
Data Structures – Week #1

Introduction

October 1, 2021 Borahan Tümer, Ph.D. 2

Goals

 We will learn methods of how to

 (explicit goal) organize or structure large
amounts of data in the main memory (MM)
considering efficiency; i.e,

 memory space and

 execution time

 (implicit goal) gain additional experience on

 what data structures to use for solving what kind of
problems

 programming

October 1, 2021 Borahan Tümer, Ph.D. 3

Goals continued…1

 Explicit Goal

 We look for answers to the following question:

“How do we store data in MM such that

1. execution time grows as slow as possible with the

growing size of input data, and

2. data uses up minimum memory space?”

October 1, 2021 Borahan Tümer, Ph.D. 4

Goals continued…2

 As a tool to calculate the execution time of algorithms, we
will learn the basic principles of algorithm analysis.

 To efficiently structure data in MM, we will thoroughly
discuss the

 static, (arrays)

 dynamic (structures using pointers)

ways of memory allocations, two fundemantal

implementation tools for data structures.

October 1, 2021 Borahan Tümer, Ph.D. 5

Representation of Main Memory

October 1, 2021 Borahan Tümer, Ph.D. 6

Examples for efficient vs. inefficient

data structures

 8-Queen problem

 1D array vs. 2D array representation results in saving

memory space

 Search for proper spot (square) using horse moves save

time over square-by-square search

 Fibonacci series: A lookup table avoids redundant

recursive calls and saves time

October 1, 2021 Borahan Tümer, Ph.D. 7

Examples for efficient vs. inefficient

data structures

8-Queen problem (4-queen and 5-queen versions)

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

October 1, 2021 Borahan Tümer, Ph.D. 8

Examples for efficient vs. inefficient

data structures

8-Queen problem (4-q and 5-q versions)

x

x

x

x

x

x

x

x

x

int a[4][4];
….
a[0][1]=1;
a[1][3]=1;
a[2][0]=1;
a[3][2]=1;

int a[5];
….
a[0]=0;
a[1]=2;
a[2]=4;
a[3]=1;
a[4]=3;

inefficient:

more memory

space (16 bytes

for 4-q version)

required

efficient:

less memory

space (5 bytes

for 5-q version)

required

October 1, 2021 Borahan Tümer, Ph.D. 9

Math Review

 Exponents

 Logarithms

;)(;; abbaba

b

a
baba xxx

x

x
xxx

xaxx
x

yxxy

z
x

y
yyayxy

a

z

z
xx

a

loglog;log
1

log;logloglog

;0,
log

log
log;0,log

October 1, 2021 Borahan Tümer, Ph.D. 10

Math Review

 Arithmetic Series: Series where the variable of

summation is the base.

2

)2)(1(

2

)1(2

2

)1(

;
2

)2)(1(
1

2

)1(1

1

kkkkk

kk
k

kk
i

k

i

October 1, 2021 Borahan Tümer, Ph.D. 11

Math Review

 Geometric Series: Series at which the variable of

summation is the exponent.

1)1(

;
1

...

;
1

1
...1

;10,
1

1

};1{,
1

1
;10,

1

1

432

0

432

0

0

1

0

1

0

lim

lim

lim

asass

a

a
aaaaaaas

a
aaaaas

a
a

a

Na
a

a
aa

a

a
a

n

i

i

n

n

i

i

n

n

i

i

n

nn

i

i
nn

i

i

October 1, 2021 Borahan Tümer, Ph.D. 12

Math Review

 Geometric Series…cont’d

 An example to using above formulas to calculate

another geometric series

0

32

132

32

1

;2
2

1

2

1

2

1

2

1

2

1
12

22

4

2

3

2

2
12

22

3

2

2

2

1

;
2

i
i

i

i

i

i
i

s

sss

i
s

i
s

i
s

October 1, 2021 Borahan Tümer, Ph.D. 13

Math Review

 Proofs

 Proof by Induction

 Steps

1. Prove the base case (k=1)

2. Assume hypothesis holds for k=n

3. Prove hypothesis for k=n+1

 Proof by counterexample

 Prove the hypothesis wrong by an example

 Proof by contradiction ()

