW206 8942 di (data 1) VW206 8942 di (data 1)

VW208 XXXX VW208 1234 d2 (data 2)

VW210 XXXX VW210 XXXX

VW212 XXXX VW212 XXXX

VW214 XXXX VW214 XXXX

189

S7-200 Programmable Controller System Manual

First-In-First-Out and Last-In-First-Out

A table can have up to 100 data entries. SRR O

First-In-First-Out T e
The First-In-First-Out instruction (FIFO) moves the oldest (or first) FIFC: FIFC:
entry in a table to the output memory address by removing the first e o | e Epe
entry in the table (TBL) and moving the value to the location 4TEL DATAF
specified by DATA. All other entries of the table are shifted up one | TEL_ DATAE
location. The entry count in the table is decremented for each
instruction execution. FIFCH LIF
Last-In-First-Out o
The Last-In-First-Out instruction (LIFO) moves the newest (or last)
entry in the table to the output memory address by removing the last | | sTL
entry in the table (TBL) and moving the value to the location FIFC TEL. DATA
specified by DATA. The entry count in the table is decremented for LI L T
each instruction execution.
Error conditions that set ENO = 0 SM bits affected:
m SM1.5 (empty table) m SM1.5is setto 1 if you try to remove an entry from an empty table
m 0006 (indirect address)
= 0091 (operand out of range)
Table 6-66 Valid Operands for the First-In-First-Out and Last-In-First-Out Instructions
Inputs/Outputs Data Types Operands
TBL WORD W, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC
DATA INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC
Example: First-In-First-Out Instruction
Metwork 1 Network 1
14.1 FIFO LD 14.1
p———n Eenol—3y FIFO VW200, VW400
Www2004TBL _DATARYWADD
Before execution of FIFO — VW400 After execution of FIFO
VW200 0006 TL (max. no. of entries) VW200 0006 TL (max. no. of entries)
VW202 0003 EC (entry count) VW202 0002 EC (entry count)
VW204 5431 do (data 0) VW204 8942 do (data 0)
VW206 8942 d1 (data 1) VW206 1234 d1 (data 1)
VW208 1234 d2 (data 2) VW208 XXXX
VW210 XXXX VW210 XXXX
VW212 XXXX VW212 XXXX
VW214 XXXX VW214 XXXX

190

S7-200 Instruction Set Chapter 6

Example: Last-In-First-Out Instruction

Network 1

0.1

|7

W00

LIFO
EN ENC

TEL DATA

—

FAY300

Before execution of LIFO

vwz200 [~ o006 |
VW202 0003
VW204 5431
VW206 8942
VW208 1234
VW210 XXXX
VW212 XXXX
VW214 XXXX

TL (max. no. of entries)

EC (entry count)
dO (data 0)
d1 (data 1)
d2 (data 2)

Network 1
LD 10.1

LIFO VW200, VW300

VW200
VW202
VW204
VW206
Vw208
Vw210
Vw212
Vw214

o

0006

0002

5431

8942

XXXX

XXXX

XXXX

XXXX

After execution of LIFO

TL (max. no. of entries)
EC (entry count)

dO (data 0)

d1 (data 1)

191

S7-200 Programmable Controller System Manual

Memory Fill

The Memory Fill instruction (FILL) writes N consecutive words, ST £ R
beginning at address OUT, with the word value contained in address
IN.

LAL: FEL:

N has a range of 1 to 255. FILL_M FILL_M

— EM EMC | {EM M -
Error conditions that set ENO =0 — M ouT -
® 0006 (indirect address)] I,,T SUTE - n
= 0091 (operand out of range)

SIMATIC
STL
FILL 1M, CUT, M

Table 6-67 Valid Operands for the Memory Fill Instruction
Inputs/Outputs Data Types Operands
IN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

Example: Memory Fill Instruction

Network 1 Network 1
12.1 FILL_N LD 12.1

————en enol—y FILL +0, VW200, 10

+0qIM QUT w200
104N

IN VW200 VW202 VW218

[o] FLL o |[o |- o

192

S7-200 Instruction Set Chapter 6

Table Find

The Table Find instruction (FND) searches a table for data that

N - X SIMATIC ¢ [EC 1131
matches certain criteria. The Table Find instruction searches the
table TBL, starting with the table entry INDX, for the data value or LAD FED
pattern PTN that matches the search criteria defined by CMD. The
o . TEL _FIN: TEL _FIN:
command parameter CMD is given a numeric value of 1 to 4 that den S I o |
corresponds to =, <>, <, and >, respectively. iy
~ TEL -
If a match is found, the INDX points to the matching entry in the 4 PTH | IF;qTDNX
table. To find the next matching entry, the INDX must be incremented ~ IMD 4 hp
before invoking the Table Find instruction again. If a match is not L
found, the INDX has a value equal to the entry count.
A table can have up to 100 data entries. The data entries (area to be
searched) are numbered from 0 to a maximum value of 99. SIMATIC
Error conditions that set ENO = 0 5TL
.. ML= TEL.PTH, NI
m 0006 (indirect address) FMD=> TEL. PTR. IMD
FMD= TEL. PTH, IND
= 0091 (operand out of range) FMD= TEL. PTR. MO
Table 6-68 Valid Operands for the Table Find Instruction
Inputs/Outputs Data Types Operands
TBL WORD IW, QW, VW, MW, SMW, T, C, LW, *VD, *LD, *AC
PTN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
INDX WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
CMD BYTE (Constant) 1: Equal (=), 2: Not Equal (<>), 3: Less Than (<), 4: Greater Than (>)

Tip
@ When you use the Table Find instruction with tables generated with the Add to Table, Last-In-First-Out,
and First-In-First-Out instructions, the entry count and the data entries correspond directly. The
maximum-number-of-entries word required for the Add to Table, Last-In-First-Out, or First-In-First-Out
instructions is not required by the Table Find instruction. See Figure 6-36.

Consequently, you should set the TBL operand of a Find instruction to one-word address (two bytes)
higher than the TBL operand of a corresponding the Add to Table, Last-In-First-Out, or First-In-First-Out

instruction.
Table format for ATT, LIFO, and FIFO Table format for TBL_FIND
VW200 0006 TL (max. no. of entries) VW202 0006 EC (entry count)
VW202 0006 EC (entry count) VW204 XXXX d0 (data O

)
VW204 XXXX do (data O)
VW206 XXXX d1 (data 1 VW208 XXXX d2 (data 2)
VW208 XXXX d2 (data 2 VW210 XXXX d3 (data 3)
)
)

) VW206 | xxxx d1 (data 1
)

VW210 XXXX d3 (data 3) VW212 XXXX d4 (data 4
)
)

VW212 XXXX d4 (data 4 VW214 XXXX d5 (data 5
VW214 XXXX d5 (data 5

Figure 6-36 Different Table Formats between the Table Find Instruction and the ATT, LIFO, and FIFO Instructions

193

S7-200 Programmable Controller System Manual

194

Example: Table Find Instruction

Hetwork 1
12.1 TBL_FIND

— ——en Eno—

w202 TEL
16#31304PTH
ACTHINDH
14CMD

When 12.1 is on, search the table for
a value equal to 3130 HEX.

VW202 0006 EC (entry count)
VW204 3133 dO (data 0)
VW206 4142 d1 (data 1)
VW208 3130 d2 (data 2)
VW210 3030 d3 (data 3)
Vw212 3130 d4 (data 4)
Vw214 4541 d5 (data 5)

If the table was created using ATT,
LIFO, and FIFO instructions, VW200
contains the maximum number of
allowed entries and is not required by
the Find instructions.

AC1

Network 1
LD 12.1

FND= VW202, 16#3130, AC1

[o |

Execute table search

AC1

AC1

Execute table search

AC1

AC1

Execute table search

AC1

AC1

[6 |

[o]

AC1 must be set to 0 to search from the top of
table.

AC1 contains the data entry number
corresponding to the first match found in the
table (d2).

Increment the INDX by one, before searching
the remaining entries of the table.

AC1 contains the data entry number
corresponding to the second match found in
the table (d4).

Increment the INDX by one, before searching
the remaining entries of the table.

AC1 contains a value equal to the entry count.
The entire table has been searched without
finding another match.

Before the table can be searched again, the
INDX value must be reset to 0.

S7-200 Instruction Set Chapter 6

Example: Creating a Table

The following program creates a table with 20 entries. The first memory location of the table contains the length of the
table (in this case 20 entries). The second memory location shows the current number of table entries. The other
locations contain the entries. A table can have up to 100 entries. It does not include the parameters defining the
maximum length of the table or the actual number of entries (here VW0 and VW2). The actual number of entries in the
table (here VW2) is automatically incremented or decremented by the CPU with every command.

Before you work with a table, assign the maximum number of table entries. Otherwise, you cannot make entries in the
table. Also, be sure that all read and write commands are activated with edges.

To search the table, the index (VW106) must set to 0 before doing the find. If a match is found, the index will have the
table entry number, but if no match is found, the index will match the current entry count for the table (VW2).

Network 1 Network 1 /[Create table with 20 entries starting with memory
SMO.1 MOV_V //location 4.
—— BN ENO A //1. On the first scan, define the maximum length
+20{IN OUThwwo //of the table.
LD SMO0.1
MOvVw +20, VWO
Network 2
100 FILLN Network 2 //Reset table with input 10.0
— | | P} BN Eno—) //On the rising edge of 10.0,
wodin outhve /ffill memory locations from VW2 with "+0” .
214N LD 10.0
EU
Netwark 3 FILL +0, VW2, 21
10.1 AD_T_TBL . P
- Network 3 /Write value to table with input 10.1
| | | E H
— 1o N //On the rising edge of 10.1,
WAID0{DATA /[copy value of memory location VW100 to table.
VWOHTBL
LD 10.1
EU
Network 4 ATT VW1 00, VWO
L "z o o Lol | Network4 //Read first table value with input 10.2
f o 4 //Move the last table value to location VW102.
VWO{TBL __ DATAlVWIOZ /[This reduces the number of entries.
//On the rising edge of 10.2,
Network 5 //Move last table value to VW102
0.3 FIFO
— | | P} EN ENG y LD 102

EU
waodteL patabwwis | LIFO VW0, VW102

Network 5 //Read last table value with input 10.3
//Move the first table value to location VW102.

Netwark 6 /[This reduces the number of entries.
04 MOV _\WW Qi
- //On the rising edge of 10.0,
1 | b1 - |
— | 171 EN Ero A //Move first table value to VW104
+0IN OUTFWA108 LD 10.3
EU
= FD FIFO VWO, VW104

EN Eno— | Network 6 //Search table for the first location that has a

vivadTBL /Ivalue of 10.

10dpT /1. On the rising edge of 10.4,
WADB{INDX /I resetindex pointer.
1{CMD //2. Find a table entry that equals 10.
LD 10.4
EU

MOVW +0, VW106
FND= VW2, +10, VW106

195

S7-200 Programmable Controller System Manual

Timer Instructions

SIMATIC Timer Instructions SmATC | e 1131
On-Delay Timer LD —
Retentive On-Delay Timer T T
The On-Delay Timer (TON) and Retentive On-Delay Timer (TONR) B A I s EA
instructions count time when the enabling input is on. The timer —FT

number (Txx) determines the resolution of the timer.

TON TOMR TOF

Off-Delay Timer

The Off-Delay Timer (TOF) is used to delay turning an output off for | "gpsarie
a fixed period of time after the input turns off. The timer number

(Txx) determines the resolution of the timer. STL
TOM Txx PT
TOMR T PT
TOF Txx.PT
Table 6-69 Valid Operands for the SIMATIC Timer Instructions
Inputs/Outputs Data Types Operands
Txx WORD Constant (TO to T255)
IN BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow
PT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

Tip
@ You cannot share the same timer number (Txx) for an off-delay timer (TOF) and an on-delay timer
(TON). For example, you cannot have both a TON T32 and a TOF T32.

As shown in Table 6-70, the three types of timers perform different types of timing tasks:
[You can use a TON for timing a single interval.
[You can use a TONR for accumulating a number of timed intervals.

(O You can use a TOF for extending time past an off (or false) condition, such as for cooling a motor
after it is turned off.

Table 6-70 Operations of the Timer Instructions

Type Current >= Preset State of the Enabling Input (IN) Power Cycle/First Scan
TON Timer bit on ON: Current value counts time Timer bit off
Current continues counting | OFF: Timer bit off, current value = 0 Current value = 0
to 32,767
TONR Timer bit on ON: Current value counts time Timer bit off
Current continues counting | OFF: Timer bit and current value maintain last | Current value can be
to 32,767 state maintained’
TOF Timer bit off ON: Timer bit on, current value = 0 Timer bit off
S:L::ﬁirr]]tgz Preset, stops OFF: Timer counts after on-to-off transition Current value = 0

1 Theretentive timer current value can be selected for retention through a power cycle. See Chapter 4 for information about
memory retention for the S7-200 CPU.

Refer to the Tips and Tricks on the documentation CD for a sample program that uses the on-delay timer
(TON). See Tip 31

Tips and Tricks

196

S7-200 Instruction Set Chapter 6

The TON and TONR instructions count time when the enabling input is on. When the current value is
equal to or greater than the preset time, the timer bit is on.

(1 The current value of a TON timer is cleared when the enabling input is off, whereas the current
value of the TONR timer is maintained when the input is off.

[You can use the TONR timer to accumulate time when the input turns on and off. Use the Reset
instruction (R) to clear the current value of the TONR.

(1 Boththe TON and the TONR timers continue counting after the preset is reached, and they stop
counting at the maximum value of 32,767.

The TOF instruction is used to delay turning an output off for a fixed period of time after the input turns off.
When the enabling input turns on, the timer bit turns on immediately, and the current value is set to 0.
When the input turns off, the timer counts until the elapsed time reaches the preset time.

1 When the preset is reached, the timer bit turns off and the current value stops incrementing;
however, if the input turns on again before the TOF reaches the preset value, the timer bit remains
on.

(1 The enabling input must make an on-to-off transition for the TOF to begin counting time intervals.

1 [Ifthe TOF timer is inside an SCR region and the SCR region is inactive, then the current value is set
to 0, the timer bit is turned off, and the current value does not increment.

Tip

You can reset a TONR only by using the Reset (R) instruction. You can also use the Reset instruction to
reset any TON or TOF. The Reset instruction performs the following operations:

m Timer Bit = off

m Timer Current=0

Atfter a reset, TOF timers require the enabling input to make the transition from on to off in order for the
timer to restart.

Determining the Resolution of the Timer

Timers count time intervals. The resolution (or time base) of the timer determines the amount of time in
each interval. For example, a TON with a resolution of 10 ms counts the number of 10-ms intervals that
elapse after the TON is enabled: a count of 50 on a 10-ms timer represents 500 ms. The SIMATIC timers
are available in three resolutions: 1 ms, 10 ms, and 100 ms. As shown in Table 6-71, the timer number
determines the resolution of the timer.

Tip

To guarantee a minimum time interval, increase the preset value (PV) by 1. For example: To ensure a
minimum timed interval of at least 2100 ms for a 100-ms timer, set the PV to 22.

Table 6-71 Timer Numbers and Resolutions

Timer Type Resolution Maximum Value Timer Number
TONR 1ms 32.767 s (0.546 min.) TO, T64
(retentive) 10 ms 30767s (546min) T1toT4 T651t0 T68
100 ms 3276.7 s (54.6 min.) T5 to T31, T69 to T95
TON, TOF 1ms 32.767 s (0.546 min.) T32, T96
(non-retentive) 10 ms 307675 (546min) T33toT36, T97 to T100
100 ms 3276.7 s (54.6 min.) T37 to T63, T101 to T255

197

S7-200 Programmable Controller System Manual

198

Understanding How Resolution Affects the Timer Action

For a timer with a resolution of 1 ms, the timer bit and the current value are updated asynchronous to the
scan cycle. For scans greater than 1 ms, the timer bit and the current value are updated multiple times
throughout the scan.

For a timer with a resolution of 10 ms, the timer bit and the current value are updated at the beginning of
each scan cycle. The timer bit and current value remain constant throughout the scan, and the time
intervals that accumulate during the scan are added to the current value at the start of each scan.

For a timer with a resolution of 100 ms, the timer bit and current value are updated when the instruction is
executed; therefore, ensure that your program executes the instruction for a 100-ms timer only once per
scan cycle in order for the timer to maintain the correct timing.

Example: SIMATIC On-Delay Timer

Network 1 Network 1 //100 ms timer T37 times out after (10 x 100 ms = 1s)
00 T37 /10.0 ON=T37 enabled, 10.0 OFF=disable and reset T37
— N TON LD 10.0
TON T37, +10
+104PT
Network 2 /[T37 bit is controlled by timer T37
LD T37
= Q0.0
Network 2 |
T37 Qoo
Timing Diagram
10.0
1s -
_ E Maximum
current =10 J_/ ‘ 3 value = 32767
T37 (current) E ‘
T37 (bit) 1]

Q0.0

S7-200 Instruction Set Chapter 6

Tip
To guarantee that the output of a self-resetting timer is turned on for one scan each time the timer

reaches the preset value, use a normally closed contact instead of the timer bit as the enabling input to
the timer.

Example: SIMATIC Self-Resetting On-Delay Timer

Network 1 Network 1 /10 ms timer T33 times out after (100 x 10 ms = 1s)
MO0 133 //M0.0 pulse is too fast to monitor with Status view

—] + f——W TOM LDN MO.0

TON T33, +100

+1004PT
Network 2 //Comparison becomes true at a rate that is visible
//with Status view. Turn on Q0.0 after (40 x 10 ms)
/[for a 40% OFF/60% ON waveform
Network 2 LDW>= T33, +40

T33 Qoo - Q0.0
—>)
+40 Network 3 /[T33 (bit) pulse too fast to monitor with Status view
//Reset the timer through MO0.0 after the (100 x 10 ms) period

1 LD T33

_|T33 iyl) _ MO.0

Network 3

Timing Diagram CUITENt = 100-----=nmvmmnmev

current =40 ----- %

T33 (current)

.4si 0.6s
<>

T33 (bit)
MO0.0

Q0.0 J I—l I_l I_l |

Example: SIMATIC Off-Delay Timer

Network 1 Network 1 //[10-ms timer T33 times out after (100 x 10 ms = 1s)
0.0 T33 //10.0 ON-to-OFF=T33 enabled
— b——Am TOF //10.0 OFF-to-ON=disable and reset T33
LD 10.0
+1004PT TOF T33, +100

Network 2 /[Timer T33 controls Q0.0 through timer contact T33

LD T33

Network 2 _ Q0.0

]

—)

Timing Diagram

1s
current = 100 ;
T33 (current)
T33 (bit) Q0.0 — L | L]

199

S7-200 Programmable Controller System Manual

Example: SIMATIC Retentive On-Delay Timer

Metwork 1 Network 1 //10 ms TONR timer T1 times out at PT=(100 x 10 ms=1s)
0.0 T1 LD 10.0
— p——W TonR TONR T1, +100
+1001FT Network 2 /IT1 bit is controlled by timer T1.

/[Turns Q0.0 on after the timer accumulates a total
//of 1 second

Network 2 I;D 10-100
T Q0.0
_| |) Network 3 /[TONR timers must be reset by a Reset instruction
//with a T address.
Network 3 //Resets timer T1 (current and bit) when 10.1 is on.

o LD 101

IR >R
1

Timing Diagram 100 |_|

06s 04s : : 1s

1
|

100 (Current)

60 (Current) =-----s-==deesmmmcncmmnnaan I

T1 (Current) ¢ -

T1 (bit), Q0.0

10.1(Reset)

200

S7-200 Instruction Set Chapter 6

IEC Timer Instructions

On-Delay Timer

The On-Delay Timer (TON) instruction counts time when the
enabling input is on. LA FED

Off-Delay Timer m e

The Off-Delay Timer (TOF) delays turning an output off for a fixed aldl 2 £T
period of time after the input turns off.

Pulse Timer

siAT. [EC 113

Tux Tux

Iy TOM
PT af

ET

TON TOF TP

The Pulse Timer (TP) generates pulses for a specific duration.

Table 6-72 Valid Operands for the IEC Timer Instructions

Inputs/Outputs Data Types Operands

Txx
IN
PT
Q
ET

@ Tip

TON, TOF, TP | Constant (T32 to T63, T96 to T255)

BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, Constant
BOOL ,Q,V,M, SM, S, L

INT IW, QW, VW, MW, SMW, SW, LW, AC, AQW, *VD, *LD, *AC

You cannot share the same timer numbers for TOF, TON, and TP. For example, you cannot have both a
TON T32 and a TOF T32.

a

The TON instruction counts time intervals up to the preset value when the enabling input (IN)
becomes true. When the elapsed time (ET) is equal to the Preset Time (PT), the timer output bit (Q)
turns on. The output bit resets when the enabling input turns off. When the preset is reached, timing
stops and the timer is disabled.

The TOF instruction delays setting an output to off for a fixed period of time after the input turns off.
It times up to the preset value when the enabling input (IN) turns off. When the elapsed time (ET) is
equal to the preset time (PT), the timer output bit (Q) turns off. When the preset is reached, the timer
output bit turns off and the elapsed time is maintained until the enabling input makes the transition
to on. If the enabling input sets the transition to off for a period of time shorter than the preset time,
the output bit remains on.

The TP instruction generates pulses for a specific duration. As the enabling input (IN) turns on, the
output bit (Q) turns on. The output bit remains on for the pulse specified within the preset time (PT).
When the elapsed time (ET) reaches preset (PT), the output bit turns off. The elapsed time is
maintained until the enabling input turns off. When the output bit turns on, it remains on until the
pulse time has elapsed.

Each count of the current value is a multiple of the time base. For example, a count of 50 on a 10-ms timer
represents 500 ms. The IEC timers (TON, TOF, and TP) are available in three resolutions. The resolution
is determined by the timer number, as shown in Table 6-73.

Table 6-73 Resolution of the IEC Timers

Resolution Maximum Value Timer Number

1ms 32.767 s (0.546 minutes) | T32, T96

10 ms 327.67 s (5.46 minutes) T33 1o T36, T97 to T100
100 ms 3276.7 s (54.6 minutes) T37 to T63, T101 to T255

201

S7-200 Programmable Controller System Manual

Example: IEC On-Delay Timer Instruction

Network 1 Timing Diagram

—mN TON |

ETF%yv100 |

Output (Q) '

Input %T33 Input _,—_l—_‘—_
! !
+34FT QF Qutput VW100 (current) f_/lﬂ .

Example: IEC Off-Delay Timer Instruction

Network 1 Timing Diagram

Input %T33 Input
VW100 (current) s / /

—m TOF

+3qFT

=)

F Cutput
ET}%W100 PT=3

Output (Q)

Example: IEC Pulse Timer Instruction

Network 1 Timing Diagram

Input %733 Input |

—m P
VW100 (current) _/"_l

+34qFT QF Cutput |

ETF%WWA100 PT=3
Output

JAE

202

S7-200 Instruction Set Chapter 6

Subroutine Instructions

The Call Subroutine instruction (CALL) transfers control to the

subroutine SBR_N. You can use a Call Subroutine instruction with or
without parameters. After the subroutine completes its execution, LAD FED
control returns to the instruction that follows the Call Subroutine.

SIMATIC £ IEC1131

SER_M SER_M

The Conditional Return from Subroutine instruction (CRET) e e
terminates the subroutine based upon the preceding logic.

To add a subroutine, select the Edit > Insert > Subroutine menu _(RET] RET
command.

Error conditions that set ENO =0
m 0008 (maximum subroutine nesting exceeded)

m 0006 (indirect address) STL

SIMATIC l

CALL SBR_M
. . CRET
From the main program, you can nest subroutines (place a

subroutine call within a subroutine) to a depth of eight. From an
interrupt routine, you cannot nest subroutines.

A subroutine call cannot be placed in any subroutine called from an interrupt routine. Recursion (a
subroutine that calls itself) is not prohibited, but you should use caution when using recursion with
subroutines.

Table 6-74 Valid Operands for the Subroutine Instructions

Inputs/Outputs Data Types Operands

SBR_N WORD Constant for CPU 221, CPU 222, CPU 224, and CPU 226: 0to 63
for CPU 226XM: 0to 127

Tip
@ STEP 7-Micro/WIN automatically adds an unconditional return from each subroutine.

When a subroutine is called, the entire logic stack is saved, the top of stack is set to one, all other stack
locations are set to zero, and control is transferred to the called subroutine. When this subroutine is
completed, the stack is restored with the values saved at the point of call, and control is returned to the
calling routine.

Accumulators are common to subroutines and the calling routine. No save or restore operation is
performed on accumulators due to subroutine use.

Calling a Subroutine With Parameters

Subroutines can contain passed parameters. The parameters are defined in the local variable table of the
subroutine. The parameters must have a symbol name (maximum of 23 characters), a variable type, and
a data type. Sixteen parameters can be passed to or from a subroutine.

The variable type field in the local variable table defines whether the variable is passed into the subroutine
(IN), passed into and out of the subroutine (IN_OUT), or passed out of the subroutine (OUT). Table 6-75
describes the parameter types for a subroutine. To add a parameter entry, place the cursor on the variable
type field of the type (IN, IN_OUT, or OUT) that you want to add. Click the right mouse button to get a
menu of options. Select the Insert option and then the Row Below option. Another parameter entry of the
selected type appears below the current entry.

203

S7-200 Programmable Controller System Manual

204

Table 6-75 Parameter Types for a Subroutine
Parameter Description
IN Parameters are passed into the subroutine. If the parameter is a direct address (such as VB10), the
value at the specified location is passed into the subroutine. If the parameter is an indirect address
(such as *AC1), the value at the location pointed to is passed into the subroutine. If the parameter is a
data constant (16#1234) or an address (&VB100), the constant or address value is passed into the
subroutine.
IN_OUT The value at the specified parameter location is passed into the subroutine, and the result value from
the subroutine is returned to the same location. Constants (such as 16#1234) and addresses (such as
&VB100) are not allowed for input/output parameters.
ouT The result value from the subroutine is returned to the specified parameter location. Constants (such
as 16#1234) and addresses (such as &VB100) are not allowed as output parameters.
TEMP Any local memory that is not used for passed parameters can be used for temporary storage within the

subroutine.

As shown in Figure 6-37, the data type field in the local variable table defines the size and format of the

parameter. The parameter types are listed below:

| BOOL: This data type is.used for single bt [ErrRET AE e
inputs and outputs. IN3 in the following) R RO A RO R SR
example is a Boolean input. Hame Var Tope | DataType o =

EN IN BOOL

(O BYTE, WORD, DWORD: These data types |fLun Firstass IN BOOL First pass flag
. . . . LE1 Add IN BYTE Address of slave device
Identlfy an unSIQned InpUt or OUtpUt . L2 Dat; IN INT Drata bo wiite ta slave =
parameter of 1, 2, or 4 bytes, respectively. LE4 Status IN_DUT BYTE Status of wite

L5.0 Dane ouTt BOOL Dane flag i _I

D INT, DlNT These data typeS |dent|fy Signed L'wE Errar out ‘WORD Errar nuraber [if anp]

input or output parameters of 2 or 4 bytes, | LI\MARA S8R0 ATNT.D KT [CI[]

respectively.

Figure 6-37 Local Variable Table

10 REAL: This data type identifies a single precision (4 byte) IEEE floating-point value.

(1 Power Flow: Boolean power flow is allowed only for bit (Boolean) inputs. This declaration tells
STEP 7-Micro/WIN that this input parameter is the result of power flow based on a combination of
bit logic instructions. Boolean power flow inputs must appear first in the local variable table before
any other type input. Only input parameters are allowed to be used this way. The enable input (EN)
and the IN1 inputs in the following example use Boolean logic.

Example: Subroutine Call

There are two STL examples provided. The first set of STL instructions can be displayed only in the STL editor since
the BOOL parameters used as power flow inputs are not saved to L memory.

The second set of STL instructions can be displayed also in

the LAD and FBD editors because L memory is used to

save the state of the BOOL inputs parameters that are shown as power flow inputs in LAD and FBD.

Metwork 1
0.0 SBR_0 Network 1

b o
o CALL
—| .I—IN1

BI04z ouTpvD2on0 | Network 1
11.04IM3 LD
ZvB100-INg _
FACTHINOUT LD
LD
CALL

STL only:

10.0
SBR_0, 10.1, VB10, I1.0, &vB100, *AC1, VD200

To display correctly in LAD and FBD:

10.0

L60.0

10.1

L63.7

L60.0

SBR_0, L63.7, VB10, I1.0, &VB100, *AC1, VD200

S7-200 Instruction Set Chapter 6

Address parameters such as IN4 (&VB100) are passed into a subroutine as a DWORD (unsigned double
word) value. The type of a constant parameter must be specified for the parameter in the calling routine
with a constant descriptor in front of the constant value. For example, to pass an unsigned double word
constant with a value of 12,345 as a parameter, the constant parameter must be specified as DW#12345.
If the constant describer is omitted from the parameter, the constant can be assumed to be a different
type.

There are no automatic data type conversions performed on the input or output parameters. For example,
if the local variable table specifies that a parameter has the data type REAL, and in the calling routine a
double word (DWORD) is specified for that parameter, the value in the subroutine will be a double word.

When values are passed to a subroutine, they are placed into the local memory of the subroutine. The
left-most column of the local variable table shows the local memory address for each passed parameter.
Input parameter values are copied to the subroutine’s local memory when the subroutine is called. Output
parameter values are copied from the subroutine’s local memory to the specified output parameter
addresses when the subroutine execution is complete.

The data element size and type are represented in the coding of the parameters. Assignment of
parameter values to local memory in the subroutine is as follows:

(1 Parameter values are assigned to local memory in the order specified by the call subroutine
instruction with parameters starting at L.0.

1 One to eight consecutive bit parameter values are assigned to a single byte starting with Lx.0 and
continuing to Lx.7.

(O Byte, word, and double word values are assigned to local memory on byte boundaries (LBx, LWx,
or LDx).

In the Call Subroutine instruction with parameters, parameters must be arranged in order with input
parameters first, followed by input/output parameters, and then followed by output parameters.

If you are programming in STL, the format of the CALL instruction is:

CALL subroutine number, parameter 1, parameter 2, ... , parameter

Example: Subroutine and Return from Subroutine Instructions

M Network 1 Network 1 //On the first scan, call subroutine 0 for initialization.
A SMO.1 SER_D LD SMO.1
h'l — = CALL SBR. 0O
S Network 1 Network 1 /[You can use a conditional return to leave
B Mi4 3 /[the subroutine before the last network.
R —ren) LD M14.3
0 CRET
Network 2 Network 2 //This network will be skipped if M14.3 is on.
SM0.0
L en Enof—y LD SMOO
MOVB 10, VBO
104IN___ OUT}VBD

205

S7-200 Programmable Controller System Manual

Communicating over a Network

The S7-200 is designed to solve your communications and networking needs by supporting not only the
simplest of networks but also supporting more complex networks. The S7-200 also provides tools that
allow you to communicate with other devices, such as printers and weigh scales which use their own
communications protocols.

STEP 7-Micro/WIN makes setting up and configuring your network simple and straightforward.

In This Chapter

Understanding the Basics of S7-200 Network Communications 208
Selecting the Communications Protocol for Your Network 211
Installing and Removing Communications Interfaces i i, 216
Building Your Network o 218
Creating User-Defined Protocols with Freeport Mode 222
Using Modems and STEP 7-Micro/WIN with Your Network 224
AdVaNCed TOPICS . ..ottt e e 228

207

S7-200 Programmable Controller System Manual

Understanding the Basics of S7-200 Network Communications

Using Master and Slave Devices on a Network

The S7-200 supports a master-slave network and can function as either a master or a slave in a network,
while STEP 7-Micro/WIN is always a master.

Tip
@ If you use Windows NT and a PC/PPI cable, no other master can be present on the network.

Masters

A device that is a master on a network can initiate a request to another device on the network. A master
can also respond to requests from other masters on the network. Typical master devices include

STEP 7-Micro/WIN, human-machine interface devices such as a TD 200, and S7-300 or S7-400 PLCs.
The S7-200 functions as a master when it is requesting information from another S7-200 (peer-to-peer
communications).

Tip
@ A TP070 will not work on a network with another master device.

Slaves

A device that is configured as a slave can only respond to requests from a master device; a slave never
initiates a request. For most networks, the S7-200 functions as a slave. As a slave device, the S7-200
responds to requests from a network master device, such as an operator panel or STEP 7-Micro/WIN.

Setting the Baud Rate and Network Address

The speed that data is transmitted across the network is the baud rate, which is typically measured in
units of kilobaud (kbaud) or megabaud (Mbaud). The baud rate measures how much data can be
transmitted within a given amount of time. For example, a baud rate of 19.2 kbaud describes a
transmission rate of 19,200 bits per second.

Every device that communicates over a given Table 7-1 Baud Rates Supported by the S7-200
network must be configured to transmit data at

the same baud rate. Therefore, the fastest baud _Network Baud Rate

rate for the network is determined by the Standard Network 9.6 kbaud to 187.5 kbaud
slowest device connected to the network. Using an EM 277 9.6 kbaud to 12 Mbaud
Table 7-1 lists the baud rates supported by the Freeport Mode 1200 baud to 115.2 kbaud

S7-200.

The network address is a unique numberthat Table 7-2 Default Addresses for S7-200 Devices
you assign to each device on the network. The

unique network address ensures that the data _5-200 Device Default Address
is transferred to or retrieved from the correct STEP 7-Micro/WIN 0
device. The S7-200 supports network _ HMI (TD 200, TP, or OF) 1
addresses from 0 to 126. For an S7-200 with

two ports, each port can have a network S7-200 CPU 2

address. Table 7-2 lists the default (factory)
settings for the S7-200 devices.

208

Communicating over a Network Chapter 7

Setting the Baud Rate and Network Address for STEP 7-Micro/WIN

You must configure the baud rate and network address for STEP 7-Micro/WIN. The baud rate must be the
same as the other devices on the network, and the network address must be unique.

Typically, you do not change the network address (0) for STEP 7-Micro/WIN. If your network includes
another programming package, such as STEP 7, then you might need to change the network address for
STEP 7-Micro/WIN.

As shown in Figure 7-1, configuring the baud rate and
network address for STEP 7-Micro/WIN is simple. After you = 0

PC/PPI cable(PPI)
Address: 0

£ Double Cick
T 1o Refresh

click the Communications icon in the Navigation bar, you s
perform the following steps:

x|

1. Double-click the icon in the Communications Setup
window.

Paint of the Application:
IN PC/PPI cablelPPI] = |
IN)

2. Click the Properties button on the Set PG/PC Interface [[
dialog box. o LEom=te dg L o
3. Select the network address for STEP 7-Micro/WIN. O |
4. Select the baud rate for STEP 7-Micro/WIN. 3.
Select 4
Cancel Help
[oK | et | Cocel | e |
Figure 7-1 Configuring STEP 7-Micro/WIN
Setting the Baud Rate and Network Address for the S7-200
You must also configure the baud rate and network address for the S7-200. The system block of the
S7-200 stores the baud rate and network address. After you select the parameters for the S7-200, you
must download the system block to the S7-200.
The default baud rate for each S7-200 port is 9.6 kbaud, and
the default network address is 2. AnzlogInput Fiters | Puse CatchBits | Background Tme | EM Configurations |
Poulsl | Retentive Ranges | Password | OuputTable | Input Fiters
As shown in Figure 7-2, use STEP 7-Micro/WIN to set the —
baud rate and network address for the S7-200. After you Fert0 S
select the System Block icon in the Navigation bar or select o ke == = 1.
the View > Component > System Block menu command, o - =
sud Rate SEkbps et = 2

you perform the following steps: R 3 3 sos

Giap Update Factar 10 3: 32 (range 1. 1000
1. Select the network address for the S7-200.
2. Select the baud rate for the S7-200.
Corfiguration parameters must be downloaded before they take effect. Mot all PLC twpes

3 . Down |0ad the syste m b |0Ck to th e S7_2OO) ;Ltncnon every System Black aption. Press F1 to see which options are supported by each

Cancel
Figure 7-2 Configuring the S7-200 CPU

209

S7-200 Programmable Controller System Manual

Setting the Remote Address

Before you can download the updated settings to the S7-200, you must set both the communications
(COM) port of STEP 7-Micro/WIN and the remote address of the S7-200 to match the current setting of
the remote S7-200. See Figure 7-3.

After you download the updated settings, you must
reconfigure the COM port (if different from the setting used Lecl 5
to download the settings for the remote S7-200). To display v [
the Communications dialog box, either click the

Communications icon in the Navigation bar or select the

View > Component >Communications menu command.

[V Save sstiings with project

P/RPI cable(COM 1)
PRI

110t

1. Select the remote address. fesmanes

I Interface supports muliple masters

2. Ensure that the parameters (baud rate) for the COM s ssites
port, the remote S7-200 port, and the PC/PPI cable Dlenatimt e (==
match. Otherwise, the communications fail.

Figure 7-3 Configuring the S7-200 CPU

Searching for the S7-200 CPUs on a Network

You can search for and identify the S7-200 CPUs that are attached to your network. You can also search
the network at a specific baud rate or at all baud rates when looking for S7-200s.

If you are using a PC/PPI cable, STEP 7-Micro/WIN can
only search at 9.6 kbaud and 19.2 kbaud. For a CP card,) B9 e
STEP 7-Micro/WIN searches 9.6 kbaud, 19.2 kbaud and el Fd B 1.
187.5 kbaud. The search starts at the baud rate that is
currently selected. o e

- Network Parameters

Interface: PC/PPI cable(COM 1)
Protocok PRI

1. Open the Communications dialog box and
double-click the Refresh icon to start the search. s tey 2

2. To search all baud rates, select the Search All Baud |

-

Rates check box. I sorintbuaraes] o] == | 2

I Interface supports muliple masters

Figure 7-4 Searching for CPUs on a Network

210

Communicating over a Network Chapter 7

Selecting the Communications Protocol for Your Network

The S7-200 CPUs support one or more of the following communications capabilities that allow you to
configure your network for the performance and functionality that your application requires:

1 Point-to-Point Interface (PPI)
[Multi-Point Interface (MPI)
O PROFIBUS

Based on the Open System Interconnection (OSI) seven-layer model of communications architecture,
these protocols are implemented on a token ring network which conforms to the PROFIBUS standard as
defined in the European Standard EN 50170. These protocols are asynchronous, character-based
protocols with one start bit, eight data bits, even parity, and one stop bit. Communications frames depend
upon special start and stop characters, source and destination station addresses, frame length, and a
checksum for data integrity. The protocols can run on a network simultaneously without interfering with
each other, as long as the baud rate is the same for each protocol.

PPI Protocol

PPl is a master-slave protocol: the master devices send
requests to the slave devices, and the slave devices
respond. See Figure 7-5. Slave devices do not initiate
messages, but wait until a master sends them a request or
polls them for a response.

STEP 7-Micro/WIN:
Master

2

JE

(|
[

=}

S§7-200

Masters communicate to slaves by means of a shared
connection which is managed by the PPI protocol. PPI does
not limit the number of masters that can communicate with
any one slave; however, you cannot install more than 32
masters on the network. Figure 7-5 PPl Network

A
oooo V| HMI: Master
C—/ooo

Selecting PPI Advanced allows network devices to establish a logical connection between the devices.
With PPl Advanced, there are a limited number of connections supplied by each device. See Table 7-3 for
the number of connections supported by the S7-200.

S7-200 CPUs can act as master devices while they are in RUN mode, if you enable PPl master mode in
the user program. (See the description of SMB30 in Appendix D.) After enabling PPI master mode, you
can use the Network Read or the Network Write instructions to read from or write to other S7-200s. While
the S7-200 is acting as a PPl master, it still responds as a slave to requests from other masters.

You can use PPI protocol to communicate with all S7-200 CPUs. To communicate with an EM 277, you
must enable PPI Advanced.

Table 7-3 Number of Connections for the S7-200 CPU and EM 277 Modules

Module Baud Rate Connections
S7-200 CPU Port 0 | 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4

Port 1 | 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4
EM 277 Module 9.6 kbaud to 12 Mbaud 6 per module

211

S7-200 Programmable Controller System Manual

212

MPI Protocol

MPI allows both master-master and master-slave STEP 7-Micro/WIN: S7-200: Slave
communications. See Figure 7-6. To communicate with an Master o :
S7-200 CPU, STEP 7-Micro/WIN establishes a L““"E
master-slave connection. MPI protocol does not @ e
communicate with an S7-200 CPU operating as a master.

S7-300: Master

Network devices communicate by means of separate H
connections (managed by the MPI protocol) between any - ;H
two devices. Communication between devices is limited to —
the number of connections supported by the S7-200 CPU or .

EM 277 modules. See Table 7-3 for the number of :
connections supported by the S7-200. Figure 7-6 MPI Network

For MPI protocol, the S7-300 and S7-400 PLCs use the XGET and XPUT instructions to read and write
data to the S7-200 CPU. For information about these instructions, refer to your S7-300 or S7-400
programming manual.

PROFIBUS Protocol

The PROFIBUS protocol is designed for high-speed S7-200 (EM 277): Slave
communications with distributed I/O devices (remote 1/O). i Al
There are many PROFIBUS devices available from a variety
of manufacturers. These devices range from simple input or

output modules to motor controllers and PLCs. g HH
5 ®

PROFIBUS networks typically have one master and several ET 200: Slave
slave 1/O devices. See Figure 7-7. The master device is e~ e
configured to know what types of I/O slaves are connected ‘
and at what addresses. The master initializes the network L
and verifies that the slave devices on the network match the =

MZEOQE

©l

|

[
|

S7-300: Master

Il

o

configuration. The master continuously writes output data to
the slaves and reads input data from them. Figure 7-7 PROFIBUS Network

When a DP master configures a slave device successfully, it then owns that slave device. If there is a
second master device on the network, it has very limited access to the slaves owned by the first master.

Communicating over a Network Chapter 7

Sample Network Configurations Using Only S7-200 Devices

Single-Master PPl Networks

For a simple single-master network, the programming E—

station and the S7-200 CPU are connected by either a oo

PC/PPI cable or by a communications processor (CP) card g —

installed in the programming station. = A WE;

In the sample network at the top of Figure 7-8, the §7-200

programming station (STEP 7-Micro/WIN) is the network STEP 7-Micro/WIN

master. In the sample network at the bottom of Figure 7-8, a o

human-machine interface (HMI) device (such as a TD 200, — S

TP, or OP) is the network r$1aster. #5800 fi mlz;
HMI (such as a TD 200) S7-200

In both sample networks, the S7-200 CPU is a slave that

responds to requests from the master. Figure 7-8 Single-Master PPl Network

For a single-master PPI configuration, you configure STEP 7-Micro/WIN to use PPI protocol: select either
single-master, multi-master, or PPI Advanced.

Multi-Master PPl Networks

Figure 7-9 shows a sample network of multiple masters with one slave. The programming station
(STEP 7-Micro/WIN) uses either a CP card or a PC/PPI cable, and STEP 7-Micro/WIN and the HMI
device share the network.

Both STEP 7-Micro/WIN and the HMI device are masters
and must have separate network addresses. The S7-200 §7-200
CPU is a slave. [e

. . . . gmmE
For a network with multiple masters accessing a single o
slave, you configure STEP 7-Micro/WIN to use PPI protocol ‘ ‘ ~
with the multi-master driver enabled. PPl Advanced is STEP 7-Micro/WIN gooe v

optimal.

Figure 7-9 Multiple Masters with One Slave

Figure 7-10 shows a PPI network with multiple masters

communicating with multiple slaves. In this example, both g:mmE

STEP 7-Micro/WIN and the HMI can request data from any —]

S7-200 CPU slave. STEP 7-Micro/WIN and the HMI device - S7-200

share the network. i

All devices (masters and slaves) have different network STEP 7-Micro/WIN = 0O

addresses. - =
=2 4 §7-200

For a PPl network with multiple masters and multiple slaves, HMI =000

you configure STEP 7-Micro/WIN to use PPI protocol with

the multi-master driver enabled. PPl Advanced is optimal. Figure 7-10 Multiple Masters and Slaves

Complex PPI Networks

Figure 7-11 shows a sample network that uses multiple i —
masters with peer-to-peer communications. gmmE
STEP 7-Micro/WIN and the HMI device read and write over §7-200
the network to the S7-200 CPUs, and the S7-200 CPUs use
the Network Read and Network Write instructions to read —
and write to each other (peer-to-peer communications). STEP 7-Micro/WIN ==
[—]
For this type of complex PPI network, you configure a | EESECG §7.200

STEP 7-Micro/WIN to use PPI protocol with the multi-master
driver enabled. PPl Advanced is optimal.

Figure 7-11 Peer-to-Peer Communications

213

S7-200 Programmable Controller System Manual

214

Figure 7-12 shows another example of a complex PPI HMI HMI
network that uses multiple masters with peer-to-peer — Y — Y
communications. In this example, each HMI monitors one —odo Cogo
S7-200 CPU. | |

The S7-200 CPUs use the NETR and NETW instructions to m ‘
read and write to each other (peer-to-peer communications). grep 7-microwiN . .

For this network, you configure STEP 7-Micro/WIN to use m__J é____E

PPI protocol with the multi-master driver enabled. PPI ® ©
Advanced is optimal. §7-200 §7-200

Figure 7-12 HMI Devices and Peer-to-Peer

Sample Network Configurations Using S7-200, S7-300, and S7-400 Devices

Networks with Baud Rates Up to 187.5 kbaud

In the sample network shown in Figure 7-13, the S7-300 §7-300 1 I oMl
uses the XPUT and XGET instructions to communicate with o z»H

an S7-200 CPU. The S7-300 cannot communicate with an %ﬁﬁm
S7-200 CPU in master mode. I — Ei
For baud rates above 19.2 kbaud, STEP 7-Micro/WIN must .| .|

be connected by a communications processor (CP) card. STEP 7-Micro/WIN %WME %““‘“““‘“E

To communicate with the S7-200 CPUs, you configure §7.200 §7.200
STEP 7-Micro/WIN to use PPI protocol with the multi-master

driver enabled. PPl Advanced is optimal. Figure 7-13 Baud Rates Up to 187.5 Kbaud

Networks with Baud Rates Above 187.5 kbaud (Up to 12 Mbaud)

For baud rates above 187.5 kbaud, the S7-200 CPU must use an EM 277 module for connecting to the
network. See Figure 7-14. STEP 7-Micro/WIN must be connected by a communications processor (CP)
card.

In this configuration, the S7-300 can communicate with the S7-300 HMI
S7-200s, using the XPUT and XGET instructions, and the
HMI can monitor either the S7-200s or the S7-300.

Sm—

ZPH 0000 0ood
0oogd ooog
0ood ooog
0000 ooog

The EM 277 is always a slave device.

STEP 7-Micro/WIN can program or monitor either S7-200 4
CPU through the EM 277. To communicate with an EM 277, step 7-microwiN
you configure STEP 7-Micro/WIN to use PPI protocol with b g b =
the PPI Advanced driver enabled. IPE R e

Lol [ood Ll Jood
=B =B

§7-200 EM277 S7-200 EM 277

Figure 7-14 Baud Rates Above 187.5 Kbaud

Communicating over a Network Chapter 7

Sample PROFIBUS-DP Network Configurations

Networks with S7-315-2 DP as PROFIBUS Master and EM 277 as PROFIBUS Slave

Figure 7-15 shows a sample PROFIBUS network that uses S7-315-2DP
an §7-315-2 DP as the PROFIBUS master. An EM 277 g HH
o Ed

module is a PROFIBUS slave.

The S7-315-2 DP can read data from or write data to the 1 PROFIBUS-DP
EM 277, from 1 byte up to 128 bytes. The S7-315-2 DP [| |
reads or writes V memory locations in the S7-200. — — f T

[l
| | | F“‘“‘“@ faE
This network supports baud rates from 9600 baud to il g

]
\
= L =
- [-
12 Mbaud. ET 200 ET 200 S7-200 EM 277

Figure 7-15 Network with S7-315-2 DP

Networks with STEP 7-Micro/WIN and HMI

Figure 7-16 shows a sample network with an S7-315-2 DP S7-315-2DP
as the PROFIBUS master and EM 277 as a PROFIBUS HH Il HMI

slave. In this configuration, the HMI monitors the S7-200 2
through the EM 277. STEP 7-Micro/WIN programs the oooo

I PROFIBUS-DP

This network supports baud rates from 9600 baud to [
12 Mbaud. STEP 7-Micro/WIN requires a CP card for baud [J [5 :
rates above 19.2 kbaud. \ \ é EETE

You configure STEP 7-Micro/WIN to use PROFIBUS 1200 200 Ev2r7
protocol for the CP card. If there are only DP devices °

present on the network, select the DP or Standard profile. If
there are non-DP devices on the network, then select the A
Universal (DP/FMS) profile for all PROFIBUS master
devices.

A
v
S7-200 through the EM 277. e b b l:IDD|D

STEP 7-Micro/WIN

Figure 7-16 PROFIBUS Network

215

S7-200 Programmable Controller System Manual

Installing and Removing Communications Interfaces

¥

216

From the Set PG/PC Interface dialog box, you use the Installing/Uninstalling Interfaces dialog box to install
or remove communications interfaces for your computer

1. Inthe Set PG/PC Interface dialog box, click Select to access the Installing/Uninstalling Interfaces
dialog box.

The Selection box lists the interfaces that are available, and the Installed box displays the interfaces
that have already been installed on your computer.

2. To add a communications interface: Select the communications hardware installed on your
computer and click Install. When you close the Installing/Uninstallling Interfaces dialog box, the Set
PG/PC Interface dialog box displays the interface in the Interface Parameter Assignment Used box.

3. To remove a communications interface: Select the interface to be removed and click Uninstall.
When you close the Installing/Uninstallling Interfaces dialog box, the Set PG/PC Interface dialog
box removes the interface from the Interface Parameter Assignment Used box.

Set PG/PC Interface - x| 1 2 3

Access Path |

Access Point of the Application:

[MicroaIN > PC/PPI cabie(PFI) =l
[Standard for Micro/wIN)
Interface Parameter Assighment Used: m_l]
[PCIPPI cable(PR) Fropetties. | Selection Installed

Mone> Module 1 \Madule number |

B CPE51 1 (PlughPlay] BRHFC/FFI cable Woard 1
/PP cable[PFI) =] gkFlay \
LI SE11 (PugtPley) | el /|
Adapter
[Velete: | 2/PP| cable
I < Uninstsll
[Assigning Parameters to an PC/PP| cable
for an PRI Network)
Interfac: V
’V Add/Remove: Select... I IPFI Access via Serial Interface
oK Cancel Help

Figure 7-17 Set PG/PC Interface and Installing/Uninstalling Interfaces Dialog Boxes

Tip
Special Hardware Installation Information for Windows NT Users

Installing hardware modules under the Windows NT operating system is slightly different from installing
hardware modules under Windows 95. Although the hardware modules are the same for either
operating system, installation under Windows NT requires more knowledge of the hardware that you
want to install. Windows 95 tries automatically to set up system resources for you, but Windows NT
does not. Windows NT provides you with default values only. These values may or may not match the
hardware configuration. These parameters can be modified easily to match the required system
settings.

When you have installed a piece of hardware, select it from the Installed list box and click the
Resources button. The Resources dialog box appears. The Resources dialog box allows you to modify
the system settings for the actual piece of hardware that you installed. If this button is unavailable (gray),
you do not need to do anything more.

At this point you may need to refer to your hardware manual to determine the setting for each of the
parameters listed in the dialog box, depending on your hardware settings. You might need to try several
different interrupts in order to establish communications correctly.

Communicating over a Network Chapter 7

Adjusting the Port Settings of Your Computer for PPl Multi-Master

If you are using the PC/PPI cable with an operating system that supports the PPI Multi-Master
configuration (Windows NT does not support the PPI Multi-Master), you might need to adjust the port
settings on your computer:

1. Right-click the My Computer icon on the desktop and select the Properties menu command.

2. Select the Device Manager tab. For Windows 2000, select first the Hardware tab and then Device
Manager button.

Double-click the Ports (COM & LPT).
Select the communications port that you are currently using (for example, COM1).
On the Port Settings tab, click the Advanced button.

Set the Receive Buffer and the Transmit Buffer controls to the lowest value (1).

N o o o

Click OK to apply the change, close all the windows, and reboot the computer to make the new
settings active.

217

S7-200 Programmable Controller System Manual

Building Your Network

218

General Guidelines

Always install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC wires
and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or common wire
paired with the hot or signal-carrying wire.

The communications port of the S7-200 CPU is not isolated. Consider using an RS-485 repeater or an
EM 277 module to provide isolation for your network.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to flow
through the interconnecting cable.

These unwanted currents can cause communications errors or can damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows. See the information about
grounding and circuit reference points for using isolated circuits in Chapter 3.

Determining the Distances, Transmission Rate, and Cable for Your Network

As shown in Table 7-4, the maximum length of a network segment is determined by two factors: isolation
(using an RS-485 repeater) and baud rate.

Isolation is required when you connect devices at different ground potentials. Different ground potentials
can exist when grounds are physically separated by a long distance. Even over short distances, load
currents of heavy machinery can cause a difference in ground potential.

Table 7-4 Maximum Length for a Network Cable

Baud Rate Non-Isolated CPU Port! CPU Port with Repeater or EM 277
9.6 kbaud to 187.5 kbaud 50 m 1,000 m
500 kbaud Not supported 400 m
1 Mbaud to 1.5 Mbaud Not supported 200 m
3 Mbaud to 12 Mbaud Not supported 100 m

1 The maximum distance allowed without using an isolator or repeater is 50 m. You measure this distance from the first
node to the last node in the segment.

Using Repeaters on the Network

An RS-485 repeater provides bias and termination for the network segment. You can use a repeater for
the following purposes:

[Toincrease the length of a network: Adding a repeater to your network allows you to extend the
network another 50 m. If you connect two repeaters with no other nodes in between (as shown in
Figure 7-18), you can extend the network to the maximum cable length for the baud rate. You can
use up to 9 repeaters in series on a network, but the total length of the network must not exceed
9600 m.

(1 To add devices to a network: Each segment can have a maximum of 32 devices connected up to
50 m at 9600 baud. Using a repeater allows you to add another segment (32 devices) to the
network.

1 To electrically isolate different network segments: Isolating the network improves the quality of the
transmission by separating the network segments which might be at different ground potentials.

A repeater on your network counts as one of the nodes on a segment, even though it is not assigned a
network address.

Communicating over a Network Chapter 7

Segment Segment Segment

RS-485
Repeater

RS-485
Repeater

50 m Up to 1000 m 50 m

Figure 7-18 Sample Network with Repeaters

Selecting the Network Cable

S7-200 networks use the RS-485 standard on twisted pair cables. Table 7-5 lists the specifications for the
network cable. You can connect up to 32 devices on a network segment.

Table 7-5 General Specifications for Network Cable

Specifications Description

Cable type Shielded, twisted pair

Loop resistance <115 Q/km

Effective capacitance 30 pF/m

Nominal impedance Approximately 135 Q to 160 Q (frequency =3 MHz to 20 MHz)
Attenuation 0.9 dB/100 m (frequency=200 kHz)

Cross-sectional core area 0.3 mm2 to 0.5 mm?

Cable diameter 8 mm +0.5 mm

Connector Pin Assignments

The communications ports on the S7-200 CPU are RS-485 compatible on a nine-pin subminiature D
connector in accordance with the PROFIBUS standard as defined in the European Standard EN 50170.
Table 7-6 shows the connector that provides the physical connection for the communications port and
describes the communications port pin assignments.

Table 7-6 Pin Assignments for the S7-200 Communications Port

Connector Pin Number PROFIBUS Signal Port 0/Port 1

1 Shield Chassis ground

2 24 V Return Logic common
Pin 1 3 RS-485 Signal B RS-485 Signal B

4 Request-to-Send RTS (TTL)

5 5V Return Logic common

6 +5V +5V, 100 Q series resistor
Pin 5 7 +24 'V +24V

8 RS-485 Signal A RS-485 Signal A

9 Not applicable 10-bit protocol select (input)

Connector shell | Shield Chassis ground

219

S7-200 Programmable Controller System Manual

220

Biasing and Terminating the Network Cable

Siemens provides two types of network connectors that you can use to easily connect multiple devices to
a network: a standard network connector (see Table 7-6 for the pin assignments), and a connector that
includes a programming port, which allows you to connect a programming station or an HMI device to the
network without disturbing any existing network connections. The programming port connector passes all
signals (including the power pins) from the S7-200 through to the programming port, which is especially
useful for connecting devices that draw power from the S7-200 (such as a TD 200).