 Assume hypothesis is wrong,

 Try to prove this

 See the contradictory result

ABBA ~~

October 1, 2021 Borahan Tümer, Ph.D. 14

Math Review

 Proof examples (Proofs… cont’d)

 Proof by Induction

 Hypothesis

 Steps

1. Prove true for n=1:

2. Assume true for n=k:

3. Prove true for n=k+1:

2

)1(

1

nn
i

n

i

1
1

1

i

i

2

)1(

1

kk
i

k

i

2

)2)(1(

2

)1(2

2

)1(

;
2

)2)(1(
1

2

)1(1

1

kkkkk

kk
k

kk
i

k

i

October 1, 2021 Borahan Tümer, Ph.D. 15

Arrays

 Static data structures that

 represent contiguous memory locations holding data

of the same type

 provide direct access to data they hold

 have a constant size determined up front (at the

beginning of) the run time

October 1, 2021 Borahan Tümer, Ph.D. 16

Arrays… cont’d

 An integer array example in C

 int arr[12]; //12 integers

October 1, 2021 Borahan Tümer, Ph.D. 17

Multidimensional Arrays

 To represent data with multiple dimensions,

multidimensional array may be employed.

 Multidimensional arrays are structures specified

with

 the data value, and

 as many indices as the dimensions of array

 Example:

 int arr2D[r][c];

October 1, 2021 Borahan Tümer, Ph.D. 18

Multidimensional Arrays

]1][1[]2][1[]1][1[]0][1[

]1][2[]2][2[]1][2[]0][2[

]1][1[]2][1[]1][1[]0][1[

]1][0[]2][0[]1][0[]0][0[

crmrmrmrm

cmmmm

cmmmm

cmmmm

•m: a two dimensional (2D) array with r rows and c columns

•Row-major representation: 2D array is implemented row-by-row.

•Column-major representation: 2D array is implemented column-first.

•In row-major rep., m[i][j] is the entry of the above matrix m at i+1st row and

j+1st column. “i” and “j” are row and column indices, respectively.

• How many elements? n = r*c elements

October 1, 2021 Borahan Tümer, Ph.D. 19

Row-major Implementation

 Question: How can we store the matrix in a

1D array in a row-major fashion or how can

we map the 2D array m to a 1D array a?

October 1, 2021 Borahan Tümer, Ph.D. 20

Row-major Implementation

 Question: How can we store the matrix in a 1D array

in a row-major fashion or how can we map the 2D

array m to a 1D array a?

... m[0][0] ... m[0][c-1] ... m[r-1][0] ... m[r-1][c-1]a

l-1 elements before the matrix representation

index: k → k=l k=l+c-1

...

k=l+(r-1)c+0 k=l+(r-1)c+c-1

in general what is k in terms of l, i, j and c so we know m[i][j]=a[k]?

elements after the

matrix representation

October 1, 2021 Borahan Tümer, Ph.D. 21

Row-major Implementation

 Question: How can we store the matrix in a 1D array

in a row-major fashion or how can we map the 2D

array m to a 1D array a?

... m[0][0] ... m[0][c-1] ... m[r-1][0] ... m[r-1][c-1]a

l elements

index: k → k=l k=l+c-1

...

k=l+(r-1)c+0 k=l+(r-1)c+c-1

In general, m[i][j] is placed at a[k] where k=l+ic+j.

Hence, m[i][j] = a[l+ic+j].

October 1, 2021 Borahan Tümer, Ph.D. 22

Implementation Details of Arrays

1. Array names are pointers that point to the first

byte of the first element of the array.

a) double vect[row_limit];// vect is a pointer!!!

2. Arrays may be efficiently passed to functions

using their name and their size where

a) the name specifies the beginning address of the

array

b) the size states the bounds of the index values.