Both connectors have two sets of terminal screws to allow you to attach the incoming and outgoing
network cables. Both connectors also have switches to bias and terminate the network selectively.
Figure 7-19 shows typical biasing and termination for the cable connectors.

Cable must be terminated Switch position = On Switch position = Off Switch position = On
and biased at both ends. Terminated and biased No termination or bias Terminated and biased

Bare shielding: approximately 12 mm (1/2 in.) must contact the metal guides of all locations.

Switch position = On: Switch position = Off: B
Terminated and biased Pin # No termination or bias ~ TxD/RXxD + ——— Pin #
] TXDRxD - —A o]
Cable shield —
TXD/RXD + TXD/RxD + B 3
Network A
TXD/RxD - connector TXD/RxD - 8
5
Cable shield —— 1 | Cable shield (1]

Figure 7-19 Bias and Termination of the Network Cable

Choosing the CP Card or PC/PPI Cable for Your Network

As shown in Table 7-7, STEP 7-Micro/WIN supports several CP cards that allow the programming station
(your computer or SIMATIC programming device) to act as a network master.

The CP cards contain dedicated hardware to assist the programming station in managing a multi-master
network and can support different protocols at several baud rates. The PC/PPI cable also allows you to
enable multiple masters.

Each CP card provides a single RS-485 port for connection to the network. The CP 5511 PCMCIA card
has an adapter that provides the 9-pin D port. You connect one end of the cable to the RS-485 port of the
card and connect the other end to a programming port connector on your network.

If you are using a CP card with PPl communications: STEP 7-Micro/WIN does not support two different
applications running on the same CP card at the same time. You must close the other application before
connecting STEP 7-Micro/WIN to the network through the CP card.

Caution

Using a non-isolated RS-485-t0-RS-232 converter can damage the RS-232 port of your computer.
The Siemens PC/PPI cable (order number 6ES7 901-3BF21-0XA0) provides electrical isolation
between the RS-485 port on the S7-200 CPU and the RS-232 port that connects to your computer. If

you do not use the Siemens PC/PPI cable, you must provide isolation for the RS-232 port of your
computer.

Communicating over a Network Chapter 7

Table 7-7 CP Cards and Protocols Supported by STEP 7-Micro/WIN

Configuration Baud Rate Protocol

PC/PPI cable! 9.6 kbaudor | PPI

Connected to the COM port on the programming station 19.2 kbaud

CP 5511 9.6 kbaudto | PPI, MPI, and PROFIBUS
Type Il, PCMCIA card (for a notebook computer) 12 Mbaud

CP 5611 (version 3 or greater) 9.6 kbaud to PPI, MPI, and PROFIBUS
PCI card 12 Mbaud

MPI 9.6 kbaudto | PPI, MPI, and PROFIBUS

Either an integrated port on a SIMATIC programming device or a CP card | 12 Mbaud

for your computer (ISA card)

1 The PC/PPI cable provides electrical isolation between the RS-485 port (on the S7-200 CPU) and the RS-232 port that
connects to your computer. Using a non-isolated RS-485-t0-RS-232 converter could damage the RS-232 port of your
computer.

Using HMI Devices on Your Network

The S7-200 CPU supports many types of HMI devices from Siemens and also from other manufacturers.
While some of these HMI devices (such as the TD 200 or TP070) do not allow you to select the
communications protocol used by the device, other devices (such as the OP7 and TP170) allow you to
select the communications protocol for that device.

If your HMI device allows you to select the communications protocol, consider the following guidelines:

(1 For an HMI device connected to the communications port of the S7-200 CPU, with no other devices
on the network, select either the PPI or the MPI protocol for the HMI device.

[For an HMI device connected to an EM 277 PROFIBUS module, select either the MPI or the
PROFIBUS protocol.

- Ifthe network with the HMI device includes S7-300 or S7-400 PLCs, select the MPI protocol
for the HMI device.

- Ifthe network with the HMI device is a PROFIBUS network, select the PROFIBUS protocol for
the HMI device and select a profile consistent with the other masters on the PROFIBUS
network.

(O Foran HMI device connected to the communications port of the S7-200 CPU which has been
configured as a master, select the PPI protocol for the HMI device. PPI Advanced is optimal. The
MPI and PROFIBUS protocols do not support the S7-200 CPU as a master.

221

S7-200 Programmable Controller System Manual

Creating User-Defined Protocols with Freeport Mode

Freeport mode allows your program to control the communications port of the S7-200 CPU. You can use
Freeport mode to implement user-defined communications protocols to communicate with many types of
intelligent devices. Freeport mode supports both ASCII and binary protocols.

To enable Freeport mode, you use special memory bytes SMB30 (for Port 0) and SMB130 (for Port 1).
Your program uses the following to control the operation of the communications port:

[Transmit instruction (XMT) and the transmit interrupt: The Transmit instruction allows the S7-200 to

transmit up to 255 characters from the COM port. The transmit interrupt notifies your program in the
S7-200 when the transmission has been completed.

Receive character interrupt: The receive character interrupt notifies the user program that a
character has been received on the COM port. Your program can then act on that character, based
on the protocol being implemented.

Receive instruction (RCV): The Receive instruction receives the entire message from the COM port
and then generates an interrupt for your program when the message has been completely received.
You use the SM memory of the S7-200 to configure the Receive instruction for starting and stopping
the receiving of messages, based on defined conditions. The Receive instruction allows your
program to start or stop a message based on specific characters or time intervals. Most protocols
can be implemented with the Receive instruction.

Freeport mode is active only when the S7-200 is in RUN mode. Setting the S7-200 to STOP mode halts all
Freeport communications, and the communications port then reverts to the PPI protocol with the settings

which were configured in the system block of the S7-200.

Table 7-8 Using Freeport Mode

Network Configuration

Description

Using Freeport over

an RS-232 connection
S-232 connectiol Scale PC/PPI

Cable

Using USS protocol

B ||)

%t::@ I—

S§7-200

[1

Creating a user
program that emulates

MicroMaster

MicroMaster

MicroMaster

Modbus Network

a slave device on l l
another network

-0

S7-200 S7-200

Modbus
Device

222

Example: Using an S7-200 with an electronic scale
that has an RS-232 port.

m PC/PPI cable connects the RS-232 port on the
scale to the RS-485 port on the S7-200 CPU.

m S7-200 CPU uses Freeport to communicate with
the scale.

®m Baud rate can be from 1200 baud to 115.2 kbaud.
m User program defines the protocol.

Example: Using an S7-200 with SIMODRIVE
MicroMaster drives.

m STEP 7-Micro/WIN provides a USS library.

m S7-200 CPU is a master, and the drives are
slaves.

’— Refer to the Tips and Tricks on the
documentation CD for a sample USS
Tips and Tricks ~ program. See Tlp 28.

Example: Connecting S7-200 CPUs to a Modbus
network.

m User program in the S7-200 emulates a Modbus
slave.

m STEP 7-Micro/WIN provides a Modbus library.
] Refer to the Tips and Tricks on the

documentation CD for a sample Modbus
Tips and Tricks ~ program. See Tlp 41.

Communicating over a Network Chapter 7

Using the PC/PPI Cable and Freeport Mode with RS-232 Devices

You can use the PC/PPI cable and the Freeport communications functions to connect the S7-200 CPUs to
many devices that are compatible with the RS-232 standard.

The PC/PPI cable is in Transmit mode when data is transmitted from the RS-232 port to the RS-485 port.
The cable is in Receive mode when it is idle or is transmitting data from the RS-485 port to the RS-232
port. The cable changes from Receive to Transmit mode immediately when it detects characters on the
RS-232 transmit line.

The PC/PPI cable supports baud rates between 1200 baud and 115.2 kbaud. Use the DIP switches on the
housing of the PC/PPI cable to configure the cable for the correct baud rate. Table 7-9 shows the baud
rates and switch positions.

The cable switches back to Receive mode Table 7-9 Turnaround Time and Settings
;\Qteen ftohreaF:)Se ri203d2 ;ﬁlﬁg]g e“fr|]ne elj ;nsttf;]eeldle Baud Rate Turnaround Time Settings (1 = Up)
turnaround time of the cable. The baud rate 38400 to 115200 0.5ms 000
selection of the cable determines the 19200 1.0ms 001
turnaround time, as shown in Table 7-9.

9600 2.0ms 010
If you are using the PC/PPI cable in a system 4800 4.0 ms 011
where Freeport communications are used, the
program in the S7-200 must comprehend the 2400 7.0ms 100
turnaround time for the following situations: 1200 14.0 ms 101

(1 The S7-200 responds to messages transmitted by the RS-232 device.

After the S7-200 receives a request message from the RS-232 device, the S7-200 must delay the
transmission of a response message for a period of time greater than or equal to the turnaround
time of the cable.

(1 The RS-232 device responds to messages transmitted from the S7-200.

After the S7-200 receives a response message from the RS-232 device, the S7-200 must delay the
transmission of the next request message for a period of time greater than or equal to the
turnaround time of the cable.

In both situations, the delay allows the PC/PPI cable sufficient time to switch from Transmit mode to
Receive mode so that data can be transmitted from the RS-485 port to the RS-232 port.

223

S7-200 Programmable Controller System Manual

Using Modems and STEP 7-Micro/WIN with Your Network

STEP 7-Micro/WIN version 3.2 uses the standard Windows Phone and Modem Options for selecting and
configuring telephone modems. The Phone and Modem Options are under the Windows Control Panel.
Using the Windows setup options for modems allows you to:

[d Use most internal and external modems Modems Properties 2]
supported by Windows.
General |
(1 Use the standard configurations for most
modems Supported by Windows. @ The follawing modems are set up o this computer:
1 Use the standard Windows dialing rules for
selection of locations, country and area Modem | Attached T «
code support, pulse or tone dialing, and Standard 9600 bps Modem COM1
calling card support. Standard 9600 bps Modem #2 CoMz —
Standard 19200 bps Modem COr1
[0 Use higher baud rates when e T A LY e _’ILI
communicating to the EM 241 Modem
module. Add... Bemave | Properties |
Use the Windows control panel to display the — Dialing Preferences
Modem Properties dialog box. This dialog box - :
allows you to configure the local modem. You Dialing rom: - New Lacation
select your modem from the list of modems Usze Dialing Properties to modify how wour calls are
supported by Windows. If your modem type is dialed.
not listed in the Windows modem dialog box, Dialing Properties |
select a type that is the closest match for your

modem, or contact your modem vendor to
acquire the modem configuration files for Close | Caricel |
Windows.

Figure 7-20 Configuring the Local Modem

STEP 7-Micro/WIN also lets you use radio and cellular modems. These modem types do not appear in
the Windows Modem Properties dialog box, but are available when configuring a connection for
STEP 7-Micro/WIN.

Configuring a Modem Connection

A connection associates an identifying name with the physical properties of the connection. For a
telephone modem these properties include the type of modem, 10 or 11 bit protocol selections, and
timeouts. For cellular modems the connection allows setting of a PIN and other parameters. Radio
modem properties include selections for baud rate, parity, flow control and other parameters.

Adding a Connection

Use the Connection wizard to add a new connection, remove, or edit a connection as shown in
Connection Figure 7-21.
Wizard

1. Double-click the icon in the Communications Setup window.

2. Double-click the PC/PPI cable to open the PG/PC interface. Select the PPI cable and click the
Properties button. On the Local Connection tab, check the Modem Connection box.

Open the Communications dialog box again, and double-click the modem Connect icon.
Click the Settings button to display the Modem Connections Settings dialog box.
Click the Add button to start the Add Modem Connection wizard.

o o » 0

Configure the connection as prompted by the wizard.

224

Communicating over a Network

Chapter 7

Modem

1. 5. 6.
[Modem Comnection /" [y
g: : Select a connection to &/emate station. — Gl
E Internal Modem Add..

[ERm— [Mcfrmcion | - e

Ehane rumber: 23 T35 (Defaul)

Connect Timsout seconds m

Ci MEW Mod:
Corveet | ot | Corcel | pean T ECLCTY RN
~Dialing From
Touse aG20 or TC35 Cell Modem as. Ahek\nt‘a\ mfdem, ms‘AaH L] stanEav‘d |
IMy Location j Dialing Praperties. .. e
Close
=
Figure 7-21 Adding a Modem Connection
Connecting to the S7-200 with a Modem
After you have added a modem connection, you =S
can connect to an S7-200 CPU. B g;';&;z‘;zzssws ——
| s 1
PLC Type: Phone Number: 1 (423) 2622621 .
1. Open the Communications dialog box and = s Sy ‘
[Network Parameters Modem Connection

double-click on the Connect icon to display
the Modem Connection dialog box.

In the Modem Connection dialog box, click
Connect to dial the modem.

Configuring a Remote Modem

The remote modem is the modem that is
connected to the S7-200. If the remote modem is
an EM 241 Modem module, no configuration is
required. If you are connecting to a stand-alone
modem or cell modem, you must configure the
connection.

Expansion

Wizard

The Modem Expansion wizard configures the
remote modem which is connected to the S7-200
CPU. Special modem configurations are required
in order to properly communicate with the
RS-485 half duplex port of the S7-200 CPU.
Simply select the type of modem, and enter the
information as prompted by the wizard. For more
information, refer to the online help.

Inteface:
Fotoca

Mode:

Highest Station (HSA):

PL/PFI cablelCOM 2)
PRI

Incamplete!

El

I~ terface supports mutiple masters

Connect to:

Select a connection to a remote station.

HyConnection -

PBhone number

Cannect Timeout

30 seconds

Connect Jeg

Figure 7-22 Connecting to the S7-200

[Modem Expansion Wizard

This wizard helps you set up a remole modem, o an EM 241 modem module, in order to connect a
local 57-200 PLE to a remate device. Configuing STEP 7-MicioWI modem communications doss
ot requite the use o this wizard. Corfigure a STEP 7-Micro/WIN PC modem connection from the
‘commurications’ icon.

“You can use this wizard to program an analog or celldar modem for use with your 57200 PLC.
' Configure an analog or cellular modem

‘You can use this wizaid to configure the parameters and operation of an EM 241 madem module

The modem module also supports mesraging and secuity callbacks,

€ Configuie an EM 241 Modem Module

Press F1 for help on any Wizard sereen

|

Mets | [Cancel |

Figure 7-23 Modem Expansion Wizard

225

S7-200 Programmable Controller System Manual

226

Using a Modem with the PC/PPI Cable

You can use a PC/PPI cable to connect the RS-232 communications port of a modem to an S7-200 CPU.
See Figure 7-24. Switches 1, 2, and 3 on the PC/PPI cable set the baud rate. Switch 4 selects either a
10-bit or 11-bit PPI protocol. Switch 5 selects either the Data Communications Equipment (DCE) or Data
Terminal Equipment (DTE) mode. Switch 6 (if present) selects the operation of the RTS signal on the
RS-232 port of the PC/PPI cable.

| siemens [
PC/PPI Cable
o Dipswitch # 123 4 1=10BIT @)
o 1152-38.4K 000 0=11BIT o
] 19.2K 001 5 1=DTE
. m 9.6K 010 0= DCE
2.4K 100 6 1= RTS for XMT
1.2K 101 0= RTS Always

Figure 7-24 Settings for the PC/PPI Cable

Modems normally use the RS-232 control signals (such as RTS, CTS, and DTR) to allow a computer to
control the modem. When you use a modem with a PC/PPI cable, you must configure the modem to
operate without these signals. To determine the commands required for configuring the modem, consult
the documentation for your specific modem.

Switch 4 of the PC/PPI cable selects either a 10-bit or 11-bit mode for PPI protocol. Use switch 4 only
when the S7-200 is connected to STEP 7-Micro/WIN with a modem. Otherwise, set switch 4 for 11-bit
mode to ensure proper operation with other devices.

Switch 5 of the PC/PPI cable allows you to set the RS-232 port of the cable to either DCE or DTE mode. If
you are using the PC/PPI cable with STEP 7-Micro/WIN or if the PC/PPI cable is connected to a
computer, set the PC/PPI cable to DCE mode. If you are using the PC/PPI cable with a modem (which is a
DCE device), set the PC/PPI cable to DTE mode. This eliminates the need to install a null modem adapter
between the PC/PPI cable and the modem. Depending on the connector on the modem, you might still
need to use a 9-pin-to-25-pin adapter.

Switch 6 of the PC/PPI cable selects the operation of the RS-485 RS-232
RTS signal on the RS-232 connector. Selecting “RTS for
XMT” causes the RTS signal to be active when the S7-200 §7-200 | 5= -]I ‘ Modem
is transmitting on the RS-485 port, and the RTS signal to be < =

inactive when the S7-200 is receiving data. Selecting “RTS
Always” causes the RTS signal to always be active on the
RS-232 port of the PC/PPI cable, regardless of whether the i i
$7-200 is transmitting or receiving. Switch 6 affects only the 9-pin-to-25-pin adapter

RTS signal when the PC/PPI cable is set for DTE mode. 9-pin 25-pin

Figure 7-25 shows the pin assignment for a common RD 2 — 27D

modem adapter. TD3 3RD
RTS7 — 4 RTS
GND5 — 7 GND

Figure 7-25 Pin Assignments for Adapters

Communicating over a Network Chapter 7

Table 7-10 shows the pin numbers and functions for the RS-485 and RS-232 ports of the PC/PPI cable in
DTE mode. Table 7-11 shows the pin numbers and functions for the RS-485 and RS-232 ports of the
PC/PPI cable in DCE mode. The PC/PPI cable supplies RTS only when itis in DTE mode.

Table 7-10 Pin-outs for RS-485 and RS-232 DTE Connector
RS-232 DTE Connector Pin-out!

RS-485 Connector Pin-out

Pin Signal Description Pin Signal Description
1 Ground (RS-485 logic ground) 1 Not used: Data Carrier Detect (DCD)
2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (input to PC/PPI cable)
3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (output from PC/PPI cable)
4 RTS (TTL level) 4 Not used: Data Terminal Ready (DTR)
5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)
6 NC (No connect) 6 Not used: Data Set Ready (DSR)
7 24 V Supply 7 Request To Send (RTS) (switch selectable)
8 Signal A (RxD/TxD-) 8 Not used: Clear To Send (CTS)
9 Protocol select 9 Not used: Ring Indicator (RI)

1 A conversion from female to male, and a conversion from 9-pin to 25-pin, might be required for modems

Table 7-11 Pin-outs for RS-485 and RS-232 DCE Connector
RS-232 DCE Connector Pin-out

RS-485 Connector Pin-out

Pin Signal Description Pin Signal Description
1 Ground (RS-485 logic ground) 1 Not used: Data Carrier Detect (DCD)
2 24 V Return (RS-485 logic ground) 2 Receive Data (RD) (output from PC/PPI cable)
3 Signal B (RxD/TxD+) 3 Transmit Data (TD) (input to PC/PPI cable)
4 RTS (TTL level) 4 Not used: Data Terminal Ready (DTR)
5 Ground (RS-485 logic ground) 5 Ground (RS-232 logic ground)
6 NC (No connect) 6 Not used: Data Set Ready (DSR)
7 24V Supply 7 Not used: Request To Send (RTS)
8 Signal A (RxD/TxD-) 8 Not used: Clear To Send (CTS)
9 Protocol select 9 Not used: Ring Indicator (RI)

227

S7-200 Programmable Controller System Manual

Advanced Topics

Optimizing the Network Performance

Tips and Tricks

228

The following factors affect network performance (with baud rate and number of masters having the
greatest effect):

(O Baud rate: Operating the network at the highest baud rate supported by all devices has the greatest
effect on the network.

1 Number of masters on the network: Minimizing the number of masters on a network also increases
the performance of the network. Each master on the network increases the overhead requirements
of the network; having fewer masters lessens the overhead.

(1 Selection of master and slave addresses: The addresses of the master devices should be set so
that all of the masters are at sequential addresses with no gaps between addresses. Whenever
there is an address gap between masters, the masters continually check the addresses in the gap
to see if there is another master wanting to come online. This checking requires time and increases
the overhead of the network. If there is no address gap between masters, no checking is done and
so the overhead is minimized. You can set the slave addresses to any value without affecting
network performance, as long as the slaves are not between masters. Slaves between masters
increase the network overhead in the same way as having address gaps between masters.

(1 Gap update factor (GUF): Used only when an S7-200 CPU is operating as a PPI master, the GUF
tells the S7-200 how often to check the address gap for other masters. You use STEP 7-Micro/WIN
to set the GUF in the CPU configuration for a CPU port. This configures the S7-200 to check
address gaps only on a periodic basis. For GUF=1, the S7-200 checks the address gap every time
it holds the token; for GUF=2, the S7-200 checks the address gap once every two times it holds the
token. If there are address gaps between masters, a higher GUF reduces the network overhead. If
there are no address gaps between masters, the GUF has no effect on performance. Setting a large
number for the GUF causes long delays in bringing masters online, because the addresses are
checked less frequently. The default GUF setting is 10.

(O Highest station address (HSA): Used only when an S7-200 CPU is operating as a PPl master, the
HSA defines the highest address at which a master should look for another master. You use
STEP 7-Micro/WIN to set the HSA in the CPU configuration for a CPU port. Setting an HSA limits
the address gap which must be checked by the last master (highest address) in the network.
Limiting the size of the address gap minimizes the time required to find and bring online another
master. The highest station address has no effect on slave addresses: masters can still
communicate with slaves which have addresses greater than the HSA. As a general rule, set the
highest station address on all masters to the same value. This address should be greater than or
equal to the highest master address. The default value for the HSA is 31.

Calculating the Token Rotation Time for a Network

In a token-passing network, the only station that can initiate communications is the station that holds the
token. The token rotation time (the time required for the token to be circulated to each of the masters in the
logical ring) measures the performance of your network.

Figure 7-26 provides a sample network as an example for calculating the token rotation time for a
multiple-master network. In this example, the TD 200 (station 3) communicates with the CPU 222

(station 2), the TD 200 (station 5) communicates with the CPU 222 (station 4), and so on. The two

CPU 224 modules use the Network Read and Network Write instructions to gather data from the other
S7-200s: CPU 224 (station 6) sends messages to stations 2, 4, and 8, and the CPU 224 (station 8) sends
messages to stations 2, 4, and 6. In this network, there are six master stations (the four TD 200 units and
the two CPU 224 modules) and two slave stations (the two CPU 222 modules).

Refer to the Tips and Tricks on the documentation CD for a discussion about token rotation. See Tip 42.

Communicating over a Network Chapter 7

¥

CPU 222 CPU 222 CPU 224 CPU 224 TD 200 TD 200 TD 200 TD 200
Station 2 Station 4 Station 6 Station 8 Station 9 Station 7 Station 5 Station 3

o ol =ik

Figure 7-26 Example of a Token-Passing Network

In order for a master to send a message, it must hold the token. For example: When station 3 has the
token, it initiates a request message to station 2 and then it passes the token to station 5. Station 5 then
initiates a request message to station 4 and then passes the token to station 6. Station 6 then initiates a
message to station 2, 4, or 8, and passes the token to station 7. This process of initiating a message and
passing the token continues around the logical ring from station 3 to station 5, station 6, station 7,

station 8, station 9, and finally back to station 3. The token must rotate completely around the logical ring
in order for a master to be able to send a request for information. For a logical ring of six stations, sending
one request message per token hold to read or write one double-word value (four bytes of data), the token
rotation time is approximately 900 ms at 9600 baud. Increasing the number of bytes of data accessed per
message or increasing the number of stations increases the token rotation time.

The token rotation time is determined by how long each station holds the token. You can determine the
token rotation time for your multiple-master network by adding the times that each master holds the token.
If the PPI master mode has been enabled (under the PPI protocol on your network), you can send
messages to other S7-200s by using the Network Read and Network Write instructions with the S7-200. If
you send messages using these instructions, you can use the following formula to calculate the
approximate token rotation time, based on the following assumptions: each station sends one request per
token hold, the request is either a read or write request for consecutive data locations, there is no conflict
for use of the one communications buffer in the S7-200, and there is no S7-200 that has a scan time
longer than about 10 ms.

Token hold time (Thoq) = (128 overhead + n data char) x 11 bits/char x 1/baud rate
Token rotation time (Tyot) = Tholg Of master 1 + Tpgig Of master 2 + . . . + Tpo)g Of master m

where n is the number of data characters (bytes)
m is the number of masters

The following equations calculate the rotation times (one “bit time” equals the duration of one signaling
period) for the example shown in Figure 7-26:

T (token hold time) = (128 + 4 char) x 11 bits/char x 1/9600 bit times/s
= 151.25 ms per master

151.25 ms per master = 6 masters

= 907.5ms

T (token rotation time)

Tip
SIMATIC NET COM PROFIBUS software provides an analyzer to determine network performance.

229

S7-200 Programmable Controller System Manual

Comparing Token Rotation Times

Table 7-12 shows comparisons of the token rotation time versus the number of stations, amount of data,
and the baud rate. The times are figured for a case where you use the Network Read and Network Write
instructions with the S7-200 CPU or other master devices.

Table 7-12 Token Rotation Time (in Seconds)
Number of Masters

Bytes
BaudRate Transferred 2 3 4 5 6 7 8 9 10

1 0.30 0.44 0.59 0.74 0.89 1.03 1.18 1.33 1.48
9.6 kbaud

16 0.33 0.50 0.66 0.83 0.99 1.16 1.32 1.49 1.65

1 0.15 0.22 0.30 0.37 0.44 0.52 0.59 0.67 0.74
19.2 kbaud

16 0.17 0.25 0.33 0.41 0.50 0.58 0.66 0.74 0.83

1 0.009 0.013 /0.017 ' 0.022 ' 0.026 | 0.030 '0.035 | 0.039 | 0.043
187.5 kbaud

16 0.011 0.016 | 0.021 | 0.026 | 0.031 ' 0.037 |0.042 | 0.047 |0.052

Understanding the Connections That Link the Network Devices

Network devices communicate through individual connections, which are private links between the master
and slave devices. As shown in Figure 7-27, the communications protocols differ in how the connections
are handled:

(1 The PPI protocol utilizes one shared connection among all of the network devices.

(1 The PPI Advanced, MPI, and PROFIBUS protocols utilize separate connections between any two
devices communicating with each other.

When using PPI Advanced, MPI, or PROFIBUS, a second master cannot interfere with a connection that
has been established between a master and a slave. S7-200 CPUs and EM 277s always reserve one
connection for STEP 7-Micro/WIN and one connection for HMI devices. Other master devices cannot use
these reserved connections. This ensures that you can always connect at least one programming station
and at least one HMI device to the S7-200 CPU or EM 277 when the master is using a protocol that
supports connections, such as PPI Advanced.

PPI | PPI Connection <——>l PPI Connection <—I>: PPI Connection
All devices share a common
connection ! !
1
PPI Advanced Connection 2
MPI [
PROFIBUS I Connection 1 <—>| Connection 1 : Connection 1

Each device communicates
through a separate connection

|

Figure 7-27 Managing the Communications Connections

230

Communicating over a Network Chapter 7

As shown in Table 7-13, the S7-200 CPU or EM 277 provide a specific number of connections. Each port
(Port 0 and Port 1) of an S7-200 CPU supports up to four separate connections. (This allows a maximum
of eight connections for the S7-200 CPU.) This is in addition to the shared PPI connection. An EM 277
supports six connections.

Table 7-13 Capabilities of the S7-200 CPU and EM 277 Modules

Module Baud Rate Connections Protocols Supported
S7-200 CPU Port 0 | 9.6 kbaud, 19.2 kbaud, 4 PPI, PPI Advanced, MPI, and PROFIBUS!
or 187.5 kbaud
Port 1 | 9.6 kbaud, 19.2 kbaud, 4 PPI, PPI Advanced, MPI, and PROFIBUS!
or 187.5 kbaud
EM 277 Module 9.6 kbaud to 12 Mbaud 6 per module | PPl Advanced, MPI, and PROFIBUS

1 For Port 0 and Port 1 of the $7-200 CPU, you can use MPI and PROFIBUS only when communicating with an S7-200
device which is a slave.

Working with Complex Networks

For the S7-200, complex networks typically have multiple S7-200 masters that use the Network Read
(NETR) and Network Write (NETW) instructions to communicate with other devices on a PPl network.
Complex networks typically present special problems that can block a master from communicating with a
slave.

If the network is running at a lower baud rate (such as 9.6 kbaud or 19.2 kbaud), then each master
completes the transaction (read or write) before passing the token. At 187.5 kbaud, however, the master
issues a request to a slave and then passes the token, which leaves an outstanding request at the slave.

Figure 7-28 shows a network with potential communications conflicts. In this network, Station 1, Station 2,
and Station 3 are masters, using the Network Read or Network Write instructions to communicate with
Station 4. The Network Read and Network Write instructions use PPI protocol so all of the S7-200s share
the single PPI connection in Station 4.

In this example, Station 1 issues a request to Station 4. For ~ Station1Master Station 2 Master _Station 3 Master
baud rates above 19.2 kbaud, Station 1 then passes the jti e o e #7 —
token to Station 2. If Station 2 attempts to issupe arequest to G‘WMD; (INE ﬁ‘mmD;
Station 4, the request from Station 2 is rejected because the L [| ‘
request from Station 1 is still present. All requests to - e

Station 4 will be rejected until Station 4 completes the ;::D Station 4 Slave
response to Station 1. Only after the response has been : o

completed can another master issue a request to Station 4. Figure 7-28 Communications Conflict
To avoid this conflict for the communications port on Station 1 Slave Station 2 Slave Station 3 Slave
Station 4, consider making Station 4 the only master on the = =
network, as shown in Figure 7-29. Station 4 then issues the =

read/write requests to the other S7-200s. T t) T

Not only does this configuration ensure that there is no : L
conflict in communications, but it also reduces the overhead
caused by having multiple masters and allows the network
to operate more efficiently.

i
L
=P

i
ol

B
ﬁ [] Station 4 Master

Figure 7-29 Avoiding Conflict

231

S7-200 Programmable Controller System Manual

232

For some applications, however, reducing the Table 7-14 HSA and Target Token Rotation Time
number of masters on the network is not an

option. When there are several masters, you ket Zolband VEAIEENE] RIS LT
must manage the token rotation time and HSA=15 0.613s 0.307 s 31ms
ensure that the network does not exceed the HSA=31 1.040 s 0520 s 53 ms
target token rotation time. (The token rotation

time is the amount of time that elapses from HSA=63 1.890s 0.950 s 97 ms
when a master passes the token until that HSA=126 3.570s 1.790 s 183 ms

master receives the token again.)

If the time required for the token to return to the master is greater than a target token rotation time, then
the master is not allowed to issue a request. The master can issue a request only when the actual token
rotation time is less than the target token rotation time.

The highest station address (HSA) and the baud rate settings for the S7-200 determine the target token
rotation time. Table 7-14 lists target rotation times.

For the slower baud rates, such as 9.6 kbaud and 19.2 kbaud, the master waits for the response to its
request before passing the token. Because processing the request/response cycle can take a relatively
long time in terms of the scan time, there is a high probability that every master on the network can have a
request ready to transmit every time it holds the token. The actual token rotation time would then increase,
and some masters might not be able to process any requests. In some situations, a master might only
rarely be allowed to process requests.

For example: Consider a network of 10 masters that transmit 1 byte at 9.6 kbaud that is configured with an
HSA of 15. For this example, each of the masters always has a message ready to send. As shown in
Table 7-14, the target rotation time for this network is 0.613 s. However, based on the performance data
listed in Table 7-12, the actual token rotation time required for this network is 1.48 s. Because the actual
token rotation time is greater than the target token rotation time, some of the masters will not be allowed to
transmit a message until some later rotation of the token.

You have two basic options for improving a situation where the actual token rotation time is greater than
the target token rotation time:

[You can reduce actual token rotation time by reducing the number of masters on your network.
Depending on your application, this might not be a feasible solution.

1 You can increase the target token rotation time by increasing the HSA for all of the master devices
on the network.

Increasing the HSA can cause a different problem for your network by affecting the amount of time that it
takes for a S7-200 to switch to master mode and enter the network. If you use a timer to ensure that the
Network Read or Network Write instruction completes its execution within a specified time, the delay in
initializing master mode and adding the S7-200 as a master on the network can cause the instruction to
time out. You can minimize the delay in adding masters by reducing the Gap Update Factor (GUF) for all
masters on the network.

Because of the manner in which requests are posted to and left at the slave for 187.5 kbaud, you should
allow extra time when selecting the target token rotation time. For 187.5 kbaud, the actual token rotation
time should be approximately half of the target token rotation time.

To determine the token rotation time, use the performance data in Table 7-12 to determine the time
required for completing the Network Read and Network Write operations. To calculate the time required for
HMI devices (such as the TD 200), use the performance data for transferring 16 bytes. Calculate the token
rotation time by adding the time for each device on the network. Adding all of the times together describes
a worst-case scenario where all devices want to process a request during the same token rotation. This
defines the maximum token rotation time required for the network.

Communicating over a Network Chapter 7

For example: Consider a network running at 9.6 kbaud with four TD 200s and four S7-200s, with each
S7-200 writing 10 bytes of data to another S7-200 every second. Use Table 7-12 to calculate the specific
transfer times for the network:

4 TD 200 devices transferring 16 bytes of data = 0.66s
4 S7-200s transferring 10 bytes of data = 0.63s
Total token rotation time = 1.29s

To allow enough time for this network to process all requests during one token rotation, set the HSA to 63.
(See Table 7-14.) Selecting a target token rotation (1.89 s) that is greater than the maximum token rotation
time (1.29 s) ensures that every device can transfer data on every rotation of the token.

To help improve the reliability of a multi-master network, you should also consider the following actions:

(1 Change the update rate for the HMI devices to allow more time between updates. For example,
change the update rate for a TD 200 from “As fast as possible” to “Once per second.”

(O Reduce the number of requests (and the network overhead for processing the requests) by
combining the operations of Network Read or Network Write operations. For example, instead of
using two Network Read operations that read 4 bytes each, use one Network Read operation that
reads 8 bytes. The time to process the two requests of 4 bytes is much greater than the time to
process one request for 8 bytes.

1 Change the update rate of the S7-200 masters so that they do not attempt to update faster than the
token rotation time.

233

S7-200 Programmable Controller System Manual

Hardware Troubleshooting Guide and
Software Debugging Tools

STEP 7-Micro/WIN provides software tools to help you debug and test your program. These features
include viewing the status of the program as it is executed by the S7-200, selecting to run the S7-200 for a
specified number of scans, and forcing values.

Use Table 8-1 as a guide for determining the cause and possible solution when troubleshooting problems
with the S7-200 hardware.

In This Chapter

Features for Debugging Your Program it e 236
Displaying the Program Status 238
Using a Status Chart to Monitor and Modify the Datainthe S7-200............................ 239
Forcing Specific Values 240
Running Your Program for a Specified Numberof Scans 240
Hardware Troubleshooting GUIde i e 241

235

S7-200 Programmable Controller System Manual

Features for Debugging Your Program

N

236

STEP 7-Micro/WIN provides several features to help you debug your program: bookmarks, cross
reference tables, and run-time edits.

Using Bookmarks for Easy Program Access

You can set bookmarks in your program to make it easy to move back and forth between designated

(bookmarked) lines of a long program. You can move to the next or the previous bookmarked line of your
program.

Using the Cross Reference Table to Check Your Program References

e

Cross
Reference

%

The cross reference table allows you to display the cross references and element usage information for
your program.

The cross reference table identifies all operands

I%¥ Cross Reference =] B3
used in the program, and identifies the program ¢ —— —7 7 73
block, network or line location, and instruction Element Block Location Contedt |~
context of the operand each time it is used. 1 [ino MAIN (OBT) [Metwork 1 -k
2 |Smw3z hAIN (OB1) MNetwark 1 RS
You can toggle between symbolic and absolute 3 |SMB3T MAIN (0B1) | Metwork 1 MOv_B
: : 4 |sma7 MAIN (OBT) |Netwark 1 -/
view to change the representation of all e e S -
operands. [«]*]4 Cross Reference £ Byte Usage |4 [l
Figure 8-1 Cross Reference Table
Tip

Double-clicking on an element in the cross reference table takes you to that part of your program or
block.

Editing Your Program in RUN Mode

CPU 224 Rel. 1.10 (and higher) and CPU 226 Rel. 1.00 (and higher) models support RUN mode edits.
The RUN mode edit capability is intended to allow you to make small changes to a user program with
minimal disturbance to the process being controlled by the program. However, implementing this capability
also allows massive program changes that could be disruptive or even dangerous.

Warning

When you download changes to an S7-200 in RUN mode, the changes immediately affect process
operation. Changing the program in RUN mode can result in unexpected system operation, which could
cause death or serious injury to personnel, and/or damage to equipment.

Only authorized personnel who understand the effects of RUN mode edits on system operation should
perform a RUN mode edit.

To perform a program edit in RUN mode, the online S7-200 CPU must support RUN mode edits and must
be in RUN mode.

1. Select the Debug > Program Edit in RUN menu command.

2. Ifthe project is different than the program in the S7-200, you are prompted to save it. The RUN
mode edit can be performed only on the program in the S7-200.

3. STEP 7-Micro/WIN alerts you about editing your program in RUN mode and prompts you to either
continue or to cancel the operation. If you click Continue, STEP 7-Micro/WIN uploads the program

from the S7-200. You can now edit your program in RUN mode. No restrictions on edits are
enforced.

Tip
Positive (EU) and Negative (ED) transition instructions are shown with an operand. To view information

about edge instructions, select the Cross Reference icon in the View. The Edge Usage tab lists numbers

for the edge instructions in your program. Be careful not to assign duplicate edge numbers as you edit
your program.

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

Downloading the Program in RUN Mode

RUN-mode editing allows you to download only your program block while the S7-200 is in RUN mode.
Before downloading the program block in RUN mode, consider the effect of a RUN-mode modification on
the operation of the S7-200 for the following situations:

1 [fyou deleted the control logic for an output, the S7-200 maintains the last state of the output until
the next power cycle or transition to STOP mode.

1 [fyou deleted a high-speed counter or pulse output functions which were running, the high-speed
counter or pulse output continues to run until the next power cycle or transition to STOP mode.

1 [fyou deleted an Attach Interrupt instruction but did not delete the interrupt routine, the S7-200
continues to execute the interrupt routine until a power cycle or a transition to STOP mode.
Likewise, if you deleted a Detach Interrupt instruction, the interrupts are not shut down until the next
power cycle or transition to STOP mode.

1 [fyou added an Attach Interrupt instruction that is conditional on the first scan bit, the event is not
activated until the next power cycle or STOP-to-RUN mode transition.

1 Ifyou deleted an Enable Interrupt instruction, the interrupts continue to operate until the next power
cycle or transition from RUN to STOP mode.

(1 If you modified the table address of a receive box and the receive box is active at the time that the
S7-200 switches from the old program to the modified program, the S7-200 continues to write the
data received to the old table address. Network Read and Network Write instructions function in the
same manner.

1 Any logic that is conditional on the state of the first scan bit will not be executed until the next power
cycle or transition from STOP to RUN mode. The first scan bit is set only by the transition to RUN
mode and is not affected by a RUN-mode edit.

Tip
Before you can download your program in RUN mode, the S7-200 must support RUN mode edits, the

program must compile with no errors, and the communications between STEP 7-Micro/WIN and the
S7-200 must be error-free.

You can download only the program block.

To download your program in RUN mode, click on the Download button or select the File > Download
menu command. If the program compiles successfully, STEP 7-Micro/WIN downloads the program block
to the S7-200.

Exiting RUN-Mode Edit

To exit RUN-mode editing, select the Debug > Program Edit in RUN menu command and deselect the
checkmark. If you have changes that have not been saved, STEP 7-Micro/WIN prompts you either to
continue editing, to download changes and exit RUN-mode editing, or to exit without downloading.

237

S7-200 Programmable Controller System Manual

Displaying the Program Status

238

STEP 7-Micro/WIN allows you to monitor the status of the user program as it is being executed. When
you monitor the program status, the program editor displays the status of instruction operand values.

To display the status, click the Program Status button or select the Debug > Program Status menu

command.

Displaying the Status of the Program in LAD and FBD
STEP 7-Micro/WIN provides two options for displaying the status of LAD and FBD programs:

(1 End of scan status: STEP 7-Micro/WIN acquires the values for the status display across multiple
scan cycles and then updates the status screen display. The status display does not reflect the
actual status of each element at the time of execution. The end-of-scan status does not show status

for L memory or for the accumulators.

For end of scan status, the status values are updated in all of the CPU operating modes.

(O Execution status: STEP 7-Micro/WIN displays the values of the networks as the elements are
executed in the S7-200. For displaying the execution status, select the Debug > Use Execution

Status menu command.

For execution status, the status values are updated only when the CPU is in RUN mode.

Tip

¥

variable and right-click to display a menu of options.

Configuring How the Status is Displayed in the LAD and FBD Program

STEP 7-Micro/WIN provides a variety of options
for displaying the status in the program.

To configure the display option for the status
screen, select the Tools > Options menu
command and then select the Program Editor
tab, as shown in Figure 8-2.

STEP 7-Micro/WIN provides a simple method for changing the state of a variable. Simply select the

Dptions [x]
CiossFeference | OutputWindow | InstuctionTree | NavigationBar | Frint | STLGtaws |
General | Proect | Colors Progiam Edior | SymbelTable | DataBlock | Stalus Chat

‘width _‘3

Symbolic Addressing

Display Symbol and Addiess =

Status Displap————————————

Irside Instruction =

ADD

Symbol1:w/1004IN1 out

Symbol28w 2004 IN2

HEN ENO}

I Syrnbol3: i 300

1
Mormal Tab

[\ arisble Table Title
" arisble Table Cell
POU Comments

Type |MS Sans Serif -

syle [Regula =]

Sample Text

Metwork Number Size |8 hd
Metwork Title |
¥ Enable opsrand editing after placing instiuction
= Format STL eode when entered
Resst All Cancel
Figure 8-2 Options for the Status Display

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

Displaying the Status of the Program in STL

You can monitor the execution status of your STL program on an instruction-by-instruction basis. For an
STL program, STEP 7-Micro/WIN displays the status of the instructions that are displayed on the screen.

STEP 7-Micro/WIN gathers status information from the S7-200, beginning from the first STL statement at

the top of the editor window. As you scroll down the editor window, new information is gathered from the

S7-200.

STEP 7-Micro/WIN continuously updates values
on the screen. To halt the screen updates, select
the Triggered Pause button. The current data
remains on the screen until you deselect the
Triggered Pause button.

Configuring Which Parameters Are
Displayed in the STL Program

STEP 7-Micro/WIN allows you to display the

(Dptions [<]

Genedl | Poject | Colis | ProgamEdior | SymbolTable | DetaBlock | StatusChat |
CiossReference | Output'Window | Instuction Tree | NavigationBar | Print STL Status

~Walch Values ~ Instruction Status Bits
% [Enable Out (ENO)
%, [SCREit
#1 I SCR Region Bit
o [ZeroResult [SM1.0]
A [Ovelon [SM1.1)
x I Hegative Result (SM1.2)
% [Divide by Zero [SM1.3]
& I Table Overfiled (SM1.4)
& I Empty Table Reead (SM1.5)

¥ Operand Status
¥ Logic Stack.
I Inatiustion Status Bits

~ Operands

Numbe of operancs [F =]

~Logic Stack

status of a variety of parameters for the STL Honteasikasef1 3] || B T Jerncd Blnem 61
instructions. Select the Tools > Options menu
command and then select the STL Status tab.
See Figure 8-3.
Fieset Al Cancel
Figure 8-3 Options for Displaying STL Status

Using a Status Chart to Monitor and Modify the Data in the S7-200

The Status Chart allows you to read, write, force,

"B Status Chart =1 E3
and monitor variables while the S7-200 is R B B B - e B S
executing your program. Select the View > o nddress __fomat [Cunentvalue | Newvae [
Component > Status Chart menu command to Z stz Bt 20

H 3 Stop_1 Bit 23

create a status chart. Figure 8-4 shows a sample |F—5- ot =
status chart. 5 High_Level Bit 2#0

=] Low_Lewvel Bit 230
You can create multiple status charts. e = =

il Pump_1 Bit ¥
STEP 7-Micro/WIN provides toolbar icons for o = et
manipulating the status chart: Sort Ascending, 12 Isteam_vaive Bt 2
Sort Descending, Single Read, Write All, Force, TR [Cran Dure Bt =

15 i ol
Unforce, Unforce All, and Read All Forced. S I e -

17 Mix_Timer Signed +327E7
To select a format for a cell, select the cell and 18| Cycls_Courtsr Signed 0 ~
click the right mouse button to display the context LEIZRAEHTL/ el >
menu. Figure 8-4 Status Chart

239

S7-200 Programmable Controller System Manual

Forcing Specific Values

¥

The S7-200 allows you to force any or all of the 1/O points (I and Q bits). In addition, you can also force up
to 16 memory values (V or M) or analog I/O values (Al or AQ). V. memory or M memory values can be
forced in bytes, words, or double words. Analog values are forced as words only, on even-numbered byte
boundaries, such as AIW6 or AQW14. All forced values are stored in the permanent EEPROM memory of
the S7-200.

Because the forced data might be changed during the scan cycle (either by the program, by the 1/0
update cycle, or by the communications- processing cycle), the S7-200 reapplies the forced values at
various times in the scan cycle.

(1 Reading the inputs: The S7-200 applies the forced values to the inputs as they are read.

1 Executing the control logic in the program: The
$7-200 applies the forced values to all immediate 1/O Writes to the outputs >%
accesses. Forced values are applied for up to
16 memory values after the program has been N IO
executed. —

[Q Processing any communications requests: The / \
$7-200 applies the forced values to all read/write
communications accesses. Requests K }

O Writing to the outputs: The S7-200 applies the forced ': g <2 L
values to the outputs as they are written. SOOI A Scan Cycle
You can use the Status Chgrt to force values. To force a SAS NN
new value, enter the value in the New Value column of the o
Status Chart, then press the Force button on the toolbar. To v-?]i v-?]?
force an existing value, highlight the value in the Current Reads the inputs | QO

Value column, then press the Force button.
Figure 8-5 S7-200 Scan Cycle

Tip
The Force function overrides a Read Immediate or Write Immediate instruction. The Force function also

overrides the output table that was configured for transition to STOP mode. If the S7-200 goes to STOP
mode, the output reflects the forced value and not the value that was configured in the output table.

Running Your Program for a Specified Number of Scans

240

To help you debug your program, STEP 7-Micro/WIN allows you to run the program for a specific number
of scans.

You can have the S7-200 execute only the first scan. This allows you to monitor the data in the S7-200
after the first scan. Select the Debug > First Scan menu command to run the first scan.

You can have the S7-200 execute your program for a limited number of scans (from 1 scan to 65,535
scans). This allows you to monitor the program as it changes variables. Select the Debug > Multiple
Scans menu command to specify the number of scans to be executed.

Hardware Troubleshooting Guide and Software Debugging Tools

Chapter 8

Hardware Troubleshooting Guide

Table 8-1
Symptom

Troubleshooting Guide for the S7-200 Hardware

Possible Causes

Possible Solution

Outputs stop working

SF (System Fault) light on the
S7-200 turns on

None of the LEDs turn on

Intermittent operation
associated with high energy
devices

Communications network is
damaged when connecting to
an external device

Either the port on the
computer, the port on the
S§7-200, or the PC/PPI cable is
damaged

Other communications
problems (STEP 7-Micro/WIN)

Error handling

m The device being controlled has
caused an electrical surge that
damaged the output

User program error
Wiring loose or incorrect
Excessive load

Output point is forced

The following list describes the most
common error codes and causes:

m User programming error

- 0003 Watchdog error

- 0011 Indirect addressing

- 0012 lllegal floating-point
value

- 0014 Range error

m Electrical noise
(0001 through 0009)

= Component damage
(0001 through 0010)

= Blown fuse
m Reversed 24 V power wires
m |ncorrect voltage

= Improper grounding

m Routing of wiring within the control
cabinet

m Too short of a delay time for the
input filters

The communications cable can provide
a path for unwanted currents if all
non-isolated devices, such as PLCs,
computers, or other devices that are
connected to the network do not share
the same circuit common reference.

The unwanted currents can cause
communications errors or damage to
the circuits.

m When connecting to an inductive load (such as a
motor or relay), a proper suppression circuit
should be used. Refer to Chapter 3.

Correct user program

Check wiring and correct
Check load against point ratings
Check the S7-200 for forced I/O

Read the fatal error code number and refer to
Appendix C for information about the type of error:

m For a programming error, check the usage of the
FOR, NEXT, JMP, LBL, and Compare instructions.

m For electrical noise:

- Refer to the wiring guidelines in Chapter 3. Itis
very important that the control panel is
connected to a good ground and that high
voltage wiring is not run in parallel with low
voltage wiring.

- Connect the M terminal on the 24 VDC Sensor
Power Supply to ground.

Connect a line analyzer to the system to check the
magnitude and duration of the over-voltage spikes.
Based on this information, add the proper type arrestor
device to your system.

Refer to the wiring guidelines in Chapter 3 for
information about installing the field wiring.

Refer to the wiring guidelines in Chapter 3.

It is very important that the control panel is connected
to a good ground and that high voltage wiring is not run
in parallel with low voltage wiring.

Connect the M terminal on the 24 VDC Sensor Power
Supply to ground.

Increase the input filter delay in the system data block.

m Refer to the wiring guidelines in Chapter 3 and to
the network guidelines in Chapter 7.

m Purchase the isolated PC/PPI cable.

m Purchase the isolated RS-485-t0-RS-485 repeater
when you connect machines that do not have a
common electrical reference.

Refer to Appendix E for information about order
numbers for S7-200 equipment.

Refer to Chapter 7 for information about network communications.

Refer to Appendix C for information about error codes.

241

S7-200 Programmable Controller System Manual

Creating a Program for the
Position Module

The EM 253 Position module is an S7-200 special function module that generates the pulse trains used
for open-loop control of the speed and position for either stepper motors or servo motors. It communicates
with the S7-200 over the expansion 1/O bus and appears in the I/O configuration as an intelligent module
with eight digital outputs.

Based upon configuration information that is stored in the V memory of the S7-200, the Position module
generates the pulse trains required to control motion.

To simplify the use of position control in your application, STEP 7-Micro/WIN provides a Position Control
wizard that allows you to completely configure the Position module in minutes. STEP 7-Micro/WIN also
provides a control panel that allows you to control, monitor and test your motion operations.

In This Chapter

Features of the Position Module 244
Configuring the Position Module 246
Position Instructions Created by the Position Control Wizard 257
Sample Programs for the Position Module 269
Monitoring the Position Module with the EM 253 Control Panel 274
Error Codes for the Position Module and the Position Instructions 276
AdVanCed TOPICS . ..ottt e 278

243

S7-200 Programmable Controller System Manual

Features of the Position Module

244

The Position module provides the functionality and performance that you need for single-axis, open-loop
position control:

(O Provides high-speed control, with a range from 12 pulses per second up to 200,000 pulses per

second
(1 Supports both jerk (S curve) or linear acceleration and Q
deceleration = _
1 Provides a configurable measuring system that allows COOOOOOOOO00
you to enter data either as engineering units (such as ———
inches or centimeters) or as a number of pulses Oooooooo EM 253
| me | po | DIs | POSITION
1 Provides configurable backlash compensation MEPWROFOOR E-stand

(1 Supports absolute, relative, and manual methods of
position control

(1 Provides continuous operation

sTP 7P
| Res | LMT

(1 Provides up to 25 motion profiles, with up to 4 speed m]=fs]s]s]s]a]s] 253-1AA22-0XAD
changes per prOf”e M_L-_ L 1M _STP oM RPS 3M 7P _4M__-LMI-

O Provides four different reference-point seek modes, OO0O0OOO0OOOOO0O
with a choice of the starting seek direction and the

final approach direction for each sequence w @

1 Provides removable field wiring connectors for easy
installation and removal Figure 9-1 EM 253 Position Module

You use STEP 7-Micro/WIN to create all of the configuration and profile information used by the Position
module. This information is downloaded to the S7-200 with your program blocks. Because all the
information required for position control is stored in the S7-200, you can replace a Position module without
having to reprogram or reconfigure the module.

The S7-200 reserves 8 bits of the process image output register (Q memory) for the interface to the
Position module. Your application program in the S7-200 uses these bits to control the operation of the
Position module. These 8 output bits are not connected to any of the physical field outputs of the Position
module.

The Position module provides five digital inputs and four digital outputs that provide the interface to your
motion application. See Table 9-1. These inputs and outputs are local to the Position module. Appendix A
provides the detailed specifications for the Position module and also includes wiring diagrams for
connecting the Position module to some of the more common motor driver/amplifier units.

Table 9-1 Inputs and Outputs of the Position Module

Signal Description

STP The STP input causes the module to stop the motion in progress. You can select the desired operation
of STP within the Position Control wizard.

RPS The RPS (Reference Point Switch) input establishes the reference point or home position for absolute
move operations.

ZP The ZP (Zero Pulse) input helps establish the reference point or home position. Typically, the motor
driver/amplifier pulses ZP once per motor revolution.

LMT+ LMT+ and LMT- inputs establish the maximum limits for motion travel. The Position Control wizard

LMT- allows you to configure the operation of LMT+ and LMT- inputs.

PO PO and P1 are open drain transistor pulse outputs that control the movement and direction of

P1 movement of the motor. PO+, PO- and P1+, P1- are differential pulse outputs that provide the identical

PO+, PO- functions of PO and P1, respectively, while providing superior signal quality. The open drain outputs

P1+, P1- and the differential outputs are all active simultaneously. Based upon the interface requirements of
motor driver/amplifier, you choose which set of pulse outputs to use.

DIS DIS is an open drain transistor output used to disable or enable the motor driver/amplifier.

CLR CLR is an open drain transistor output used to clear the servo pulse count register.

Creating a Program for the Position Module Chapter 9

Programming the Position Module

STEP 7-Micro/WIN provides easy-to-use tools for configuring and programming the Position module.
Simply follow these steps:

1. Configure the Position module. STEP 7-Micro/WIN provides a Position Control wizard for creating
the configuration/profile table and the position instructions. See page 246 for information about
configuring the Position module.

2. Test the operation of the Position Module. STEP 7-Micro/WIN provides an EM 253 control panel for
testing the wiring of the inputs and outputs, the configuration of the Position module, and the
operation of the motion profiles. See page 274 for information about the EM 253 control panel.

3. Create the program to be executed by the S7-200. The Position Control wizard automatically
creates the position instructions that you insert into your program. See page 257 for information
about the position instructions. Insert the following instructions into your program:

To enable the Position module, insert a POSx_CTRL instruction. Use SM0.0 (Always On) to
ensure that this instruction is executed every scan.

To move the motor to a specific location, use a POSx_GOTO or a POSx_RUN instruction.
The POSx_GOTO instruction move to a location specified by the inputs from your program.
The POSx_RUN instruction executes the motion profiles you configured with the Position
Control wizard.

To use absolute coordinates for your motion, you must establish the zero position for your
application. Use the a POSx_RSEEK or a POSx_LDPOS instruction to establish the zero
position.

The other instructions that are created by the Position Control wizard provide functionality for
typical applications and are optional for your specific application.

4. Compile your program and download the system block, data block, and program block to the
S7-200.

@ Tip

Refer to Appendix A for information about connecting the Position module to several common stepper
motor controllers.

@ Tip

To match the default settings in the Position Control wizard, set the DIP switches on the stepper motor
controller to 10,000 pulses per revolution.