3. Arrays can only be copied element by element.

October 1, 2021 Borahan Tümer, Ph.D. 23

Implementation Details… cont’d

#define maxrow …;
#define maxcol …;
…
int main()
{
int minirow;
double min;
double probability_matrix[maxrow][maxcol];
… ; //probability matrix initialized!!!
min=minrow(probability_matrix,maxrow,maxcol,&minirow);
…
return 0;
}

October 1, 2021 Borahan Tümer, Ph.D. 24

Implementation Details… cont’d

double minrow(double darr[][maxcol], int xpos, int ypos, int *ind)
{// finds minimum of sum of rows of the matrix and returns the sum

// and the row index with minimum sum.
double mn;
…
mn=<a large number>;
for (i=0; i<=xpos; i++) {

sum=0;
for (j=0; j<=ypos; j++)

sum+=darr[i][j];
if (mn > sum) { mn=sum; *ind=i; } // call by reference!!!

}
return mn;

}

October 1, 2021 Borahan Tümer, Ph.D. 25

Records (Structures)

 As opposed to arrays in which we keep data of
the same type, we keep related data of various
types in a record.

 Records are used to encapsulate (keep together)
related data.

 Records are composite, and hence, user-defined
data types.

 In C, records are formed using the reserved word
“struct.”

October 1, 2021 Borahan Tümer, Ph.D. 26

Struct

 We declare as an example a student record

called “stdType”.

 We declare first the data types required for

individual fields of the record stdType, and

then the record stdType itself.

October 1, 2021 Borahan Tümer, Ph.D. 27

Struct… Example

enum genderType = {female, male}; // enumerated type declared…
typedef enum genderType genderType; // name of enumerated type shortened…
struct instrType {
… //left for you as exercise!!!
}

typedef struct instrType instrType;
struct classType {// fields (attributes in OOP) of a course declared…
char classCode[8];
char className[60];
instrType instructor;
struct classtype *clsptr;
}
typedef struct classType classType; // name of structure shortened…

October 1, 2021 Borahan Tümer, Ph.D. 28

Struct… Example continues

struct stdType {
char id[8]; //key

//personal info
char name[15];
char surname[25];
genderType gender; //enumerated type
…

//student info
classType current_classes[10]; //...or class_type *cur_clsptr
classType classes_taken[50]; //...or class_type *taken_clsptr
float grade;
unsigned int credits_earned;
…

//next record’s first byte’s address
struct stdType *sptr; //address of next student record

}

October 1, 2021 Borahan Tümer, Ph.D. 29

Memory Issues

 Arrays can be used within records.

 Ex: classType current_classes[10]; // from previous slide

 Each element of an array can be a record.

 stdType students[1000];

 Using an array of classType for keeping taken classes
wastes memory space (Why?)
 Any alternatives?

 How will we keep student records in MM?
 In an array?

 Advantages?

 Disadvantages?

October 1, 2021 Borahan Tümer, Ph.D. 30

Array Representation

Advantages

1. Direct access (i.e., faster execution)

Disadvantages

1. Not suitable for changing number of student records

• The higher the extent of memory waste the smaller the number of

student records required to store than that at the initial case.

• The (constant) size of array requires extension which is impossible for

static arrays in case the number exceeds the bounds of the array.

The other alternative is pointers that provide dynamic memory allocation

October 1, 2021 Borahan Tümer, Ph.D. 31

Pointers

 Pointers are variables that hold memory addresses.

 Declaration of a pointer is based on the type of

data of which the pointer holds the memory

address.

 Ex: stdtype *stdptr;

October 1, 2021 Borahan Tümer, Ph.D. 32

Linked List Representation

Value of header=?Value of header=2E450

Std #1 Std #2 Std #3 Std #n

header

Memory heap

Std

1

Std

2

Std

3

Std

n

header

October 1, 2021 Borahan Tümer, Ph.D. 33

Dynamic Memory Allocation

header=(*stdtype) malloc(sizeof(stdtype));
//Copy the info of first student to node pointed to by header
s =(*stdtype) malloc(sizeof(stdtype));
//Copy info of second student to node pointed to by header
Header->sptr=s;
...

October 1, 2021 Borahan Tümer, Ph.D. 34

Arrays vs. Pointers

 Static data structures

 Represented by an index

and associated value

 Consecutive memory cells

 Direct access (+)

 Constant size (-)

 Memory not released

during runtime (-)

 Dynamic data structures

 Represented by a record of
information and address
of next node

 Randomly located in heap
(cause for need to keep
address of next node)

 Sequential access (-)

 Flexible size (+)

 Memory space allocatable
and releasable during
runtime (+)