245

S7-200 Programmable Controller System Manual

Configuring the Position Module

You must create a configuration/profile table for the Position module in order for the module to control your
motion application. The Position Control wizard makes the configuration process quick and easy by

. leading you step-by-step through the configuration process. Refer to the Advanced Topics on page 278 for
Position
Control detailed information about the configuration/profile table.

The Position Control wizard also allows you to Positon conkrol wizard B
create the configuration/profile table offline. You
can create the configuration without being
connected to an S7-200 CPU with a Position
module installed.

This wizard will help you s molion conlrol as a pait of your application.
% The 57-200 PLE has two buikin Pulse Train Output / Pulse Width Modulation PT0/PuiM)
generators. Thess can be configured (o oulpul pubes thiough the $7-200's digital aulpuls. The
57200 PLC supports a maximum pulse rate of 20 kHz

" Configure the on board PTO/FWM operation for the §7-200 PLC
{ For more advanced high speed motion control. you may use this wizard to configure the operations of
"l the EM 253 Position Module. The module supports maximum pulse rate of 200 kHz

¥ Configure the operations of the EM 253 Pasition Module

To run the Position Control wizard, your project
must have been compiled and set to symbolic
addressing mode.

To start the Position Control wizard, either click
the Tools icon in the navigation bar and then
double-click the Position Control Wizard icon, or
select the Tools> Position Control Wizard
menu command. Figure 9-2

% PressF1 for help on any Wizard screen

< Back I Next > I Cancel

Position Control Wizard

The Position Control wizard allows you to configure either the operation of the Position module or the
PTO/PWM operation of the Pulse Output instruction. After you select the option for the Position module
and click Next, the wizard guides you through the steps required for configuring the Position module.

Entering the Location of the Position Module

You must define the parameters for your module and the set of motion profiles for your application by
entering the module type and location. The Position Control wizard simplifies this task by automatically
reading the position of the intelligent module. You only have to click the Read Modules button.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module next to the
CPU in order for the Position Control wizard to configure the module.

Selecting the Type of Measurement

You must select the measurement system to be used throughout the configuration. You can select to use
either engineering units or pulses. If you select pulses, you do not have to specify any other information. If
you select engineering units, you must enter the following data: the number of pulses required to produce
one revolution of the motor (refer to the data sheet for your motor or drive), the base unit of measurement
(such as inch, foot, millimeter, or centimeter), and the amount of motion (or “units”) provided by one
revolution of the motor.

STEP 7-Micro/WIN provides an EM253 Control Panel that allows you to modify the number of units per
revolution after the Position module has been configured.

If you change the measurement system later, you must delete the entire configuration including any
instructions generated by the Position Control wizard. You must then enter your selections consistent with
the new measurement system.

246

Creating a Program for the Position Module Chapter 9

Editing the Default Input and Output Configurations

The Position Control wizard provides an Advanced Options selection that allows you to view and edit the
default input and output configurations for the Position module:

(O The Input Active Levels tab changes the activation level settings. When the level is set to High, a
logic 1 is read when current is flowing in the input. When the level is set to Low, a logic 1 is read
when there is no current flow in the input. A logic 1 level is always interpreted as meaning the
condition is active. The LEDs are illuminated when current flows in the input, regardless of
activation level. (Default = active high)

(1 The Input Filter Times tab allows you to specify a delay time (range of 0.20 ms to 12.80 ms) for
filtering the STP, RPS, LMT+, and LMT- inputs. This delay helps to filter noise on the input wiring
that could cause inadvertent changes to the state of the inputs. (Default = 6.4 ms)

(1 The Pulse and Directional Outputs tab allows you to specify the method of controlling direction. First
you must specify the polarity of the outputs.

Selecting Positive Polarity

For an application that uses positive polarity, select one of the following methods (shown in Figure 9-3) to
accommodate your drive and the orientation of your application:

[The Position module emits pulses from the PO output for positive rotation and pulses from the P1
output for negative rotation.

[The Position module emits pulses from the PO output. The module turns on the P1 output for
positive rotation and turn off the P1 output for negative rotation. (This is the default setting.)

Positive Rotation | Negative Rotation Positive Rotation | Negative Rotation

o J1I1T Ww LTI TLTLTL
. LTI | |

Figure 9-3 Rotation Options for Positive Polarity

Selecting Negative Polarity
For an application that uses negative polarity, select one of the following methods (shown in Figure 9-4) to
accommodate your drive and the orientation of your application:

(1 The Position module emits pulses from the PO output for negative rotation and pulses from the P1
output for positive rotation.

(1 The Position module emits pulses from the PO output. The module turns off the P1 output for
positive rotation and turn on the P1 output for negative rotation.

Positive Rotation Negative Rotation Positive Rotation Negative Rotation

PO II_II_II_LPOJ_II_II_IiI_II_II_L

W LI .)

Figure 9-4 Rotation Options for Negative Polarity

247

S7-200 Programmable Controller System Manual

Configuring the Response of the Module to the Physical Inputs

You must specify how the Position module responds to each of the LMT+ switch, the LMT- switch, and
the STP input: no action (ignore the input condition), decelerate to a stop (default), or immediate stop.

Warning
' Control devices can fail in unsafe conditions, and can result in unpredictable operation of controlled
. equipment. Such unpredictable operations could result in death or serious personal injury, and/or
equipment failure.

The limit and stop functions in the Position Module are electronic logic implementations that do not
provide the level of protection provided by electromechanical controls. Consider using an emergency
stop function, electromechanical overrides, or redundant safeguards that are independent of the
Position module and the S7-200 CPU.

Entering the Maximum and Start/Stop Speeds

You must specify the maximum speed (MAX_SPEED) and Start/Stop Speed (SS_SPEED) for your
application:

O MAX_SPEED: Enter the value for the optimum operating speed of your application within the torque
capability of your motor. The torque required to drive the load is determined by friction, inertia, and
the acceleration/deceleration times. The Position Control wizard calculates and displays the
minimum speed that can be controlled by the Position module for a specified MAX_SPEED.

(1 SS_SPEED: Enter a value within the Speed
capability of your motor to drive your load
at low speeds. If the SS_SPEED value is MAX_SPEED
too low, the motor and load could vibrate or
move in short jumps at the beginning and
end of travel. If the SS_SPEED valueistoo gg speep
high, the motor could lose pulses on start -
up, and the load could overdrive the motor
when attempting to stop.

Distance

Figure 9-5 Maximum Speed and Start/Stop Speed

Motor data sheets have different ways of specifying the start/stop (or pull-in/pull-out) speed for a motor
and given load. Typically, a useful SS_SPEED value is 5% to 15% of the MAX_SPEED value. The
SS_SPEED value must be greater than the minimum speed displayed from your specification of
MAX_SPEED.

To help you select the correct speeds for your application, refer to the data sheet for your motor.
Figure 9-6 shows a typical motor torque/speed curve.

Torque required Motor torque versus

to drive the Ioad\‘ / speed characteristic

I
Motor | |
| Start/Stop speed versus torque
| | This curve moves towards lower
| | speed as the load inertia increases.
| I
/ Motor Speed \
Start/Stop speed Maximum speed that the motor can drive the load
(SS_SPEED) for this load MAX_SPEED should not exceed this value.

Figure 9-6 Typical Torque-Speed Curve for a Motor

248

Creating a Program for the Position Module Chapter 9

Entering the Jog Parameters

The Jog command is used to manually move the tool to a desired location. Using the Position Control
wizard, you specify the following Jog parameters values:

1 JOG_SPEED: The JOG_SPEED (Jog speed for the motor) is the maximum speed that can be
obtained while the JOG command remains active.

1 JOG_INCREMENT: Distance that the tool is moved by a momentary JOG command.

Figure 9-7 shows the operation of the Jog command. When the Position module receives a Jog
command, it starts a timer. If the Jog command is terminated before 0.5 seconds has elapsed, the Position
module moves the tool the amount specified in the JOG_INCREMENT at the speed defined by
SS_SPEED. If the Jog command is still active when the 0.5 seconds have elapsed, the Position module
accelerates to the JOG_SPEED. Motion continues until the Jog command is terminated. The Position
module then performs a decelerated stop. You can enable the Jog command either from the EM 253
control panel or with a position instruction.

Speed
MAX_SPEED |
JOG command terminated
JOG_SPEED
SS_SPEED
Distance
JOG_INCREMENT JOG command active for
JOG command active for more than 0.5 seconds

less than 0.5 seconds

Figure 9-7 Representation of a JOG Operation

Entering the Acceleration and Deceleration Times

As part of the configuration for the Position module, you set the acceleration and deceleration times. The
default setting for both the acceleration time and the deceleration time is 1 second. Typically, motors can
work with less than 1 second. You specify the following times in milliseconds:

(1 ACCEL_TIME: Time required for the motor Speed
to accelerate from SS_SPEED to MAX SPEED
MAX_SPEED. -
Default = 1000 ms

(1 DECEL_TIME: Time required for the motor SS_SPEED
to decelerate from MAX_SPEED to
SS_SPEED.

Default = 1000 ms —.-| i-‘_ — |4_

ACCEL_TIME DECEL_TIME

Distance

Figure 9-8 Acceleration and Deceleration Times

Tip
@ Motor acceleration and deceleration times are determined by trial and error. You should start by entering
a larger value with the Position Control wizard. As you test your application, you can then use the EM
253 Control Panel to adjust the values as required. Optimize these settings for the application by
gradually reducing the times until the motor starts to stall.

249

S7-200 Programmable Controller System Manual

Entering the Jerk Time

¥

Jerk compensation provides smoother position control by reducing the jerk (rate of change) in acceleration
and deceleration parts of the motion profile. See Figure 9-9. Reducing jerk improves position tracking
performance. Jerk compensation is also known as “S curve profiling.” Jerk compensation can only be
applied to simple one-step profiles. This compensation is applied equally to the beginning and ending
portions of both the acceleration and deceleration curve. Jerk compensation is not applied to the initial and
final step between zero speed and SS_SPEED.

You specify the jerk compensation by entering a Speed
time value (JERK_TIME). This is the time MAX SPEED
required for acceleration to change from zero to -

the maximum acceleration defined by _’! I‘_ _"I !‘_
MAX_SPEED, SS_SPEED, and ACCEL_TIME, |

or equivalently for DECEL_TIME. A longer jerk
time yields smoother operation with a smaller SS_SPEED |~ — — — — —
increase in total cycle time than would be | | Distance
obtained by simply increasing the ACCEL_TIME

and DECEL_TIME. A value of zero indicates that _’I - B |‘_

no compensation should be applied. JERK_TIME

(Default = 0 ms) Figure 9-9 Jerk Compensation
Tip
A good first value for JERK_TIME is 40% of ACCEL_TIME.

Configuring a Reference Point and the Seek Parameters

250

If your application specifies movements from an absolute position, you must establish a zero position that
fixes the position measurements to a known point on the physical system. One method is to provide a
reference point (RP) on your physical system. The Position module provides an external reference point
switch (RPS) input that is used when seeking the RP.

You can configure the Reference Point Seek (RP seek) parameters that control how your motion
application seek the RP. The RP can be centered in the RPS Active zone, the RP can be located on the
edge of the RPS Active zone, or the RP can be located a specified number of zero pulse (ZP) input
transitions from the edge of the RPS Active zone. To configure the RP, you enter the following information:

[You specify the RP seek speeds for the motor:

- RP_FAST is the initial speed the module uses when performing an RP seek command.
Typically, the RP_FAST value is approximately 2/3 of the MAX_SPEED value.

- RP_SLOW: is the speed of the final approach to the RP. A slower speed is used on approach
to the RP, so as not to miss it. Typically, the RP_SLOW value is the SS_SPEED value.

1 You specify the initial seek direction (RP_SEEK_DIR) and the final approach direction
(RP_APPR_DIR) for the RP Seek. These directions are specified as negative or positive.

- RP_SEEK_DIR is the initial direction for the RP seek operation. Typically, this is the direction
from the work zone to the vicinity of the RP. Limit switches play an important role in defining
the region that is searched for the RP. When performing a RP seek operation, encountering a
limit switch can result in a reversal of the direction, which allows the search to continue.
(Default = Negative)

- RP_APPR_DIR is the direction of the final approach to the RP. To reduce backlash and
provide more accuracy, RP_APPR_DIR moves in the same direction as the normal work
cycle. (Default = Positive)

Creating a Program for the Position Module Chapter 9

The Position Control wizard provides advanced reference point options that allow you to specify a RP
offset (RP_OFFSET), which is the distance from the RP to the zero position. See Figure 9-10. The RP is
identified by a method of locating an exact position with respect to the RPS. To configure the RP offset,
you enter the following values:

a

a

RP_OFFSET: Distance from the RP to the
zero position of the physical measuring
system. Default = 0

Work
Zone

Backlash compensation: Distance that the
motor must move to eliminate the slack RP Zero Position
(backlash) in the system on a direction |4_ RP OFFSET _,|
change. Backlash compensation is always B

a positive value. Default = 0

Figure 9-10 Relationship Between RP and Zero Position

Configuring the RP Seek Sequence

You can configure the sequence that the Position module uses to search for the reference point.
Figure 9-11 shows a simplified diagram of the default RP seek sequence. You can select the following
options for the RP search sequence:

¥

a
a

Tip

RP Seek mode 0: Does not perform a RP seek sequence

RP Seek mode 1: The RP is where the RPS input goes active on the approach from the work zone
side. (Default)

RP Seek mode 2: The RP is centered RP Seek Mode 1 RP Seek Direct
within the active region of the RPS input. M- RPS =— nseekbirection
RP Seek mode 3: The RP is located Active Active | > PP Approach Direction
outside the active region of the RPS input. Work Zone

RP_Z_CNT specifies how many ZP (Zero
Pulse) input counts should be received
after the RPS becomes inactive.

RP Seek mode 4: The RP is generally
within the active region of the RPS input.
RP_Z_CNT specifies how many ZP (Zero
Pulse) input counts should be received

S

after the RPS becomes active. Figure 9-11 Default RP Search Sequence (Simplified)

The RPS Active region (which is the distance that the RPS input remains active) must be greater than
the distance required to decelerate from the RP_FAST speed to the RP_SLOW speed. If the distance is
too short, the Position module generates an error.

For more information about the different RP seek sequences for the Position module, see Figures 9-14
through 9-17 on pages 254 through 255.

251

S7-200 Programmable Controller System Manual

252

Configuring the Motion Profiles for the Position Module

A profile is a pre-defined motion description consisting of one or more speeds of movement that effect a
movement from a starting point to an ending point. You do not have to define a profile in order to use the
module. The Position Control wizard provides an instruction subroutine (POSx_GOTO) for you to use to
control moves.

1 Number of profiles: You can select up to a maximum of 25 profiles.

(1 Address for the command byte: You must enter the output (Q) memory address of the command
byte for the Position module. See Figure 4-10 on page 31 for a description of the /O numbering.

(1 Address for the configuration/profile table: You must enter the starting memory address for the
configuration/profile table that stores the configuration data for the Position module and the data for
all of the profiles. The configuration data for the Position module requires 92 bytes of V. memory,
and each profile requires 34 bytes of V memory. For example, the amount of memory required for
the configuration/profile table for a Position module with one profile is 126 bytes of V memory.

The Position Control wizard can suggest an unused V memory block address of the correct size.

Defining the Motion Profile

The Position Control wizard provides a Motion Profile Definition where you define each motion profile for
your application. For each profile, you select the operating mode and define the specifics of each
individual step for the profile. The Position Control wizard also allows you to define a symbolic name for
each profile by simply entering the symbol name as you define the profile. After you have finished
configuring the profile, you can save to configuration and print a copy of the parameters.

Selecting the Mode of Operation for the Profile
You configure the profile according the the mode of operation, either an absolute position, a relative

position, a single-speed continuous rotation, or a two-speed continuous rotation. Figure 9-12 shows the
different modes of operation.

Absolute Position Single-Speed Single-Speed Continuous Rotation

Continuous Rotation with Triggered Stop
/_\ Target Speed RPS signals

? Reached Stop
: ; Controlled by your program until
0 Starting Ending
zero Position Position ano RS GETITEITE (V810 €51 287
is issued

Position

Relative Position Two-Speed Continuous Rotation

Target Speed with Target Speed with
‘/_\ RPS Inactive RPS Active

Starting Ending Position
Position Measured from the
starting point

Figure 9-12 Mode Selections for the Position Module

Creating a Program for the Position Module Chapter 9

Creating the Steps for the Profile
A step is a fixed distance that a tool moves, including the distance covered during acceleration and
deceleration times. Each profile can have up to 4 individual steps.

You specify the target speed and ending position

for each step. If you have more than one step,
simply click the New Step button and enter the
information for each step of the profile.

Figure 9-13 shows four possible profiles; . .
however, there are other possible combinations. One-Step Profile Two-Step Profile

By simply clicking the Plot Step button, you can

view a graphical representation of the step, as (—/_\—\ (J_/_\
calculated by the Position Control wizard. This

allows you to easily and interactively review and
edit each step. Three-Step Profile Four-Step Profile

Figure 9-13 Sample Motion Profiles

Finishing the Configuration for the Position Module

After you have configured the operation of the Position module, you simply click Finish, and the Position
Control wizard performs the following tasks:

(1 Inserts the module configuration and profile table into the data block for your S7-200 program
(O Creates a global symbol table for the motion parameters

(1 Adds the motion instruction subroutines into the project program block for you to use in your
application

You can run the Position Control wizard again in order to modify any configuration or profile information.

Tip

@ Because the Position Control wizard makes changes to the program block, the data block and the
system block, be sure to download all three blocks to the S7-200 CPU. Otherwise, the Position module
might not have all the program components that it needs for proper operation.

Understanding the RP Seek Modes Supported by the Position Module

The following figures provide diagrams of the different options for each RP seek mode.

[Figure 9-14 shows two of the options for RP seek mode 1. This mode locates the RP where the
RPS input goes active on the approach from the work zone side.

1 Figure 9-15 shows two of the options for RP seek mode 2. This mode locates the RP in the center
within the active region of the RPS input.

(1O Figure 9-16 shows two of the options for RP seek mode 3. This mode locates the RP a specified
number of zero pulses (ZP) outside the active region of the RPS input.

(1O Figure 9-17 shows two of the options for RP seek mode 4. This mode locates the RP a specified
number of zero pulses (ZP) within the active region of the RPS input.

For each mode, there are four combinations of RP Seek direction and RP Approach direction. (Only two of
the combinations are shown.) These combinations determine the pattern for the RP seek operation. For
each of the combinations, there are also four different starting points:

The work zones for each diagram have been located so that moving from the reference point to the work
zone requires movement in the same direction as the RP Approach Direction. By selecting the location of
the work zone in this way, all the backlash of the mechanical gearing system is removed for the first move
to the work zone after a reference point seek.

253

S7-200 Programmable Controller System Manual

Default configuration :
RP Seek Direction: Negative

LMT-
Active

RP Approach Direction: Positive

—>
Positive motion
-
Negative motion

RPS Active

Work Zone

RP Seek Direction: Positive
RP Approach Direction: Positive

—>
Positive motion
-
Negative motion

Work Zone

LMT+
Active

Figure 9-14 RP Seek Mode 1

Default configuration :

LMT-

RP Seek Direction: Negative
Seek Directl g Active

RPS Active

RP Approach Direction: Positive

—>
Positive motion
-
Negative motion

RP Seek Direction: Positive
RP Approach Direction: Positive

RPS Active

Work Zone

—>
Positive motion
-
Negative motion

LMT+
Active

Figure 9-15 RP Seek: Mode 2

254

Creating a Program for the Position Module Chapter 9

Default configuration : LMT- RPS

RP Seek Direction: Negative Active Active RP
RP Approach Direction: Positive

+ Work Zone
m -<—— Number of ZP pulses
|
\

\
|

—
Positive motion
-
Negative motion

RP Seek Direction: Positive RPS LMT+
RP Approach Direction: Positive Active Active

Work Zone

— \
Positive motion ‘
\
|

me -<«—— Number of

ZP pulses
-

Negative motion

Figure 9-16 RP Seek: Mode 3

Default configuration : RPS Active
RP Seek Direction: Negative LMT-

Active
RP Approach Direction: Positive |

—
Positive motion

Work Zone

-<——— Number of ZP pulses

\

\

\

\

- ‘
Negative motion ‘

i
\
\
\

RP Seek Direction: Positive RPS Active
RP Approach Direction: Positive LMT+

‘ | RP | ‘ Active
\ | Work Zone

, \ \
o ; Number of
Positive motion
‘ ZP pulses
-
Negative motion | |
4 \
\ \
\ \

-

Figure 9-17 RP Seek: Mode 4

255

S7-200 Programmable Controller System Manual

256

Selecting the Location of the Work Zone to Eliminate Backlash

Figure 9-18 shows the work zone in relationship to the reference point (RP), the RPS Active zone, and the
limit switches (LMT+ and LMT-) for an approach direction that eliminates the backlash. The second part of
the illustration places the work zone so that the backlash is not eliminated. Figure 9-18 shows RP seek
mode 3. A similar placement of the work zone is possible, although not recommended, for each of the
search sequences for each of the other RP seek modes.

Backlash is eliminated
RP Seek Direction: Negative

RP Approach Direction: Negative LMT- RPS
Active RP Active
Work Zone +

\ | — \ \
o \ \ \ \
Positive motion ‘ ‘ ‘ ‘
-
Negative motion 1 ! ! 1
T T
\ \
\ \
\ \
\

Backlash is not eliminated

RP Seek Direction: Negative
RP Approach Direction: Negative

LMT- RPS

Active ,ﬁ Active
Y

Work Zone
- |
> \
Positive motion ‘
-
Negative motion ‘
} O)

Figure 9-18 Placement of the Work Zone with and without the Elimination of Backlash

Creating a Program for the Position Module Chapter 9

Position Instructions Created by the Position Control Wizard

%

The Position Control wizard makes controlling the Position module easier by creating unique instruction
subroutines based on the position of the module and configuration options you selected. Each position
instruction is prefixed with a "POSx_" where x is the module location. Because each position instruction is
a subroutine, the 11 position instructions use 11 subroutines.

Tip
The position instructions increase the amount of memory required for your program by up to 1700 bytes.

You can delete unused position instructions to reduce the amount of memory required. To restore a
deleted position instruction, simply run the Position Control wizard again.

Guidelines for Using the Position Instructions

You must ensure that only one position instruction is active at a time.

You can execute the POSx_RUN and POSx_GOTO from an interrupt routine. However, it is very important
that you do not attempt to start an instruction in an interrupt routine if the module is busy processing
another command. If you start an instruction in an interrupt routine, then you can use the outputs of the
POSx_CTRL instruction to monitor when the Position module has completed the movement.

The Position Control wizard automatically configures the values for the speed parameters (Speed and
C_Speed) and the position parameters (Pos or C_Pos) according to the measurement system that you
selected. For pulses, these parameters are DINT values. For engineering units, the parameters are REAL
values for the type of unit that you selected. For example: selecting centimeters (cm) stores the position
parameters as REAL values in centimeters and stores the speed parameters as REAL values in
centimeters per second (cm/sec).

The following position instructions are required for specific position control tasks:

O Insertthe POSx_CTRL instruction in your program and use the SM0.0 contact to execute it every
scan.

1 To specify motion to an absolute position, you must first use either an POSx_RSEEK or a
POSx_LDPOS instruction to establish the zero position.

1 To move to a specific location, based on inputs from your program, use the POSx_GOTO
instruction.

[To run the motion profiles you configured with the Position Control wizard, use the POSx_RUN
instruction.

The other position instructions are optional.

257

S7-200 Programmable Controller System Manual

POSx_CTRL Instruction
The POSx_CTRL instruction (Control) enables and initializes the

Position module by automatically commanding the Position module SIMATIC £ ECTTST
to load the configuration/profile table each time the S7-200 changes LAD FED
to RUN mode.

PO5:_CTRL PS5 CTRL
Use this instruction only once in your project, and ensure that your - EM - EM
program calls this instruction every scan. Use SM0.0 (Always On) Moo e Mok e
as the input for the EN parameter. Dine |- Er'::;‘::

Errar - L

The EN parameter must be on to enable the other position ¢ Pos| c_;;z:; B
instructions to send commands to the Position module. If the EN CApeed = < _Diir |-
parameter turns off, then the Position module aborts any command £ Dir =
that is in progress.
The output parameters of the POSx_CTRL instruction provide the
current status of the Position module. SIMATIC
The Done parameter turns on when the Position module completes STL
any instruction.

CALL - PoSi CTRL, MOD_EN, Done,
The Error parameter contains the result of this instruction. See Ervar, &Pz, £ _Speed. £ Dir

Table 9-13 on page 276 for definitions of the error codes.

The C_Pos parameter is the current position of the module. Based of the units of measurement, the value
is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter provides the current speed of the module. If you configured the measurement
system for the Position module for pulses, C_Speed is a DINT value containing the number of
pulses/second. If you configured the measurement system for engineering units, C_Speed is a REAL
value containing the selected engineering units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-2 Parameters for the POSx_CTRL Instruction

Inputs/Outputs Data Type Operands

MOD_EN BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Done, C_Dir BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tip
@ The Position module reads the configuration/profile table only at power-up or when commanded to load

258

the configuration.

m |f you use the Position Control wizard to modify the configuration, then the POSx_CTRL instruction
automatically commands the Position module to load the configuration/profile table every time the
S7-200 CPU changes to RUN mode.

= |f you use the EM 253 Control Panel to modify the configuration, clicking the Update Configuration
button commands the Position module to load the new configuration/profile table.

m |f you use another method to modify the configuration, then you must also issue a Reload the
Configuration command to the Position module to load the configuration/profile table. Otherwise, the
Position module continues to use the old configuration/profile table.

Creating a Program for the Position Module Chapter 9

POSx_MAN Instruction
The POSx_MAN instruction (Manual Mode) puts the Position

module into manual mode. This allows the motor to be run at SIMATIE £ IECT1ST

different speeds or to be jogged in a positive or negative direction. LAD FED

While the POSx._MAN instruction is enabled, only the POSx_CTRL POS MAN POS MAN

and POSx_DIS instructions are allowed. den den

You can enable only one of the RUN, JOG_P, or JOG_N inputs at a Jron] _rfgz

time. o
d106p — IO

Enabling the RUN (Run/Stop) parameter commands to the Position :g'?fEd Error

module to accelerate to the specified speed (Speed parameter) and T 4eanH Pos |-

direction (Dir parameter). You can change the value for the Speed _Speed |-

. . . . | Speed Error - ;

parameter while the motor is running, but the Dir parameter must doie < posk £_Dir -

remain constant. Disabling the RUN parameter commands the _Speed |-

Position module to decelerate until the motor comes to a stop. C_Dir -

Enabling the JOG_P (Jog Positive Rotation) or the JOG_N (Jog

Negative Rotation) parameter commands the Position module to jog

in either a positive or negative direction. If the JOG_P or JOG_N SIWATIC

parameter remains enabled for less than 0.5 seconds, the Position

module issues pulses to travel the distance specified in 5TL

JOG_INCREMENT. If the JOG_P or JOG_N parameter remains CALL POSx_WAM, RUM, JOG_P,

enabled for 0.5 seconds or longer, the motion module begins to IO M, Speed, Dir, Ervar,

accelerate to the specified JOG_SPEED. ©FPos, C_Speed, C_Dir

The Speed parameter determines the speed when RUN is enabled.
If you configured the measuring system of the Position module for
pulses, the speed is a DINT value for pulses/second. If you
configured the measuring system of the Position module for
engineering units, the speed is a REAL value for units/second. You
can change this parameter while the motor is running.

The Dir parameter determines the direction to move when RUN is enabled. You cannot change this value
when the RUN parameter is enabled.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

The C_Pos parameter contains the current position of the module. Based of the units of measurement
selected, the value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement
selected, the value is either the number of pulses/second (DINT) or the engineering units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-3 Parameters for the POSx_MAN Instruction

Inputs/Outputs Data Type Operands

RUN, JOG_P, JOG_N BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
Dir, C_Dir BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

259

S7-200 Programmable Controller System Manual

POSx_GOTO Instruction
The POSx_GOTO instruction commands the Position Module to go

to a desired location. >IMATIE £ EC T3
Turning on the EN bit enables the instruction. Ensure that the EN bit LAD FED
stays on until the DONE bit signals that the execution of the POSx_GUTO POSx=_GOTO
instruction has completed. ol | EM

— START
Turning on the START parameter sends a GOTO command to the ETART = Fus
Position module. For each scan when the START parameter is on - Pos 7 :ﬁ;;:
and the Position module is not currently busy, the instruction sends = Speed L abort Done
a GOTO command to the Position module. To ensure that only one 7| Made Ervar I
GOTO command is sent, use an edge detection element to pulse 7ot Er'jr';i B < _Po: |
the START parameter on. C Posb Copeed -
The Pos parameter contains a value that signifies either the location Cpeed
to move (for an absolute move) or the distance to move (for a
relative move). Based of the units of measurement selected, the
value is either a number of pulses (DINT) or the engineering units
(REAL). S IMATIC
The Speed parameter determines the maximum speed for this STL
movement. Based of the units of measurement, the value is either a CALL POSx GOTO, START, Pos,
number of pulses/second (DINT) or the engineering units/second Speed, Mode, Abort, Dene,
(REAL). Error, € _Pos, C_Speed

The Mode parameter selects the type of move:

0 - Absolute position
1 - Relative position
2 - Single-speed, continuous positive rotation
3 - Single-speed, continuous negative rotation

The Done parameter turns on when the Position module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

The C_Pos parameter contains current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement,
the value is either a number of pulses/second (DINT) or the engineering units/second (REAL).

Table 9-4 Parameters for the POSx_GOTO Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Pos, Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
Mode BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Abort, Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

260

Creating a Program for the Position Module Chapter 9

POSx_RUN Instruction

The POSx_RUN instruction (Run Profile) commands the Position

: L ") . SIMATIC £ [EC1131

module to execute the motion operation in a specific profile stored in
the configuration/profile table. LAD FED
Turning on the EN bit enables the instruction. Ensure that the EN bit P05 _RUN POSx_RUN
stays on until the Done bit signals that the execution of the kil T E'iﬂm
instruction has completed. deteRT deratile
Turning on the START parameter sends a RUN command to the < Frafile 7| feer E;';‘: i
Position module. For each scan when the START parameter is on |ttt Done = _Profile -
and the Position module is not currently busy, the instruction sends c Er:_Tr B C_Step |-
a RUN command to the Position module. To ensure that only one 'Efgt;; B CPos|
command is sent, use an edge detection element to pulse the oz |- L apeed -
START parameter on. ¢ Speed
The Profile parameter contains the number or the symbolic name for
the motion profile. You can also select the advanced motion
commands (118 to 127). For information about the motion p—
commands, see Table 9-19 on page 284.
Turning on the Abort parameter commands to the Position module ST';HLL b5 RUN, START. Frof

. . E o . Fratfie,
to stop the current profile and decelerate until the motor comes to a Abort. Done. Error. ¢ Profile,
StOp. C_5tep, ©_Fos, C_Speed
The Done parameter turns on when the module completes this

instruction.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

The C_Profile parameter contains the profile currently being executed by the Position module.
The C_Step parameter contains the step of the profile currently being executed.

The C_Pos parameter contains the current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of measurement,
the value is either a number of pulses/second (DINT) or the engineering units/second (REAL).

Table 9-5 Parameters for the POSx_RUN Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Profile BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Abort, Done BOOL ,Q,V,M, SM, S, T,C, L

Error, C_Profile, C_Step BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

261

S7-200 Programmable Controller System Manual

POSx_RSEEK Instruction

The POSx_RSEEK instruction (Seek Reference Point Position)

-) . . SIMATIC & BC1121
initiates a reference point seek operation, using the search method

in the configuration/profile table. When the Position module locates LAD FED
the reference point and motion has stopped, the Position module

loads the RP_OFFSET parameter value into the current position i ELOSK‘RSEEK EZOSX‘RSEEK
and generates a 50-millisecond pulse on the CLR output. START

START L
The default value for RP_OFFSET is 0. You can use the Position Dione = Done

Control wizard, the EM253 Control Panel, or the POSx_LDOFF Errar —
(Load Offset) instruction to change the RP_OFFSET value.

Ertor |-

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the SIMATIC
instruction has completed.

STL
Turning on the START parameter sends a RSEEK command to the

Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends

CALL PS5 _RSEEK, START, Done, Ervor

a RSEEK command to the Position module. To ensure that only one

command is sent, use an edge detection element to pulse the
START parameter on.

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-6 Parameters for the POSx_RSEEK Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

262

Creating a Program for the Position Module Chapter 9

POSx_LDOFF Instruction
The POSx_LDOFF instruction (Load Reference Point Offset)

) o . . . SIMATIC £ [EC1131
establishes a new zero position that is at a different location from
the reference point position. LAD FED
Before executing this instruction, you must first determine the PO LDOF FOSx _LDOFF
position of the reference point. You must also move the machine to | EM —[EM
the starting position. When the instruction sends the LDOFF - | =TART Darna b
command, the Position module computes the offset between the Dione & Erron
starting position (the current position) and the reference point Error [
position. The Position module then stores the computed offset to the
RP_OFFSET parameter and sets the current position to 0. This
establishes the starting position as the zero position.

SIMATIS

In the event that the motor loses track of its position (such as on
loss of power or if the motor is repositioned manually), you can use 5TL
the POSX_RSEEK instruction to re-establish the zero position GALL POSx LDGEF, START, Done., Error
automatically.
Turning on the EN bit enables the instruction. Ensure that the EN bit

stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a LDOFF command to the Position module. For each scan when
the START parameter is on and the Position module is not currently busy, the instruction sends a LDOFF
command to the Position module. To ensure that only one command is sent, use an edge detection
element to pulse the START parameter on.

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-7 Parameters for the POSx_LDOFF Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

263

S7-200 Programmable Controller System Manual

264

POSx_LDPOS Instruction

The POSx_LDPOS instruction (Load Position) changes the current
position value in the Position module to a new value. You can also
use this instruction to establish a new zero position for any absolute
move command.

Turning on the EN bit enables the instruction. Ensure that the EN bit
stays on until the Done bit signals that the execution of the
instruction has completed.

Turning on the START parameter sends a LDPOS command to the
Position module. For each scan when the START parameter is on
and the Position module is not currently busy, the instruction sends
a LDPOS command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on.

The New_Pos parameter provides the new value to replace the
current position value that the Position module reports and uses for
absolute moves. Based of the units of measurement, the value is
either a number of pulses (DINT) or the engineering units (REAL).

The Done parameter turns on when the module completes this
instruction.

SIMATIE & IEC 1131
LAD FED
PS5z _LDPOS PS5z _LDF O5
— EM — EM
— 5TART
- 5THRET —{ Mew_Pos
- Mew_Fos Drane
Error -
Cone
Error [ikl
C_Pos—
SIMATIC
STL
CALL Pose LDFCS, START.
Mew_Pos, Done, Error,
C_Paz

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of

the error codes.

The C_Pos parameter contains the current position of the module. Based of the units of measurement, the
value is either a number of pulses (DINT) or the number of engineering units (REAL).

Table 9-8 Parameters for the POSx_LDPOS Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

New_Pos, C_Pos DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD
Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Creating a Program for the Position Module Chapter 9

POSx_SRATE Instruction
The POSx_SRATE instruction (Set Rate) commands the Position

module to change the acceleration, deceleration, and jerk times. >MATIC £ [ECTIST
Turning on the EN bit enables the instruction. Ensure that the EN bit LAE FED
stays on until the Done bit signals that the execution of the POxdx_SRATE PO _SRATE
instruction has completed. | EM |
— START
Turning on the START parameter copies the new time values to the ETART = ACCEL Tirne
configuration/profile table and sends a SRATE command to the ~| RCCEL _Tirne 7 _?EE:}SL'I_'Tr:'.I:E
Position module. For each scan when the START parameter is on | DE<EL_Time -
and the Position module is not currently busy, the instruction sends 7| HER-Time Done [~
a SRATE command to the Position module. To ensure that only one Done - Brror |-
command is sent, use an edge detection element to pulse the Error =
START parameter on.
The ACCEL_Time, DECEL_Time, and JERK_Time parameters
determine the new acceleration time, deceleration time, and jerk SIMATIE
time in milliseconds (ms).
_ ETL
The Done parameter turns on when the module completes this CALL PoS: SRATE. START.
instruction. RCCEL _Time:, DECEL Tine,
JERE. _Tirne, Done, Error
The Error parameter contains the result of this instruction. See

Table 9-13 on page 276 for definitions of the error codes.

Table 9-9 Parameters for the POSx_SRATE Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M,SM, S, T,C, L

ACCEL_Time, DECEL_Time, | DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
JERK Time

Done BOOL ,Q,V,M,SM, S, T, C, L

Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

265

S7-200 Programmable Controller System Manual

266

POSx_DIS Instruction

The POSx_DIS instruction turns the DIS output of the Position
module on or off. This allows you to use the DIS output for disabling
or enabling a motor controller. If you use the DIS output on the
Position module, then this instruction can be called every scan or
only when you need to change the value of the DIS output.

When the EN bit turns on to enable the instruction, the DIS_ON
parameter controls the DIS output of the Position module. For more
information about the DIS output, see Table 9-1 on page 244 or
refer to the specifications for the Position module in Appendix A.

The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

Table 9-10 Parameters for the POSx_DIS Instruction

SIMATIE & IEC 1131
LALC: FEL
PS5 _DIS PoSw_DIS
= EM — EM
= DI5_ON
— DIS_2M Error
Errar |-
SIMATIC
STL

CALL POSe RIS, DIS_O0, Ervar

Inputs/Outputs Data Type Operands
DIS_ON BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Error BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Creating a Program for the Position Module Chapter 9

POSx_CLR Instruction
The POSx_CLR instruction (Pulse the CLR Output) commands the

Position module to generate a 50-ms pulse on the CLR output. >MATIC £ [ECTIST
Turning on the EN bit enables the instruction. Ensure that the EN bit LAD FED
stays on until the Done bit signals that the execution of the FOx CLR FlZx (LR
instruction has completed. | EM —[EM
— START

Turning on the START parameter sends a CLR command to the T|RTART Done - Lone =
Position module. For each scan when the START parameter is on E::;i L Errar =
and the Position module is not currently busy, the instruction sends
a CLR command to the Position module. To ensure that only one
command is sent, use an edge detection element to pulse the
START parameter on. SIMATIC
The Done parameter turns on when the module completes this oTL
instruction.

CALL POS: (LR, START, Crane, Error
The Error parameter contains the result of this instruction. See
Table 9-13 on page 276 for definitions of the error codes.

Table 9-11 Parameters for the POSx_CLR Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

267

S7-200 Programmable Controller System Manual

POSx_CFG Instruction

The POSx_CFG instruction (Reload Configuration) commands the SIMATIC ¢ EC1121
Position module to read the configuration block from the location

specified by the configuration/profile table pointer. The Position LAD FED
module then compares the new configuration with the existing FORH OFG PR CFG
configuration and performs any required setup changes or d dm
recalculations. il pupip

. | START Done -
Turning on the EN bit enables the instruction. Ensure that the EN bit Dione = Errar -
stays on until the Done bit signals that the execution of the Errer [
instruction has completed.
Turning on the START parameter sends a CFG command to the
Position module. For each scan when the START parameter is on SIMATIC
and the Position module is not currently busy, the instruction sends
a CFG command to the Position module. To ensure that only one STL
command is sent, use an edge detection element to pulse the CALL POSw CFG. START, Done, Error
START parameter on. :

The Done parameter turns on when the module completes this

instruction.

The Error parameter contains the result of this instruction. See Table 9-13 on page 276 for definitions of
the error codes.

Table 9-12 Parameters for the POSx_CFG Instruction

Inputs/Outputs Data Type Operands

START BOOL 1,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

268

Creating a Program for the Position Module Chapter 9

Sample Programs for the Position Module

The first sample program shows a simple relative move that uses the POSx_CTRL and POSx_GOTO
instructions to perform a cut-to-length operation. This program does not require an RP seek mode or a
motion profile, and the length can be measured in either pulses or engineering units. Enter the length
(VD500) and target speed (VD504). When 10.0 (Start) turns on, the machine starts. When 10.1 (Stop) turns
on, the machine finishes the current operation and stops. When 10.2 (E_Stop) turns on, the machine
aborts any motion and immediately stops.

The second sample program provides an example of the POSx_CTRL, POSx_RUN, POSx_RSEEK, and
POSx_MAN instructions. You must configure the RP seek mode and a motion profile.

Sample Program 1: Simple Relative Move (Cut to Length application)

Network 1
SM0.0 POS0_CTRL
] |
1 I EN
E_Stop:10.2
| /| MOD_EN
Done 1.0
Error[- VB 300
C_Paos[4DA02
C_Speed4DA08
C Dirlv510.0
Network 2
Start:I0.0 E_Stop:l02 Running (0.2
] |] |] | {
1 141 1Pl L ?)
Start_Mext_Move:M0.1
5)
1
Network 3
E_Stop:l02 Running: (0.2
R
Network 4
Running 0.2 POSO_GOTO
| |
| I EM
Start_Mext_tove:b01
] |
| I 1 F I START
Lenath_to_CutvD500+ Pos Donef 00.4
SpeedVD504 < Speed ErarfWES20
1qMode C_PospwD922
E_Stop:0.2Abort C SpeedpvDS26
Metwork 5
Running:00.2 Qo4 T33
| |] |
] I 1 I IM TOM
+2004PT
T33 Cutter_Output:G0.3
e

Network 1 /[Control instruction (module in slot 0).
LD SMO0.0
= L60.0
LDN 10.2
= L63.7
LD L60.0
CALL POSO_CTRL, L63.7, M1.0, VB900, VD902, VD906,
V910.0
Network 2 //Start puts machine into automatic mode
LD 10.0
AN 10.2
EU
S Qo0.2, 1
S MO0.1, 1
Network 3 //E_Stop: stops immediately and
[fturns off automatic mode.
LD 10.2
R Qo0.2, 1
Network 4 //Move to a certain point:
/[Enter the length to cut.
/[Enter the target speed into Speed.
//Set the mode to 1 (Relative mode).
LD Qo0.2
= L60.0
LD MO.1
EU
= L63.7
LD L60.0
CALL POSO0_GOTO, L63.7, VD500, VD504, 1, 10.2, Q0.4,

VB920, VD922, VD926

Network 5 //When in position, turn on the cutter
/ffor 2 seconds to finish the cut.

LD Qo0.2

A Q0.4

TON T33, +200

AN T33

= Q0.3

269

S7-200 Programmable Controller System Manual

Sample Program 1: Simple Relative Move (Cut to Length application) , continued

Network B
Running: (0.2
] |

Network 6 //When the cut is finished then restart
/lunless the Stop is active.
Eitop“.;ID.I‘I Slart_N(ext_Mo)ve.MD.‘l LD Q0.2
A T33
Stop:ln 1 Runring Q0.2 LPS
R) AN 10.1
1 = MO0.1
LPP
A 10.1
R Q0.2, 1

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN

270

Network 1
SM0.0 POS0_CTRL
|
1 I EM
101
I ; I MOD_EM
DonefM1.0
Errorf-B300
C_PosfD4E02
C_SpeedfD306
C Dirf910.0
Network 2
11.0 M0.0 POSO_MaN
| | |
| I] EN
111
| |
| I RUN
1.2
| |
| I JOG_P
1.4
| |
| I JOG_M
+1000004 Speed Ermorf-B920
11.54Dir C_PosfD4902
C_SpeedfD306
C Dirf510.0
Network 3
10.0 w00
| | {
1 T 1 F (s5)
2
501
5D
1
502
R)
8

Network 1 //Enable the Position module

LD SMO0.0

= L60.0

LDN 10.1

= L63.7

LD L60.0

CALL POSO_CTRL, L63.7, M1.0, VB900, VD902,

VD906, V910.0

Network 2 //Manual mode if not in auto mode
LD 11.0

AN MO0.0

= L60.0

LD 1.1

= L63.7

LD 1.2

= L63.6

LD 1.4

= L63.5

LD L60.0

CALL POS0_MAN, L63.7, L63.6, L63.5, +100000,

11.5, VB920, VD902, VD906, V910.0

Network 3 //Enable auto mode
LD 10.0

EU

S M0.0, 2

S S0.1, 1

R S0.2,8

Creating a Program for the Position Module

Chapter 9

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

11

F/B330

Metwork 4
101 MO0
| | 4
1 | A)
1
501
—(R)
9
(0.3
—(")
3
Metwork 5
0.0 Q0.1
| | r
1 | b)
Metwork 6
501
H SCR
Metwork 7
501 POSO_RSEEK
| |
1 I EN
501
| |
1 I START
Done
Eror
Metwork 8
1.1 B30 Q0.3
| | | | {
1 1= O
0 1
502
SCRT)
B30 51.0
] <8 f——(5cR1)
Metwork 9 v
——(scRE)
Metwork 10
s0.2
H SCR

Network 4 /[Emergency Stop
//Disable the module and auto mode
LD 10.1
R Mo0.0, 1
R S0.1,9
R Q0.3,3
Network 5 //When in auto mode:
/[Turn on the Running light
LD Mo0.0
= Q0.1
Network 6
LSCR S0.1
Network 7 /[Find the reference point (RP)
LD S0.1
= L60.0
LD S0.1
= L63.7
LD L60.0

CALL POSO_RSEEK, L63.7, M1.1, VB930

Network 8
//Clamp the material and
//Go to the next step.

LD M1.1
LPS

AB= VB930, 0
S Q0.3, 1
SCRT S0.2
LPP

AB<> VB930, 0
SCRT S1.0

Network 9
SCRE

Network 10
LSCR So0.2

//When at reference point (RP):

271

S7-200 Programmable Controller System Manual

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

272

Hetwork 11
502 POSO_RUMN
| |
1 EN
S0z
—] | START
B 2289 Profile Donef 1.2
10,1 44bart Emorf B340
C_ProfilepvB341
C_SteppvBad2
C_PospWD944
C SpeedfD348
Hetwork 12
k1.2 WBS40 Qo4
| | | r
— | =B] {s5)
0 1
T33
(")
1
S0.3
—{(scrT)
VB340 510
| <8 {(scrT)
0
Network 13
—(scRE)
Metwork 14
S0.3
Network 15
S0.3 T332
| |
1 I IN TOM
+2004PT

Network 11 //Use profile 1 to move into position.

LD S0.2
= L60.0
LD S0.2
= L63.7
LD L60.0

CALL POSO_RUN, L63.7, vB228, 10.1, M1.2, VB940,
VB941, VB942, VD944, VD948

Network 12 //When positioned, turn on the cutter
/fand go to the next step.

LD M1.2
LPS

AB= VB940, 0
S Q0.4, 1
R T33, 1
SCRT S0.3
LPP

AB<> VB940, 0
SCRT S1.0

Network 13
SCRE

Network 14 //Wait for the cut to finish
LSCR $S0.3

Network 15

LD S0.3
TON T38, +200

Creating a Program for the Position Module Chapter 9

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Metwork 16 Network 16 //Unless STOP is on, restart
733 [oluke] //when the cut is finished.
| {r) LD 7133
Q;4 LPS
[R) 2 Q0.3, 1
1 Q0.4, 1
I0.2 501 AN 10.2
— ¢+ p——(scrT) ESET S0.1
0.2 MO0 A 10.2
| | {r) R MO0.0, 4
4 Network 17
SCRE
Metwork 17
Network 18
——{scRE
) LSCR S1.0

Network 19 //Reset the outputs.
Metwork 18
. LD S1.0

T

Network 20 //Flash the error light.

Metwork 19 LD SMO0.5
510 Qo3 = Q0.5
— ")
2 Network 21 //Exit the error routine if STOP is on.
Metwork 20 :;{D :\(AJ-OZO 9
SM0.5 Qo5 R S0 '1 ,8
Network 22
SCRE
Hetwork 21
0.2 MO0
— R)
k]
0.1
R)
8
Metwork 22
—{(scRE)

273

S7-200 Programmable Controller System Manual

Monitoring the Position Module with the EM 253 Control Panel

To aid you in the development of your Position Control solution, STEP 7-Micro/WIN provides the EM 253
Control Panel. The Operation, Configuration and Diagnostics tabs make it easy for you to monitor and
control the operation of the Position module during the startup and test phases of your development
process.

Use the EM 253 Control Panel to verify that the Position module is wired correctly, to adjust the
configuration data, and to test each movement profile.

Displaying and Controlling the Operation of the Position Module

The Operation tab of the control panel allows you to interact with the operations of the Position Module.
The control panel displays the current speed, the current position and the current direction of the Position
module. You can also see the status of the input and output LEDs (excluding the Pulse LEDs).

The control panel allows you to interact with the 5, EM 253 Control Panel {connected with module at position 0)
Position module by changing the speed and Operaton | Corfiquition | Diagrastics
direction, by stopping and starting the motion, - Selecta orhle Conmand - Mode Statu
and by jogging the tool (if the motion is stopped). [Enabl enuelDperaton Bl ft;fmh
. . Cunent Speed
You can also generate the following motion [000 inchvseo
commands: Use the manual contrals for placement of the toal Gzt [:’;TITQ

1 Enable Manual Operation. This command
allows you to use the manual controls for
positioning the tool.

~Manual Operation —Profile Statu
Target Speed Current Prcile Taraet Posttion for Gtep

D Run a MOtion PrOfile' ThlS Command allows ITalgetD\re:s; - z::: | IEurler\tSlep ITalgatSpeed :::lep
you to select a profile to be executed. The [ree =] T [e
control panel displays the status of the Click the Jag buttan to issue 2 single JOG command Made of Dperation
profile which is being executed by the B pep pessdto seesase o e

Position module.

Jog - Jog +

[0 Seek to a Reference Point. This command
finds the reference point by using the
configured search mode.

Clase

Figure 9-19 Operation Tab of the EM 253 Control Panel

O Load Reference Point Offset. After you use the manual controls to jog the tool to the new zero
position, you then load the Reference Point Offset.

1 Reload Current Position. This command updates the current position value and establishes a new
zero position.

1 Activate the DIS output and Deactivate the DIS output. These commands turn the DIS output of the
Position module on and off.

(1 Pulse the CLR output. This command generates a 50 ms pulse on the CLR output of the Position
module.

(1O Teach a Motion Profile. This command allows you to save the target position and speed for a motion
profile and step as you manually position the tool. The control panel displays the status of the profile
which is being executed by the Position module.

(1 Load Module Configuration. This command loads a new configuration by commanding the Position
module to read the configuration block from the V memory of the S7-200.

[Move to an Absolute Position. This command allows you to move to a specified position at a target
speed. Before using this command, you must have already established the zero position.

1 Move by a Relative Amount. This command allows you to move a specified distance from the
current position at a target speed. You can enter a positive or negative distance.

1 Resetthe Command Interface. This command clears the command byte for the Position module
and sets the Done bit. Use this command if the Position module appears to not be responding to
commands.

274

Creating a Program for the Position Module Chapter 9

Displaying and Modifying the Configuration of the Position Module

The Configuration tab of the control panel allows Ty
you to view and modify the configuration settings aeeaton Gonfisustion | pisgrcstics
for the Position module that are stored in the data These seltings reprasnt the cuent module configuration in the PLC. Madule configuration should be accomplished

through the ‘Pasition Control Wizard. Only qualified persannl should make configuration changss in the PLC fom this

block of the S7-200. didlog.

™ Allow Updates to module configuration in the PLC.

After you modify the configuration settings, you

. X . : - Rieference Point Setiing - Application Parameter
S|mple click a button to update the Settlngs In RP_FAST RP_SEEK_DIR Med_SPEED ACCEL_TIME
both the STEP 7-Micro/Win project and the data 1 inohser: T B et 1000 e
lock of th 7-200. FiP_SLOW RP_APFF_DIF 55_SPEED DECEL_TIME
block o eS 00 T inchrsec, negalive 1 inch/sec. 1000 meee
RP_Z_CNT FND_RF_MODE JOG_SFEED JERK_TIME
1 1 1 inch/sec. 0 msec
RP_OFFSET JOG_INCREMENT UNITS/REY
0 inch 1 inch T inch
BKLSH_COMP
0 inch
Read Configuation | | Updste Confiawation_| Close

Figure 9-20 Configuration Tab of the EM 253 Control Panel

Displaying the Diagnostics Information for the Position Module

The Dlag nostics tab Of the Contr0| pane| a"OWS ,E, EM 253 Control Panel {connected with module at position 0)
you to view the diagnostic information about the Operaon | Confiuraton Disgnostcs |

Position module. + Moduls Information

You can view specific information about the B e o
Position module, such as the position of the Cntpeston St S
module in the 1/0O chain, the module type and [Conngued [z
firmware version number, and the output byte

used as the command byte for the module. Mo ™ e

1} Mo emor

The control panel displays any error condition
that resulted from a commanded operation. Refer = s
to Table 9-13 on page 276 for the instruction IE - Desepln
error conditions.

You can also view any error condition reported
by the Position module. Refer to Table 9-14 on
page 277 for the module error conditions.

Clase

Figure 9-21 Diagnostics Tab of the EM 253 Control Panel

275

S7-200 Programmable Controller System Manual

Error Codes for the Position Module and the Position Instructions

Table 9-13 Instruction Error Codes

Error Code Description

0 No error

1 Aborted by user

2 Configuration error
Use the EM 253 Control Panel Diagnostics tab to view error codes

3 llegal command

4 Aborted due to no valid configuration
Use the EM 253 Control Panel Diagnostics tab to view error codes

5 Aborted due to no user power

6 Aborted due to no defined reference point

7 Aborted due to STP input active

8 Aborted due to LMT- input active

9 Aborted due to LMT+ input active

10 Aborted due to problem executing motion

11 No profile block configured for specified profile

12 llegal operation mode

13 Operation mode not supported for this command

14 lllegal number of steps in profile block

15 llegal direction change

16 llegal distance

17 RPS trigger occurred before target speed reached

18 Insufficient RPS active region width

19 Speed out of range

20 Insufficient distance to perform desired speed change

21 llegal position

22 Zero position unknown

23t0 127 | Reserved

128 Position module cannot process this instruction: either the Position module is busy with another
instruction, or there was no Start pulse on this instruction

129 Position module error:
m The location of the Position module or the Q memory address that was configured with the

Position Control wizard does not match the actual location or memory address

m Refer to SMB8 to SMB21 (I/O Module ID and Error Register) for other error conditions

130 Position module is not enabled

131 Position module is not available due to a module error or module not enabled

276

(See the POSx_CTRL status)

Creating a Program for the Position Module

Chapter 9

Table 9-14 Module Error Codes
Error Code Description

0 No error
1 No user power
2 Configuration block not present
3 Configuration block pointer error
4 Size of configuration block exceeds available V memory
5 llegal configuration block format
6 Too many profiles specified
7 llegal STP_RSP specification
8 llegal LMT-_RPS specification
9 llegal LMT+_RPS specification
10 llegal FILTER_TIME specification
11 llegal MEAS_SYS specification
12 llegal RP_CFG specification
13 llegal PLS/REV value
14 llegal UNITS/REV value
15 llegal RP_ZP_CNT value
16 llegal JOG_INCREMENT value
17 llegal MAX_SPEED value
18 llegal SS_SPD value
19 llegal RP_FAST value
20 llegal RP_SLOW value
21 llegal JOG_SPEED value
22 llegal ACCEL_TIME value
23 llegal DECEL_TIME value
24 llegal JERK_TIME value
25 llegal BKLSH_COMP value

277

S7-200 Programmable Controller System Manual

Advanced Topics

Understanding the Configuration/Profile Table

The Position Control wizard has been developed to make motion applications easy by automatically
generating the configuration and profile information based upon the answers you give about your position
control system. Configuration/profile table information is provided for advanced users who want to create
their own position control routines.

The configuration/profile table is located in the V memory area of the S7-200. As shown in Table 9-15, the
configuration settings are stored in the following types of information:

[The configuration block contains information used to set up the module in preparation for executing
motion commands.

(1 The interactive block supports direct setup of motion parameters by the user program.

(1 Each profile block describes a predefined move operation to be performed by the Position module.
You can configure up 25 profile blocks.

Tip
@ To create more than 25 motion profiles, you can exchange configuration/profile tables by changing the
value stored in the configuration/profile table pointer.

Table 9-15 Configuration/Profile Table

Offset Name Function Description Type
Configuration Block
0 MOD_ID Module identification field --
5 CB_LEN The length of the configuration block in bytes (1 byte) --
6 IB_LEN The length of the interactive block in bytes (1 byte) --
7 PF_LEN The length of a single profile in bytes (1 byte) --
8 STP_LEN The length of a single step in bytes (1 byte) --
9 STEPS The number of steps allowed per profile (1 byte) --
10 PROFILES Number of profiles from 0 to 25 (1 byte) --
11 Reserved Set to 0x0000 --
13 IN_OUT_CFG Specifies the use of the MSB LSB -
- - module inputs and outputs ’ 6 5 4 8 2 ! 0
(1 byte) | P/D | POL | 0 | 0 | STP | RPS | LMT- | LMT+

P/D This bit specifies the use of PO and P1.
Positive Polarity (POL=0):
0 - PO pulses for positive rotation
P1 pulses for negative rotation
1 - PO pulses for rotation
P1 controls rotation direction (0 - positive, 1 - negative)
Negative Polarity (POL=1):
0 - PO pulses for positive rotation
P1 pulses for negative rotation
1 - PO pulses for rotation
P1 controls rotation direction (0 - positive, 1 - negative)
POL This bit selects the polarity convention for PO and P1.
(0 - positive polarity, 1 - negative polarity)
STP This bit controls the active level for the stop input.
RPS This bit controls the active level for the RPS input.
LMT- This bit controls the active level for the negative travel limit input.
LMT+ This bit controls the active level for the positive travel limit input
0 - Active high
1 - Active low

278

Creating a Program for the Position Module Chapter 9

Table 9-15 Configuration/Profile Table, continued
Offset Name Function Description Type

14 STP_RSP Specifies the response of the drive to the STP input (1 byte) --

0 No action. Ignore the input condition.

1 Decelerate to a stop and indicate that the STP input is active.
2 Terminate the pulses and indicate STP input

310255 Reserved (error if specified)

15 LMT-_RSP Specifies the response of the drive to the negative limit input (1 byte) --

0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.
2 Terminate the pulses and indicate that the limit has been reached.
310255 Reserved (error if specified)
16 LMT+_RSP Specifies the response of the drive to the positive limit input (1 byte) --
0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.

2 Terminate pulses and indicate that the limit has been reached.
310255 Reserved (error if specified)

17 FILTER_TIME Specifies the filter time for the msB LsB -
STP, LMT-, LMT+, and RPS 7 6 5 4 8 2 ! 0
inputs (1 byte) STP, LMT-, LMT+ RPS
’0000° 200 usec ‘o107’ 3200 usec
0001’ 400 usec ‘0110’ 6400 usec
'0010° 800 usec ‘0111 12800 usec
'0011" 1600 usec ’1000° No filter
’0100° 1600 usec 1001 " to '1111° Reserved (error if specified)
18 MEAS_SYS Specifies the measurement system (1 byte) --

0 Pulses (speed is measured in pulses/second, and the position values are
measured in pulses). Values are stored as DINT.

1 Engineering units (speed is measured in units/second, and the position values are
measured in units). Values are stored as single-precision REAL.

210255 Reserved (error if specified)

19 -- Reserved (Set to 0) --
20 PLS/REV Specifies the number of pulses per revolution of the motor (4 bytes) DINT
Only applicable when MEAS_SYS is set to 1.
24 UNITS/REV Specifies the engineering units per revolution of the motor (4 bytes) REAL
Only applicable when MEAS_SYS is set to 1.
28 UNITS Reserved for STEP 7-Micro/WIN to store a custom units string (4 bytes) --
32 RP_CFG Specifies the reference point mMSB LSB -
) . 6 5 4 3 2 1 0
search configuration (1 byte)
| | 0 | 0 | MODE
T— RP_ADDR_DIR
RP_SEEK_DIR

RP_SEEK _DIR This bit specifies the starting direction for a reference point search.
(0 - positive direction, 1 - negative direction)

RP_APPR_DIR This bit specifies the approach direction for terminating the reference
point search.
(0 - positive direction, 1 - negative direction)

MODE Specifies the reference point search method.

0000’ Reference point search disabled.

’0001° The reference point is where the RPS input goes active.

0010’ The reference point is centered within the active region of the RPS input.
’0011" The reference point is outside the active region of the RPS input.

0100’ The reference point is within the active region of the RPS input.

0101’ to '1111” Reserved (error if selected)

33 -- Reserved (Set to 0) --
34 RP_Z CNT Number of pulses of the ZP input used to define the reference point (4 bytes) DINT

279

S7-200 Programmable Controller System Manual

Table 9-15 Configuration/Profile Table, continued
Offset Name Function Description Type
38 RP_FAST Fast speed for the RP seek operation: MAX_SPD or less (4 bytes) DINT
REAL
42 RP_SLOW Slow speed for the RP seek operation: maximum speed from which the motor can DINT
instantly go to a stop or less (4 bytes) REAL
46 SS_SPEED Start/Stop Speed. (4 bytes) DINT
The starting speed is the maximum speed to which the motor can instantly go from a REAL
stop and the maximum speed from which the motor can instantly go to a stop. Operation
below this speed is allowed, but the acceleration and deceleration times do not apply.
50 MAX_SPEED Maximum operating speed of the motor (4 bytes) DINT
REAL
54 JOG_SPEED Jog speed. MAX_SPEED or less (4 bytes)
58 JOG_INCREMENT | The jog increment value is the distance (or number of pulses) to move inresponsetoa | DINT
single jog pulse. (4 bytes) REAL
62 ACCEL_TIME Time required to accelerate from minimum to maximum speed in milliseconds (4 bytes) | DINT
66 DECEL_TIME Time required to decelerate from maximum to minimum speed in milliseconds (4 bytes) | DINT
70 BKLSH_COMP Backlash compensation: the distance used to compensate for the system backlash ona | DINT
direction change (4 bytes) REAL
74 JERK_TIME Time during which jerk compensation is applied to the beginning and ending portions of | DINT
an acceleration/deceleration curve (S curve). Specifying a value of 0 disables jerk
compensation. The jerk time is given in milliseconds. (4 bytes)
Interactive Block
78 MOVE_CMD Selects the mode of operation (1 byte) --
0 Absolute position
1 Relative position
2 Single-speed, continuous operation, positive rotation
3 Single-speed, continuous operation, negative rotation
4 Manual speed control, positive rotation
5 Manual speed control, negative rotation
6 Single-speed, continuous operation, positive rotation with triggered stop
(RPS input signals stop)
7 Single-speed, continuous operation, negative rotation with triggered stop
(RPS input signals stop)
8 1o 255 - Reserved (error if specified)
79 -- Reserved. Set to 0 --
80 TARGET_POS Target position to go to in this move (4 bytes) DINT
REAL
84 TARGET_SPEED Target speed for this move (4 bytes) DINT
REAL
88 RP_OFFSET Absolute position of the reference point (4 bytes) DINT
REAL

Profile Block 0

92
(+0)
93

(+1)

280

STEPS

MODE

Number of steps in this move sequence (1 byte)

Selects the mode of operation for this profile block (1 byte)

Absolute position

Relative position

Single-speed, continuous operation, positive rotation

Single-speed, continuous operation, negative rotation

Reserved (error if specified)

Reserved (error if specified)

Single-speed, continuous operation, positive rotation with triggered stop
(RPS selects speed)

Single-speed, continuous operation, negative rotation

with triggered stop (RPS input signals stop)

8 Two-speed, continuous operation, positive rotation (RPS selects speed)
9 Two-speed, continuous operation, negative rotation (RPS selects speed)
10to 255 - Reserved (error if specified)

o wOWN-=2O

~

Creating a Program for the Position Module Chapter 9
Table 9-15 Configuration/Profile Table, continued
Offset Name Function Description Type
94 0 POS Position to go to in move step 0 (4 bytes) DINT
(+2) REAL
98 0 SPEED Target speed for move step 0 (4 bytes) DINT
(+6) REAL
102 1 POS Position to go to in move step 1 (4 bytes) DINT
(+10) REAL
106 1 SPEED Target speed for move step 1 (4 bytes) DINT
(+14) REAL
110 2 POS Position to go to in move step 2 (4 bytes) DINT
(+18) REAL
114 2 SPEED Target speed for move step 2 (4 bytes) DINT
(+22) REAL
118 3 POS Position to go to in move step 3 (4 bytes) DINT
(+26) REAL
122 3 SPEED Target speed for move step 3 (4 bytes) DINT
(+30) REAL
Profile Block 1
126 STEPS Number of steps in this move sequence (1 byte) --
(+34)
127 MODE Selects the mode of operation for this profile block (1 byte) --
(+35)
128 0 POS Position to go to in move step 0 (4 bytes) DINT
(+36) REAL
132 0 SPEED Target speed for move step 0 (4 bytes) DINT
(+40) REAL

Special Memory Locations for the Position Module

The S7-200 allocates 50 bytes of special memory (SM) to each intelligent module, based on the physical
position of the module in the I/O system. See Table 9-16. When the module detects an error condition or a
change in status of the data, the module updates these SM locations. The first module updates SMB200
through SMB249 as required to report the error condition, the second module updates SMB250 through

SMB299, and so on.

Table 9-16 Special Memory Bytes SMB200 to SMB549
SM Bytes for an intelligent module in:

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6
SMB200 to SMB250 to SMB300 to SMB350 to SMB400 to SMB450 to SMB500 to
SMB249 SMB299 SMB349 SMB399 SMB449 SMB499 SMB549

Table 9-17 shows the structure of the SM data area allocated for an intelligent module. The definition is

given as if this were the intelligent module is located in slot 0 of the I/O system.

281

S7-200 Programmable Controller System Manual

Table 9-17 Special Memory Area Definition for the EM 253 Position Module
SM Address Description

SMB200 to Module name (16 ASCII characters). SMB200 is the first character: “EM253 Position”

SMB215

SMB216 to Software revision number (4 ASCII characters). SMB216 is the first character.

SMB219

SMW220 Error code for the module. See Table 9-14 for a description of the error codes.

SMB222 Input/output status. Reflects the status of the inputs MSB LSB
and outputs of the module. ’ 6 5 4 3 2 1 0

|DIS|0|0|STP|LMT-|LMT+|RPS|ZP|
DIS Disable outputs 0 = No current flow 1 = Current flow
STP Stop input 0 = No current flow 1 = Current flow
LMT- Negative travel limit input 0 = No current flow 1 = Current flow
LMT+ Positive travel limit input 0 = No current flow 1 = Current flow
RPS Reference point switch input 0 = No current flow 1 = Current flow
ZP Zero pulse input 0 = No current flow 1 = Current flow

SMB223 Instantaneous module status. Reflects the status of MSB LsB

the module configuration and rotation direction status. ’ 6 5 4 8 2 1 0
o|o|o|o|o |on|n|cm|

OR Target speed out of range 0 =Inrange 1 = Out of range

R Direction of rotation 0 = Positive rotation 1 = Negative rotation

CFG Module configured 0 = Not configured 1 = Configured

SMB224 CUR_PF is a byte that indicates the profile currently being executed.

SMB225 CUR_STP is a byte that indicates the step currently being executed in the profile.

SMD226 CUR_POS is a double-word value that indicates the current position of the module.

SMD230 CUR_SPD is a double-word value that indicates the current speed of the module.

SMB234 Result of the instruction. See Table 9-13 for descriptions of the MSB LsSB
error codes. Error conditions above 127 are generated by the 7 6 0
instruction subroutines created by the wizard. | D | ERROR
D Done bit 0= Operation in progress

1= Operation complete (set by the module during initialization)

SMB235 to Reserved

SMB244

SMB245 Offset to the first Q byte used as the command interface to this module. The offset is supplied by the S7-200
automatically for the convenience of the user and is not needed by the module.

SMD246 Pointer to the V memory location of the configuration/profile table. A pointer value to an area other than

V memory is not valid. The Position module monitors this location until it receives a non-zero pointer value.

282

Creating a Program for the Position Module Chapter 9

Understanding the Command Byte for the Position Module

The Position module provides one byte of discrete outputs which is used as the command byte.
Figure 9-22 shows the command byte definition. Table 9-18 shows the Command_code definitions.

A write to the command byte where the R bit 'V'fB 6 5 4 3 2 1 L(?B
changes from 0 to 1 is interpreted by the module

as a new command. QBx | R | Command_code

If the module detects a transition to idle (R bit R 0= Idle

changes state to 0) while a command is active, 1= Execute the command specified
then the operation in progress is aborted and, if a in Command_code (See Table 9-18)
motion is in progress, then a decelerated stop is

performed.

Figure 9-22 Definition of the Command Byte

After an operation has completed, the module must see a transition to idle before a new command is
accepted. If an operation is aborted, then the module must complete any deceleration before a new
command is accepted. Any change in the Command_code value while a command is active is ignored.

The response of the Position module to a Table 9-18 Command_code Definitions
change in the operating mode of the S7-200 or | Command_code ' Command

to a fault condition is governgd by the effect that —5555000 10 Oto | Execute motion specified in
the S7-200 exerts over the discrete outputs 000 1111 o4 Profile Blocks 0 to 24
according to the existing definition of the

S 100 0000 to 25t0 | Reserved
S$7-200 function: 111 0101 117 (Error if specified)
1 [Ifthe S7-200 changes from STOP to 111 0110 118 Activate the DIS output
RUN: The program in the S7-200 111 0111 119 Deactivate the DIS output
controls the operation of the Position 111 1000 120 Pulse the CLR output
module. 111 1001 121 Reload current position
(1 [fthe §7-200 changes from RUN to 111 1010 122 | Execute motion specified in the
STOP: You can select the state that the Interactive Block
discrete outputs are to goto on a 111 1011 123 Capture reference point offset
tran3|t|pn to .STOP or that the outputs are 111 1100 124 | Jog positive rotation
to retain their last state. - -
o ‘ 111 1101 125 Jog negative rotation
- Ifthe R bit is turned off when going 111 1119 126 | Seek to reference point position

to STOP: The Position module
decelerates any motion in
progress to a stop

111 1111 127 Reload configuration

- Ifthe R bit is turned on when going to STOP: The Position module completes any command
that is in progress. If no command is in progress, the Position module executes the command
which is specified by the Command_code bits.

- Ifthe R bit is held in its last state: The Position module completes any motion in progress.

(O [Ifthe S7-200 detects a fatal error and turns off all discrete outputs: The Position module decelerates
any motion in progress to a stop.

The Position module implements a watchdog timer that turns the outputs off if communications with the
S7-200 are lost. If the output watchdog timer expires, the Position module decelerates any motion in
progress to a stop.

If a fatal error in the hardware or firmware of the module is detected, the Position module sets the PO, P1,
DIS and CLR outputs to the inactive state.

283

S7-200 Programmable Controller System Manual

Table 9-19 Motion Commands

Command

Description

Commands 0 to 24:

Executes the motion specified in
profile blocks 0 to 24

Command 118

Activates the DIS output
Command 119

Deactivates the DIS output
Command 120

Pulses the CLR output
Command 121

Reloads the Current Position
Command 122

Execute the motion specified in
the interactive block

284

When this command is executed, the Position module performs the motion operation
specified in the MODE field of the profile block indicated by the Command_code portion of
the command.

® In Mode 0 (absolute position), the motion profile block defines from one to four steps with
each step containing both the position (POS) and speed (SPEED) that describes the
move segment. The POS specification represents an absolute location, which is based
on the location designated as reference point. The direction of movement is determined
by the relationship between the current position and the position of the first step in the
profile. In a multi-step move a reversal of direction of travel is prohibited and results in an
error condition being reported.

®m In Mode 1 (relative position), the motion profile block defines from one to four steps with
each step containing both the position (POS) and the speed (SPEED) that describes the
move segment. The sign of the position value (POS) determines the direction of the
movement. In a multi-step move, a reversal of direction of travel is prohibited and results
in the reporting of an error condition.

® |n Modes 2 and 3 (single-speed, continuous operation modes), the position (POS)
specification is ignored and the module accelerates to the speed specified in the SPEED
field of the first step. Mode 2 is used for positive rotation, and Mode 3 is used for negative
rotation. Movement stops when the command byte transitions to Idle.

®m In Modes 6 and 7 (single-speed, continuous operation modes with triggered stop), the
module accelerates to the speed specified in the SPEED field of the first step. If and
when the RPS input becomes active, movement stops after completing the distance
specified in the POS field of the first step. (The distance specified in the POS field must
include the deceleration distance.) If the POS field is zero when the RPS input becomes
active, the Position module decelerates to a stop. Mode 6 is used for positive rotation,
and Mode 7 is used for negative rotation.

® |n Modes 8 and 9, the binary value of the RPS input selects one of two speed values as
specified by the first two steps in the profile block.

- If the RPS is inactive: Step 0 controls the speed of the drive.
- If the RPS is active: Step 1 controls the speed of the drive.

Mode 8 is used for positive rotation, and Mode 9 is used for negative rotation. The
SPEED value controls the speed of movement. The POS values are ignored in this
mode.

When this command is executed, the Position module activates the DIS output.

When this command is executed, the Position module deactivates the DIS output.

When this command is executed, the Position module generates a 50-millisecond pulse on
the CLR output.

When this command is executed, the Position module sets the current position to the value
found in the TARGET_POS field of the interactive block.

When this command is executed, the Position module performs the motion operation
specified in the MOVE_CMD field of the interactive block.

® |n Modes 0 and 1 (absolute and relative motion modes), a single step motion is
performed based upon the target speed and position information provided in the
TARGET_SPEED and TARGET_POS fields of the interactive block.

® |In Modes 2 and 3 (single-speed, continuous operation modes), the position specification
is ignored, and the Position module accelerates to the speed specified in the
TARGET_SPEED field of the interactive block. Movement stops when the command byte
transitions to Idle.

® |n Modes 4 and 5 (manual speed control modes), the position specification is ignored and
your program loads the value of speed changes into the TARGET_SPEED field of the
interactive block. The Position module continuously monitors this location and responds
appropriately when the speed value changes.

Creating a Program for the Position Module Chapter 9

Table 9-19

Command

Motion Commands, continued

Description

Command 123

Capture the Reference Point
offset

Command 124
Jog positive rotation

Command 125
Jog negative rotation

Command 126

Seek to Reference Point position

Command 127
Reload the configuration

When this command is executed, the Position module establishes a zero position that is at a
different location from the reference point position.

Before issuing this command, you must have determined the position of the reference point
and must also have jogged the machine to the work starting position. After receiving this
command, the Position module computes the offset between the work starting position (the
current position) and the reference point position and writes the computed offset to the
RP_OFFSET field of the Interactive Block. The current position is then set to 0 to establish
the work starting position as the zero position.

In the event that the stepper motor loses track of its position (for example, if power is lost or
the stepper motor is repositioned manually) the Seek to Reference Point Position command
can be issued to re-establish the zero position automatically.

This command allows you to manually issue pulses for moving the stepper motor in the
positive direction.

If the command remains active for less than 0.5 seconds, the Position module issues pulses
to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the motion module begins to
accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

This command allows you to manually issue pulses for moving the stepper motor in the
negative direction.

If the command remains active for less than 0.5 seconds, the Position module issues pulses
to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the Position module begins to
accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

When this command is executed, the Position module initiates a reference point seek
operation using the specified search method. When the reference point has been located and
motion has stopped, the Position module loads the value read from the RP_OFFSET field of
the interactive block into the current position and pulses the CLR output on for

50 milliseconds.

When this command is executed, the Position module reads the configuration/profile table
pointer from the appropriate location in SM memory and then reads the configuration block
from the location specified by the configuration/profile table pointer. The Position module
compares the configuration data just obtained against the existing module configuration and
performs any required setup changes or recalculations. Any cached profiles are discarded.

Understanding the Profile Cache of the Position Module

The Position module stores the execution data for up to 4 profiles in cache memory. When the Position
module receives a command to execute a profile, it checks to see if the requested profile is stored in the
cache memory. If the execution data for the profile is resident in the cache, the Position module
immediately executes the profile. If the the execution data for the profile is not resident in the cache, the
Position module reads the profile block information from the configuration/profile table in the S7-200 and
calculates the execution data for the profile before executing the profile.

Command 122 (Execute the motion specified in the interactive block) does not use cache memory to
store the execution data, but always reads the interactive block from the configuration/profile table in the
S7-200 and calculates the execution data for the motion.

Reconfiguring the Position module deletes all of the execution data stored in the cache memory.

285

S7-200 Programmable Controller System Manual

286

Creating Your Own Position Control Instructions

The Position Control wizard creates the position instructions for controlling the operation of the Position
module; however, you can also create your own instructions. The following STL code segment provides
an example of how you might create your own control instructions for the Position module.

This example uses an S7-200 CPU 224 with a Position module located in slot 0. The Position module is configured on
power-up. CMD_STAT is a symbol for SMB234, CMD is a symbol for QB2, and NEW_CMD is a symbol for the profile.

Sample Program: Controlling the Position Module

Network 1 //New move command state
LSCR State_ 0

Network 2 //CMD_STAT is a symbol for SMB234
//CMD is a symbol for QB2
/INEW_CMD is a symbol for the profile.
I
/1. Clear the Done bit of the Position module.
/2. Clear the command byte of the Position module.
//3. Issue the new command.
//4. Wait for the command to be executed.
LD SMo0.0
MOVB 0, CMD_STAT
BIW 0, CMD
BIW NEW_CMD, CMD
SCRT State 1

Network 3
SCRE

Network 4 //Wait for the command to be completed.
LSCR State_1

Network 5 //'f the command is complete without error, go to the idle state.

LDB= CMD_STAT, 16#80
SCRT Idle_State

Network 6 //Iif the command is complete with an error, go to the error handling state.

LDB> CMD_STAT, 16#80
SCRT Error_State

Network 7
SCRE

Creating a Program for the
Modem Module

The EM 241 Modem module allows you to connect your S7-200 directly to an analog telephone line, and
supports communications between your S7-200 and STEP 7-Micro/WIN. The Modem module also
supports the Modbus slave RTU protocol. Communications between the Modem module and the S7-200
are made over the Expansion 1/O bus.

STEP 7-Micro/WIN provides a Modem Expansion wizard to help set up a remote modem or a Modem
module for connecting a local S7-200 to a remote device.

In This Chapter

Features ofthe Modem Module 288
Using the Modem Expansion Wizard to Configure the Modem Module 294
Overview of Modem Instructions and Restrictions i 298
Instructions for the Modem Module 299
Sample Program for the Modem Module 303
S7-200 CPUs that Support Intelligent Modules it 303
Special Memory Location for the Modem Module 304
AdVaNCed TOPICS . .. oottt e 306
Messaging Telephone Number Format 308
Text Message Format e 309
CPU Data Transfer Message Format et 310

287

S7-200 Programmable Controller System Manual

Features of the Modem Module

The Modem module allows you to connect your S7-200 directly to an analog telephone line and provides
the following features:

1 Provides international telephone line @
interface
FCC Reg, NosJA4 USA-35685-MS-E
[Provides a modem interface to L e v 1o -
STEP 7-Micro/WIN for programming and T S ez
troubleshooting (teleservice) el —
(d Supports the Modbus RTU protocol
(1 Supports numeric and text paging L
4 SUppOl’tS SMS messaging H oooooooo 244-1AA22—0XAOE
(0 Allows CPU-to-CPU or CPU-to Modbus c Cod) i e
data transfers ountry Code “_: - 9 500
Switches 1 @\Xm@\m Q P
O Provides password protection (U @

G Provides security callback Figure 10-1 EM 241 Modem Module

1 The Modem module configuration is stored in the CPU

You can use the STEP 7-Micro/WIN Modem Expansion wizard to configure the Modem module. Refer to
Appendix A for the specifications of the Modem module.

International Telephone Line Interface

The Modem module is a standard V.34 123256 Pin Description
(33.6 kBaud), 10-bit modem, and is compatible ey 3 Ring Reverse connection
with most internal and external PC modems. The I 4 Tip is allowed.
Modem module does not communicate with
11-bit modems. Figure 10-2 View of RJ11 Jack
You connect the Modem module to the Table 10-1 Countries Supported by the EM 241
telephone line with the six-position four-wire Switch Setting Country
RJ11 connector mounted on the front of the o1 Austia
dule. See Figure 10-2. :
mo 02 Belgium
An adapter may be required to convert the 05 Canada
RJ11 connector for connection to the standard 08 Denmark
telephone line termination in the various 09 Finland
countries. Refer to the documentation for your
adapter connector for more information. 10 France
11 Germany
The modem and telephone line interface is 12 Greece
powered from an external 24 VDC supply. This 16 ireland
can be connected to the CPU sensor supply or
to an external source. Connect the ground 18 Italy
terminal on the Modem module to the system 22 Luxembourg
earth ground. 25 Netherlands
The Modem module automatically configures 27 Norway
the telephone interface for country-specific 30 Portugal
operation when power is applied to the module. 34 Spain
The two rotary switches on the front of the 35 Sweden
modulg select the coun.try code. You musF set 36 Switzerland
the switches to the desired country selection 38 UK

before the Modem module is powered up. Refer
to Table 10-1 for switch settings for the 39 USA.
countries supported.

288

Creating a Program for the Modem Module ~ Chapter 10

STEP 7-Micro/WIN Interface

The Modem module allows you to communicate with STEP 7-Micro/WIN over a telephone line
(teleservice). You do not need to configure or program the S7-200 CPU to use the Modem module as the
remote modem when used with STEP 7-Micro/WIN.

Follow these steps to use the Modem module with STEP 7-Micro/WIN:

1. Remove the power from the S7-200 CPU and attach the Modem module to the 1/O expansion bus.
Do not attach any I/O modules while the S7-200 CPU is powered up.

Connect the telephone line to the Modem module. Use an adapter if necessary.
Connect 24 volts DC to the Modem module terminal blocks.

Connect the Modem module terminal block ground connection to the system ground.
Set the country code switches.

Power up the S7-200 CPU and the Modem module.

N o o k0D

Configure STEP 7-Micro/WIN to communicate to a 10-bit modem.

Modbus RTU Protocol

You can configure the Modem module to respond as a Modbus RTU slave. The Modem module receives
Modbus requests over the modem interface, interprets those requests and transfers data to or from the
CPU. The Modem module then generates a Modbus response and transmits it out over the modem
interface.

Tip
@ If the Modem module is configured to respond as a Modbus RTU slave, STEP 7-Micro/WIN is not able
to communicate to the Modem module over the telephone line.

The Modem module supports the Modbus functions shown in Table 10-2.

Modbus functions 4 and 16 allow reading or Table 10-2 Modbus Functions Supported by Modem Module
writing a maximum of 125 holding registers Function Description
(250 pytes of V memo[’y) Inone requeslt. Function 01 Read coil (output) status
Functions 5 and 15 write to the output image Function 02 Read inout stat
register of the CPU. These values can be unetion ead input status
overwritten by user program. Function 03 Read holding registers

) Function 04 Read input (analog input) registers
Modbus addresses are n.0fmally written as 5 or Function 05 Write single coil (output)
6 character values containing the data type and : 5 ol :
the offset. The first one or two characters FU”thO” 06 Preset single register
determine the data type, and the last four Function 15 Write multiple coils (outputs)
characters select the proper value within the Function 16 Preset multiple registers

data type. The Modbus master device maps the
addresses to the correct Modbus functions.

289

10

S7-200 Programmable Controller System Manual

290

Table 10-3 shows the Modbus addresses Table 10-3 Mapping Modbus Addresses to the S7-200 CPU
supported by the Modem module, and the Modbus Address S7-200 CPU Address
mapping of Modbus addresses to the S7-200 000001 Q0.0
CPU addresses. 000002 Q0.1
. . 2
Use the Modem Expansion wizard to create a 000003 Qo
configuration block in for the Modem module to 000127 Q15.6
support Modbus RTU protocol. The Modem 000128 Q15.7
module configuration block must be 010001 10.0
downloaded to the CPU data block before you 010002 |0'1
can use the Modbus protocol. 010003 |0:2
010127 115.6
010128 115.7
030001 AIWO0
030002 Alw2
030003 AlW4
030032 AIW62
040001 VWO
040002 VW2
040003 VW4
04xxxX VW 2*(xxxx-1)

Paging and SMS Messaging

The Modem module supports sending numeric and text paging messages, and SMS (Short Message
Service) messages to cellular phones (where supported by the cellular provider). The messages and
telephone numbers are stored in the Modem module configuration block which must be downloaded to the
data block in the S7-200 CPU. You can use the Modem Expansion wizard to create the messages and
telephone numbers for the Modem module configuration block. The Modem Expansion wizard also
creates the program code to allow your program to initiate the sending of the messages.

Numeric Paging

Numeric paging uses the tones of a touch tone telephone to send numeric values to a pager. The Modem
module dials the requested paging service, waits for the voice message to complete, and then sends the
tones corresponding to the digits in the paging message. The digits 0 through 9, asterisk (*), A, B, Cand D
are allowed in the paging message. The actual characters displayed by a pager for the asterisk and A, B,
C, and D characters are not standardized, and are determined by the pager and the paging service
provider.

Text Paging

Text paging allows alphanumeric messages to be transmitted to a paging service provider, and from there
to a pager. Text paging providers normally have a modem line that accepts text pages. The Modem
module uses Telelocator Alphanumeric Protocol (TAP) to transmit the text messages to the service
provider. Many providers of text paging use this protocol to accept messages.

Short Message Service (SMS)

Short Message Service (SMS) messaging is supported by some cellular telephone services, generally
those that are GSM compatible. SMS allows the Modem module to send a message over an analog
telephone line to an SMS provider. The SMS provider then transmits the message to the cellular
telephone, and the message appears on the text display of the telephone. The Modem module uses the
Telelocator Alphanumeric Protocol (TAP) and the Universal Computer Protocol (UCP) to send messages
to the SMS provider. You can send SMS messages only to SMS providers that support these protocols on
a modem line.

Creating a Program for the Modem Module ~ Chapter 10

Embedded Variables in Text and SMS Messages

The Modem module can embed data values from the CPU in the text messages and format the data
values based on a specification in the message. You can specify the number of digits to the left and right
of the decimal point, and whether the decimal point is a period or a comma. When the user program
commands the Modem module to transmit a text message, the Modem module retrieves the message
from the CPU, determines what CPU values are needed within the message, retrieves those values from
the CPU, and then formats and place the values within the text message before transmitting the message
to the service provider.

The telephone number of the messaging provider, the message, and the variables embedded within the
message are read from the CPU over multiple CPU scan cycles. Your program should not modify
telephone numbers or messages while a message is being sent. The variables embedded within a
message can continue to be updated during the sending of a message. If a message contains multiple
variables, those variables are read over multiple scan cycles of the CPU. If you want all of the embedded
variables within a message to be consistent, the you must not change any of the embedded variables
after you send a message.

Data Transfers

The Modem module allows your program to transfer data to another CPU or to a Modbus device over the
telephone line. The data transfers and telephone numbers are configured with the Modem Expansion
wizard, and are stored in the Modem module configuration block. The configuration block is then
downloaded to the data block in the S7-200 CPU. The Modem Expansion wizard also creates program
code to allow your program to initiate the data transfers.

A data transfer can be either a request to read data from a remote device, or a request to write data to a
remote device. A data transfer can read or write between 1 and 100 words of data. Data transfers move
data to or from the V memory of the attached CPU.

The Modem Expansion wizard allows you to create a data transfer consisting of a single read from the
remote device, a single write to the remote device, or both a read from and a write to the remote device.

Data transfers use the configured protocol of the Modem module. If the Modem module is configured to
support PPI protocol (where it responds to STEP 7-Micro/WIN), the Modem module uses the PPI protocol
to transfer data. If the Modem module is configured to support the Modbus RTU protocol, data transfers
are transmitted using the Modbus protocol.

The telephone number of the remote device, the data transfer request and the data being transferred are
read from the CPU over multiple CPU scan cycles. Your program should not modify telephone numbers or
messages while a message is being sent. Also, you should not modify the data being transferred while a
message is being sent.

If the remote device is another Modem module, the password function can be used by the data transfers
by entering the password of the remote Modem module in the telephone number configuration. The
callback function cannot be used with data transfers.

Password Protection

The password security of the Modem module is optional and is enabled with the Modem Expansion
wizard. The password used by the Modem module is not the same as the CPU password. The Modem
module password is a separate 8-character password that the caller must supply to the Modem module
before being allowed access to the attached CPU. The password is stored in the V memory of the CPU as
part of the Modem module configuration block. The Modem module configuration block must be
downloaded to the data block of the attached CPU.

If the CPU has the password security enabled in the System Data Block, the caller must supply the CPU
password to gain access to any password protected functions.

291

10

S7-200 Programmable Controller System Manual

292

Security Callback

The callback function of the Modem module is optional and is configured with the Modem Expansion
wizard. The callback function provides additional security for the attached CPU by allowing access to the
CPU only from predefined telephone numbers. When the callback function is enabled, the Modem module
answers any incoming calls, verifies the caller, and then disconnects the line. If the caller is authorized, the
Modem module then dials a predefined telephone number for the caller, and allows access to the CPU.

The Modem module supports three callback modes:

(1 Callback to a single predefined telephone number
(O Callback to multiple predefined telephone numbers
(O Callback to any telephone number

The callback mode is selected by checking the appropriate option in the Modem Expansion wizard and
then defining the callback telephone numbers. The callback telephone numbers are stored in the Modem
module configuration block stored in the data block of the attached CPU.

The simplest form of callback is to a single predefined telephone number. If only one callback number is
stored in the Modem module configuration block, whenever the Modem module answers an incoming call,
it notifies the caller that callback is enabled, disconnects the caller, and then dials the callback number
specified in the configuration block.

The Modem module also supports callback for multiple predefined telephone numbers. In this mode the

caller is asked for a telephone number. If the supplied number matches one of the predefined telephone

numbers in the Modem module configuration block, the Modem module disconnects the caller, and then

calls back using the matching telephone number from the configuration block. The user can configure up
to 250 callback numbers.

Where there are multiple predefined callback numbers, the callback number supplied when connecting to
the Modem module must be an exact match of the number in the configuration block of the Modem
module except for the first two digits. For example, if the configured callback is 91(123)4569999 because
of a need to dial an outside line (9) and long distance (1), the number supplied for the callback could be
any of the following:

1 91(123)4569999
O 1(123)4569999
O (123)4569999

All of the above telephone number are considered to be a callback match. The Modem module uses the
callback telephone number from its configuration block when performing the callback, in this example
91(123)4569999. When configuring multiple callback numbers, make sure that all telephone numbers are
unique excluding the first two digits. Only the numeric characters in a telephone number are used when
comparing callback numbers. Characters such as commas or parenthesis are ignored when comparing
callback numbers.

The callback to any telephone number is set up in the Modem Expansion wizard by selecting the “Enable
callbacks to any phone number” option during the callback configuration. If this option is selected, the
Modem module answers an incoming call and requests a callback telephone number. After the telephone
number is supplied by the caller, the Modem module disconnects and dials that telephone number. This
callback mode only provides a means to allow telephone charges to be billed to the Modem module’s
telephone connection and does not provide any security for the S7-200 CPU. The Modem module
password should be used for security if this callback mode is used.

The Modem module password and callback functions can be enabled at the same time. The Modem
module requires a caller to supply the correct password before handling the callback.

Creating a Program for the Modem Module ~ Chapter 10

Configuration Table for the Modem Module

All of the text messages, telephone numbers, data transfer information, callback numbers and other
options are stored in a Modem module configuration table which must loaded into the V memory of the
S7-200 CPU. The Modem Expansion wizard guides you through the creation of a Modem module
configuration table. STEP 7-Micro/WIN then places the Modem module configuration table in the Data
Block which is downloaded to the S7-200 CPU.

The Modem module reads this configuration table from the CPU on startup and within five seconds of any
STOP-to-RUN transition of the CPU. The Modem module does not read a new configuration table from the
CPU as long the Modem module is online with STEP 7-Micro/WIN. If a new configuration table is
downloaded while the Modem module is online, the Modem module reads the new configuration table
when the online session is ended.

If the Modem module detects an error in the configuration table, the Module Good (MG) LED on the front
of the module flashes on and off. Check the PLC Information screen in STEP 7-Micro/WIN, or read the
value in SMW220 (for module slot 0) for information about the configuration error. The Modem module
configuration errors are listed in Table 10-4. If you use the Modem Expansion wizard to create the Modem
module configuration table, STEP 7-Micro/WIN checks the data before creating the configuration table.

Table 10-4 EM 241 Configuration Errors (Hexadecimal)

Error Description

0000 No error

0001 No 24 VDC external power

0002 Modem failure

0003 No configuration block ID - The EM 241 identification at the start of the configuration table is not valid
for this module.

0004 Configuration block out of range - The configuration table pointer does not point to V memory, or some
part of the table is outside the range of V memory for the attached CPU.

0005 Configuration error - Callback is enabled and the number of callback telephone numbers equals 0 or it

is greater than 250. The number of messages is greater than 250. The number of messaging
telephone numbers is greater than 250, or if length of the messaging telephone numbers is greater

than 120 bytes. 1 O

0006 Country selection error - The country selection on the two rotary switches is not a supported value.
0007 Phone number too large - Callback is enabled and the callback number length is greater than the
maximum.
0008 to OOFF ' Reserved
01xx Error in callback number xx - There are illegal characters in callback telephone number xx. The value
xx is 1 for the first callback number, 2 for the second, etc.
02xx Error in telephone number xx - One of the fields in a message telephone number xx or a data transfer

telephone number xx contains an illegal value. The value xx is 1 for the first telephone number, 2 for
the second, etc.

03xx Error in message xx - Message or data transfer number xx exceeds the maximum length. The value
xx is 1 for the first message, 2 for the second, etc.

0400 to FFFF = Reserved

293

10

S7-200 Programmable Controller System Manual

Status LEDs of the Modem Module
The Modem module has 8 status LEDs on the front panel. Table 10-5 describes the status LEDs.

Table 10-5 EM 241 Status LEDs

LED Description

MF Module Fail - This LED is on when the module detects a fault condition such as:
m No 24 VDC external power
= Timeout of the I/O watchdog
m Modem failure
m Communications error with the local CPU

MG Module Good - This LED is on when there is no module fault condition. The Module Good LED flashes
if there is a error in the configuration table, or the user has selected an illegal country setting for the
telephone line interface. Check the PLC Information screen in STEP 7-Micro/WIN or read the value in
SMW220 (for module slot 0) for information about the configuration error.

OH Off Hook - This LED is on when the EM 241 is actively using the telephone line.

NT No Dial Tone - This LED indicates an error condition and turns on when the EM 241 has been
commanded to send a message and there is no dial tone on the telephone line. This is only an error
condition if the EM 241 has been configured to check for a dial tone before dialing. The LED remains
on for approximately 5 seconds after a failed dial attempt.

RI Ring Indicator -This LED indicates that the EM 241 is receiving an incoming call.

CD Carrier Detect - This LED indicates that a connection has been established with a remote modem.
Rx Receive Data - This LED flashes on when the modem is receiving data.

Tx Transmit Data - This LED flashes on when the modem is transmitting data.

Using the Modem Expansion Wizard to Configure the Modem Module

Start the Modem Expansion wizard from the STEP 7-Micro/WIN Tools menu or from the Tools portion of
the Navigation Bar.

294

To use this wizard, the project must be compiled and set to Symbolic Addressing Mode. If you have not
already compiled your program, compile it now.

1.

On first screen of the Modem Expansion wizard, select Configure an EM 241 Modem module and
click Next>.

The Modem Expansion wizard requires the Modem module’s position relative to the S7-200 CPU in
order to generate the correct program code. Click the Read Modules button to automatically read
the positions of the intelligent modules attached to the CPU. Expansion modules are numbered
sequentially starting at zero. Double-click the Modem module that you want to configure, or set the
Module Position field to the position of the Modem module. Click Next>.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module next to
the CPU in order for the Modem Expansion wizard to configure the module.

The password protection screen allows you to enable password protection for the Modem module
and assign a 1 to 8 character password for the module. This password is independent of the
S7-200 CPU password. When the module is password-protected, anyone who attempts to connect
with the S7-200 CPU through the Modem module is required to supply the correct password. Select
password protection if desired, and enter a password. Click Next>.

The Modem module supports two communications protocols: PPI protocol (to communicate with
STEP 7-Micro/WIN), and Modbus RTU protocol. Protocol selection is dependent on the type of
device that is being used as the remote communications partner. This setting controls the
communications protocol used when the Modem module answers a call and also when the Modem
module initiates a CPU data transfer. Select the appropriate protocol and click Next>.

Creating a Program for the Modem Module ~ Chapter 10

You can configure the module to send numeric and text messages to pagers, or Short Message
Service (SMS) messages to cellular telephones. Check the Enable messaging checkbox and click
the Configure Messaging... button to define messages and the recipient’s telephone numbers.

When setting up a message to be sent to a pager or cellular phone, you must define the message
and the telephone number. Select the Messages tab on the Configure Messaging screen and click
the New Message button. Enter the text for the message and specify any CPU data values to insert
into the message. To insert a CPU data value into the message, move the cursor to the position for
the data and click the Insert Data... button. Specify the address of the CPU data value (i.e. VW100),
the display format (i.e. Signed Integer) and the digits left and right of the decimal point. You can also
specify if the decimal point should be a comma or a period.

- Numeric paging messages are limited to the digits 0 to 9, the letters A, B, C and D, and the
asterisk (*). The maximum allowed length of a numeric paging message varies by service
provider.

- Text messages can be up to 119 characters in length and contain any alphanumeric
character.

- Text messages can contain any number of embedded variables.
- Embedded variables can be from V, M, SM, |, Q, S, T, C or Al memory in the attached CPU.

- Hexadecimal data is displayed with a leading ‘16#’. The number of characters in the value is
based on the size of the variable. For example, VW100 displays as 16#0123.

- The number of digits left of the decimal must be large enough to display the expected range
of values, including the negative sign, if the data value is a signed integer or floating point
value.

- Ifthe data format is integer and the number of digits right of the decimal point is not zero, the
integer value is displayed as a scaled integer. For example, if VW100 = 1234 and there are 2
digits right of the decimal point, the data is displayed as ‘12.34".

- Ifthe data value is greater than can be displayed in the specified field size, the Modem
module places the # character in all character positions of data value.

Telephone numbers are configured by selecting the Phone Numbers tab on the Configure
Messaging screen. Click the New Phone Number... button to add a new telephone number. Once a
telephone number has been configured it must be added to the project. Highlight the telephone
number in the Available Phone Numbers column and click the right arrow box to add the telephone
number to the current project. Once you have added the telephone number to the current project,
you can select the telephone number and add a symbolic name for this number to use in your
program.

The telephone number consists of several fields which vary based on the type of messaging
selected by the user.

- The Messaging Protocol selection tells the Modem module which protocol to use when
sending the message to the message service provider. Numeric pagers support only numeric
protocol. Text paging services usually require TAP (Telelocator Alphanumeric Protocol). SMS
messaging providers are supported with either TAP or UCP (Universal Computer Protocol).
There are three different UCP services normally used for SMS messaging. Most providers
support command 1 or 51. Check with the SMS provider to determine the protocol and
commands required by that provider.

- The Description field allows you to add a text description for the telephone number.

295

10

10

S7-200 Programmable Controller System Manual

296

The Phone Number field is the telephone number of the messaging service provider. For text
messages this is the telephone number of the modem line the service provider uses to accept
text messages. For numeric paging this is the telephone number of the pager itself. The
Modem module allows the telephone number field to be a maximum of 40 characters. The
following characters are allowed in telephone numbers that the Modem module uses to dial
out:

0Oto9 allowed from a telephone keypad

A,B,C,D,* # DTMF digits (tone dialing only)

, pause dialing for 2 seconds

! commands the modem to generate a hook flash
@ wait for 5 seconds of silence
w

wait for a dial tone before continuing
() ignored (can be used to format the telephone number)

The Specific Pager ID or Cell Phone Number field is where you enter the pager number or
cellular telephone number of the message recipient. This number should not contain any
characters except the digits 0 through 9. A maximum of 20 characters is allowed.

The Password field is optional for TAP message. Some providers require a password but
normally this field should be left blank. The Modem module allows the password to be up to
15 characters.

The Originating Phone Number field allows the Modem module to be identified in the SMS
message. This field is required by some service providers which use UCP commands. Some
service providers might require a minimum number of characters in this field. The Modem
module allows up to 15 characters.

The Modem Standard field is provided for use in cases where the Modem module and the
service provider modem cannot negotiate the modem standard. The default is V.34
(33.6 kBaud).

The Data Format fields allow you to adjust the data bits and parity used by the modem when
transmitting a message to a service provider. TAP normally used 7 data bits and even parity,
but some service providers use 8 data bits and no parity. UCP always uses 8 data bits with
no parity. Check with the service provider to determine which settings to use.

You can configure the Modem module to transfer data to another S7-200 CPU (if PPI protocol was
selected) or to transfer data to a Modbus device (if Modbus protocol was selected). Check the
Enable CPU data transfers checkbox and click the Configure CPU-to... button to define the data
transfers and the telephone numbers of the remote devices.

When setting up a CPU-to-CPU or a CPU-to-Modbus data transfer you must define the data to
transfer and the telephone number of the remote device. Select the Data Transfers tab on the
Configure Data Transfers screen and click the New Transfer button. A data transfer consists of a
data read from the remote device, a data write to the remote device, or both a read from and a write
to the remote device. If both a read and a write are selected, the read is performed first and then the

write.

Up to 100 words can be transferred in each read or write. Data transfers must be to or from the
V Memory in the local CPU. The wizard always describes the memory locations in the remote
device as if the remote device is an S7-200 CPU. If the remote device is a Modbus device, the
transfer is to or from holding registers in the Modbus device (address 04xxxx). The equivalent
Modbus address (xxxx) is determined as follows:

Modbus address
V memory address

1 + (V memory address / 2)
(Modbus address - 1) *2

Creating a Program for the Modem Module ~ Chapter 10

10.

1.

12.

13.

14.

15.

16.

The Phone Numbers tab on the Configure CPU Data Transfers screen allows you to define the
telephone numbers for CPU-to-CPU or a CPU-to-Modbus data transfers. Click the New Phone
Number... button to add a new telephone number. Once a telephone number has been configured it
must be added to the project. Highlight the telephone number in the Available Phone Numbers
column and click the right arrow box to add the telephone number to the current project. Once you
have added the telephone number to the current project, you can select the telephone number and
add a symbolic name for this telephone number to use in your program.

The Description and Phone Number fields are the same as described earlier for messaging. The
Password field is required if the remote device is a Modem module and password protection has
been enabled. The Password field in the local Modem module must be set to the password of the
remote Modem module. The local Modem module supplies this password when it is requested by
the remote Modem module.

Callback causes the Modem module to automatically disconnect and dial a predefined telephone
number after receiving an incoming call from a remote STEP 7-Micro/WIN. Select the Enable
callback checkbox and click the Configure Callback... button to configure callback telephone
numbers. Click Next>.

The Configure Callback... screen allows you enter the telephone numbers the Modem module uses
when it answers an incoming call. Check the ‘Enable callbacks to only specified phone numbers’ if

the callback numbers are to be predefined. If the Modem module is to accept any callback number

supplied by the incoming caller (to reverse the connection charges), check the ‘Enable callbacks to
any phone number’ selection.

If only specified callback telephone numbers are allowed, click the New Phone Number button to
add callback telephone numbers. The Callback Properties screen allows you to enter the
predefined callback telephone numbers and a description for the callback number. The callback
number entered here is the telephone number that the Modem module uses to dial when performing
the callback. This telephone number should include all digits required to connect to an outside line,
pause while waiting for an outside line, connect to long distance, etc.

After entering a new callback telephone number, it must be added to the project. Highlight the
telephone number in the Available Callback Phone Numbers column and click the right arrow box to
add the telephone number to the current project.

You can set the number of dialing attempts that the Modem module makes when sending a
message or during a data transfer. The Modem module reports an error to the user program only
when all attempts to dial and send the message are unsuccessful.

Some telephone lines do not have a dial tone present when the telephone receiver is lifted.
Normally, the Modem module returns an error to the user program if a dial tone is not present when
the Modem module is commanded to send a message or perform a callback. To allow dialing out on
a line with no dial tone, check the box, Enable Dialing Without Dial Tone Selection.

The Modem Expansion wizard creates a configuration block for the Modem module and requires
the user to enter the starting memory address where the Modem module configuration data is
stored. The Modem module configuration block is stored in V Memory in the CPU.

STEP 7-Micro/WIN writes the configuration block to the project Data Block. The size of the
configuration block varies based on the number of messages and telephone numbers configured.
You can select the V Memory address where you want the configuration block stored, or click the
Suggest Address button if you want the wizard to suggest the address of an unused V Memory
block of the correct size. Click Next>.

The final step in configuring the Modem module is to specify the Q memory address of the
command byte for the Modem module. You can determine the Q memory address by counting the
output bytes used by any modules with discrete outputs installed on the S7-200 before the Modem
module. Click Next>.

The Modem Expansion wizard now generates the project components for your selected
configuration (program block and data block) and makes that code available for use by your
program. The final wizard screen displays your requested configuration project components. You
must download the Modem module configuration block (Data Block) and the Program Block to the
S7-200 CPU.

297

10

S7-200 Programmable Controller System Manual

Overview of Modem Instructions and Restrictions

The Modem Expansion wizard makes controlling the Modem module easier by creating unique instruction
subroutines based on the position of the module and configuration options you selected. Each instruction
is prefixed with a “MODx_" where x is the module location.

Requirements for Using the EM 241 Modem Module Instructions
Consider these requirements when you use Modem module instructions:

a
a

The Modem module instructions use three subroutines.

The Modem module instructions increase the amount of memory required for your program by up to
370 bytes. If you delete an unused instruction subroutine, you can rerun the Modem Expansion
wizard to recreate the instruction if needed.

You must make sure that only one instruction is active at a time.
The instructions cannot be used in an interrupt routine.

The Modem module reads the configuration table information when it first powers up and after a
STOP-to-RUN transition. Any change that your program makes to the configuration table is not
seen by the module until a mode change or the next power cycle.

Using the EM 241 Modem Module Instructions

To use the Modem module instructions in your S7-200 program, follow these steps:

1.
2.

10

298

Use the Modem Expansion wizard to create the Modem module configuration table.

Insert the MODx_CTRL instruction in your program and use the SM0.0 contact to execute it every
scan.

Insert a MODx_MSG instruction for each message you need to send.

Insert a MODx_XFR instruction for each data transfer.

Creating a Program for the Modem Module ~ Chapter 10

Instructions for the Modem Module

MODx_CTRL Instruction
The MODx_CTRL (Control) instruction is used to enable and

S g . SIMATIC / EC1121
initialize the Modem module. This instruction should be called every
scan and should only be used once in the project. LAD FED
MGD_CTRL MGD_CTRL
~{ EM ~{ EM
SIMATIC
STL
CALL MO0 _CTRL

MODx_XFR Instruction

The MODx_XFR (Data Transfer) instruction is used to command the
Modem module to read and write data to another S7-200 CPU or a

Modbus device. This instruction requires 20 to 30 seconds from the LAD FED
time the START input is triggered until the Done bit is set.

SIMATIC £ IEC1131

QD _KFR MO _HFR
The EN bit must be on to enable a command to the module, and [En EMO = | —EM EMC =
should remain on until the Done bit is set, signaling completion of i -] g;::; Dane b
the process. An XFR command is sent to the Modem module on doata Error

each scan when START input is on and the module is not currently -|Phone Done =
busy. The START input can be pulsed on through an edge detection | | Pt Frrorf
element, which only allows one command to be sent.

Phone is the number of one of the data transfer telephone numbers.

You can use the symbolic name you assigned to each data transfer SIMATIC
telephone number when the number was defined with the Modem oTL
Expansion wizard. CALL MOD:_#FR, START, Phone

Data is the number of one of the defined data transfers. You can R TR T

use the symbolic name you assigned to the data transfer when the
request was defined using the Modem Expansion wizard.

Done is a bit that comes on when the Modem module completes the data transfer.

Error is a byte that contains the result of the data transfer. Table 10-4 defines the possible error conditions
that could result from executing this instruction.

Table 10-6 Parameters for the MODx_XFR Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,M, S, SM, T, C,V, L, Power Flow

Phone, Data BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Done BOOL ,Q,M S, SM,T,C,V,L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

299

10

S7-200 Programmable Controller System Manual

300

MODx_MSG Instruction

The MODx_MSG (Send Message) instruction is used to send a
paging or SMS message from Modem module. This instruction
requires 20 to 30 seconds from the time the START input is
triggered until the Done bit is set.

The EN bit must be on to enable a command to the module, and
should remain on until the Done bit is set, signaling completion of
the process. A MSG command is sent to the Modem module on
each scan when START input is on and the module is not currently
busy. The START input can be pulsed on through an edge detection
element, which only allows one command to be sent.

Phone is the number of one of the message telephone numbers.
You can use the symbolic name you assigned to each message
telephone number the when the number was defined with the
Modem Expansion wizard.

Msg is the number of one of the defined messages. You can use the
symbolic name you assigned to the message when the message
was defined using the Modem Expansion wizard.

SIMATIC £ IEC1131
LAC FEL:
WCC %G WD _I5G
— EM EMC — EM EMO =
— 5TART
-| START —|FPhone Done =
—|Fhone Daone M-g Ervor |-

o D] Error

SIMATIC

STL

CALL MODe_MEG, START. Phone,
Mzq, Crone, Errar

Done is a bit that comes on when the Modem module completes the sending of the message to the

service provider.

Error is a byte that contains the result of this request to the module. Table 10-8 defines the possible error

conditions that could result from executing this instruction.

Table 10-7 Parameters for the MODx_MSG Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,M, S, SM, T, C,V, L, Power Flow

Phone, Msg BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Done BOOL ,Q,M S, SM,T,C,V,L

Error BYTE

VB, IB, @B, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Creating a Program for the Modem Module

Chapter 10

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions
Error Description
0 No error

Telephone line errors

1
2
3
4
5

6

No dial tone present

Busy line

Dialing error

No answer

Connect timeout (no connection within 1 minute)

Connection aborted or an unknown response

Errors in the command

7
8
9
10
11
12

Numeric paging message contains illegal digits
Telephone number (Phone input) out of range

Message or data transfer (Msg or Data input) out of range
Error in text message or data transfer message

Error in messaging or data transfer telephone number

Operation not allowed (i.e. attempts set to zero)

Service provider errors

13
14
15

No response (timeout) from messaging service
Message service disconnected for unknown reason

User aborted message (disabled command bit)

TAP - Text paging and SMS message errors returned by service provider

16
17
18
19

Remote disconnect received (service provider aborted session)

Login not accepted by message service (incorrect password)

Block not accepted by message service (checksum or transmission error)
Block not accepted by message service (unknown reason)

UCP - SMS message errors returned by service provider

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Unknown error

Checksum error

Syntax error

Operation not supported by system (illegal command)
Operation not allowed at this time

Call barring active (blacklist)

Caller address invalid

Authentication failure

Legitimization code failure

GA not valid

Repetition not allowed

Legitimization code for repetition, failure
Priority call not allowed

Legitimization code for priority call, failure
Urgent message not allowed

Legitimization code for urgent message, failure
Reverse charging not allowed

Legitimization code for reverse charging, failure

301

10

10

S7-200 Programmable Controller System Manual

302

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions, continued

Error

Description

UCP - SMS message errors returned by service provider (continued)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Data transfer errors
53
54
55
56
57
58
59
60 to 127

Deferred delivery not allowed

New AC not valid

New legitimization code not allowed
Standard text not valid

Time period not valid

Message type not supported by system
Message too long

Requested standard text not valid
Message type not valid for pager type
Message not found in SMSC
Reserved

Reserved

Subscriber hang up

Fax group not supported

Fax message type not supported

Message timeout (no response from remote device)
Remote CPU busy with upload or download

Access error (memory out of range, illegal data type)
Communications error (unknown response)
Checksum or CRC error in